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Abstract

This thesis comprises two parts centered around the functional renormalization-group frame-

work: in the first part, I study the role of symmetries and conservation laws in approximate

solutions, while in the second part I analyze Friedel oscillations and transport in Luttinger

liquids with impurities.

The functional renormalization group (f) has been developed as a new computational

tool in the theory of interacting Fermi systems. The effective behavior of a given microscopic

model is calculated by solving coupled differential flow equations for the Green functions

with an energy scale as the flow parameter. The symmetries of the microscopic model im-

ply Ward identities between Green and response functions. It is shown that solutions of

truncated flow-equation hierarchies satisfy Ward identities if the cutoff bare action is gauge

invariant. However, truncations are generally not self-consistent approximations in the sense

of Baym and Kadanoff.

The f is then applied to study Luttinger liquids. By computing the full spatial effective

potential of a single impurity, long-range Friedel oscillations are observed in the density pro-

file with the expected power laws for systems with up to 107 lattice sites. For a double barrier

enclosing a dot region we find temperature regimes in which the conductance follows power

laws with universal exponents, as well as non-universal crossover regimes in intermediate

parameter regions.
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1 Introduction

In one-dimensional metals electrons can move freely in one direction but are confined in the

two transverse directions. The interaction between the electrons leads to Luttinger-liquid be-

havior with unusual properties different from conventional (Fermi-liquid) metals. In partic-

ular, the low-energy behavior of Luttinger liquids is strongly affected by impurities. Already

a single static impurity has a dramatic effect: for a repulsive interaction, the backscattering

amplitude grows as the energy scale is lowered, until at T = 0 transport is inhibited and the

chain is effectively cut into two pieces. The local density of states near an impurity, as well

as the spatial density profile away from the impurity, obey characteristic power laws depend-

ing only on the bulk parameters. The conductance through a single impurity with varying

parameters can be collapsed onto a single curve by a one-parameter scaling ansatz. A dou-

ble barrier shows particularly rich behavior: it can be tuned to resonance, and additional

scales are introduced by the separation of the two barriers and the detuning from the reso-

nance. The conductance as a function of temperature is non-monotonous, exhibiting several

distinct power laws, as well as a complex non-universal crossover behavior for intermediate

parameter ranges.

In recent years experiments on carbon nanotubes have allowed to measure the effect of one

or two impurities in an otherwise perfectly clean one-dimensional metal. While several field-

theoretical predictions were confirmed, transport through a double barrier did not obey the

expected asymptotic power laws. This led to a renewed theoretical interest to understand the

behavior in intermediate parameter ranges accessible in experiments. Different analytical

and computational methods applied to a spinless double-barrier model either supported or

disagreed with the experimental data. This prompted us to investigate the problem with

the functional renormalization-group method, which we have already used to treat complex

multi-scale problems, such as Luttinger liquids with a single impurity.

The functional renormalization group (f) has been developed in recent years as a new

computational tool to study interacting Fermi systems. It is particularly efficient in low di-

mensions. Starting from a specific microscopic model, high-energy modes are successively

integrated out to obtain the effective behavior on all energy scales. The method captures

universal scaling laws in certain limits, as well as non-universal crossover phenomena at in-

termediate scales.

Formally, the f flow equations constitute an infinite hierarchy of coupled differential

equations which describe the change of all Green functions as the energy scale is lowered.





 Introduction

This hierarchy of flow equations produces the exact solution to all orders of perturbation

theory at the end of the flow. In practice, however, the full hierarchy has to be truncated

by neglecting the flow of some higher Green functions, which is justified perturbatively for

weak renormalized interactions. In contrast to other renormalization-group methods we not

only follow the flow of a few running couplings but of whole functions, such as the impurity

potential.

For the  problems with one or two impurities, we approximate the interaction by an

effective nearest-neighbor coupling but retain the full effective impurity potential. Our

method is thus perturbative in the renormalized interaction but non-perturbative in the

impurity strength. This already yields the expected universal scaling of the local density of

states. In order to obtain the spatial density profile it is necessary to follow the flow of the

density-response vertex. We treat the simpler case of spinless fermions; the more realistic

modeling of electrons by spinful fermions is currently being considered. Our f results

have been checked against numerically exact density-matrix renormalization group ()

data for systems with up to  sites. The computation of the conductance as a function

of temperature requires several extensions of the method. We develop the flow of the full

impurity potential at fixed, finite temperature, as well as the temperature-flow scheme with

self-energy feedback. Moreover, it is shown that on the level of our approximation, no cor-

rections to the current vertex appear in the Kubo formula for the conductance. We are thus

able to compute the conductance consistently within one approximation over several orders

of magnitude in temperature, for arbitrary impurity strength.

Besides the formal developments, the practical feasibility of the method depends crucially

on the required computation time. Using a little-known mathematical theorem, an algo-

rithm has been developed which scales linearly in the system size, instead of quadratically.

For a lattice of . sites, the zero-temperature flow now takes minutes instead of days,

and systems of up to 107 sites have been computed. This allows to find interesting regions in

a large parameter space much more quickly.

The vanishing of current-vertex corrections to the conductance is an example of a more

general topic: the role of symmetries and conservation laws in the f formalism. The micro-

scopic model considered above, for instance, has a local U (1) gauge symmetry which implies

charge conservation. As a consequence, the exact Green functions are related by Ward iden-

tities. In particular for transport calculations it is crucial to respect these identities exactly

even in approximate calculations. This raises the question whether typical approximations in

the f, especially the truncation of the infinite hierarchy of flow equations, satisfy—or can

be made to satisfy—Ward identities. This problem has been addressed ten years ago in the

context of gauge theories with a fluctuating gauge field, using either modified Ward identities

or the background-field method, but simple gauge-invariant truncations remained elusive.

In those cases where a gauge-invariant flow is possible, for instance if the model is regular-
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ized not by a momentum cutoff but by a finite temperature, we show that even truncated

flows satisfy the Ward identities. On the other hand, we find that “self-consistency” between

Green functions of different degree, a feature of the conserving approximations by Baym and

Kadanoff, is generally not satisfied by common truncations of the f flow equations.

This thesis is organized as follows:

• In Chapter  the f formalism is introduced. After a brief review of generating func-

tionals and their expansion in terms of Green or vertex functions, an infrared cut-

off is defined which introduces a scale dependence in the generating functionals. A

derivative with respect to this scale leads to functional flow equations. These are then

expanded in terms of their constituent Green functions to obtain an infinite hierar-

chy of coupled differential flow equations for the Green functions and a diagrammatic

representation of the flow equations. The merits of different schemes are compared.

• In Chapter  Ward identities are derived expressing the symmetry of the bare action

in the functional formalism. A momentum cutoff generally modifies the Ward iden-

tities. For other flow schemes which preserve Ward identities we show that they hold

even in truncated flows. Conserving approximations are reviewed as an example of

self-consistent approximations. It is then shown that common truncated f flow

equations are generally not self-consistent.

• In Chapter  the general f formalism is applied to study one-dimensional correlated

fermion systems (Luttinger liquids) with impurities, in particular their single-particle

and transport properties. In this technical part the precise form of the flow equations

on the lattice is derived, as well as the details of the finite-temperature cutoff proce-

dure, truncations of the flow-equation hierarchy and parametrizations of the flowing

vertices. At the end of the flow we obtain the effective impurity potential (self energy)

and the renormalized density profile. In order to compute transport in our approxi-

mation, we then have to solve the scattering problem of non-interacting electrons in

this effective potential. It is also shown that current-vertex corrections to the conduc-

tance vanish in our approximation, in accordance with the Ward identities. The loop

algorithm for nearest-neighbor interaction, which scales linearly in the system size, is

derived in appendix B.

• In Chapter  new results are reported for the Friedel oscillations of the spatial density

profile generated by a boundary or impurity in one dimension, and the temperature-

dependent conductance through a double barrier. For appropriate parameter ranges

universal scaling is observed with several distinct power laws in temperature. In inter-
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 Introduction

mediate regions the full non-universal crossover behavior is obtained, suggesting an

interpretation of recent measurements on carbon nanotubes.

The publications based on this thesis are listed on page .
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2 Functional renormalization group

Challenging many-body problems often involve effects on many energy scales. In perturba-

tion theory one has to perform loop integrals over all energy scales, which may lead to in-

frared or ultraviolet divergences. Some of these divergences have a physical origin indicating

for instance a phase transition, while others are an artefact of perturbation theory. Wilson’s

exact renormalization group () [Wilson , Wilson&Kogut ] provides a method to

deal with such problems: the different energy scales are successively taken into account by

integrating out momentum shells. This can be done by introducing for example an infrared

cutoff in the bare propagator which suppresses all modes with an energy below the cutoff

scale 3. Then, all correlation functions depend on the scale 3. One follows the change

(flow) of the correlation functions as the cutoff scale is lowered until finally the cutoff is re-

moved and the original theory is recovered. An important advantage of this procedure is that

the right-hand side () of the flow equation remains regular even if perturbation theory

leads to unphysical divergences.

There are several variants of the exact functional  flow equations. After Wilson’s early

review [Wilson&Kogut ] on the exact , [Polchinski ] derived equivalent contin-

uum flow equations with a smooth cutoff in order to prove perturbative renormalizability

of massive Euclidean ϕ4 theory in D = 4. Keller, Kopper, and Salmhofer [ ] sim-

plified and extended the proof and showed that these flow equations determine the con-

nected amputated Green functions (cf. section ..). [Wegner&Houghton ] derived

flow equations for a sharp cutoff, however there were ambiguities which they avoided by

assuming discrete momenta. [Weinberg ] took the continuum limit and found that

the flow could be formulated without ambiguity by expanding the connected amputated

Green functions in trees, i.e., in terms of one-particle irreducible () vertex functions. The

 flow equation of the Legendre effective action, the generating functional of the  ver-

tex functions, was derived by [Nicoll&Chang , Wetterich ,  , Morris ,

Salmhofer&Honerkamp , Kopietz&Busche ]. Another scheme, obtained from the

Polchinski scheme by Wick-ordering [Wieczerkowski , Salmhofer , Salmhofer ],

is particularly suited for rigorous proofs because it allows strong bounds on the growth of

correlation functions, even near the Fermi surface and to all orders in the renormalized in-

teraction.

By then, several people had started to use the functional  (f) for fermionic lattice

models. This introduces several problems not present in ϕ4 theory, for example the deter-
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 Functional renormalization group

mination of the Fermi surface, whose shape and position is not known a priori. Another

problem is that even at low energies, when only momenta close to the Fermi surface are im-

portant, the two-electron interaction is a complicated function of momenta. Therefore, it

needs to be parametrized by many discrete couplings, in contrast to the single renormalized

coupling λ at zero external momenta for the ϕ4 theory. On the other hand, the lattice pro-

vides a natural ultraviolet cutoff which leads to significant simplifications as compared to the

continuum field-theoretical models. Important applications of the f in condensed-matter

physics include the  Hubbard model using the Polchinski scheme [Zanchi&Schulz ,

Zanchi&Schulz ], the Wick-ordered scheme [Halboth&Metzner ] and also the 

scheme [ ], while  impurity problems and Luttinger-liquid physics are conve-

niently investigated in the  scheme [ a,  b,  ].

Initially, many of the flow-equation schemes have not been derived in the most straightfor-

ward way, and I found it worthwhile to derive them again in a simple and uniform notation,

highlighting the relation between different schemes. While the results are not new, some

derivations are much easier than those found in the literature, and I hope the reader new to

this method will find them helpful. After introducing the functional formalism and several

types of correlation functions in section ., the most commonly used flow equations are

derived in section .. I compare important features of the different schemes in section ..

2.1 Functional formalism

2.1.1 Bare action

A system of interacting spinless fermions is described by the action

S[ψ , ψ̄ ] =
(
ψ̄ , Qψ

)
− V0[ψ , ψ̄ ] (.)

with the kinetic (quadratic) term defined as a scalar product(
ψ̄ , Qψ

)
=

∫
dx dy ψ̄ (y)Q(y, x)ψ(x) (.)

=

∑
K

(iω − ξk)ψ̄KψK (for translational invariance) (.)

where for a translationally invariant system (.), the multi-index K = (ω, k) contains space-

time indices (frequency, momentum) and could be extended by internal degrees of freedom

like the spin projection σ . The ψK , ψ̄K are Grassmann variables, and Q(K ) = iω− ξk is the

inverse bare propagator with ξk = εk −µ the dispersion around the chemical potential µ. If,

Ultimately we aim to describe electrons which are fermions with spin; presently in the applications in Chap-
ter , however, we only consider fermions without spin and, therefore, specialize to this case.
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. Functional formalism

however, one includes an impurity potential in the bare propagator that depends specifically

on space and not just differences of positions, translational invariance is broken: then one

has to use the general expression (.), cf. section .. The bare propagator is the inverse

operator of Q,

C := Q−1. (.)

The functional V0[ψ , ψ̄ ] is the bare many-body interaction, for example in the typical case

of a density-density interaction (with frequency conservation implicit):

V0[ψ , ψ̄ ] =

∫
dx dy V0(x − y) n(x) n(y) (.)

=

∑
k1,k2,q

Ṽ0(q) ψ̄k1ψ̄k2+qψk2ψk1+q .

2.1.2 Partition function and connected Green functions

All information about the physical system with action (.) is encoded in the normalized

partition function

Z[η, η̄] :=
1

Z0

∫
[dψψ̄ ] eS[ψ ,ψ̄ ] e−(ψ̄ ,η)−(η̄,ψ) , (.)

a functional integral with weight eS and coupled to Grassmann source fields ηK , η̄K . The

integration measure is abbreviated as [dψψ̄ ] :=
∏

K dψK dψ̄K . The partition function

Z[η, η̄] is the generating functional for the Green functions (connected and disconnected).

The normalization constant Z0 is the non-interacting partition function,

Z0 :=

∫
[dψψ̄ ] e

∑
K ψ̄K QKψK =

∏
K

∫
dψK dψ̄K eψ̄K QKψK =

∏
K

QK = det(Q).

(.)

It is convenient to absorb the quadratic part of the action as well as the normalization factor

into the measure,

Z[η, η̄] =

∫
dµQ[ψ , ψ̄ ] e−V0[ψ ,ψ̄ ] e−(ψ̄ ,η)−(η̄,ψ) (.)

with the normalized Gaussian path-integral measure

dµQ[ψ , ψ̄ ] :=
1

Z0
[dψψ̄ ] e(ψ̄ ,Qψ) such that

∫
dµQ[ψ , ψ̄ ] = 1. (.)
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 Functional renormalization group

If there is no interaction, V0 = 0, the integral is quadratic (Gaussian) and can be performed

analytically by completing the square:

Znonint
[η, η̄] =

∫
dµQ[ψ , ψ̄ ] e−(ψ̄ ,η)−(η̄,ψ)

=
1

Z0

∫
[dψψ̄ ] e(ψ̄ ,Qψ)−(ψ̄ ,η)−(η̄,ψ)

=
1

Z0

∫
[dψψ̄ ] e([ψ̄−C t η̄],Q[ψ−Cη])−(η̄,Cη)

= e−(η̄,Cη)
∫

dµQ[ψ − Cη, ψ̄ − C t η̄]

= e−(η̄,Cη)

where C t is the transposed propagator.

The connected Green functions are generated by the functional

G[η, η̄] := − lnZ[η, η̄]

as

G[η, η̄] =

∞∑
m=0

1

(m!)2

∑
K1...Km

∑
K ′

1...K
′
m

Gm(K
′

1, . . . , K ′

m ; K1, . . . , Km)

m∏
j=1

η̄K ′

j
ηK j

and

Gm(K
′

1, . . . , K ′

m ; K1, . . . , Km) = −〈ψK ′
1
. . . ψK ′

m
ψ̄Km . . . ψ̄K1〉conn

=
δm

δηK1 . . . δηKm

δm

δη̄K ′
m
. . . δη̄K ′

1

G[η, η̄]
∣∣∣
η=η̄=0

,

respectively. For the non-interacting system follows

Gnonint
= (η̄, Cη) (.)

such that Gnonint
1 (K ) = C(K ) is the bare propagator, and all other Gnonint

m vanish.

2.1.3 1PI vertex functions

There is another set of correlation functions that is particularly useful for describing phase

transitions and fields whose expectation value does not always vanish, such as the order

parameter in a symmetry-broken phase: the one-particle irreducible () vertex functions

γm generated by the functional 0[φ, φ̄]. 0 is obtained via Legendre transformation from the

connected Green functions [Zinn-Justin , section .],

0[φ, φ̄] +
(
φ̄, Qφ

)
:= G[η, η̄] +

(
φ̄, η

)
− (η̄, φ) . (.)


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This differs from the textbook definition by taking the inverse bare propagator Q out of the

one-particle vertex function. The transformations between φ and η are

δφ0 − Qt φ̄ = η̄, δηG = φ̄, δηδη̄G = (δφδφ̄0 + Q)−1

δφ̄0 + Qφ = η, δη̄G = φ.
(.)

0 is expanded in φ̄K , φK as

0[φ, φ̄] =

∞∑
m=0

1

(m!)2

∑
K1...Km

∑
K ′

1...K
′
m

γm(K
′

1, . . . , K ′

m ; K1, . . . , Km)

m∏
j=1

φ̄K ′

j
φK j .

Each  vertex function γm is made up of those diagrams of Gm which cannot be split into

two disconnected parts by cutting a single line. As all self-energy contributions on exter-

nal legs are one-particle reducible with respect to the main part of the diagram, full prop-

agators are amputated from all external legs. In the special case without interaction with

Gnonint
[η, η̄] = (η̄, Cη) we obtain 0nonint

[φ, φ̄] = 0.

2.1.4 Connected amputated Green functions

Another way of looking at a system is by considering the generating functional of the con-

nected amputated Green functions, the effective interaction V[χ , χ̄ ]:

e−V[χ ,χ̄ ]
:=

∫
dµQ[ψ , ψ̄ ] e−V0[ψ+χ ,ψ̄+χ̄ ] (.)

= e−V0[δϕ̄ ,δϕ ]
∫

dµQ[ψ , ψ̄ ] e(ϕ̄,ψ+χ)−(ψ̄+χ̄ ,ϕ)
∣∣∣
ϕ=ϕ̄=0

= e−V0[δϕ̄ ,δϕ ] e(ϕ̄,Cϕ) e(ϕ̄,χ)−(χ̄ ,ϕ)
∣∣∣
ϕ=ϕ̄=0

= e−V0[δϕ̄ ,δϕ ] e(δχ ,Cδχ̄ ) e(ϕ̄,χ)−(χ̄ ,ϕ)
∣∣∣
ϕ=ϕ̄=0

= e1C e−V0[χ ,χ̄ ]

where the functional Laplace operator is defined as

1C :=

(
δ

δχ
, C

δ

δχ̄

)
=

∫
dx dy

δ

δχ (y)
C(y, x)

δ

δχ̄ (x)
=

∑
K

δ

δχK
CK

δ

δχ̄K
.

I shall use the shorthand notation 1C only if it is unambiguous on which Grassmann vari-

able the derivatives act and use the explicit notation otherwise. 1C acts on a functional

F[χ , χ̄ ] in the following way: the derivatives δ
δχ

and δ
δχ̄

pick an ingoing and outgoing leg

from each diagram in F and connect them by a bare propagator C . In this picture, pertur-

bation theory for e−V may be visualized as follows: e−V0 is a collection of any number of


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disconnected bare interaction vertices, and 1C e−V0 contains all diagrams where either V0 is

closed by one C loop to create a tadpole diagram, or two V0’s are connected by a C line to

form a tree diagram. Repeating this procedure indefinitely, higher tree and loop diagrams

appear, and finally e−V
= e1C e−V0 contains all Feynman diagrams. Taking the logarithm to

obtain V , only the connected diagrams are retained [Zinn-Justin , section ..].

What is the relation between G and V as both generate all connected Green functions? We

observe that by the substitution χ := Cη, χ̄ := C t η̄,

e−V[Cη,C t η̄]
=

∫
dµQ[ψ , ψ̄ ] e−V0[ψ+Cη,ψ̄+C t η̄]

=

∫
dµQ[ψ ′

− Cη, ψ̄ ′
− C t η̄] e−V0[ψ

′,ψ̄ ′
]

=

∫
dµQ[ψ ′, ψ̄ ′

] e−(ψ̄ ′,η)−(η̄,ψ ′)+(η̄,Cη) e−V0[ψ
′,ψ̄ ′

]

= e(η̄,Cη)−G[η,η̄]

such that

V[Cη, C t η̄] = G[η, η̄] − (η̄, Cη) . (.)

In the non-interacting case, V = 0 because (η̄, Cη) cancels the non-interacting part (.)

of G, in accordance with the name effective interaction. Generally, V generates connected

amputated Green functions Vm ,

V[χ , χ̄ ] =

∞∑
m=0

1

(m!)2

∑
K1...Km

∑
K ′

1...K
′
m

Vm(K
′

1, . . . , K ′

m ; K1, . . . , Km)

m∏
j=1

χ̄K ′

j
χK j , (.)

i.e., connected Green functions Gm with bare propagators C(K ) amputated from all external

legs:

Vm(K
′

1, . . . , K ′

m ; K1, . . . , Km) =
δm

δχK1 · · · δχKm

δm

δχ̄K ′
m

· · · δχ̄K ′
1

V[χ , χ̄ ]

∣∣∣
χ=χ̄=0

=
δηK1

δχK1

δ

δηK1

· · ·
δη̄K ′

1

δχ̄K ′
1

δ

δη̄K ′
1

[
G[η, η̄] − (η̄, Cη)

]
η=η̄=0

=
Gm(K ′

1, . . . , K ′
m ; K1, . . . , Km)

C t (K ′
1) · · · C(K1)

−
δm,1

C(K1)
.

2.2 Renormalization-group flow equations

When computing a Green function perturbatively by summing the contributions of certain

Feynman diagrams, there can be infrared divergences both as an artefact of perturbation
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theory and physically as an indication of a phase transition. These can be regularized by

an infrared cutoff 3 in the bare propagator which suppresses modes of low frequency or

momentum close to the Fermi surface. The change of the Green functions as the cutoff scale

is changed is governed by the renormalization-group flow equation.

Alternatively, one can regularize the problem by going to sufficiently high temperatures

T > Tc , weak coupling g 2U < U , and/or a finite system size N ; then one can consider the

flow of the Green functions as the parameters T or g are changed.

2.2.1 Regularization and flow parameters

The flow schemes used for the functional  are constructed by making only the quadratic

part of the bare action depend on the cutoff scale or flow parameter. In all cases the regular-

ization is done with respect to energy scales.

Frequency and momentum cutoff

The frequency cutoff is defined by multiplying the bare propagator in the action with a cutoff

function χ3(ω),

C3(K ) = χ3(ω)C(K ), (.)

where χ3(ω) cuts out modes with frequency |ω| < 3 in the frequency basis where C(K ) is

diagonal. It may be either a sharp cutoff function using the step function 2(x),

χ3(ω) = 2(|ω| −3),

or a smooth cutoff. Generally one would think that a smooth cutoff with a differentiable

cutoff function is easier to handle. However, especially at zero temperature, a sharp cutoff

can in fact be favorable (cf. section ..).

The momentum cutoff is defined analogously with

χ3(k) = 2(|ξk | −3). (.)

Generally, the propagator is split as

C(K ) = C3(K )+ D3(K ) (.)

where C3(K ) is the propagator for the high-energy (hard) modes, and D3(K ) is the propa-

gator for the remaining low-energy (soft) modes that are yet to be integrated out. As3 → 0,

the cutoff is removed and C3
→ C , D3

→ 0.

It is simplest to define the cutoff in the basis where C is diagonal, as a function multiplying

the kinetic energy eigenvalues ε with χ3(ε). We will later (section ..) see an example


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where in the presence of an external field the propagator is not diagonal in momentum space:

then the cutoff can be defined by diagonalizing first.

Note that at finite 3, the frequency cutoff leads to non-analyticities in certain correlation

functions, for example in the current-current response function. This disadvantage is absent

in the temperature flow.

Temperature flow

In order to use the temperature T as a flow parameter in the f formalism, only the qua-

dratic part of the action may depend on T . Initially, however, the action has powers of T

both in the kinetic and in the interaction part:

S[ψ , ψ̄ ] = T
∑
iωn

∑
k

ψ̄K (iωn − ξk)ψK

+
1

2
T 3

∑
K1,K2,K ′

1

V (K ′

1; K1, K2) ψ̄K ′
1
ψ̄K1+K2−K ′

1
ψK2ψK1 .

By rescaling the fields ψ̃ := T 3/4 ψ , one can shift the explicit T dependence of a quartic

interaction into the quadratic part [Honerkamp&Salmhofer ]:

S̃[ψ̃ , ¯̃
ψ ] = T−1/2

∑
iωn

∑
k

¯̃
ψK (iωn − ξk)ψ̃K

+
1

2

∑
K1,K2,K ′

1

V (K ′

1; K1, K2)
¯̃
ψK ′

1

¯̃
ψK1+K2−K ′

1
ψ̃K2ψ̃K1 .

We can now perform the f flow on this action to obtain Green functions GT
m in terms of

the rescaled fields ψ̃ for a whole temperature range and rescale them back to obtain the usual

Green functions

Gm(. . . ) = T (2−m)/2 GT
m(. . . ). (.)

Interaction flow

There are systems which can be treated also by a much simpler method [ ], namely

by simply rescaling the propagator with a number g ∈ [0, 1]. Then, all Feynman diagrams

become dressed by a global factor of g for each internal line. This seemingly trivial change

to weight each diagram by a power of g has the advantage that the f flow equation for

This is in contrast to [Honerkamp&Salmhofer ] where the powers of T in the original action are con-
sidered part of the Green functions.
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. Renormalization-group flow equations

the Green functions from g = 0 to g = 1 resums infinite subclasses of Feynman diagrams

which would otherwise be more tedious to do. At the same time we can rescale the fields

and observe that for g < 1 the model is the same as one with full propagators but reduced

interaction strength g 2
|U | < |U |:

S ∼
(
ψ̄ , [Q/g ]ψ

)
− U ψ̄ ψ̄ψψ

∼

(
¯̃
ψ , Qψ̃

)
− g 2U ¯̃

ψ
¯̃
ψψ̃ψ̃

where ψ̃ = g−1/2 ψ . Integrating from g = 0 to g = 1 thus yields a flow in the bare interac-

tion.

2.2.2 Connected Green function flow

The above regularization and flow schemes lead to an action with a quadratic part depending

on a scale parameter 3, which for notational simplicity shall include T for the temperature

flow and g for the interaction flow,

S3[ψ , ψ̄ ] :=
(
ψ̄ , Q3ψ

)
− V0[ψ , ψ̄ ] , (.)

where the inverse bare propagator with cutoff is defined in analogy to equation (.),

Q3
:= (C3)−1. (.)

Generally, if χ3(K ) = 1 then C3(K ) = χ3(K )C(K ) is just the original propagator while

for χ3 = 0, C3(K ) = 0 and the kinetic term
(
ψ̄ , (C3)−1ψ

)
in the action becomes infinite,

giving the cutoff modes of the fermion fields an infinite mass such that they are frozen out. By

the action S3 all generating functionals, and thus their Green function components, depend

on 3. The generating functional G3 for the connected Green functions in the presence of

the cutoff is defined as

e−G3[η,η̄]
:=

∫
dµQ3[ψ , ψ̄ ] e−V0[ψ ,ψ̄ ] e−(ψ̄ ,η)−(η̄,ψ) (.)

=
1

Z30

∫
[dψψ̄ ] e(ψ̄ ,Q3ψ)−V0[ψ ,ψ̄ ] e−(ψ̄ ,η)−(η̄,ψ) (.)

where Q is replaced by Q3, and the normalization factor is changed accordingly to Z30 =

det(Q3). The flow equation for e−G3 is obtained by taking the 3 derivative, denoted by the

dot, on both sides of equation (.),

−
(
∂3G3

)
e−G3[η,η̄]

= −
∂3 det Q3

det Q3
e−G3

+


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+

∫
dµQ3[ψ , ψ̄ ]

(
ψ̄ , Q̇3ψ

)
e−V0[ψ ,ψ̄ ] e−(ψ̄ ,η)−(η̄,ψ)

=
(
− Tr(Q̇3C3)−1Q̇3

)
e−G3[η,η̄]

where the first term comes from the derivative of the normalization factor, ∂3 ln det(Q3) =

Tr ∂3 ln(Q3) = Tr(Q̇3C3). Here, Tr denotes a sum over all space-time indices. Thus, the

flow of G3 is

∂3G3[η, η̄] = Tr(Q̇3 C3)− Tr

(
Q̇3 δ

2G3[η, η̄]

δη δη̄

)
+

(
δG3[η, η̄]

δη
, Q̇3 δG3[η, η̄]

δη̄

)
.

(.)

As a check, in the non-interacting case

G3[η, η̄] =
(
η̄, C3η

)
G3

1 =
δ2G3

δη δη̄
= C3

Ġ3 = Tr(Q̇3 C3)− Tr(Q̇3 C3)+
(
−η̄, C3 Q̇3 C3η

)
=
(
η̄, Ċ3η

)
.

Two technical notes are in order. Naively, the Q̇3 appearing in the flow equation (.) for

G3 looks ill-defined:

Q̇3
K = −

χ̇3(K )

[χ3(K )]2
Q(K )

contains a division by zero for the cutoff modes where χ3(K ) = 0. But all Green functions

G3
m have C3 on their external legs so only the combination

S3(K ) := C3 Q̇3 C3
= −Ċ3

= −χ̇3(K )C(K ) (single-scale propagator) (.)

appears. This quantity is well-defined and, for a sharp cutoff, has support only on the scale

3 since χ̇3 is a δ function. The other seemingly ill-defined contribution is

Tr(Q̇3C3) = −

∑
K

χ̇3(K )

χ3(K )
, (.)

but this is canceled by the bare part of the second term in the flow equation (.),

Tr(Q̇3C3)− Tr
(

Q̇3 δ
2G3

δη δη̄

)∣∣∣
η=η̄=0

= Tr(Q̇3
[C3

− G3
])

= −

∞∑
k=1

Tr(Q̇3 C3
[63 C3

]
k)

which again contains only the well-defined combination S3 = C3 Q̇3 C3. On the second

line, the full propagator G3 has been expanded into a geometric series via the Dyson equa-

tion (G3)−1
= (C3)−1

−63.
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2.2.3 1PI vertex function flow

From the flow equation (.) of the connected Green functions it is simple to derive the

flow of the  generating functional 03. We use the Legendre transformation (.) but all

functionals and Q are taken at scale 3,

03[φ, φ̄] +
(
φ̄, Q3φ

)
:= G3[η, η̄] +

(
φ̄, η

)
− (η̄, φ) . (.)

We express G3 and its derivatives by 03,

∂30
3
[φ, φ̄] = ∂3G3[η, η̄] −

(
φ̄, Q̇3φ

)
=

(δG3[η, η̄]

δη
, Q̇3 δG3[η, η̄]

δη̄

)
− Tr Q̇3

[δ2G3[η, η̄]

δη δη̄
− C3

]
−
(
φ̄, Q̇3φ

)
=
(
φ̄, Q̇3φ

)
− Tr Q̇3

[(δ203[φ, φ̄]

δφ δφ̄
+ Q3

)−1
− C3

]
−
(
φ̄, Q̇3φ

)
,

to arrive at the  flow equation

∂30
3

= Tr Q̇3
[
C3

−

(δ203[φ, φ̄]

δφ δφ̄
+ Q3

)−1]
. (.)

If we define the abbreviation 0(2) := δ203/δφ δφ̄, the flow equation can be written in a

more compact form as

∂30
3

= ∂3 Tr ln Q3
− ∂3 Tr ln(Q3

+ 0(2)) = ∂3 Tr ln
Q3

Q3 + 0(2)
, (.)

where in equation (.), the 3 derivative acts only on the cutoff functions inside Q3.

The inverse of the functional (Q3
+ 0(2)) is the inverse full propagator in the presence

of the fields φ, φ̄ and can be safely defined via a geometric series, as in the Dyson equation.

To see this, split (Q3
+ 0(2)) into a part independent of φ, φ̄ which is the usual inverse full

cutoff propagator [G3
]
−1

= Q3
−63, and a remaining functional 0̃3[φ, φ̄],

Q3
+
δ203[φ, φ̄]

δφ δφ̄
= (G3)−1

+ 0̃3[φ, φ̄], −63
= γ 31 =

δ203[φ, φ̄]

δφ δφ̄

∣∣∣
φ=φ̄=0

.

Thus, (
Q3

+
δ203[φ, φ̄]

δφ δφ̄

)−1
=
(
1 + G3 0̃3

)−1
G3

=

(
1 − G3 0̃3 + [G3 0̃3]

2
− · · ·

)
G3.

Together with the definition of the single-scale propagator S3 in analogy to (.),

S3 := G3 Q̇3 G3 (single-scale propagator),


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the flow equation becomes

∂30
3

= Tr(Q̇3
[C3

− G3
])+ Tr(S3[0̃3 − 0̃3 G3 0̃3 + · · · ]) (.)

where the last trace consists of a one-loop term with any number of vertices 0̃3, which

contribute at least two external legs each, connected by one single-scale propagator S3 and

several full propagators G3. Writing the flow equation in terms of the components γ 3m , we

obtain the following diagrams for the general hierarchy of flow equations and for the first

few levels of this infinite hierarchy:

∂

∂3

γ 3m

=

S3

γ 3m+1

+

∑ S3

expand

γ 3m′ γ 3m′′

(.)

∂

∂3

γ 31

=

S3

γ 32

∂

∂3

γ 32

=

S3

γ 33

+

S3

G3

γ 32 γ 32

∂

∂3

γ 33

=

S3

γ 34

+

S3

G3

γ 32 γ 33

+

S3

G3

G3





. Renormalization-group flow equations

In the general form of equation (.), the wiggly line in the last diagram denotes that the

expansion of the inverse second derivative yields further -loop diagrams with an appro-

priate number of higher vertices insertions, such that the number of external legs on the

 and  matches. This flow scheme is derived in [Weinberg , Nicoll&Chang ,

Wetterich ,  , Morris , Salmhofer&Honerkamp ].

Sharp-cutoff flow equations

Consider the flow equation (.) in a basis where Q is diagonal and the cutoff function χ3

is multiplicative so that it can be taken out of Q3,

∂30
3

= Tr

(
∂3χ

3,
δ

δχ3

)
ln

Q

Q + χ30(2)
. (.)

Assume that all χ3 along the loop have the same value. This is clearly not the general case

but is sufficient in our application in Chapter  where χ3 is a sharp frequency cutoff and all

vertices are evaluated at zero frequencies, such that all propagators in the loop have the same

frequency and hence the same value of the cutoff function. Then ∂3χ3 = −δ(|ω| − 3)

restricts the frequency to the 3 shell but the  contains 2(|ω| − 3) which has a step

right at the shell. Such expressions are unique if the sharp cutoff is implemented as the limit

of increasingly sharp, broadened cutoff functions 2ε with broadening parameter ε → 0.

This is demonstrated by a lemma due to Morris [Morris ]: for an arbitrary continuous

function f (t ),

δε (x −3) f (2ε (x −3)) → δε (x −3)

∫ 1

0
f (t ) dt (.)

where δε (x) = 2′
ε (x). Then, equation (.) reads

∂30
3

= Tr χ̇3
∫ 1

0
dt

d

dt
ln

Q

Q + t0(2)

= Tr χ̇3 ln
Q

Q + 0(2)

= Tr χ̇3 ln
Q

Q −63

Q −63

Q −63 + 0̃3

= Tr −χ̇3
[

ln(1 − C63)+ ln(1 + G̃30̃3)
]

=
1

2π

∑
ω=±3

tr
[

ln(1 − C63)−

∞∑
k=1

(−1)k

k
(G̃30̃3)k

]
, (.)
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where the T = 0 Matsubara sum 1
2π

∫
dω has been performed in the last line such that

tr denotes the sum over the remaining spatial indices. The new sharp-cutoff propagator is

defined as

G̃3
:= [Q −63

]
−1. (.)

This propagator has no step at |ω| = 3 as opposed to G3, hence the  of the flow equation

which contains one-loop terms built from powers of G̃30̃3 is a smooth function of 3 and

the vertices 0̃3.

However, the sharp frequency cutoff is only possible if the loop integral and hence the

vertices 0̃3 are continuous: at T > 0, an imaginary frequency integral is restricted to discrete

Matsubara frequencies ω = ωn at which all vertices have a step as a function of 3, hence the

condition that f (t ) be a continuous function in Morris’ lemma (.) is not satisfied any

more.

2.2.4 Connected amputated Green function flow

The Polchinski scheme [Polchinski ] has been introduced to prove the renormalizability

of the ϕ4 theory via the flow of the effective interaction, the generating functional of the

connected amputated Green functions (cf. section ..). In the presence of a cutoff, the

effective interaction V3[χ , χ̄ ] is defined as

e−V3[χ ,χ̄ ]
:=

∫
dµQ3[ψ , ψ̄ ] e−V0[ψ+χ ,ψ̄+χ̄ ]

= e

(
δ
δχ

,C3 δ
δχ̄

)
e−V0[χ ,χ̄ ]

= e1C3 e−V0[χ ,χ̄ ] .

(.)

Thus, all Feynman diagrams contain not C but C3 on the internal lines. In order to obtain

the full V without cutoff, one has to apply the missing e1D3 on e−V3 :

e−V[χ ,χ̄ ]
= e1C e−V0[χ ,χ̄ ]

= e1D3+C3 e−V0[χ ,χ̄ ]

= e1D3 e1C3 e−V0[χ ,χ̄ ] (.)

= e1D3 e−V3[χ ,χ̄ ] .

Equation (.) can be interpreted as follows: if all Feynman diagrams (connected and dis-

connected) with hard internal lines are reconnected again in all possible ways with soft lines,

one obtains all diagrams with full lines.

The flow equation for V3 is derived by taking the 3 derivative of equation (.),

∂3V3 = −eV
3

∂3e−V3





. Renormalization-group flow equations

= −eV
3

∂3(e
1C3 e−V0)

= −eV
3

1Ċ3e−V3 ,

to arrive at the Polchinski flow equation

∂3V3 = Tr
(

Ċ3 δ2V3

δχ δχ̄

)
−

(
δV3

δχ
, Ċ3 δV3

δχ̄

)
. (.)

In a more compact notation,

∂3V3 = 1Ċ3V
3

−
1
21

12
Ċ3
V3[χ1, χ̄1]V3[χ2, χ̄2]

∣∣∣
χ1=χ2=χ ,χ̄1=χ̄2=χ̄

(.)

where 112
C =

(
δ
δχ1

, C δ
δχ̄2

)
+

(
δ
δχ2

, C δ
δχ̄1

)
connects two different vertices. The initial condi-

tion is the bare interaction:

V30[χ , χ̄ ] = V0[χ , χ̄ ] = (for a two-particle interaction).

The graphical representation of the Polchinski equation for the connected amputated Green

functions V3
m features both tadpole and tree diagrams:

∂

∂3

V3
m

=

Ċ3

V3
m+1

+

∑
k

Ċ3

V3
k V3

m−k+1

2.2.5 Wick-ordered Green function flow

The connected amputated Green functions are the expansion coefficients of the generat-

ing functional V in terms of monomials of the source fields χ , χ̄ , whereas the Wick-ordered

Green functions are the expansion coefficients in terms of Wick-ordered polynomials of the

source fields, e1D3 (χ̄ χ )m . The construction is completely analogous to the use of Hermite

polynomials e∂
2
x xm as compared to the monomials xm : any analytical function f (x) can be

expanded uniquely in terms of xm (Taylor expansion) or in terms of Hermite polynomials,

which provide another complete orthogonal basis. In appendix A I solve the heat equa-

tion in real space using Hermite polynomials; while this is different from the usual textbook

solution, it provides a low-dimensional and intuitive example of the functional formalism.


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The Wick-ordered generating functional is defined as [Wieczerkowski , Salmhofer ,

Salmhofer , Salmhofer&Honerkamp ]

W3
[χ , χ̄ ] = e1D3 V3[χ , χ̄ ]. (.)

Diagrammatically, the effect of Wick ordering is that the coefficients W3
m ofW3 contain all

possible D3 loops (tadpoles) on the connected amputated Green functions V3
m :

W3
m

=

V3
m

+

D3

V3
m+1

+

D3D3

V3
m+2

+ · · ·

The flow equation forW3 can be derived from the Polchinski flow equation (.) with the

replacement 1Ċ3 = −1Ḋ3 (since C3
+ D3

= C is independent of 3),

∂3W3
= (∂3e1D3 ) V3 + e1D3 ∂3V3

= 1Ḋ3e1D3V3 + e1D3 (−1Ḋ3V3)+ e1D3 ( 1
21

12
Ḋ3V31 V32 )

= exp {111+12+22
D3 }

1
21

12
Ḋ3 V31 V32

=
1
2 (1

12
Ḋ3e

112
D3 ) (e

111
D3V31 ) (e

122
D3V32 ).

The first two terms in the second line cancel each other, and 111+12+22
D3 = 111

D3 +112
D3 +

122
D3 contains derivatives with respect to the fields labeled 1 and 2, respectively. Finally, we

obtain the Wick-ordered flow equation

∂3W3
=

1
2∂3(e

112
D3 )W3

1 W3
2 . (.)

The initial condition is

W30[χ , χ̄ ] = e1C V0[χ , χ̄ ] = + + (for a two-particle interaction).

The Wick-ordered functional W3 differs from V3 only for 3 > 0: as 3 → 0, W3
→

W = V , i.e., W30 has a different starting point (initial condition) from V30 but flows via a

different route to the same final functional (cf. figure .). The diagrammatic representation

of the flow equation for the components W3
m ofW3 is

∂

∂3

W3
m

=

∑
k, j

∑
permutations

Ḋ3

D3

W3
k W3

m−k+ j





. Summary

Note that all terms on the  of the flow equation are bilinear in the vertices and are either

tree or higher loop diagrams. In the exact hierarchy without truncation, the flow equation

of each vertex has infinitely many terms on the  with higher vertices connected by many

loops. One internal line is the single-scale propagator Ḋ3, while all others are soft-mode

propagators D3. As the cutoff scale is lowered, only momenta in a small neighborhood of

the Fermi surface appear on the internal lines. This justifies a particularly efficient parame-

trization of the coupling functions which depend on momenta anywhere in the Brillouin

zone: at a low cutoff scale, all internal momenta are close to the Fermi surface, so it is suf-

ficient to parametrize the couplings by their values with all momenta projected onto the

Fermi surface. This parametrization is employed in computations of the  Hubbard model

[Halboth&Metzner , Rohe&Metzner ].

2.3 Summary

In this chapter I have derived the functional renormalization-group flow equations in the ,

Polchinski and Wick-ordered schemes. While this is not new, I believe that the derivations

are formally simpler and more straightforward than in much of the literature. Furthermore,

the treatment of the sharp cutoff on the functional level (cf. section ..) has not yet been

published to my knowledge.

Figure . provides an overview over the different f schemes: in the center is the Polchin-

ski scheme of connected amputated Green functions V3 which have essentially the same

structure and flow equations as the connected Green functions G3. By Legendre transfor-

mation to 03 we have obtained the  scheme which starts from the same initial condition

but parametrizes the physical properties in a different way particularly suited for symmetry

breaking. It has the advantage that the internal lines are full propagators taking into account

all self-energy effects already known at scale 3, while it has the disadvantage that one has to

integrate the internal loop over the whole Brillouin zone.

On the other side, the Polchinski scheme leads to the Wick-ordered scheme W3 which

starts from the first-order Hartree-Fock solution as the initial value of the self energy but

converges towards the same connected amputated Green functions V3 at the end of the

flow. Its main advantages are that internal lines are restricted to a small neighborhood of the

Fermi surface, and that its simple power counting allows rigorous proofs of renormalizability

to all orders in perturbation theory.

The next difference arises with truncations. While the full hierarchy of flow equations in

any scheme leads to the correct solution to all orders in perturbation theory, the lowest orders

in different basis sets of correlation functions capture different aspects of the the solution. As

an illustration, imagine a complicated real analytical function f (x), expand it in different

sets of orthogonal polynomials and retain only the first few coefficients: the approximate
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30



3

00
= 0

030 = V30 = V0

V3

e1C

V0
=W0

= V

03

Legendre tr.

W30

W3
e1D3Legendre tr.

C3

D3

Wick ordering

energy

e−V3
= e1C3 e−V30

e−V
= e1D3 e−V3

Figure .: Overview over the relation between the different flow-equation schemes.

result will look different for each basis set. A third question is whether the basis functions

allow for efficient parametrizations in terms of a small set of coefficients, for instance by

projecting onto the Fermi surface.

Hence there is not one single flow scheme superior for all applications, but the method of

choice depends on the particularities of the model studied.





3 Ward identities in the functional RG

In constructing our microscopic model we demand that it satisfies certain physical proper-

ties, such as charge conservation. This particular property is guaranteed by the requirement

of U (1) gauge invariance : by the Noether theorem every continuous symmetry has a con-

served quantity associated with it, in this case the electrical charge. In a classical calculation,

the conservation of charge is expressed by the continuity equation

∂t ρ(x)+ ∇ · j(x) ≡ ∂µ jµ(x) = 0

where ρ(x) and j(x) are the charge and current densities, respectively. In quantum theory

the current jµ(x) becomes an operator ĵµ(x), and the continuity equation is evaluated in-

side an expectation value together with insertions of other operators. If the time derivative

acts not only on the current operator but also on the time ordering in the expectation value, it

generates differences of Green functions [Itzykson&Zuber ]. In momentum space with

momentum transfer q to the external field, and in units such that the electron charge e = 1,

qµ〈 ĵµ ψp−q/2 ψ̄p+q/2〉 = 〈ψp−q/2 ψ̄p−q/2〉 − 〈ψp+q/2 ψ̄p+q/2〉

= G(p + q/2)− G(p − q/2)

qµ
+ −

µ

=
+ +

−
− −

.

(.)

This is an example of a Ward identity (): these are constraints on Green functions express-

ing the underlying symmetry [Ward ]. For the one-particle Green functions equation

(.) can be easily derived by hand, but it will become more tedious as more external legs

are added, each corresponding to an operator insertion in the expectation value. Instead,

we shall employ the formalism introduced in Chapter  to derive a functional Ward identity

applicable to all m-particle Green functions simultaneously. This will allow us to investigate

general properties of Ward identities to all orders in the fields and in the interaction.

Let me mention one important point already now in order to avoid confusion (the issue

will be explained in more detail below): there are two versions of the Ward identities in the

literature, one relating the difference of Green functions to the current as above (response-

function Ward identity), the other relating it to the two-particle interaction with a loop closed

(self-consistent Ward identity). Both are equivalent in the exact solution and in conserving





 Ward identities in the functional RG

approximations but generally differ in other approximations such as truncated f flows. I

will show that in truncated flows the response-function Ward identities can still be satisfied

in the absence of a momentum cutoff, for instance in the temperature-flow scheme, while

self-consistency and thereby the self-consistent Ward identities are in general violated.

We proceed as follows: after the functional derivation of Ward identities in section . we

shall see how a momentum cutoff breaks response-function Ward identities and how this

can be fixed in flow schemes without momentum cutoffs (section .). To answer the related

question of self-consistency (section .) we first review the construction of self-consistent

conserving approximations of Baym and Kadanoff. We then show that the self-consistent

Ward identities are generally violated by truncated flow equations. The results are summa-

rized in section ..

3.1 Gauge invariance and Ward identities

We couple the fermionic action to an external field for two reasons: it allows us to compute

linear response by derivatives with respect to the external field, and it is necessary to make

the action satisfy the desired symmetry.

In order to compute electrical transport properties, we need to study the response of the

system to the external electromagnetic potential. This is done by including in the action a

term coupling a current operator jµ(x) to the external field Aµ(x),

S[ψ , ψ̄ , A] := S[ψ , ψ̄ ] −
(

jµ, Aµ
)

(.)

where the summation over µ is understood. Then, the response functions are derivatives of

the Green functions with respect to Aµ(x). The current operator jµ[ψ , ψ̄ , A] is a composite

operator of the fields ψ , ψ̄ and generally depends also on the external field A. We shall now

demand a symmetry and construct the current such that this symmetry holds.

3.1.1 Gauge transformation

The local U (1) gauge transformation is [Zinn-Justin , chapter ]ψ ′(x) := e−iα(x)ψ(x) δαψ(x) = −iα(x)ψ(x)

ψ̄ ′(x) := e iα(x)ψ̄ (x) δα ψ̄ (x) = iα(x)ψ̄ (x)

A′

µ(x) := Aµ(x)+ ∂µα(x) δαAµ(x) = ∂µα(x),

(.)

where α(x) is a real function, and δα an operator which acts on fields and functionals by

performing an infinitesimal gauge transformation. The condition of gauge invariance of our

model is

δα

(
[dψψ̄ ] eS[ψ ,ψ̄ ,A]

)
!
= 0





. Gauge invariance and Ward identities

without the integral, i.e., the path integral measure times the weight should stay invariant.

In the case of the U (1) gauge transformation (.) the measure remains invariant, therefore

the gauge invariance reduces to a condition on the action,

δαS[ψ , ψ̄ , A]
!
= 0.

Consider first the gauge variation of the fermionic action, δαS[ψ , ψ̄ ]. If α(x) = const this

transformation probes global charge conservation: this is satisfied as long as each term in the

action has the same number of fermion annihilation and creation operators. But if we admit

an α(x) varying in space-time, the action will in general change proportionally to ∂µα(x),

δαS[ψ , ψ̄ ] =
(

jµ, ∂µα
)
+O(α2), (.)

where we have called the coefficient of the ∂µα term jµ. This is the motivation to introduce

the gauge field Aµ: if it is coupled to jµ by
(

jµ, Aµ
)
, the gauge variation of the Aµ term will

cancel the gauge variation of the fermionic action (.) to first order in α.

This raises the question how to construct the current operator jµ in the action (.). In

the continuum this is achieved by the procedure of minimal coupling. On the lattice, one

has to use lattice gauge theory which is technically quite different (for an introduction, see

for instance [Zinn-Justin , chapter ]). Note that (i) the general arguments about sym-

metries and Ward identities can be seen already in the technically simpler continuum model,

and (i i) the lattice formalism will be used in this work only in the special case of a  lattice

where the field-strength tensor vanishes. Therefore, I derive the Ward identities pedagogi-

cally only for the continuum case but give the final results also specifically for the  lattice

(in section .) after the lattice formulation has been introduced in Chapter .

3.1.2 Minimal coupling in the continuum

One way to construct a gauge-invariant continuum action is by minimally coupling the gauge

field to the fermions: in the quadratic part of the action we replace the partial derivative ∂µ
by the covariant derivative

Dµ := ∂µ + iAµ(x),

such that

D′

µ = e−iαDµe iα , δαDµ = i∂µα.

Likewise, the inverse bare propagator Q(∂µ) is replaced by Q[A] ≡ Q(Dµ) which is also

gauge covariant,

Q(D′

µ) = e−iαQ(Dµ)e
iα , (.)


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such that the kinetic term is gauge invariant,(
ψ̄ ′, Q(D′

µ)ψ
′
)
=
(
ψ̄ , Q(Dµ)ψ

)
, δα

(
ψ̄ , Q(Dµ)ψ

)
= 0.

Then, the current defined as the A dependence of the kinetic term,(
ψ̄ , Q(Dµ)ψ

)
=:
(
ψ̄ , Q(∂µ)ψ

)
−
(

jµ0 , Aµ
)

makes the quadratic part of the action gauge invariant. Expanding both sides of equation

(.) to first order in α,(
δαAµ,

δQ[A]

δiAµ

)
=

(
α, ∂µ

δQ[A]

δiAµ

)
=
[
α, Q[A]

]
(.)

where the commutator α(x)Q(x, y)− Q(x, y)α(y) = [α(x)− α(y)]Q(x, y), and we have

integrated by parts.

Consider now the interaction term. The density-density interaction is explicitly gauge

invariant,

δαV0[ψ , ψ̄ ] = δα

∫
dx dy V (x − y)ψ̄ (x)ψ̄ (y)ψ(y)ψ(x)

= i

∫
dx dy V (x − y)ψ̄ (x)ψ̄ (y)ψ(y)ψ(x) [α(x)+ α(y)− α(y)− α(x)]

= 0.

On the other hand, for a bare interaction which itself is not gauge invariant (δαV0 6= 0)

some further counter term
(

jµV , Aµ
)
:= −δαV0 is needed to make the action gauge invariant.

Combining both the kinetic and the interaction parts of the current operator,

jµ(x) := jµ0 (x)+ jµV (x),

the action (.) will be gauge invariant.

Example for quadratic dispersion

Let us give a specific example: for nonrelativistic fermions of mass m in the continuum, the

dispersion relation is linear in time and quadratic in space, Q(∂µ) = −∂t + ∇2/2m. We

assume a gauge-invariant interaction V0. Minimal coupling to the external electromagnetic

potential Aµ(x) = (ϕ, −A) is given in real space by ∂t 7→ ∂t + ϕ(x), −i∇ 7→ −i∇ − A(x),
hence the current which makes the action gauge invariant is constructed as

S[ψ , ψ̄ , A] =

∫
dx ψ̄ (x)

[
−∂t − ϕ −

1
2m (−i∇ − A)2]ψ(x)− V0[ψ , ψ̄ ] (.)

In this chapter we assume boundary conditions such that the integration by parts yields no boundary term.
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!
=
(
ψ̄ , Qψ

)
−
(

jµ, Aµ
)
− V0[ψ , ψ̄ ]

⇒ j0
= n, j =

1
2mi

[
ψ̄ (∇ψ)− (∇ψ̄ )ψ

]︸ ︷︷ ︸
paramagnetic

−
1

2m nA︸ ︷︷ ︸
diamagn.

with the density operator n(x) := ψ̄ (x)ψ(x). The current j has a part independent of A

which is called the paramagnetic current and a part proportional to A which is called the

diamagnetic current.

3.1.3 Functional derivation of Ward identities

The current operator jµ[ψ , ψ̄ , A] constructed in this way is coupled to an external field

Aµ(x). Thereby, all generating functionals depend on A as a parameter,

Z[η, η̄, A] :=

∫
dµQ[ψ , ψ̄ ] e−( jµ, Aµ)−V0[ψ ,ψ̄ ]−(ψ̄ ,η)−(η̄,ψ)

with measure (.). The source fields η, η̄ transform under gauge transformations as

δαη(x) := −iα(x)η(x), δα η̄(x) := iα(x)η̄(x). (.)

Then, the gauge variation of Z to first order in α,

δαZ[η, η̄, A] =

{(
δαη,

δ

δη

)
+

(
δα η̄,

δ

δη̄

)
+

(
δαAµ,

δ

δAµ

)}
Z[η, η̄, A]

=

{(
−iαη,

δ

δη

)
+

(
iαη̄,

δ

δη̄

)
+

(
∂µα,

δ

δAµ

)}
Z[η, η̄, A]

= 0, (.)

vanishes because Z is gauge invariant by construction. Substituting Z = e−G we obtain the

functional Ward identity for the connected Green functions,(
α, ∂µ

δG
δiAµ

)
=

(
δG
δη

, αη

)
+

(
η̄, α

δG
δη̄

)
. (.)

By the Legendre transformation (.) in the presence of the external field,

0[φ, φ̄, A] +
(
φ̄, Q[A]φ

)
:= G[η, η̄, A] +

(
φ̄, η

)
− (η̄, φ) , (.)

we rewrite equation (.) in terms of the  functional 0[φ, φ̄, A],(
α, ∂µ

δ

δiAµ
{0 +

(
φ̄, Q[A]φ

)
}

)
=

(
φ̄, α

{δ0
δφ̄

+ Q[A]φ
})

+

({δ0
δφ

− Qt
[A]φ̄

}
, αφ

)

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=

(
δ0

δφ
, αφ

)
+

(
φ̄, α

δ0

δφ̄

)
+
(
φ̄,
[
α, Q[A]

]
φ
)

.

By equation (.) we obtain the  Ward identity(
α, ∂µ

δ0

δiAµ

)
=

(
δ0

δφ
, αφ

)
+

(
φ̄, α

δ0

δφ̄

)
. (.)

By amputating bare propagators C (without external field) from the external legs of equation

(.) using (.) we obtain(
α, ∂µ

δV
δiAµ

)
=

([
C t δV
δχ

− χ̄

]
, αQχ

)
+

(
Qt χ̄ , α

[
C
δV
δχ̄

+ χ

])
and by rearranging terms the Polchinski Ward identity(

α, ∂µ
δV
δiAµ

)
=

(
δV
δχ

, CαQχ

)
+

(
χ̄ , QαC

δV
δχ̄

)
− (χ̄ , [α, Q]χ) . (.)

On the  of equation (.) the non-amputated external legs are shifted.

3.1.4 Momentum- and real-space formulation

All of the above Ward identities still contain an inner product with the arbitrary gauge-

transformation parameter α−q . In Fourier space the transformation (.) reads

η′

k = ηk − i
∑

q

α−qηk+q +O(α2)

η̄′

k = η̄k + i
∑

q

α−q η̄k−q +O(α2)
(.)

where the mode α−q subtracts momentum q from the fermion. The coefficient of α−q in the

Ward identity for the connected Green functions, equation (.), is for example

qµ
δG

δAµ(−q)
=

∑
k

(
δG
δηk−

ηk+
+ η̄k−

δG
δη̄k+

)
where the indices k± denote k ± q/2. The Ward identities for the other functionals has an

analogous form. Taking only the one-particle component of this functional Ward identity by

applying δ2

δηk+
δη̄k−

|η=η̄=0 we obtain the Ward identity given as an example in equation (.).
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Generally, the Ward identities can be represented diagrammatically as

k ′
m

k ′

ik ′
1

qµ

k1 ki
km

qµ
δG3

m
δAµ

=

∑
i

 k ′
m

k ′

i + q
k ′

1

k1 ki
km

G3
m

−

k ′
m

k ′

ik ′
1

k1 ki − q
km

G3
m

 ≡

1G3
m

(.)

where the wiggly line on the  denotes the response function of which the divergence is

taken. As momentum q is transferred to the external field, momentum conservation implies

k1 + · · ·+ km = q + k ′
1 + · · ·+ k ′

m . The Green functions in the large parentheses are without

external field, so any one of the external legs has to be momentum-shifted to satisfy momen-

tum conservation. The rightmost diagram with the dotted external legs shall abbreviate all

the combinations of momentum-shifted external lines in the middle.

Generally, for the case of global gauge invariance there is only the q = 0 mode of α−q and

the Ward identity(
η,
δG
δη

)
=

(
η̄,
δG
δη̄

)
(.)

implies only that there are as many creation as annihilation operators in every monomial in

the action, independent of their momenta or positions.

In real space, the coefficient of α(x) in equation (.) fulfills the Ward identity

∂µ
δG

δiAµ(x)
=

δG
δη(x)

η(x)+ η̄(x)
δG
δη̄(x)

.

3.2 Cutoff Ward identities

Generally, a momentum cutoff breaks local gauge invariance. The cutoff divides the fields

ψ into high and low modes. However, a local gauge transformation α(x) which is multi-

plicative in real space, δαψ(x) ∼ α(x)ψ(x) from equation (.), becomes a convolution in

momentum space, δαψk ∼
∑

q α−qψk+q from equation (.). This shift of the momenta

spoils the division of modes and poses a problem when treating gauge theories using flow

equations. These problems would be solved if we could somehow define a gauge-invariant

cutoff propagator Q3
[A]. However, in gauge theories, where one integrates over fluctua-

tions of the gauge field A in the path integral, this is difficult except for pure gauge theories
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[D’Attanasio&Morris ]. Note that these problems are absent for global gauge invariance

(no momentum shift) and for the temperature and interaction flow schemes which have no

momentum cutoff.

There are two ways in the high-energy physics literature to deal with this problem: (i)One

can give up gauge invariance at intermediate cutoff scales but try to ensure that the full Ward

identities are recovered as the cutoff is finally removed (3 → 0); this approach of modified

Ward identities is explained in section ... (i i) One can manifestly satisfy Ward identities

in the presence of a cutoff with the help of an auxiliary field, the external background gauge

field Ā (section ..). Both approaches become cumbersome if one has to truncate the flow-

equation hierarchy. However, if one uses a manifestly gauge-invariant formulation (section

..) such as the temperature-flow scheme, we show that the Ward identities can be satisfied

exactly even in truncated flows (section ..).

3.2.1 Modified Ward identities

The Ward identities (.) which hold without cutoff are broken at intermediate cutoff scales

(3 > 0) by modification terms, leading to modified Ward identities (m). These modifi-

cation terms vanish in the limit 3 → 0. Compatibility of flow and m ensures that the

full hierarchy of flow equations satisfies the m at all scales 3. This is sufficient for proving

perturbative renormalizability of ; the m for the connected amputated Green func-

tions were derived in [Keller&Kopper , Keller&Kopper ] and used to prove bounds

for the full hierarchy of Green functions (see also [ ], and [Ellwanger ] for m

in the  scheme). For practical computations, however, the flow equations need to be trun-

cated, and the m (and ultimately the original Ward identities at 3 = 0) are satisfied only

to truncation order. Alternatively, if there are only a few relevant components of the flowing

vertices, one can determine some of them not by the flow but by the m at every scale 3,

thus satisfying the m exactly [ ].

Modified Ward identities for connected Green functions

The definition of the cutoff connected Green functions (.) with the addition of the exter-

nal field can be split into a gauge-invariant part (without cutoff) and a part containing the

cutoff function,

e−G3[η,η̄,A]
=

∫
[dψψ̄ ]

det Q
e(ψ̄ ,Q[A]ψ)−V0[ψ ,ψ̄ ]−(ψ̄ ,η)−(η̄,ψ)

×
det Q

det Q3
e(ψ̄ ,[Q3

−Q]ψ).

(.)

Performing the gauge transformation (.), (.) on all fields, the first part remains invari-

ant while the latter gives to first order in α a term involving [Q3
− Q] which breaks gauge
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. Cutoff Ward identities

invariance at 3 > 0,

δαe−G3[η′,η̄′,A′
]
=

∫
[dψψ̄ ]

det Q3
e(ψ̄ ,Q[A]ψ)−V0[ψ ,ψ̄ ]−(ψ̄ ,η)−(η̄,ψ) (.)

×
(
ψ̄ , i[α, Q3

− Q]ψ
)

e(ψ̄ ,[Q3
−Q]ψ)

= −

(
δ

δη
, iX3 δ

δη̄

)
e−G3[η,η̄,A] . (.)

The η, η̄ derivatives connect two legs of e−G3 with a propagator

X3
:= [α, Q3

− Q]

which vanishes as 3 → 0 or for homogeneous α(x) ≡ α. On the other hand, expanding

G3[η′, η̄′, A′
] in the arguments to first order in α as in equation (.) yields

δαG3[η′, η̄′, A′
] =

{(
−iαη,

δ

δη

)
+

(
iαη̄,

δ

δη̄

)
+

(
∂µα,

δ

δAµ

)}
G3[η, η̄, A].

(.)

We combine (.) and (.) into the modified Ward identity(
α, ∂µ

δG3

δiAµ

)
− Tr

(
X3 δ

2G3

δη δη̄

)
+

(
δG3

δη
, X3 δG3

δη̄

)
=

(
δG3

δη
, αη

)
+

(
η̄, α

δG3

δη̄

)
(.)

which agrees with the usual Ward identity (.) in the limit 3 → 0 (X3
→ 0). The modifi-

cation terms have the same structure as the  of the flow equation (.) with the replace-

ment Q̇3
7→ X3.

Modified Ward identities for 1PI vertex functions

Using the Legendre transformation with cutoff (.) we can rewrite equation (.) as(
α, ∂µ

δ03

δiAµ

)
− Tr

(
X3

[
Q3

+ 0(2)
]−1)

+
(
φ̄, X3φ

)
=

(
δ03

δφ
, αφ

)
+

(
φ̄, α

δ03

δφ̄

)
+
(
φ̄, [α, Q3

]φ
)

and finally obtain the  modified Ward identity(
α, ∂µ

δ03

δiAµ

)
− Tr

(
X3

[
Q3

+ 0(2)
]−1)

=

(δ03
δφ

, αφ
)

+

(
φ̄, α

δ03

δφ̄

)
+
(
φ̄, [α, Q]φ

)
.
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The modification term is due to the inverse bare propagator Q3
− Q + Q[A] in equation

(.), where the cutoff acts only on the A-independent part, while the A dependence is

treated as part of the interaction (self energy), Q3
− 63

[A]. The modified Ward identities

for the  vertex functions 03 may be written diagrammatically as

qµ

qµ
δγ 3m
δAµ

+

G3X3G3

γ 3m+1

+

G3X3G3

expand

γ 3m′ γ 3m′′

=

1γ 3m

+

[α, Q]

where the dashed lines denote the propagator G3X3G3 and the dotted lines denote a mo-

mentum shift on any external leg as in equation (.). The wiggly line in the third diagram

means that the expansion of the inverse second derivative yields further one-loop diagrams

with an appropriate number of vertices.

The complete , i.e., the response function together with the modification terms, will

be interpreted in section .. as the divergence of the effective response on scale 3. In terms

of this new response function the Ward identities will be satisfied without modification even

after truncations (section ..).

Modified Ward identities for connected amputated Green functions

By amputating C3 from the external legs of G3 in equation (.) we obtain the Polchinski

modified Ward identity(
α, ∂µ

δV3

δiAµ

)
− Tr

(
C3X3C3 δ

2V3

δχ δχ̄

)
+

(
δV3

δχ
, C3X3C3 δV3

δχ̄

)
=

(
δV3

δχ
, [C3αQ + D3Qα]χ

)
+

(
χ̄ , [QαC3

+ αQD3
]
δV3

δχ̄

)
− (χ̄ , [α, Q]χ) .
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3.2.2 Background-field method

The background-field method for  was developed in [Reuter&Wetterich ] and sum-

marized in [Freire&Wetterich ]: the primary goal is manifest gauge invariance of the

 vertex functions at every scale 3 such that one only has to consider the relevant gauge-

invariant couplings and not the much more numerous counter terms breaking gauge invari-

ance. This comes, however, at the price of introducing an auxiliary external background

gauge field Ā in addition to the internal fluctuating gauge field A. The gauge transformation

of Ā is designed to cancel the modification terms in the m, such that 03[φ, φ̄, A, Ā] is

gauge invariant under simultaneous gauge transformations of all fields.

Still, gauge invariance in all fields is not sufficient to guarantee gauge invariance in the

physically relevant ψ , ψ̄ , A fields: this has to be required separately by the background-field

identity constraining the Ā dependence of the vertex functions. Moreover, the gauge-fixing

term acquires a complicated scale dependence. If there is no fluctuating A field, however,

there is no gauge-fixing term, and in special cases a simple gauge-invariant construction is

possible.

3.2.3 Manifest gauge invariance

The discussion of the background-field method (cf. section ..) raises the question whether

we can construct a gauge-invariant cutoff kinetic term Q3
[A] in the presence of an external

field A. For a Lorentz-invariant model, −iDµ is a hermitean operator and so is Q[A] =

Q(Dµ), with real energy eigenvalues ε(A) depending on the particular configuration of A.

This allows to define a cutoff χ3(|ε(A)|) in terms of this energy, instead of frequency or

momentum, by

Q3
[A] :=

Q[A]

χ3
(√

Q†[A]Q[A]
) (.)

for normal operators Q[A]. For finite matrices and discrete spectra, Q[A] can be diagonal-

ized and the cutoff applied separately for each eigenvalue εk , Q3(εk) := Q(εk)/χ
3(εk).

Because Q3
[A] is gauge invariant by construction, equation (.) now holds also with

cutoff,(
α, ∂µ

δQ3
[A]

δiAµ

)
=
[
α, Q3

[A]
]
. (.)

In the background-field method the background field Ā is coupled via the term (Q3
[Ā] −

Q[Ā]) in the action. Using equation (.), the gauge transformation of this term,(
δα Āµ,

δ

δĀµ
{Q3

[Ā] − Q[Ā]}

) ∣∣∣
Ā=0

= −iX3,
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indeed cancels the modification term X3 in equation (.). Hence, the Ā-dependent cutoff

propagator restores the Ward identities without modification.

However, in this work we concentrate on non-relativistic applications with a dispersion

relation as in equation (.), which contains a real time derivative or imaginary frequency.

Then the situation is different: Q[A] is not a hermitean operator any more, and it is not even

a normal operator if the commutator[
Q†

[A], Q[A]
]
= −2∂t

(
ϕ +

1

2m
(i∇ · A + iA · ∇ + A2)

)
does not vanish, i.e., if the electromagnetic potential A depends on time. Then Q[A] and

Q†
[A] are not diagonal in the same basis, and the above definition (.) of Q3

[A] is not

applicable. Unfortunately, this condition excludes the important case of a finite frequency

transfer ω to the external field, even in the limit ω → 0, which is essential for transport.

Thus, energy-momentum cutoffs appear not to be useful in constructing a gauge-invariant

Q3
[A] for non-relativistic models at finite temperature. If Q couples only to the homoge-

neous q = 0 mode of A, the momentum transfer is zero and Q[A] remains diagonal in mo-

mentum space, such that one can use a momentum cutoff, Q3
[A](K ) := Q[A](K )/χ3(K ),

for all frequency shifts ω.

Consider, therefore, alternative flow schemes without an energy-momentum cutoff. If the

model is regularized by finite temperature, the temperature- and interaction-flow schemes

(cf. section ..) allow a trivial definition of Q3
[A]. For example, in the interaction-flow

scheme with g = 0 . . . 1 we can define Qg
[A] := Q[A]/g for any momentum transfer to the

external field. It is essential that the current coupling to the external field is rescaled by the

temperature or interaction strength just like the A-independent quadratic part.

In those cases where a gauge-invariant construction of Q3
[A] is possible we can define a

new gauge-invariant generating functional as

e−Ggi,3
[η,η̄,A]

:=

∫
[dψψ̄ ]

det Q3
e(ψ̄ ,Q3

[A]ψ)−V0[ψ ,ψ̄ ]−( jµV , Aµ)−(ψ̄ ,η)−(η̄,ψ) (.)

which differs from the previous definition (.) in that the cutoff acts also on the A-depen-

dent quadratic part. This yields the Ward identity(
α, ∂µ

δGgi,3

δiAµ

)
=

(
δGgi,3

δη
, αη

)
+

(
η̄, α

δGgi,3

δη̄

)
(.)

on any scale 3. Instead of the Legendre transformation (.) we can now define

0gi,3
[φ, φ̄, A] +

(
φ̄, Q3

[A]φ
)
= Ggi,3

[η, η̄, A] +
(
φ̄, η

)
− (η̄, φ) . (.)

Equations (.) and (.) are equivalent to equation (.) in [Reuter&Wetterich ] without fluctuations
of the gauge field, a ≡ 0.
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Then 0gi,3 evolves under the flow equation

∂30
gi,3

= Tr Q̇3C3
− Tr Q̇3

[A]

(
Q3

[A] +
δ20gi,3

δφ δφ̄

)−1
(.)

and satisfies the Ward identity(
α, ∂µ

δ0gi,3

δiAµ

)
=

(
δ0gi,3

δφ
, αφ

)
+

(
φ̄, α

δ0gi,3

δφ̄

)
. (.)

This new functional converges to the original one, 0gi,3
→ 0 in the limit 3 → 0, and

0gi,3
= 03 for A = 0. However, it has the advantage that its vertex functions are manifestly

gauge invariant during the whole flow, i.e., the Ward identities are not modified. Even for a

truncated flow-equation hierarchy this remains true as I will show in section ..: while the

flowing response vertex at 3 = 0 approximates the exact response vertex only to truncation

order, it still satisfies the Ward identities exactly to all orders.

Gauge-invariant response vertex

Let us give an explicit example of the current-response operator with cutoff. We diagonalize

Q[A], apply the cutoff on the eigenvalues and take the A derivative to obtain the current. To

leading order in A, all modes A(q) couple independently, and it is sufficient to consider a

single q mode. We therefore capture the generic situation by considering a two-state system

with momenta k ± q/2 ≡ ± and an inverse propagator

Q[A] =

(
Q+ −J A

−( J A)∗ Q−

)
+O(A2),

which is diagonal for A = 0, and where the coupling to A transfers momentum q between

the two states, J A = Jµ(q; +; −)Aµ(q), ( J A)∗ = Jµ(−q; −; +)Aµ(−q), and the current

Jµ =

(
0 Jµ(q; +; −)

Jµ(−q; −; +) 0

)
.

Generally, Q[A] does not need to be a hermitean matrix but only a normal matrix; then the

general formula (.) has to be used. For a pedagogical derivation, however, we assume that

Q[A] is hermitean, as for instance with a purely quadratic dispersion Q(kµ) = |k|
2/2m.

Then Q[A] is diagonalized,

Q[A] =

(
1 J A

Q+−Q−

−
( J A)∗

Q+−Q−
1

)(
Q+ 0

0 Q−

)(
1 −

J A
Q+−Q−

( J A)∗

Q+−Q−
1

)
+O(A2),
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where notably, the eigenvalues depend only quadratically on A. Replacing the diagonal Q by

Q3
=

(
Q3

+ 0

0 Q3
−

)
, we obtain

Q3
[A] =

 Q3
+ −

Q3
+−Q3

−

Q+−Q−
J A

−
Q3

+−Q3
−

Q+−Q−
( J A)∗ Q3

−

+O(A2),

and the cutoff current operator reads

Jµ,3
=

Q3
+ − Q3

−

Q+ − Q−

Jµ ,

i.e., the original current rescaled by a number. As a check, the current operator thus con-

structed has the right limit, Jµ,3
→ Jµ as 3 → 0, and satisfies qµ Jµ,3

= Q3
+ − Q3

− as a

consequence of the gauge invariance of Q3
[A], equation (.).

3.2.4 Ward identities in truncated flows

If the model and flow scheme permit the construction of a gauge-invariant cutoff bare action

as in section .., i.e., if Q3
[A] and the bare interaction are manifestly gauge invariant at

any scale, then the full flow-equation hierarchy satisfies the unmodified Ward identities on

all scales. We shall see that in this case even truncated flows can satisfy the Ward identities

exactly.

The most commonly used truncation of the flow-equation hierarchy without external field

is to set the flow of higher Green functions to zero,

∂3G3
m (A = 0) := 0 ∀m ≥ m0, (.)

for some m0 > 0 usually determined by practical considerations and justified perturbatively

in the renormalized interaction. I will now show that the Ward identities are satisfied if we

demand the same truncation (.) also with external field,

∂3G3
m (A) := 0 ∀m ≥ m0 and ∀A (.)

and take derivatives with respect to Aµ in order to obtain the truncated flow equations of the

response functions Gµ,3
m;1 (A) := δAµG3

m (A). In particular, also the response functions with

m ≥ m0 do not flow,

∂3Gµ,3
m;1 (A) := 0 ∀m ≥ m0. (.)

The response-function Ward identities (.) are of the form

∂µGµ,3
m;1 (A) = i S G3

m (A) ∀m (.)
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homogeneous in the number of fermion lines, where S represents the momentum shift on

the external legs. By the truncation, neither side of equation (.) flows for m ≥ m0, so the

higher Green functions remain at their initial condition—given by the bare action—which

by construction is gauge invariant and satisfies the Ward identities.

For m < m0, the  of the truncated flow equation is built up completely from bare

propagators Q3
[A] and single-scale propagators Q̇3

[A] which by construction are mani-

festly gauge covariant on any scale 3, as well as from Green functions G3
m (A) which we as-

sume to be gauge covariant on a particular scale 3. Under a gauge transformation, all Green

functions and propagators acquire phase factors which cancel on all internal lines, leaving

only the phase factors on the external legs which, in turn, imply gauge covariance of the .

Then, by infinitesimal induction the Green functions G3−d3
m (A) at an infinitesimally lower

scale 3− d3 will also be gauge covariant, and hence the Ward identities are satisfied during

the complete f flow.

This argument is valid in any f scheme where the Ward identities are homogenous in

the number of fermion lines, which holds in the Polchinski,  and Wick-ordered schemes

presented in this work.

3.3 The role of self-consistency

The generating functional Ggi,3
[η, η̄, A] defined in equation (.) has a redundant parame-

trization: there are two different ways to obtain the response functions, either by taking a

derivative with respect to Aµ or by inserting
(
ψ̄ , δQ3

[A]

δAµ
ψ
)

into the path integral. Assuming

from now on a gauge-invariant interaction V0 and dropping the label “gi”, we have

δ

δAµ
e−G3[η,η̄,A]

=

∫
[dψψ̄ ]

det Q3

(
ψ̄ ,
δQ3

[A]

δAµ
ψ

)
e(ψ̄ ,Q3

[A]ψ)−V0[ψ ,ψ̄ ]−(ψ̄ ,η)−(η̄,ψ)

= −

(
δ

δη
,
δQ3

[A]

δAµ

δ

δη̄

)
e−G3[η,η̄,A] .

The second derivative yields terms linear and quadratic in G3,

δG3

δAµ
= − Tr

(δQ3
[A]

δAµ

δ2G3

δη δη̄

)
+

(
δG3

δη
,
δQ3

[A]

δAµ

δG3

δη̄

)
. (.)

This self-consistency equation expresses the response functions in terms of higher Green func-

tions with a loop closed, and tree terms. Equation (.) illustrates the relation between one-
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and two-particle connected Green function diagrammatically,

qµ

qµGµ,3
1;1

=

G3
2

+

G3
1

G3
1

(.)

where the dashed lines are δQ3
[A]/δAµ. This relation is generally broken by truncated

flows, as we shall see in section ... Using the gauge transformation of the quadratic part

(.) we can write the divergence of equation (.) as(
α, ∂µ

δG3

δiAµ

)
= − Tr

([
α, Q3

[A]
] δ2G3

δη δη̄

)
+

(
δG3

δη
,
[
α, Q3

[A]
]δG3
δη̄

)
, (.)

and replace the response function in the Ward identity (.) to obtain the self-consistent

Ward identity

− Tr
([
α, Q3

[A]
] δ2G3

δη δη̄

)
+

(
δG3

δη
,
[
α, Q3

[A]
]δG3
δη̄

)
=

(
δG3

δη
, αη

)
+

(
η̄, α

δG3

δη̄

)
.

(.)

Note that we would arrive at the same self-consistent Ward identities to leading order in A if

we would start with the generating functional (.) and the modified Ward identities (.).

By Legendre transformation (.) we obtain the self-consistent Ward identity for the 

vertex functions,

− Tr
([
α, Q3

[A]
] (

Q3
[A] + δ203

)−1
)

=

(
δ03

δφ
, αφ

)
+

(
φ̄, α

δ03

δφ̄

)
. (.)

The topological structure of the A derivative on the  is the same as that of the3 derivative

in equations (.), (.). The self-consistent Ward identities for the  vertex functions are

represented diagrammatically as

γ 3m+1

+
expand

γ 3m′ γ 3m′′

=

1γ 3m

where the dashed lines feature the propagator G3
[
α, Q3

[A]
]
G3.
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. The role of self-consistency

By amputating bare propagators C3
[A] from the external legs in equation (.) we obtain

the self-consistent Polchinski Ward identity

Tr
([
α, C3

[A]
] δ2V3

δχ δχ̄

)
−

(
δV3

δχ
,
[
α, C3

[A]
]δV3
δχ̄

)
=

(
δV3

δχ
, αχ

)
+

(
χ̄ , α

δV3

δχ̄

)
.

(.)

While the previous response-function Ward identities were homogeneous in the number

of external electron legs, the self-consistent Ward identities close a loop on higher Green or

vertex functions and thereby decrease the number of external legs. This “inhomogeneity”

leads to severe problems: when the flow is truncated the lower Green functions are flowing

but the higher ones are not, hence self-consistency is violated, and the above self-consistent

Ward identities (.), (.), and (.) are only satisfied to truncation order. Despite inten-

sive search a general solution to the problem of self-consistency remains elusive.

In the upcoming section .. I will illustrate how the self-consistent Ward identities are

broken by the standard truncation that we have used in section ... In section .. I re-

view the conserving approximations of Baym and Kadanoff which are self-consistent and

satisfy these Ward identities, but turn out to be in general incompatible with truncated flow

equations except for special cases (section ..).

3.3.1 Self-consistent Ward identities in truncated flows

Let us give an example of how a simple truncation breaks the self-consistent Ward identities.

This example shows how the problem arises generically. Consider the Polchinski scheme

with the truncated flow equations (.),

= + = 0 ,

where slashed lines denote Ċ3. The corresponding Ward identities (.) are

++
−

−−
≡

±±
=

+ −

+
−+

(.)

= 0 , (.)

where dots on the external legs denote a momentum shift on any one of the legs as in equa-

tion (.), and dashed lines denote [α, C3
]. This truncation is simpler than the ones used
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 Ward identities in the functional RG

in practice; however, it is useful pedagogically because it demonstrates the problems already

at second order in the renormalized interaction. A truncation at a higher level would display

the same type of problem, only further down in the hierarchy where the diagrammatics is

more tedious.

If the Ward identity is to be compatible with the truncated flow, the 3 derivatives of the

 and  of the Ward identity (.) for the one-particle function should agree:

∂3() =
±±

=

± ±

+
±±

∂3() =

+ −

+
−+

+
−+

+
−+

.

The second line can be rewritten using both Ward identities above and ∂3[α, C3
] = [α, Ċ3

],

∂3() =

± ±

+
±±

+
−+

−
−+

.

The  and  differ, thus we cannot complete a proof of the Ward identities by induction:

even if the Ward identities are satisfied at some scale 3, the flow violates them by the terms

highlighted in the box. There is no reason why these terms should in general vanish, or why

the Ward identities should be miraculously satisfied at the end of the flow even though they

are violated during the flow. Similarly, in the  scheme with a truncation such that the

two-particle vertex function does not flow, the violation is of the form

− . (.)

If one had not truncated the flow and Ward identity of the two-particle Green function, they

would have generated the missing terms. The difference to the formulation of the Ward iden-

tities in terms of response functions can be seen in (.) and (.): while the one-particle

response function follows the same flow equation (.) as the one-particle Green function,

only with an additional A derivative, the two-particle Green function follows by truncation a

different flow equation and is, therefore, not determined by the same approximation (in the

sense explained below) as the one-particle function. Hence, self-consistency and with it the
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. The role of self-consistency

self-consistent Ward identities are violated. This will be illustrated more clearly in the next

section .. on conserving approximations.

Note, however, that this violation may be not so bad numerically: the violation terms

highlighted in the boxes all have the structure of the terms neglected by the truncation,

(Polchinski), () (.)

but with another dashed line closed, and vice versa with the slashed and dashed lines inter-

changed. Therefore, if the truncation is justified because the truncated terms are small, then

also the violation will be small.

3.3.2 Conserving approximations of Baym and Kadanoff

Baym and Kadanoff [Baym&Kadanoff , Baym ] introduced a formalism to obtain

conserving approximations which by construction satisfy the self-consistent Ward identities.

We shall compare the f to these approximations and see whether, under certain conditions,

the f might also provide conserving approximations.

Proof of number conservation

In order to make the reader familiar with the derivation of conserving approximations, we

shall discuss the proof of the number conservation law due to [Baym ]. During the

proof it will become clear what the requirements are, and we will try to answer the question

whether truncated f schemes might satisfy these requirements.

Baym and Kadanoff formulate their theory in terms of propagator lines as basic objects,

not the source fields η, η̄ we have used. Therefore, they add an external field to the partition

function,

Z (U ) :=

∫
[dψψ̄ ] eS[ψ ,ψ̄ ]−(ψ̄ ,Uψ)

with U = U (1, 1′) bilocal in space-time:
(
ψ̄ , Uψ

)
=
∫

d1 d1′ ψ̄ (1)U (1, 1′) ψ(1′). The

labels 1, 1′ are abbreviations for x1, x1′ with all space-time components, and the integral∫
d1 ≡

∫
dr1

∫
−iβ

0 dt1. Thereby, all Green functions are functionals of the external field U ,

such as the bare propagator G0(1 − 1′; U ) and the full propagator G(1, 1′; U ). The linear

response of G(1, 1′; U ) to the external field is the two-particle correlation function,

L(12, 1′2′) := −
δG(1, 1′; U )

δU (2′, 2)

∣∣∣
U=0

= [G2(12, 1′2′)− G(1 − 1′)G(2 − 2′)]U=0 .

This should not easily be confused with the two-particle interaction U3 in Chapter .
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The Dyson equation

G−1(1, 1′; U ) = G−1
0 (1 − 1′)− U (1, 1′)−6(1, 1′; G(U )) (.)

shall be satisfied exactly even by an approximate G(U ) and self energy 6.

The first requirement is that 6 be a functional of the full propagator G(U ) and the bare

gauge-invariant density-density interaction V0. We shall see below that this may be relaxed

a little to include any propagator that transforms in the same way as G(U ) under change of

U .

In order to show that the approximate L satisfies the local number conservation law, we

choose an external disturbance U that corresponds to a gauge transformation,(
ψ̄ , Uψ

)
=

∫
d1

[
∂α(1)

∂ t1
ρ(1)+ ∇α(1) ·

{
j(1)+

1

2m
∇α(1)ρ(1)

}]
.

The equation for the bare propagator becomes{
i
∂

∂ t1
−
∂α(1)

∂ t1
+

1

2m

[
∇1 + i∇α(1)

]2
}

G0(1, 1′; α) = δ(1 − 1′) (.)

with the solution

G0(1, 1′; α) = e−iα(1) G0(1 − 1′) e iα(1′) (.)

where G0(1 − 1′) satisfies (.) with α ≡ 0. If we assume the boundary condition of the

external disturbance to be

α(r , τ = 0) = α(r , τ = −iβ) (.)

then also the solution G0(α) satisfies this boundary condition. The full propagator is the

solution of the Dyson equation (.),{
i
∂

∂ t1
−
∂α(1)

∂ t1
+

1

2m

[
∇1 + i∇α(1)

]2
}

G(1, 1′; α)−

∫
d1̄6(1, 1̄; G(α))G(1̄, 1′; α)

= δ(1 − 1′). (.)

We will now show that if 6 is a functional of G(α) (as we have assumed), also G(α) will

transform analogously to equation (.). To this end, substitute

G(1, 1′; α) 7→ e−iα(1) Ḡ(1, 1′; α) e iα(1′) (.)

in equation (.) and in the functional6(G(α)). If and only if all propagators in6 depend

on U in the same way, at each vertex V0 there will be four phase factors. Because particles
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. The role of self-consistency

are assumed to be conserved at each vertex (by the gauge invariance δαV0 = 0), these factors

cancel exactly at each interaction vertex and remain only at the external legs, such that 6

transforms as

6(1, 1′; G(α)) = e−iα(1) 6(1, 1′; Ḡ) e iα(1′).

Then, equation (.) becomes{
i
∂

∂ t1
−
∂α(1)

∂ t1
+

1

2m

[
∇1 + i∇α(1)

]2
}

e−iα(1) Ḡ(1, 1′; α) e iα(1′)

−

∫
d1̄ e−iα(1) 6(1, 1̄; Ḡ) Ḡ(1̄, 1′; α) e iα(1′)

= e−iα(1)
[{

i
∂

∂ t1
+

1

2m
∇

2
1

}
Ḡ −

∫
6 Ḡ

]
e iα(1′)

= δ(1 − 1′).

Because of the δ function on the  the two phase factors cancel, and we obtain{
i
∂

∂ t1
+

1

2m
∇

2
1

}
Ḡ −

∫
6 Ḡ = δ(1 − 1′),

which is the Dyson equation (.) defining G(1 − 1′; α = 0). Because the solution to this

equation is unique,

Ḡ(1, 1′; α) = G(1 − 1′; α = 0) ,

and using equation (.),

G(1, 1′; α) = e−iα(1) G(1 − 1′; α = 0) e iα(1′) , (.)

which is the same transformation law as for the bare propagator, equation (.). Now we

expand both sides of equation (.) to first order in α:∫
d2
{∂α(2)
∂ t2

L(12, 1′2)+ ∇α(2) ·

[
∇2 − ∇′

2

2im
L(12, 1′2′)

]
2′=2

}
= i[α(1)− α(1′)]G(1 − 1′).

Integrating by parts on the  using the boundary condition (.) and comparing the

coefficient of α(2) yields the number conservation law for L, which is equivalent to the self-

consistent Ward identity (.):

∂

∂ t2
L(12, 1′2)+ ∇2 ·

[
∇2 − ∇′

2

2im
L(12, 1′2′)

]
2′=2

= −i[δ(1 − 2)− δ(1′
− 2)]G(1 − 1′).
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The conservation law in the 1, 1′ variables of L follows if we demand in addition that L be

symmetric in 1, 1′
↔ 2, 2′:

δG(1, 1′)

δU (2′, 2)
=
δG(2, 2′)

δU (1′, 1)
.

This requirement of vanishing “curl” implies, except for pathological cases, that there exists

a functional W (U ) such that

G(1, 1′) =
δW

δU (1′, 1)
.

The 8 functional

For completeness, let us mention that Baym and Kadanoff express the 1, 1′ conservation of L

also as a condition on 6. 6 is assumed there—in contrast to this work—to be a functional

only of G(U ) and V0 but not of other propagators like G0(U ), or U directly. Then they

derive that a similar vanishing-“curl” condition must be required of 6,

δ6(1, 1′)

δG(2′, 2)
=
δ6(2, 2′)

δG(1′, 1)
,

and hence, there exists a functional 8[G(U ), V0], such that

6(1, 1′) =
δ8

δG(1′, 1)
,

and δ6/δG is the effective particle-hole interaction. In equilibrium when U (1, 1′) = δ(t1 −

t ′
1) Ū (r1, r ′

1), W and8 are related by W = 8− tr(6G)− tr ln(−G). An approximation for

6[G] that can be written as δ8/δG is called 8-derivable.

Diagrammatic interpretation of conserving approximations

Let us give a diagrammatic illustration of the Baym-Kadanoff formalism. In the exact theory

W (U ) contains every vacuum diagram of perturbation theory with bare vertices V0 and

propagators G0(U ). A derivative with respect to U acts on the G0(U ) lines in each diagram

by plucking out one line. The full propagator G(U ) = δW /δU is, therefore, made up of all

connected vacuum diagrams with two external legs. A second derivative with respect to U

plucks out a second line from each diagram, generating L = −δG/δU , which consists of all

diagrams with four external legs.

Consider approximations defined by choosing a possibly infinite subset of all Feynman

diagrams for W (U ), G(U ), and L. In principle, one could choose completely different sets

of diagrams for each correlation function. But an approximation is conserving if and only
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. The role of self-consistency

if L = −δG/δU is satisfied exactly, i.e., the diagrams contributing to L are obtained by

plucking out one line in each diagram of G, or equivalently, the G diagrams are obtained by

closing one loop on each diagram of L. Such an approximation for L is conserving in the

2, 2′ variables; it can be made conserving also in the 1, 1′ variables if we demand further that

the diagrams of G are derived from those of W by plucking out one line.

Obviously this leaves no room for truncations only on a certain level of the hierarchy of

Green functions: the flow equation for the zero-particle component W (U ) must completely

determine all higher flow equations in order that the classes of diagrams contributing to each

Green function are compatible.

3.3.3 How important is self-consistency?

It has become clear that at the core of the problem are not the response-function Ward iden-

tities but self-consistency: the relation L = −δG/δU is not satisfied in the above example

where the one-particle function flows but the flow of the two-particle function is truncated.

This incompatibility of the truncated flow with conserving approximations raises the ques-

tion under which circumstances it is a problem not to have a conserving approximation. The

answer depends on the physical problem at hand: there are problems which work surpris-

ingly well in the truncated f, while others fail miserably.

A favorable example are the  impurity problems presented in Chapters  and . Already

for simple truncations the f results are very close to the exact asymptotic solution known

from Bethe ansatz. This suggests that the terms neglected by the truncation are small. Fol-

lowing the discussion surrounding equation (.), also self-consistency is then fulfilled to

a high degree of accuracy. Moreover, in the model of Chapter  the self-consistent Hartree-

Fock approximation, a simple conserving approximation, is known to produce the wrong

physical phase (charge-density wave). This is due to the fact that an approximation, while

being conserving, can miss important contributions. Generally, if the truncated flow does

not diverge, one can even determine some components of G(U ) and L self-consistently: one

can use any truncated flow to obtain an approximate W3(U ) in the presence of U and take

numerical derivatives with respect to U to obtain approximate values for G(U ) and L which

are conserving by construction (cf. section .).

An example of the opposite situation where the violation of the self-consistent Ward iden-

tities is disastrous is the reduced  model [ ]. This model is solved exactly by the

self-consistent Hartree-Fock approximation. In the presence of a tiny symmetry-breaking

term (gap) of magnitude ε in the action, the interaction grows very large to 1/ε but does

not diverge. In the truncated flow equation, this result is only reproduced if one has exactly

the correct value of the gap (a component of the one-particle function) in the flow equa-

tion for the two-particle interaction. This would be guaranteed by the self-consistent Ward
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identity relating the one- and two-particle functions; however, even if the truncated flow vi-

olates the Ward identity only slightly the interaction may diverge prematurely at3 > 0. This

problem can be solved by a modification of the flow-equation hierarchy [Katanin ]: if

the single-scale propagator S3 in the  scheme is replaced by the 3 derivative of the full

propagator −∂3G3
= G3(∂3Q3

− ∂36
3)G3 in the truncated flow equation for the two-

particle vertex, then the f flow reproduces exactly the self-consistent Hartree-Fock solu-

tion for models where the two-particle interaction has a reduced momentum dependence.

This modification leads to significant improvements also in the single-impurity Anderson

model [ ].

There are promising approaches to self-consistency by writing the f flow equations in

terms of both fermionic and bosonic degrees of freedom. For instance, (i) [Wetterich ]

thereby obtains the flow of  vertex functions. (i i) The Luttinger model without back-

scattering is treated in [ ]; using the separate conservation of the number of left and

right movers the flow-equation hierarchy can be closed and solved exactly.

3.4 Summary

In this chapter I have shown how Ward identities, which express the symmetry of the Hamil-

tonian in terms of Green or vertex functions, are derived in the functional formalism. There

are two common formulations of Ward identities. In the field-theoretical and high-energy

physics literature, Ward identities are written in terms of response functions. This form of

the Ward identities relates for example the self energy to the current response but assumes no

particular relation between the self energy and the interaction. A momentum cutoff breaks

these response-function Ward identities. This is a problem for the treatment of gauge the-

ories, leading either to modified Ward identities or the introduction of a background gauge

field Ā. Alternatively, one can use a manifestly gauge-invariant flow scheme such as the tem-

perature flow. It is shown that in this case even truncated flows satisfy the unmodified Ward

identities exactly on all scales.

In the condensed-matter literature, a different form of Ward identity is more common

which assumes self-consistency: the response functions in the Ward identities can be ex-

pressed as higher Green functions with a loop closed by a special propagator. An example of

approximations which satisfy these self-consistent Ward identities without cutoff are the con-

serving approximations of Baym and Kadanoff. However, I have shown that self-consistency

is violated by common truncations, which neglect the flow of Green functions beyond a cer-

tain level in the flow-equation hierarchy. For special models with exact mean-field solutions,

modified truncated flow equations are known which reproduce these solutions.
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In this chapter I introduce the one-dimensional lattice model of a Luttinger liquid (cf. Chap-

ter ) and explain in detail how the f is used to compute observables such as the effective

impurity potential, the density-response vertex and the conductance. This chapter is orga-

nized as follows: in the first section . the microscopic lattice model is defined. In section

. I show how the flow equations are set up and solved, with an emphasis on the finite-

temperature flow and a new efficient algorithm in . I proceed to explain how to compute

the conductance in the f framework in section ., giving an argument why vertex correc-

tions play no role in our approximation.

4.1 Microscopic model

Consider a model of spinless fermions on a  lattice with nearest-neighbor interaction and

various types of impurity potentials. Following [ ], the Hamiltonian has the

form

H = H0 + Hint + Himp

with the kinetic term given by nearest-neighbor hopping with an amplitude −t and chemical

potential µ (I will henceforth choose units such that t = 1, and the lattice spacing a = 1),

H0 = −t
∑

j

(
c†

j+1c j + c†
j c j+1

)
− µ

∑
j

n j ,

where n j = c†
j c j is the local density operator. The nearest-neighbor interaction of strength

U j , j+1 = U j+1, j on the bond between sites j and j + 1 enters as

Hint =

∑
j

U j , j+1n j n j+1 (.)

while the static impurity potential V j j ′ is represented by a term

Himp =

∑
j , j ′

V j j ′ c†
j c j ′ .
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J J

1 2 N N+10 N−1
tL tR

L R
sampleleft lead right lead

Figure .: The microscopic setup of the system with leads. The current operators JL,R will only be needed

for the conductance calculations.

For the conductance calculations, we will couple an interacting system on lattice sites

1, . . . , N on both sides to semi-infinite, non-interacting leads which are described com-

pletely by H0 (figure .). In order that electrons do not scatter off the beginning of the

interacting region, the interaction has to be switched on smoothly. Explicitly, we choose a

spatial profile

U j , j+1 := U
arctan [( j − js)/w] − arctan [(1 − js)/w]

arctan [(N/2 − js)/w] − arctan [(1 − js)/w]
( j = 1, . . . , N/2)

for the left side of the system, and likewise for the right, where U is the bulk interaction. We

have chosen the parameters w = 4 and js = 56 such that the interaction falls to % of its

value over a typical distance  lattice sites.

4.1.1 Projection method applied to the wire

In order to treat this infinite system with leads numerically, we express it (exactly) by an ef-

fective Hamiltonian on the N -site interacting region via the projection technique. Consider

splitting the Hilbert space of the Hamiltonian H into disjoint subspaces with projection op-

erators P + Q = 1:

H =

(
HPP HPQ

HQP HQQ

)
.

The one-particle Green function is the resolvent

G(z) :=
1

z − H
=

(
GPP(z) GPQ(z)

GQP(z) GQQ(z)

)
Although the difference |U js−1, js − U js , js+1| ≈ 0.08 U is rather large, the corresponding backscattering com-

ponent of the effective potential 6 is typically below 10−4, and the conductance at T = 0 deviates from the
unitary limit by less than 10−8.
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with components [ , equation (..)]

GPP(z) = P
1

z − H
P =

1

zP − HPP − HPQ
1

zQ − HQQ
HQP︸ ︷︷ ︸

=:6PP (z)

(.)

GPQ(z) = P
1

z − H
Q = −GPP(z)HPQ

1

zQ − HQQ

GQP(z) = Q
1

z − H
P = −

1

zQ − HQQ
HQPGPP(z)

GQQ(z) = Q
1

z − H
Q =

1

zQ − HQQ
+

1

zQ − HQQ
HQPGPP(z)HPQ

1

zQ − HQQ
.

For the wire, P shall project onto the Hilbert space of the states in the interacting sample

with site indices 1, . . . , N , while Q shall denote the remaining non-interacting leads on sites

. . . , 0 and N + 1, . . . . Thus,

HPP = −t
N−1∑
n=1

(
|n + 1〉〈n| + |n〉〈n + 1|

)
− µ

N∑
n=1

|n〉〈n| + Hint + Himp

HPQ = −tL|1〉〈0| − tR|N 〉〈N + 1|

HQP = −tL|0〉〈1| − tR|N + 1〉〈N |

HQQ = −t
∑
n<0,

n≥N+1

(
|n + 1〉〈n| + |n〉〈n + 1|

)
− µ

∑
n≤0,

n≥N+1

|n〉〈n|.

The left and right leads in HQQ do not couple directly but only through the sample. In

order to compute 6PP in equation (.) we need to know the Green function of the (left)

lead at the interface site 0, 〈0|(zQ − HQQ)
−1

|0〉. To this end, consider a semi-infinite lead

ranging from −∞ up to some site j , and denote the Green function at the rightmost site

j as gL(z) := (z − H0)
−1
j , j . Consider adding one more site j + 1 to the right, with the

same hopping amplitude −t . Because the lead is semi-infinite and homogeneous, the Green

function g ′
L(z) at the new site j + 1 should be the same as gL(z). Again using the same

formula (.) with Q now denoting the states on sites −∞, . . . , j and P for j + 1,

[g ′

L(z)]
−1

= (z − H0) j+1, j+1 − (H0) j+1, j (z − H0)
−1
j , j (H0) j , j+1

= (z + µ)− t gL(z) t
!
= [gL(z)]

−1.

This leads to a quadratic equation for gL(z),

t 2g 2
L(z)− (z + µ) gL(z)+ 1 = 0
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 Functional RG technique in one dimension

with solution (t = 1)

gL(z) =
1

2

(
z + µ∓ i

√
4 − (z + µ)2

)
(.)

and gR(z) = gL(z) because the right lead has the same structure as the left lead. gL(z) has

a branch cut at the real axis Im z = 0. The sign ± is chosen such that the imaginary part

of gL(z) changes sign across the branch cut. For the local density of states of the leads we

obtain

ρL(ω) := −
1

π
Im gL(ω + i0) =

1

2π

√
4 − (ω + µ)2,

for |ω + µ| ≤ 2. Now we have all ingredients for the lead contributions to the propagator of

the sample, equation (.):

6PP(z) := HPQ
1

zQ − HQQ
HQP

= tL|1〉〈0|(zQ − HQQ)
−1

|0〉〈1|tL

+ tR|N 〉〈N + 1|(zQ − HQQ)
−1

|N + 1〉〈N |tR

= t 2
L gL(z) |1〉〈1| + t 2

R gR(z) |N 〉〈N | (.)

G j0(z) = 〈 j|GPQ(z)|0〉

= −〈 j|GPP(z)|1〉 tL 〈0|(zQ − HQQ)
−1

|0〉

= −G j1(z) tL gL(z) ( j = 1, . . . , N ) (.)

GN+1, j (z) = 〈N + 1|GQP(z)| j〉

= −〈N + 1|(zQ − HQQ)
−1

|N + 1〉 tR 〈N |GPP(z)| j〉

= −gR(z) tR GN j (z) ( j = 1, . . . , N ) (.)

GN+1,0(z) = 〈N + 1|GQQ(z)|0〉

= 〈N + 1|(zQ − HQQ)
−1

|0〉 (= 0 as left and right leads do not couple directly)

+ 〈N + 1|(zQ − HQQ)
−1

|N + 1〉 tR 〈N |GPP(z)|1〉 tL 〈0|(zQ − HQQ)
−1

|0〉

= gR(z) tR GN1(z) tL gL(z). (.)

In the non-interacting leads, HQQ = H0. In the sample, the quadratic (non-interacting)

part of HPP shall include the impurity:

ξ j j ′ := (H0 + Himp) j j ′ = −t (δ j , j ′+1 + δ j , j ′−1)− µδ j j ′ + V j j ′ .

The lead contribution is also independent of the interaction,

6 leads(z) := 6PP(z) = t 2
L gL(z) |1〉〈1| + t 2

R gR(z) |N 〉〈N |, (.)
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and all non-interacting contributions are combined into the inverse bare propagator in the

sample,

Q j j ′(z) ≡ [G−1
0 (z)] j j ′ := zδ j j ′ − ξ j j ′ −6 leads

j j ′ (z). (.)

The interaction Hint creates an effective one-particle potential 6(z , T ) at temperature T .

The full sample propagator is determined by the Dyson equation,

[G−1(z , T )] j j ′ = Q j j ′(z)−6 j j ′(z , T ). (.)

4.1.2 Bare vertices

The f is formulated in terms of a path integral weighted by the action, so the bare and

interaction parts of the Hamiltonian have to be translated into the Lagrangian language: the

inverse bare propagator Q(z) defined in equation (.) becomes the quadratic part of the

Lagrangian, and the bare interaction Hint becomes the interaction part:

S[ψ , ψ̄ ] = T
∑
n, j , j ′

Q j j ′(iωn) ψ̄ j (iωn)ψ j ′(iωn)+

∑
1,1′,2,2′

I1′,2′;1,2 ψ̄ (1
′)ψ̄ (2′)ψ(2)ψ(1)

where I1′,2′;1,2 is the bare antisymmetrized interaction vertex equivalent to Hint, and the sum

over 1, 1′, . . . includes Matsubara frequencies and lattice indices. The nearest-neighbor in-

teraction conserves frequency but has no further frequency dependence. The remaining spa-

tial dependence has the real-space form

I j ′1, j ′2; j1, j2 = U j1, j2[δ j1, j2−1 + δ j1, j2+1](δ j1, j ′1
δ j2, j ′2

− δ j1, j ′2
δ j2, j ′1

). (.)

In the bulk U j , j+1 ≡ U is homogeneous, hence the bare interaction is translationally invari-

ant and can be expressed in a momentum basis:

Ik ′
1,k ′

2;k1,k2
= 2U [cos(k ′

1 − k1)− cos(k ′

2 − k1)]δ
(2π)
k1+k2,k′

1+k ′
2

(.)

where the Kronecker δ implements momentum conservation (modulo 2π ).

4.2 Functional RG flow equations

For computing the properties of the  fermion system, we use the  version of the f, cf.

section ... We cut off the infrared part of the free propagator on a scale3 and differentiate

the generating functional for the vertex functions with respect to this scale. Thereby we

obtain an exact hierarchy of flow equations for the irreducible vertex functions.
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4.2.1 Truncated 1PI flow equations

As in [ ], we choose a cutoff in Matsubara frequency. The cutoff bare propagator

G3
0 (iω) (with the notation G0 ≡ C) is defined by

G3
0 (iω) := χ3(ω)G0(iω), (.)

where the characteristic function χ3(ω) is unity on the high-energy modes and vanishes

on the low-energy modes. The exact form of χ3 depends on whether T = 0 or T > 0, as

explained below.

Second, we truncate the infinite hierarchy of flow equations by neglecting the flow of the

three-particle and higher vertex functions. This closes the hierarchy of flow equations for

the one- and two-particle vertex functions and is justified by a small renormalized inter-

action. The results agree remarkably well quantitatively with known exact results (,

Bethe ansatz) not only for weak but also for moderate interaction strength [ ,

Andergassen ].

The truncated  flow equations are written in terms of the one-particle vertex 63 at

scale 3 (self energy) and the two-particle interaction vertex 03 [ ],

∂36
3(1′, 1) = −T

∑
2,2′

e iω20+

S3(2, 2′) 03(1′, 2′; 1, 2) (.)

∂30
3(1′, 2′; 1, 2) = T

∑
3,3′

∑
4,4′

G3(3′, 3) S3(4, 4′)

×

[
03(1′, 2′; 3, 4) 03(3′, 4′; 1, 2)

− 03(1′, 4′; 1, 3) 03(3′, 2′; 4, 2)− (3 ↔ 4, 3′
↔ 4′)

+ 03(2′, 4′; 1, 3) 03(3′, 1′; 4, 2)+ (3 ↔ 4, 3′
↔ 4′)

]
. (.)

The indices 1, 2, . . . label both frequency and spatial indices. The full propagator is deter-

mined from the self energy by the Dyson equation

G3
= [Q3

−63
]
−1, (.)

where Q3
≡ [G3

0 ]
−1

= Q/χ3 is the inverse bare cutoff propagator. S3 denotes the single-

scale propagator which will select only modes with frequency near3 for the frequency cutoff,

S3 := G3 Q̇3 G3
= −χ̇3

1

Q − χ363
Q

1

Q − χ363
, (.)

where the dot denotes ∂3. The convergence factor e iω20+

in the 63 flow equation is only

necessary to define the initial condition of the flow at 3 = 30 → ∞ (see below).

Not to be confused with the full functional 03[φ, φ̄]!
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Parametrization of the interaction

The two-particle interaction vertex 03(1′, 2′; 1, 2) is in general a very complicated function.

However, in the low-energy limit the flow of 63 and 03 is dominated by very few chan-

nels of the interaction [Andergassen ,  ]. At any 3, perturbation theory in

the renormalized interaction strength provides a guide for a simple parametrization of 03.

For a model of spinless fermions with nearest-neighbor interaction and only few impurities

(i.e., not disordered), the following parametrization captures the qualitative as well as the

quantitative features of Luttinger liquids very well. The renormalized interaction vertex 03

is assumed to be frequency independent beyond the conservation of frequency, and the 

of the flow equation is evaluated with all external frequencies set to zero. Likewise, its spatial

dependence is approximated by a renormalized nearest-neighbor interaction U3, and in the

flow all external momenta are projected to ±kF. The internal lines carry propagators with-

out the self energy or the impurity potential, which would lead to corrections only at higher

order in the interaction.

In the bulk U j , j+1 ≡ U is homogeneous, and 03 has the momentum-space form (inde-

pendent of frequency)

03k ′
1,k ′

2;k1,k2
= 2U3

[cos(k ′

1 − k1)− cos(k ′

2 − k1)]δ
(2π)
k1+k2,k ′

1+k ′
2

which is just the bulk bare interaction (.),

Ik ′
1,k ′

2;k1,k2
= 2U [cos(k ′

1 − k1)− cos(k ′

2 − k1)]δ
(2π)
k1+k2,k′

1+k ′
2

rescaled by U3/U . The particular flow equation for U3 depends on the cutoff chosen and

will be given below for several types of cutoff. However, the general form is a consequence

of the above parametrization,

∂3U3
= −(U3)2 T

∑
ω

χ̇3(ω)

∮
d p

2π
f (p,ω) (.)

where f (p,ω) is the sum of the three different channels (PP, PH, PH’) in equation (.)

[ ]. For instance at half filling where µ = 0 and ξp = −2 cos(p) = ξ−p,

f (p,ω) =
2 sin2(p)

(iω − ξp)(−iω − ξ−p)
−

cos2(p)

(iω − ξp)2
−

[1 + sin(p)]2

(iω − ξp)(−iω − ξp)
(.)

= − cos2(p)

[
1

(iω − ξp)(−iω − ξp)
+

1

(iω − ξp)2

]
. (.)

Going from the bulk U j , j+1 ≡ U back to the lattice, we apply the U3 flow equation for each

U3
j , j+1 locally.
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 Functional RG technique in one dimension

Parametrizing 03 by a renormalized nearest-neighbor interaction U3
j , j+1 has the great

advantage that the self energy is a tridiagonal matrix in real space: only the matrix elements

63
j , j(±1) are non-zero. The tridiagonal flow equations for a general cutoff are

∂36
3
j , j = T

∑
ω

χ̇3
∑

r=±1

U3
j , j+r S3j+r , j+r (iω)

∂36
3
j , j±1 = −T

∑
ω

χ̇3U3
j , j±1 S3j , j±1(iω).

(.)

Note that the self energy remains independent of frequency and real because the interaction

does not depend on frequency in our parametrization.

4.2.2 Frequency cutoff at zero temperature

At zero temperature we choose the sharp cutoff

χ3(ω) := 2(|ω| −3), χ̇3(ω) = −δ(|ω| −3) (.)

which cuts off all modes with frequency smaller than3. As explained in section .., a sharp

cutoff at T = 0 allows to integrate over the 2 step functions analytically which leaves only

smooth propagators G̃ in each loop diagram (.),

G̃3(iω) := [Q(iω)−63
]
−1, (.)

as opposed to G3(iω) from equation (.) which has a step at |ω| = 3. The flow equations

(.) at T = 0 for a sharp frequency cutoff then read (with T
∑

ω 7→
1

2π

∫
dω)

∂36
3
j , j = −

1

2π

∑
ω=±3

∑
r=±1

U3
j , j+rG̃3

j+r , j+r (iω) (.)

∂36
3
j , j±1 =

1

2π

∑
ω=±3

U3
j , j±1G̃3

j , j±1(iω) . (.)

Flow of the interaction

Inserting equation (.) into (.), the flow equation for U3 is

∂3U3
= (U3)2 1

2π

∑
ω=±3

∮
d p

2π
f (p,ω). (.)

For instance at half filling, the momentum integral over the bubble f (p,ω) is∮
d p

2π

∑
ω=±3

f (p,ω) = −

∮
d p

2π
cos2(p) 2Re

[ 1

(i3− ξp)(−i3− ξp)
+

1

(i3− ξp)2

]

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= −

∮
d p

2π

[2 cos(p)]4

(32 + [2 cos(p)]2)2

= −

(
1 −3

32
+ 6

(32 + 4)3/2

)
.

The differential equation (.) separates,

∂3

(
1

U3

)
=

1

2π

(
1 −3

32
+ 6

(32 + 4)3/2

)
.

Integrating each side separately from 3 = ∞ down to 3 with initial condition U3=∞
= U ,

1

U3
−

1

U
=

1

2π

(
3−

2 +32

√
4 +32

)
and finally

U3
=

U

1 +

(
3−

2+32
√

4+32

)
U/(2π)

3→0
−−−→

U

1 − U/(2π)
. (.)

Even away from half filling, the flow equation can be integrated analytically using contour

integration [Andergassen ].

At T = 0, the simple expression (.) yields the correct low-energy asymptotics to second

order in the renormalized vertex and moreover contains the second-order corrections from

the lattice dispersion to the vertex (with all external lines at the Fermi surface) at any scale

3.

Initial conditions

The flow, being given by the solution of an  in 3, is determined uniquely by the flow

equation and the initial condition. At the initial upper cutoff scale 3 = 30, the initial

condition has contributions from the bare interaction and from the bare impurity potential

[ ]. At T = 0, only the combination G̃−1
= Q −63 appears in the flow, such

that there is no difference whether one treats the impurity potential as the initial condition

for 63 at the beginning of the flow or, alternatively, as part of the bare propagator Q as in

this work. The contribution of the interaction as 3 = 30 → ∞ is

6
30
1,1′ :=

1

2

∑
2

I1′,2;1,2 (.)

0
30
1′,2′;1,2 := I1′,2′;1,2 , (.)

where I1′,2′;1,2 is the bare antisymmetrized interaction (.). The initial condition for the

self energy is usually compensated by a local potential to avoid that the filling changes (see

section .. below). Only if the interaction extends to an open boundary without lead, a

boundary term 6
30
boundary := −U/2 remains.
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4.2.3 Frequency cutoff at finite temperature

At T > 0, a sharp cutoff χ3(ωn) = 2(|ωn| −3) analogous to the T = 0 case would lead

to a δ peak on the  of the flow equation of 63 at every fermionic Matsubara frequency

3 = |ωn|. This creates finite jumps in the integrated 63, therefore, the 2 integration

formula (.) cannot be applied as it is only valid for continuous functions. For the 

integration, a smooth right-hand side is best, but this has to be balanced against the number

of Matsubara frequencies ωn on which χ̇3(ωn) > 0 for every particular value of 3.

3 x

−χ̇3(x)

0
3 x

χ3(x)
1

0

2πT

3− πT 3+ πT 3− πT 3+ πT

Figure .: The cutoff function used at finite temperature.

As a compromise, we use a cutoff function (cf. figure .)

χ3(ωn) :=

0 |ωn| ≤ 3− πT
1
2 +

|ωn |−3
2πT 3− πT ≤ |ωn| ≤ 3+ πT

1 3+ πT ≤ |ωn|

with the accompanying 3 derivative

−χ̇3(ωn) =

{
1

2πT 3− πT < |ωn| < 3+ πT

0 otherwise.

A Matsubara sum over the single-scale propagator (.) with this cutoff contains exactly one

term ±ωn in the Matsubara sum,

T
∑

n

S3(iωn) = T
∑

n

−χ̇3(ωn) · · · =
1

2π

∑
ωn≈±3

· · ·

The flow equation for the self energy 63 has the same general form as for T = 0, but for

T > 0, the single-scale propagator S3 cannot be further simplified to G̃:


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∂36
3
j , j = −

1

2π

∑
ωn≈±3

∑
r=±1

U3
j , j+r

×

[
1

Q(iωn)− χ3(ωn)63
Q(iωn)

1

Q(iωn)− χ3(ωn)63

]
j+r , j+r

∂36
3
j , j±1 =

1

2π

∑
ωn≈±3

U3
j , j±1 (.)

×

[
1

Q(iωn)− χ3(ωn)63
Q(iω)

1

Q(iωn)− χ3(ωn)63

]
j , j±1

.

At every 3 = ωn − πT , a switch from ωn to ωn−1 occurs and the integrated flow has a

kink, instead of a jump for a sharp cutoff. At large frequencies, the self energy is still so small

that an adaptive step-size integration algorithm efficiently takes steps of many Matsubara

frequencies at once, while at small frequencies it inefficiently takes many small steps to resolve

the kink accurately. But since the positions of the kinks are known, we can instead integrate

only in the interval between each pair of kinks. Empirically, the switch between continuous

integration and integration only between kinks is best done around ωn ≈ t . As there are

O(1/T ) such intervals, the runtime for the complete flow scales asO(N/T ).

Flow of the interaction

The flow of the interaction is simpler: as self-energy corrections on the internal lines of

the interaction flow equation would be of O((03)3), we take only bare propagators on the

internal lines, such that the bare single-scale propagator is (setting 63
= 0)

S30 (iωn) =
−χ̇3(ωn)

Q(iωn)

which is the same as for T = 0, except that for each 3 one has to insert instead the nearest

discrete ωn into the propagator. At half filling,

∂3

(
1

U3

)
=

1

2π

(
1 − ωn

ω2
n + 6

(ω2
n + 4)3/2

) ∣∣∣
ωn≈3

.

At T = 0, 63 and 03 flow substantially only in the range 0.1t <∼ ω <
∼ t . At T > 0,

since the lowest fermionic Matsubara frequency is ω0 = πT , 63 and 03 are renormalized

substantially only for T < 1. The interaction is still correct to second order in U if all

external legs lie on the Fermi surface, but the frequency dependence at second order becomes

important with inelastic scattering.
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Initial conditions

At T > 0, the combination Q − χ363 appears in the single-scale propagator in equation

(.), i.e., Q and 63 do not enter on an equal footing. For the exact theory and full hi-

erarchy of flow equations, the final result should be independent of the specific form of the

cutoff, but in the truncated flow it does make a difference. Both the bare impurity potential

and the lead contribution are contained in the bare propagator (.), such that the self en-

ergy receives only contributions from the interaction, and the same initial conditions (.)

and (.) as for T = 0 apply.

4.2.4 Temperature flow

In the temperature flow (see section .. and [Honerkamp&Salmhofer ]), the kinetic

term in the action,(
ψ̄ , Qψ

)
= T

∑
n

∑
k

ψ̄ωn ,k(iωn − ξk)ψωn ,k ,

is replaced after a rescaling of the fields, ψ 7→ T−3/4ψ , by(
ψ̄ , Qψ

)
=

∑
n

∑
k

ψ̄ωn ,k
iωn − ξk

√
T

ψωn ,k .

We shall postpone the leads for a moment but include the impurity potential in ξ as usual.

With the new convention that the scalar product shall contain no further factor of T , we

define the rescaled inverse bare propagator (indicated by the superscript T) as

QT
=

iωn − ξ
√

T

which yields the rescaled full propagator (with rescaled self energy 6T )

GT
=

1

QT −6T
=

√
T

iωn − ξ −
√

T6T
.

The T derivatives of these quantities are

d

dT
(iωn) =

iωn

T
d

dT
QT

=
iωn

T 3/2
−

iωn − ξ

2T 3/2
=

iωn + ξ

2T 3/2
(note the + sign!)

⇒ ST
=

1

2
√

T

1

iωn − ξ −
√

T6T
(iωn + ξ )

1

iωn − ξ −
√

T6T
.
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Note the unusual + sign in dQT /dT which is due to the fact that one does not just have a

multiplicative cutoff function χT
=

√
T but the temperature also enters in the Matsubara

frequency ωn .

To understand the structure of the flow equation, consider first the  flow of the self

energy without leads, feedback of the self energy or vertex renormalization, i.e., first-order

perturbation theory:

−ST
=

d

dT
CT

=
d

dT

( √
T

iωn − ξ

)
−

∑
n

ST
=

∑
n

d

dT
CT

=
d

dT

(
1

√
T

T
∑

n

e iωn0+

iωn − ξ

)
=

d

dT

(
f (ξ )
√

T

)
.

The flow equation of the rescaled self energy 6T is thus

d

dT
6T

= −

∑
n

tr(U ST ) =
d

dT

[
1

√
T

tr
(
U f (ξ )

)]
.

With the initial condition
√

T0 6
T0

∣∣∣
T0→∞

= tr
(
U f (ξ )

)∣∣∣
T0→∞

→
1
2 tr(U ) as in equation

(.) we can integrate from T = T0 down to T and obtain
√

T 6T
= tr(U f (ξ ))

as expected from the relation between rescaled and original Green functions, equation (.).

Notice one peculiarity of the temperature flow: since the Green functions of the leads

depend on the frequency iωn , they also depend on temperature and have to be differentiated

appropriately in dQT /dT . At half filling the expressions are particularly simple,

QT (iωn) =
iωn −6 leads(iωn)− ξ

√
T

gL(iωn) =
1

2

(
iωn − i sgn(ωn)

√
4 + ω2

n

)
d

dT
gL(iωn) =

1

T

(
gL(iωn)+ 2i

sgn(ωn)√
4 + ω2

n

)
d

dT
QT (iωn) =

1

2T 3/2

[
iωn −6 leads(iωn)+ ξ − 4i

sgn(ωn)√
4 + ω2

n

(
t 2

L|1〉〈1| + t 2
R|N 〉〈N |

)]
.

Temperature flow of the interaction

The temperature flow of the interaction U T has the structure of the usual one-loop diagrams

of the perturbation expansion in the original ψ fields, but with a temperature derivative
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 Functional RG technique in one dimension

of the particle-hole and particle-particle bubbles [Honerkamp&Salmhofer ]. In our 

case,

dU T

dT
= (U T )2 d

dT
BT (.)

where

BT
:=

∮
d p

2π
T
∑

n

f (p,ω) (.)

is the sum of the three bubble contributions. For instance at half filling,

BT
= −

∮
d p

2π
cos2(p)

[ f (ξp)−
1
2

ξp
−

f ′(ξp)

T

]
=

∮
d p

2π

[cos(p)

4
tanh

(
cos(p)

T

)
+

cos2(p)

4T

(
tanh2

(
cos(p)

T

)
− 1

)]
.

In the limit T → 0, BT
→

1
2π , while for T → ∞, BT

→ 0 vanishes. Equation (.) can be

written as

d

(
1

U T

)
= −dBT .

Integrating from T = ∞ (with U T=∞
= U ) down to T , we obtain

U T
=

U

1 − U BT
.

For T = 0, the result U T=0
= U/

(
1 − U/(2π)

)
agrees with the frequency-cutoff result

(.) at 3 = 0.

Initial conditions

The initial conditions for 6 =
√

T 6T and U = U T in the limit T = T0 →= ∞ are the

same as for the frequency cutoff, equations (.) and (.).

4.2.5 Interaction flow

In the interaction flow scheme (cf. section .. or [ ]) the propagators are slowly

switched on by a global scale factor χ3 = g , g = 0 . . . 1, irrespective of frequency or mo-

mentum. We define the inverse bare propagator

Qg (iω) :=
Q(iω)

g
=

iω −6 leads(iω)− ξ

g
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. Functional RG flow equations

and the full propagator

Gg (iω) :=
1

Qg −6 g
=

g

iω −6 leads(iω)− ξ − g6 g

where ξ shall include the impurity potential V . Then the “single-scale” propagator (which is

not at all single-scale) is

Sg
:= Gg Q̇gGg

= −
1

Q(iω)− g6 g
Q(iω)

1

Q(iω)− g6 g
.

Furthermore, because the bare G
g
0 = gG0 contains one g factor and S

g
0 = G0 contains

none, the flow equation for the interaction vertex contains the combination G
g
0 S

g
0 + S

g
0G

g
0 =

2gG0G0 in the bubble,

d

dg
U g

= (U g )2 2g BT

with the bubble integral BT at temperature T , equation (.). Integrating from g = 0 (with

U g=0
= U ) up to g ,

U g
=

U

1 − g 2U BT

=
U

1 − g 2U/(2π)
(T = 0).

At the end of the flow,

U g=1
=

U

1 − U BT
= U T .

The initial condition for the self energy is 6 g=0
= 0 because all propagators vanish, but

0g=0 is the same as for the frequency cutoff, equation (.).

4.2.6 Initial conditions for general filling

At any filling n, we wish to fulfill two conditions for the model without impurities: (i) at

the end of the flow, the density profile should be uniformly n j ≡ n, both in the interacting

region and in the leads, such that power-law exponents depending on the density can be read

off reliably; (i i) no backscattering should occur at the ends of the wire where the interaction

is switched on, i.e., the transmission without impurity should be perfect. In order to achieve

this, we allow the freedom to add to our microscopic model a local potential in the wire that

depends only on the interaction strength but not on the temperature, while with changing

temperature only the global chemical potential µ(T ) may be adjusted.

At half filling, these conditions are met without a local potential and by setting µ = 0.

Away from half filling, we use the following procedure:
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 Functional RG technique in one dimension

. At zero temperature, the global chemical potential is defined as µ := −2t cos(kF) 6= 0

such that ξkF = 0, where the Fermi wave vector kF ≡ nπ at filling n. Second, finding

the local potential at all N lattice sites such that at the end of the flow n j ≡ n (without

impurities) is a complicated N -parameter optimization problem, but we obtain a very

good guess in the following way: the problem is first solved in the bulk where the

global potential, implemented as the initial condition of the self energy 630
bulk, is tuned

self-consistently until 63=0
kF

= 0. Then the initial condition of the self energy on the

lattice (the local potential) is defined as

6
30
j j :=

U j−1, j + U j , j+1

2U
6
30
bulk

such that in the middle of the system where U j , j+1 ≡ U is homogeneous, the bulk

initial condition holds, while towards the ends when the system becomes non-inter-

acting U j , j+1 → 0, no local potential is necessary. Equivalently, the local potential may

also be written as part of the interaction term (.),

Hint =

∑
j

U j , j+1(n j − ν)(n j+1 − ν)

where ν = (1 −6
30
bulk/U )/2.

. Now the temperature T > 0 is switched on and µ is tuned self-consistently until the

bulk density n(µ) ≡
1

2π

∫
dk f (εk − µ) = n at the end of the flow, with the non-

interacting bulk dispersion εk of the leads. By the above construction also the density

in the interacting region, obtained using the dispersion εk + 6k with renormalized

hopping and potential, has the same value to a high accuracy, and the density com-

puted using a flowing density vertex (see below) deviates by less than % for |U | ≤ 1.

Only at this stage, impurities are inserted into the lattice and change the homogeneous den-

sity profile.

4.2.7 Algorithm for tridiagonal matrices

With the parametrization of the interaction by one single bulk parameter U3, the most

time-consuming part of the  flow is the flow of the self energy. On the  of the 63

flow equation, both Q and 63 are tridiagonal matrices, hence it involves the inversion of

tridiagonal matrices. I have developed an efficient inversion algorithm to compute the 

inO(N ) time at any temperature. Therefore, the runtime scales only linearly with the system

size N , and the self energy of systems as large as N = 107 sites (at T = 0) can be computed.

At T = 0, only the tridiagonal part of the inverse tridiagonal matrix G̃3 is needed in (.),
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. Flow of the density-response vertex

and an algorithm by the author was presented already in [ ] and is reprinted in

appendix B.. For T > 0, the  of the flow equation (.) is more complicated: a matrix

product of an inverse tridiagonal matrix (which is a full matrix), a tridiagonal matrix Q, and

another inverse tridiagonal matrix. In a forthcoming article and in appendix B., I present an

algorithm to compute even this product of full N × N matrices in O(N ) time [Enss ].

However, the , which has jumps in 3 at every Matsubara frequency (see section ..),

makes the integration at finite temperature scale as O(N/T ), such that only systems up to

N = 104 have been computed so far for low temperatures T = 10−4.

The flow equation (.) of the density-response vertex used below for the Friedel oscilla-

tions at T = 0 is of the same computational complexity as the self-energy flow at T > 0: the

 involves the matrix product of an inverse tridiagonal, a tridiagonal, and another inverse

tridiagonal matrix. This can also be done in O(N ) time by the same algorithm in appendix

B., and at T = 0 the density profile n j of a system of size N = 107 can be computed in a

few hours for each j .

4.3 Flow of the density-response vertex

The expectation value of the local density n j could be computed from the local one-particle

propagator G j j if G was known exactly. However, the approximate flow equations for 6 can

be expected to describe the asymptotic behavior of G correctly only at long distances between

creation and annihilation operators in time and/or space, while in the local density operator

time and space variables coincide. In the standard  terminology n j is a composite operator,

which has to be renormalized separately.

To derive a flow equation for n j , we follow the usual procedure for the renormalization of

correlation functions involving composite operators: one adds a term φ j n j with a small field

φ j to the Hamiltonian and takes derivatives with respect to φ j in the flow equations. The

local density is given by

n j =
∂�(φ j )

∂φ j

∣∣∣∣
φ j=0

,

where �(φ j ) is the grand canonical potential of the system in the presence of the field φ j .

Note that I use the same symbol n j for the density operator and its expectation value. In the

presence of a cutoff 3 the grand canonical potential obeys the exact flow equation

∂3�
3

= T
∑
ω

tr
{

e iω0+

[∂3Q3(iω)] [G3(iω)− G3
0 (iω)]

}
,

which follows from the flow equations for the vertex functions, equation (.), and the rela-

tion between the grand canonical potential and the zero-particle vertex,�3 = −γ 30 . At zero
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 Functional RG technique in one dimension

temperature (which is the only case I consider here) the Matsubara frequency sum becomes

an integral which, for the sharp frequency cutoff (.), can be carried out analytically. This

yields

∂3�
3

=
1

2π

∑
ω=±3

tr
{

e iω0+

ln[1 − G0(iω) 6
3(iω)]

}
, (.)

which is the first term of equation (.). Because at T = 0 any perturbation of the Hamilto-

nian can be shifted between the bare propagator and the self energy, in this section I choose

to attribute φ j to the interaction part of the Hamiltonian, not to H0, such that G0 remains

independent of φ j . The self energy is modified via the additional local and frequency-

independent contribution φ j δ j j ′ to its initial value 630
j j ′ at scale 30.

The density profile can be obtained from the above equations and the flow equation for

63 by computing the shift of �3 generated by a small finite perturbation φ j , i.e., by nu-

merical differentiation (cf. section ..). Alternatively, one may carry out the φ j derivative

analytically in the flow equations, which yields a flow equation for the density in terms of the

density response vertex. Taking the φ j derivative in equation (.) yields

∂3n3j = −
1

2π

∑
ω=±3

tr
[

e iω0+

G̃3(iω) R3j (iω)
]

(.)

with the density-response vertex

R3j (iω) =
∂63(iω)

∂φ j

∣∣∣∣
φ j=0

and the propagator G̃3 as defined in equation (.), i.e., in the absence of φ j . We compute

the self energy 63 in the presence of φ j within the same approximation as previously. It is

thus determined from the flow equation (.) with a frequency-independent two-particle

vertex 03. Taking a derivative of that equation with respect to φ j at φ j = 0 yields the flow

equation for the response vertex

∂3R3j ;1′,1 = −
1

2π

∑
ω=±3

∑
2,2′

∑
3,3′

G̃3
2,3′(iω) R3j ;3′,3 G̃3

3,2′(iω) 031′,2′;1,2 .

Note that R3j is frequency independent in our approximation and that there is no contribu-

tion from the φ j derivative of 03 since we neglect self-energy contributions in the flow of

the two-particle vertex.

For spinless fermions with a (renormalized) nearest-neighbor interaction, the matrix R3j
is tridiagonal, i.e., only the components R3j ;l ,l and R3j ;l ,l±1 are non-zero, and their flow is
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. Computation of the conductance

given by

∂3R3j ;l ,l = −
1

2π

∑
ω=±3

∑
l ′

∑
r=±1

∑
r ′=0,±1

U3
l ,l+rG̃3

l+r ,l ′(iω) R3j ;l ′,l ′+r ′ G̃3
l ′+r ′,l+r (iω)

∂3R3j ;l ,l±1 =
1

2π

∑
ω=±3

∑
l ′

∑
r ′=0,±1

U3
l ,l±1G̃3

l ,l ′(iω) R3j ;l ′,l ′+r ′ G̃3
l ′+r ′,l±1(iω) . (.)

Then, the flow of n3j is

∂3n3j = −
1

2π

∑
ω=±3

∑
l ′

∑
r ′=0,±1

G̃3
l ′+r ′,l ′(iω) R3j ;l ′,l ′+r ′ .

Although naively the flow of R3 scales as O(N 2) in time because of the unrestricted loops

over l , l ′, it can be performed in O(N ) by the method described in the appendix B.. The

initial condition for the response vertex is R30
j ;l ,l ′ = δ jl δl l ′ . The initial condition for the density

is n30
j =

1
2 , for any filling, due to the slow convergence of the flow equation (.) at large

frequencies, which yields a finite contribution to the integrated flow from 3 = ∞ to 30 for

arbitrarily large finite 30, as in the case of the self energy 630 .

To avoid the interference of Friedel oscillations emerging from the impurity or one bound-

ary with those coming from the (other) boundaries of the system one suppresses the influ-

ence of the latter by coupling the finite chain to semi-infinite non-interacting leads, with a

smooth decay of the interaction at the contacts (cf. section ..).

4.4 Computation of the conductance

The linear-response conductance is defined via the infinitesimal current induced by an in-

finitesimal voltage drop at zero bias voltage, G = dI/dV . It is a global quantity defined over

the whole wire, from one lead through the interacting (scattering) region to the other lead.

Even for a perfectly clean wire (interacting or not), the conductance is limited to e2/h per

channel. For a  system of spinless fermions there is exactly one channel, while for spin-1
2

fermions there are two channels.

I choose the conductance as the appropriate observable for transport, as opposed to the

local quantity conductivity, because I am interested not in bulk properties but the effect of

a specific spatial setup of impurities at defined positions, the double barrier, for which there

are experimental data available [ ].

4.4.1 Kubo formula

The conductance is computed, just as the linear-response conductivity, via the Kubo formula

from the current-current correlation function, see for instance [Mahan , chapters  and
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]. This correlation function at finite frequency and temperature is defined as

π(iω) :=

∫ β

0
dτ e iωτ

〈Tτ JR(τ ) JL(0)〉

with JL,R the current operators at the left and right ends of the system. The retarded cor-

relation function πret(ω) is obtained by analytical continuation iω 7→ ω + i0, and the dc

conductance is given by finally taking the limit ω → 0,

G :=
e2

 h
lim
ω→0

πret(ω)− πret(0)

iω
. (.)

It is important that one does not set ω = 0 from the beginning because the limits ω → 0

and q → 0 (macroscopic transport from one end of the system to the other) do not com-

mute [Luttinger ]. Another way to compute the conductance at zero temperature via

persistent currents is explained in [Meden&Schollwöck a, Meden&Schollwöck b].

Consider the following microscopic setup (cf. figure . on page ). The scattering region

on the lattice sites 1, . . . , N (“sample”) is interacting; it is connected to semi-infinite, non-

interacting leads at the interfaces at sites 1 and N . The current and total number operators

are

JL := i tL(c
†
1 c0 − c†

0 c1 )

JR := i tR(c
†
N+1cN − c†

N cN+1)

nC :=

N∑
j=1

n j

(.)

with JL the current flowing from the left lead into the sample, JR the current flowing out

from the sample into the right lead, and nC the total particle number in the interacting

region.

In the exact theory, the current-current correlation function can be expressed in terms of

the bare current operators JL,R and the  two-particle interaction vertex 0, see figure ..

The components of the gauge potential Aµ =
(
ϕ(t , j), A(t , [ j , j + 1])

)
are the scalar potential ϕ at time t

and on site j , and the vector potential A on the (directed) bond from site j to site j + 1, respectively, where
we have introduced the notation [ j , j + 1] for the bond. Coupling to the potential Aµ changes the bare
dispersion ξ to [Zinn-Justin , chapter ]

ξ j , j = −µ− eϕ(t , j)

ξ j , j+1 = −t eieA(t ,[ j , j+1])
= ξ ∗

j+1, j .

Derivatives with respect to a A([0, 1]), A([N , N + 1]) and a global ϕ yield the expressions (.).
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JRJL JRJL

εi +iν

iε

εi +iν

iε
4 3

21(b)(a) εi

iε’

’ ν+i

Γ

Figure .: Two contributions to the current-current correlation function π(iω). The shaded region

represents the vertex part 01,2;3,4(iε , iε ′; iω).

The expressions for these two contributions to π(iω) are

π (a)(iω) = −(i tL)(i tR)T
∑

iε

[
GN ,1(iε + iω)G0,N+1(iε)+ GN+1,0(iε + iω)G1,N (iε)

− GN+1,1(iε + iω)G0,N (iε)− GN ,0(iε + iω)G1,N+1(iε)
]

,

π (b)(iω) = −(i tL)(i tR)T
2
∑
iε ,iε ′

N∑
j1,..., j4=1[

G j1,1(iε + iω)G0, j4(iε)− G j1,0(iε + iω)G1, j4(iε)
]

× 0 j1, j2; j3, j4(iε , iε ′; iω)

×

[
GN , j2(iε

′
+ iω)G j3,N+1(iε

′)− GN+1, j2(iε
′
+ iω)G j3,N (iε

′)
]

.

Kubo formula projected into the interacting region

Using equations (.), (.), and (.), we can express π (a,b)(iω) in terms of Green functions

with indices in the interacting region 1, . . . , N ,

π (a)(iω) = T
∑

iε

λL(iε , iε + iω)G1,N (iε) λR(iε , iε + iω)GN ,1(iε + iω) (.)

π (b)(iω) = T
∑

iε

N∑
j1, j4=1

λL(iε , iε + iω)G1, j4(iε) PR; j4, j1(iε , iε + iω)G j1,1(iε + iω)

with bare current vertices on sites 1 and N , respectively,

λL(iε , iε + iω) = −i t 2
L[gL(iε + iω)− gL(iε)]

λR(iε , iε + iω) = +i t 2
R[gR(iε + iω)− gR(iε)]

and the current-vertex correction
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PR; j4, j1(iε , iε + iω) := T
∑
iε ′

N∑
j2, j3=1

0 j1, j2; j3, j4(iε , iε ′; iω)

× G j3,N (iε
′) λR(iε

′; iε ′
+ iω)GN , j2(iε

′
+ iω)

and likewise for PL .

Analytical continuation of the Kubo formula

The Green function (.) of the lead has a branch cut at the real axis,

gL,R(ε ± iδ) =
1

2

(
ε + µ± iδ ∓ i

√
4 − (ε + µ± iδ)2

)
=

1

2

(
ε + µ∓ i

√
4 − (ε + µ)2

)
+O(δ).

Thus, for small ω,

λL,R(ε ± iω, ε ± i0) = O(ω)

λL(ε + iω, ε − i0) = +t 2
L

√
4 − (ε + µ)2 +O(ω)

λR(ε + iω, ε − i0) = −t 2
R

√
4 − (ε + µ)2 +O(ω),

and only the current vertices with incoming and outgoing legs on opposite sides of the

branch cut contribute in the limit ω → 0. The Matsubara sum in the bubble term (.)

is evaluated by a contour integral as explained in [Mahan , chapter ],

π (a)(iω) = i

∫
dε

2π
f (ε)

×
(
+ λL(ε + i0, ε + iω)G1,N (ε + i0) λR(ε + i0, ε + iω)GN ,1(ε + iω)

− λL(ε − i0, ε + iω)G1,N (ε − i0) λR(ε − i0, ε + iω)GN ,1(ε + iω)

+ G1,N (ε − iω) λR(ε − iω, ε + i0)G1,N (ε + i0) λL(ε − iω, ε + i0)

− G1,N (ε − iω) λR(ε − iω, ε − i0)G1,N (ε − i0) λL(ε − iω, ε − i0)
)

.

The first and fourth term on the  have frequency arguments on the same side of the

branch cut and are, therefore, of O(ω2), hence they will vanish in the limit ω → 0 in equa-

tion (.). We retain the other two terms and perform the analytical continuation of the

external frequency, iω 7→ ω + i0,
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π
(a)
ret (ω) = i

∫
dε

2π
f (ε)

×
(
− λL(ε − i0, ε + ω + i0)G1,N (ε − i0)λR(ε − i0, ε + ω + i0)GN ,1(ε + ω + i0)

+ λL(ε − ω − i0, ε + i0)G1,N (ε − ω − i0)λR(ε − ω − i0, ε + i0)GN ,1(ε + i0)
)
.

We then substitute ε 7→ ε + ω in the second term,

π
(a)
ret (ω) = i

∫
dε

2π
[ f (ε + ω)− f (ε)]

×λL(ε − i0, ε + ω + i0)G1,N (ε − i0) λR(ε − i0, ε + ω + i0)GN ,1(ε + ω + i0) .

As the final step we take the limit ω → 0,

G(a)
=

e2

 h
lim
ω→0

π
(a)
ret (ω)

iω

=
e2

 h

∫
dε

2π
f ′(ε)λL(ε − i0, ε + i0)G1,N (ε − i0) λR(ε − i0, ε + i0)GN ,1(ε + i0)

=
e2

h

∫
dε
(
− f ′(ε)

)
T (a)(ε , T ). (.)

T (a)(ε , T ) is the transmission probability at temperature T without vertex corrections,

T (a)(ε , T ) := t 2
L t 2

R [4 − (ε + µ)2
] |GN ,1(ε + i0)|2 (.)

where we have used G1,N (ε − i0)GN ,1(ε + i0) = |GN ,1(ε + i0)|2: because the Hamiltonian

is time-reversal invariant, the amplitude from site 1 to N is the same as from N to 1, and

G j j ′ is symmetric (not hermitean). The energy integration extends over the band of the

non-interacting leads, while the factor [4 − (ε + µ)2
] from the density of states of the leads

suppresses the transmission towards the edge of the band.

The f provides an approximation of the frequency-independent self energy 6 j j ′(T ) at

zero or finite temperature. 6 acts as an effective static potential by which non-interacting

electrons are scattered. The full propagator is determined via the Dyson equation (.).

4.4.2 Vertex corrections

The second contribution T (b)(ε , T ) to the transmission is due to current-vertex corrections.

It is obtained from π (b) following the same steps as for T (a). We have approximated the full

effective two-particle interaction vertex 0 by a renormalized nearest-neighbor interaction
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 Functional RG technique in one dimension

with all external frequencies set to zero, i.e., without branch cuts. Then the vertex corrections

are, omitting the lattice indices and denoting the loop summation by the trace,

PR(iω) = T
∑
iε ′

tr
(
G(iε ′)λR(iε

′, iε ′
+ iω)G(iε ′

+ iω) 0
)

= i

∫
dε ′

2π
f (ε ′) tr

(
+ G(ε ′

+ i0) λR(ε
′
+ i0, ε ′

+ iω)G(ε ′
+ iω) 0

− G(ε ′
− i0) λR(ε

′
− i0, ε ′

+ iω)G(ε ′
+ iω) 0

+ G(ε ′
− iω) λR(ε

′
− iω, ε ′

+ i0)G(ε ′
+ i0) 0

− G(ε ′
− iω) λR(ε

′
− iω, ε ′

− i0)G(ε ′
− i0) 0

)
.

Again, the first and fourth term on the  are by anO(ω) smaller than the other two, so we

retain only the second and third term and perform the analytical continuation iω 7→ ω+ i0.

Substituting ε ′
7→ ε ′

+ ω in the second term,

PR(ω + i0) = i

∫
dε ′

2π
[ f (ε ′

+ ω)− f (ε ′)]︸ ︷︷ ︸
O(ω)

× tr
(

G(ε ′
− i0) λR(ε

′
− i0, ε ′

+ ω + i0)G(ε ′
+ ω + i0) 0

)
ω→0
−−−→ 0

vanishes since there is no division by ω as in equation (.). Because 0 is frequency inde-

pendent, there are no vertex corrections, hence equation (.) is the complete transmission

probability in our approximation.

Conformance with Ward identities

The approximation that 0 is frequency independent has another consequence: by the flow

equation, it follows that Im6 = 0, i.e., we do not capture inelastic processes at second order

in the interaction. They could be included in the flow equation by retaining the frequency

dependence and imaginary part of 0.

However, the fact that the vertex corrections and Im6 vanish simultaneously shows that

our approximation is at least consistent with the (non-perturbative) Ward identity associated

with global particle number (charge) conservation. The global continuity equation for the

interacting region is ∂nC/∂ t + JR − JL = 0. Following [Oguri ], we define the number

and current response functions as the time-ordered expectation values of the current and

number operators (.) with two extra electron legs (1 ≤ j , j ′ ≤ N ),

8C ; j j ′(τ ; τ1, τ2) = 〈Tτ [nC (τ )− 〈nC〉] c j (τ1) c†
j ′(τ2)〉

8L; j j ′(τ ; τ1, τ2) = 〈Tτ JL(τ ) c j (τ1) c†
j ′(τ2)〉
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. Computation of the conductance

8R; j j ′(τ ; τ1, τ2) = 〈Tτ JR(τ ) c j (τ1) c†
j ′(τ2)〉.

Performing a Fourier transform on each of these (x = L, R, C),

8x(τ ; τ1, τ2) = T 2
∑
iε ,iω

8x(iε , iε + iω) e−iε(τ1−τ ) e−i(ε+ω)(τ−τ2).

The  response vertices are obtained by amputating full propagators,

3x(iε , iε + iω) := [G(iε)]−1 8x(iε , iε + iω) [G(iε + iω)]−1

which can be written in terms of the bare current and the vertex corrections as

3L, j j ′(iε , iε + iω) = λL(iε , iε + iω) δ j ′,1δ j ,1 + PL, j j ′(iε , iε + iω)

3R, j j ′(iε , iε + iω) = λR(iε , iε + iω) δ j ′,N δ j ,N + PR, j j ′(iε , iε + iω) .
(.)

The  Ward identity (.) in terms of these response vertices then reads

iω3C (iε , iε + iω)+ i3R(iε , iε + iω)− i3L(iε , iε + iω)

= G−1(iε + iω)− G−1(iε).

Clearly, the knowledge of the  is not sufficient to determine 3C , 3R , and 3L separately

but fixes only the difference. We use the Dyson equation (.) on the , continue analyt-

ically to iε + iω 7→ ε + ω + i0 and iε 7→ ε − i0, and take the limit ω → 0. Thereby, the

density-response term is suppressed, and we are left with a relation between current and self

energy, using equation (.) for the lead contribution,

3R(ε − i0, ε + i0)−3L(ε − i0, ε + i0)

= −Im6(ε + i0)− Im6 leads(ε + i0)+ Im6(ε − i0)+ Im6 leads(ε − i0)

= λR|N 〉〈N | − λL|1〉〈1| − 2Im6(ε + i0) .

By equation (.),

PR(ε − i0, ε + i0)− PL(ε − i0, ε + i0) = −2 Im6(ε + i0) . (.)

Thus, the current-vertex corrections are related to the imaginary part of the self energy. At

T = 0, both sides vanish exactly because there is no inelastic scattering, while at higher tem-

peratures, neglecting inelastic processes is a consistent approximation we made. If one tried

to improve the approximation by computing vertex corrections but keeping a real6, it might

be no improvement at all because one would violate number conservation, as explained in

[Baym&Kadanoff ].
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 Functional RG technique in one dimension

4.4.3 Different flow schemes

In order to check the robustness of our f results, I have considered also the temperature-

flow scheme (cf. section ..) where the temperature is successively lowered during the f

flow. Another option is the recently introduced interaction-flow scheme (cf. section ..)

which slowly switches on the interaction strength during the flow (at finite temperature, or

even at zero temperature because in the model at hand, the finite size already provides a

regularization). Using these schemes, I have obtained the same results as for the Matsubara-

frequency cutoff presented in section .. for a few test cases (cf. figure .). The frequency

cutoff scheme at finite temperature remains numerically the most efficient method.
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Figure .: Comparison of frequency cutoff and temperature flow f schemes to first-order perturbation

theory for the resonant conductance through a double barrier (N = 104, U = 0.5, V =

10, Ndot = 100). This shows that different f schemes essentially give the same results,

indicating the robustness of the method.
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5 Luttinger liquids with impurities

The behavior of three-dimensional metals can be described by Fermi-liquid theory, where

the elementary excitations are fermionic quasi-particles. In one dimension, however, the

situation is completely different (for reviews see [Voit , Giamarchi ]).

A model for interacting  spinless fermions with linear dispersion was introduced by

[Tomonaga ] and [Luttinger ] and has been solved by [Mattis&Lieb ]. It is char-

acterized by a gapless spectrum of collective bosonic, density-wave elementary excitations

with a linear dispersion, as well as charge and current excitations, and correlation functions

decaying at zero temperature algebraically in space and time. [Luther&Peschel a] and

[Mattis ] introduced the technique of bosonization as a particularly simple method to

describe the low-energy properties of this model. Any non-linearity of the fermion disper-

sion, for instance on the lattice, gives rise to interactions between the collective modes. For

spinless fermions, a perturbative expansion of these bosonic couplings is completely regu-

lar in the infrared, and the low-energy excitation spectrum is similar to the Luttinger-model

spectrum [Haldane ]. Therefore, the term Tomonaga-Luttinger liquid () was coined

for the generic low-energy phase of interacting  fermions. The correlation functions obey

power laws with exponents that are functions of a single interaction parameter K with K = 1

in the non-interacting case, 0 < K < 1 for repulsive and K > 1 for attractive interaction.

In the presence of impurities or boundaries there are further characteristic power laws.

For example, the local density of states ρ j (ω) = −
1
π

Im G j j (ω + i0) near a single impurity

or boundary is suppressed for repulsive interaction as [Kane&Fisher c]

ρ j (ω) ∼ |ω|
αB for ω → 0

where

αB = 1/K − 1

is the boundary exponent. The linear conductance across an impurity of arbitrary strength

scales as [Kane&Fisher a]

G(T ) ∼ T 2αB for T → 0.

For repulsive interaction (αB > 0), a system containing even a very weak impurity is in-

sulating at T = 0, effectively cutting the chain into two disconnected parts. Another 
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 Luttinger liquids with impurities

signature is the decay of Friedel oscillations: an impurity or boundary induces oscillations in

the density profile n j whose amplitude scales with the distance x as [Egger&Grabert ]

1n j ∼ x−K for x → ∞,

in contrast to 1n j ∼ x−1 for a  Fermi gas. These power laws are strictly valid only in the

low-energy limit. This raises the question at which scales N , T the asymptotic  behavior

sets in for a specific model, and how the system behaves before reaching the asymptotic limit.

One way to study  behavior is to consider the  model of spinless fermions on the

lattice with nearest-neighbor interaction U , which we have defined already in section ..

Without impurity, this model can be solved exactly by the Bethe ansatz [Yang&Yang ]; it

is a Luttinger liquid at any interaction strength U and any filling, except for |U | > 2 at half

filling. The  interaction parameter K is given for |U | ≤ 2 at half filling by [Haldane ]

K−1
=

2

π
arccos

(
−

U

2

)
.

For U > 2 at half filling, a phase transition towards a charge-density wave occurs, while for

U < −2 the system undergoes phase separation. In this work we shall concentrate on 

physics, so parameters have to be chosen to stay away from these phase transitions.

The local density of states has been studied in depth by [Andergassen ]; I will present

new results for Friedel oscillations (section .) and transport through double barriers (sec-

tion .). The f turns out to be a versatile tool to study physical effects on energy scales

ranging over several orders of magnitude, at weak to intermediate interaction strength.

5.1 Friedel oscillations

In a normal Fermi-liquid metal, impurities induce Friedel oscillations in the density profile

[Friedel , Tüttő&Zawadowski ] which far away from the impurity have the form

1n(x) ∼ cos(2kFx + δ) x−d

where 1n(x) = 〈n̂(x) − n0〉/n0 is the normalized density profile, kF is the Fermi wave

vector, x the distance from the impurity, d the dimension of space, and δ a phase shift. This

raises the question which density profile is generated in a Luttinger liquid.

The continuum  Luttinger model with a single impurity is integrable, hence Friedel

oscillations should be computable exactly for any coupling strength. However, this is techni-

cally difficult, and only approximate results have been obtained except for an exact solution

at K =
1
2 [ ]. The asymptotic behavior for very weak and very strong impurities was

studied by [Kane&Fisher a, Kane&Fisher b] using the  method described below.
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. Friedel oscillations

On the other hand, the crossover at intermediate impurity strength is particularly important

for understanding transport in  wires and was analyzed for weak interaction by [ ].

[Egger&Grabert ] first studied arbitrary impurities for repulsive interaction using bo-

sonization, which is valid at low temperatures. For a strong scatterer, the amplitude of the

Friedel oscillations decays as x−K . For a weak scatterer, there is a crossover from the asymp-

totic x−K decay for large distances (x � x0) to linear-response decay [Voit ] as x1−2K

for short distances (x � x0). The crossover scale diverges as x0 ∼ V −1/(1−K ) for V → 0.

Shortly after, [ ] obtained exact results for the density profile in the continuum for

K =
1
2 at arbitrary temperature. For this particular interaction, the problem can be mapped

to a free-fermion model, which simplifies the calculation. At T = 0,

1n(x) = 4h cos(2kFx + ηF) e8πh2x K0(8πh2x)

with impurity strength h = λ/
√

2 (λ is the coefficient of the cos[φ(0)] term in the bosonized

Hamiltonian), K0(x) is a modified Bessel function and ηF = −Kπλ/kF a phase shift. For

large distances, the amplitude decays like x−
1
2 as expected. At T > 0,

1n(x) = cos(2kFx + ηF)

√
4πT

sinh(2πT x)
F

(
1

2
,

1

2
; 1 + 2

h2

T
,

1 − coth(2πT x)

2

)
with the hypergeometric function F(a, b; c , d). For x � 1/T the amplitude of the Friedel

oscillations decays exponentially.

Recently, [ ] used the functional bosonization technique and a self-consistent har-

monic approximation at low temperature and weak impurity strength to obtain the Green

function at arbitrary interaction K . It shows the full crossover from the impurity-dominated

behavior at short distances to the pure  behavior at large distances. From the Green func-

tion, one can extract the density profile as

1n(x) = cos(2kFx + ηF) |sinh(2πT xK/vF)|
−K .

For distances shorter than the thermal coherence length, x � π vF/T , the amplitude de-

creases as x−K , while for larger distances it is suppressed exponentially.

In section . above I have described how to compute the density profile in the f frame-

work, illustrating the renormalization of a composite operator and the flow of response func-

tions in a concrete example. In the following section I will present my results for the density

profile for a wide range of parameters and compare them with exact  results and the

asymptotic formulae from bosonization presented here.

5.1.1 Results

Figure . shows f and  results for the density profile n j for a spinless-fermion chain

with  sites and interaction strength U = 1 at half filling. The Friedel oscillations emerge
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 Luttinger liquids with impurities

from both boundaries and interfere in the center of the chain. The accuracy of the f results

is excellent for all j .

For incommensurate filling factors the density profile looks more complicated. This can

be seen in figure ., where f results are shown for the density modulation |n j − n| near

the boundary of a system with an average density n = 0.393 and 8192 sites. For long dis-

tances from the boundary the oscillation amplitude has a well-defined envelope which fits to

a power law as a function of j . In the following I will examine the large-distance behavior of

the amplitudes more closely for the half-filled case.

Figure . shows f results for the amplitude of density oscillations emerging from an

open boundary, for a very long spinless fermion chain with 219
+ 1 sites and various interac-

tion strengths U at half filling. The other end of the chain (opposite to the open boundary)

is smoothly connected to a non-interacting lead. In a log-log plot (upper panel of figure .)

the amplitude follows a straight line for almost all j , corresponding to a power-law depen-

dence. Deviations from a perfect power law can be seen more clearly by plotting the effective

exponent α j , defined as the negative logarithmic derivative of the amplitude with respect to

j (see the lower panel of figure .). The effective exponent is almost constant except at very

short distances or when j approaches the opposite end of the interacting chain, which is not

surprising. From a comparison with the exact exponent (horizontal lines in the figure) one

can assess the quantitative accuracy of the f results.

Effective exponents describing the decay of Friedel oscillations generated by site impurities

of various strengths are shown in figure ., for a half-filled spinless fermion chain with

218
+ 1 sites and interaction U = 1. Both ends of the interacting chain are coupled to non-

interacting leads to suppress oscillations otherwise induced by the boundaries. For strong

impurities the results are close to the boundary result (cf. figure .), as expected. For weaker

impurities the oscillations decay more slowly, i.e., with a smaller exponent, and do not reach

the boundary behavior within the range of our chain for V < 1. For very weak impurities

(V = 0.01 in figure .) the oscillation amplitude follows a power law corresponding to the

linear-response behavior with exponent 2K − 1 at intermediate distances.

The same crossover between linear-response behavior for very weak impurities and 

behavior for strong renormalized impurities is observed in the oscillations of the effective

impurity potential 6 j j (cf. figure .). When the density oscillations decay with exponent

K , the 6 j j oscillations decay with exponent 1. In the linear-response regime, however, the

respective exponents are 2K − 1 and K . This was explained in [ a,  b]:
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Figure .: Density profile n j for a spinless fermion chain with 128 sites and interaction strength U = 1

at half filling. f results show an excellent agreement with numerically exact  data.
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Figure .: Density modulation |n j − n| as a function of the distance from a boundary, for spinless

fermions with interaction strength U = 1 and average density n = 0.393 on a chain with

8192 sites; the dashed line is a power-law fit to the envelope of the oscillation amplitudes with

exponent K = 0.785 corresponding to αB ≈ 0.274. It shows that Friedel oscillations display

the expected behavior also away from half filling.
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 Luttinger liquids with impurities

since the linear-response backscattering amplitude scales with the cutoff 3 as VkF,−kF ∼

(1/3)1−K , this provides the generic scaling law in the low-energy regime, and also the self

energy scales away from 2kF with the same exponent,6k,k ′ ∼ (k − k ′
− 2kF)

1−K . Performing

a Fourier transform, the real-space decay scales as | j − j0|
−K .
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Figure .: Amplitude (envelope) of oscillations of the density profile n j induced by a boundary as a

function of the distance from the boundary, for spinless fermions with various interaction

strengths U at half filling; the interacting chain with 219
+ 1 sites is coupled to a semi-infinite

non-interacting lead at the end opposite to the boundary. Upper panel: log-log plot of the

amplitude. Lower panel: effective exponents for the decay, and the exact asymptotic expo-

nents (Bethe ansatz) as horizontal lines. The plateaux allow to read off the exponents very

accurately.
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Figure .: Effective exponent for the decay of density oscillations as a function of the distance from a site

impurity of strengths V = 0.01, 0.1, 0.3, 1, 10 (from bottom to top); the impurity is situated

at the center of a spinless fermion chain with 218
+ 1 sites and interaction strength U = 1

at half filling; the interacting chain is coupled to semi-infinite non-interacting leads at both

ends. This shows the crossover from the density response regime (V � 1) to the boundary

behavior (V � 1).
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Figure .: Effective exponent for the decay of oscillations of 6 j , j as a function of the distance from a site

impurity of strengths V = 0.01, 0.1, 0.3, 1, 10 (from bottom to top), for the spinless fermion

model at half filling and interaction strength U = 1; the impurity is situated at the center of

a chain with L = 218
+ 1 sites.
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 Luttinger liquids with impurities

Finally, I present results for the effective exponent of the density-oscillation decay in the

case of an attractive interaction U = −1, see figure .. In that case the effective impu-

rity strength should scale to zero at low energies and long distances [Kane&Fisher a].

Indeed, for weak and moderate bare impurity potentials the effective exponent in figure .

approaches the linear-response exponent 2K − 1. Only for very strong impurities the density

oscillations decay with the smaller exponent K over several orders of magnitude.
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Figure .: Effective exponent for the decay of density oscillations as a function of the distance from a site

impurity of strengths V = 0.1, 1, 10, 100, 1000 (from top to bottom) for the same chain as

in figure . but now with an attractive interaction, U = −1. This demonstrates that our

method works well also for negative U .

5.2 Transport through double barriers

The motivation to study double barriers using the f is twofold: (i) the double barrier

is physically interesting and experimentally accessible, for example in specifically fabricated

quantum wires or double kinks in carbon nanotubes, see for instance [Chamon&Wen ,

 ], and (i i) it is a multi-scale problem; in addition to the temperature T , there are

additional scales such as the size of the dot region Ndot between the barriers and the strength

of the barriers VL,R , cf. figure .. The double barrier exhibits universal scaling in certain

limits—we observe several different power laws—but also non-universal crossover behavior

in between, as different physical processes become relevant. This is particularly important

because in experimental setups, the parameters are usually in the intermediate range. There-

fore, the double barrier provides a showcase for the power of the f to treat all scales on an
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. Transport through double barriers

equal footing. Nevertheless, as a note of caution, several important ingredients for a realistic

description are still missing in our model, although they can in principle be handled by our

method, such as the spin degree of freedom, higher-dimensional leads, and realistic contacts.

We therefore refrain from a detailed comparison of our findings to experiments.

For a weak single impurity, the conductance in the limit T → 0 is suppressed for repulsive

interaction and enhanced for attractive interaction as compared to the non-interacting case

[Luther&Peschel b, Apel&Rice ]. [Kane&Fisher a] showed that this is a univer-

sal result independent of the impurity strength: for repulsive interaction, the conductance

across the impurity scales as G(T ) ∼ T 2αB , such that asymptotically for T → 0 the wire

becomes insulating. This was derived using an  method: a weak barrier, or rather its

backscattering component V (2kF), is a relevant perturbation of the clean system and grows

stronger in the  flow. On the other hand, a weak link between two otherwise separate

semi-infinite chains is an irrelevant perturbation which remains weak in the  flow. Be-

cause in the weak-impurity and weak-link limits the direction of the  flow is compatible

towards a strong barrier or weak link, respectively, Kane and Fisher connected both pertur-

batively accessible limits and concluded that any barrier becomes strong in the asymptotic

limit. This is supported by an exact solution at K =
1
2 . Conversely, an attractive interaction

suppresses an initial backscattering to yield perfect transmission even for a system with an

impurity. The f has been used successfully to reproduce the one-parameter scaling of the

conductance for 1/2 ≤ K ≤ 1 [ ].

1

lead lead

N

V VL R

dot

VG

Figure .: Model of the double barrier.

In the case of a double barrier, there are resonance peaks in the conductance G(VG) as

the gate voltage VG is varied. Using an  analysis similar to the one for the single barrier

for asymptotically low temperatures, [Kane&Fisher c] derived a phase diagram for the

peak conductance Gp depending on the barrier strength V and interaction parameter K . For

attractive interaction K > 1 there is perfect transmission for any VG , while for repulsive
1
2 < K < 1 there are sharp conductance peaks at which perfect transmission is reached.

For K < 1
4 no transmission is possible for any VG , and for 1

4 < K < 1
2 there is a line

(Kosterlitz-Thouless separatrix) of critical barrier strengths: for stronger barriers no trans-
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 Luttinger liquids with impurities

mission is possible, while for weaker barriers conductance peaks appear. The line shape of

the resonance peaks is non-Lorentzian, the tails falling off as (1VG)
−2/K , where 1VG is the

detuning from resonance.

Shortly afterwards, [Furusaki&Nagaosa ] studied the double barrier for arbitrary in-

teraction by second-order perturbation theory in the barrier strength V � 1. At low tem-

peratures, the deviation of the resonant Gp(T ) from e2/h scales as T 2K . As the temperature

is increased, perturbation theory in the inverse barrier strength 1/V � 1 and a Master-

equation approach [Furusaki ] yield a regime of uncorrelated sequential tunneling ()

characterized by peaks of height Gp(T ) ∼ TαB−1 and width w(T ) ∼ T , for T � 1dot,

where 1dot := π vF/Ndot is the level spacing of the dot. For 1dot � T � B, where B is the

bandwidth, Gp(T ) increases as T 2αB for increasing T .

However, recent experiments on carbon nanotubes [ ] have reported for the

temperature range 0 � T � 1dot that both the resonant peak height Gp(T ) ∼ T 0.7

and G(VG) peak width w(T ) ∼ T decrease with decreasing temperature. Here, 0 is the

width of a resonance in the transmission probability T (ε) given by equation (.), which

for strong barriers is related to the tunneling rate into and out of the dot. While also

[Furusaki&Nagaosa , Furusaki ] found power laws with a positive power of T , they

were expected to occur only for very strong repulsive interactions, where αB is at least twice

as large as the value αB ≈ 0.6 . . . 1.0 observed in carbon nanotubes. [ ] sug-

gested that correlated sequential tunneling () with exponent 2αB − 1 > 0 dominates

over  with exponent αB − 1 < 0 in the temperature range 0 � T � 1dot. Subse-

quently, [ ,  ] argued that cotunneling processes of second order in the

end-tunneling local density of states (each with exponent αB) are the leading contribution

to the peak conductance (hence the 2αB), and claimed perfect agreement with the experi-

mental data of [ ]. In contrast, [Furusaki ] had found that cotunneling via

virtual intermediate states dominated the tails of the conductance peak away from the reso-

nance. This led to a renewed interest in transport through double barriers, with several new

methods available to advance beyond asymptotically low temperatures.

Shortly after, [Polyakov&Gornyi , Nazarov&Glazman ] studied the double bar-

rier at arbitrary temperature and impurity strength but weak interaction using the leading-

log resummation of [ ,  ]. They considered the  flow of the energy-

dependent scattering amplitudes, based on a resummation of perturbation-theory diagrams

with leading logarithmic divergences αB
n lnn( 1

|k−kF|d
), where d is the spatial range of the in-

teraction. Inelastic processes are sub-leading at weak interaction. Their results for a single

resonant level agreed with [Furusaki&Nagaosa ] for T < 1dot, finding  but not .

[Polyakov&Gornyi ] extended the  study to a multi-level dot and weak barriers (closer

to experimental parameters) but again confirmed .

Recently, [Komnik&Gogolin ] found an exact solution for a special model at inter-
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. Transport through double barriers

action strength K =
1
2 . However, in that model the conductance scales as T−1 even for

T < 1dot where one would expect , as if the fermions were non-interacting. Because

it shows no sign of either  or , this result is probably not generic and cannot help to

resolve the puzzle.

[Hügle&Egger ] computed the conductance using the Quantum Monte Carlo ()

method for interaction K = 0.6 and obtained data interpreted to be consistent with 

for weak barriers and sufficiently high temperatures, which was explained by an additional

transport channel for strong interaction.

Against this background, it is desirable to have an unbiased method to compute the con-

ductance without restricting from the beginning—by physical intuition—which physical

processes are dominant. The f provides this with the only restriction that it is pertur-

bative in the renormalized interaction but contains contributions of all orders in the bare

interaction U . It confirms the  picture but in addition allows to vary all parameters to

see exactly at which temperature, barrier strength, dot size etc. the universal scaling sets in,

if at all. While the justification of the f was weak-coupling, we reproduce one-parameter

scaling for the single barrier at U = 2 very accurately [ ], and our results for the

double barrier qualitatively agree with the  data (U =
√

3), indicating that the f is

reliable up to this interaction strength.

5.2.1 Results

The f has been used before to compute the conductance through a single impurity at

zero temperature [Meden&Schollwöck a, Meden&Schollwöck b,  ]. Af-

ter having developed and implemented the finite-temperature f, I have obtained results

for transport through a double barrier, symmetric or asymmetric, at or off resonance, with

weak or strong barriers, enclosing small or large dots, for repulsive interaction (see also

[ ,  ]). I will report my findings for several interesting regions in

this large parameter space, showing agreement with known results as well as providing clar-

ification of a contentious issue.

I first present results for a strong symmetric double barrier, VL,R = 10, enclosing a dot

of Ndot = 6 sites. The interacting system size is taken to be N = 104, in agreement with

the size of realistic samples of carbon nanotubes. As the gate voltage VG is varied across the

band, there are six resonance peaks with level spacing roughly 1dot (figure .). In non-

interacting systems the peaks have a finite width even at T = 0, depending on the shape of

the barrier and the local density of states of the leads at the barrier. Repulsive interaction has

a strong influence on the line shape of the resonance peaks: they become infinitely sharp in

the asymptotic limit (N → ∞, T → 0) but perfect transmission e2/h is still possible for

symmetric barriers. As the temperature is increased the peaks become wider and lower. The
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Figure .: The conductance G(VG) as a function of gate voltage VG for Ndot = 6, U = 0.5, VL,R =

10, N = 104 and different T . One observes Ndot resonance peaks which are widened with

increasing temperature.

peak conductance Gp(T ) as a function of temperature shows several different power laws for

appropriately chosen dot parameters. All the peaks in figure . have a different shape and

size due to band effects, however Gp(T ) behaves similarly for each peak, and in the following

I will always consider the peak closest to VG = 0.
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Figure .: The resonant peak conductance Gp(T ) for different dot sizes. Upper panel: Ndot = 2 (cir-

cles), 6 (squares), and 100 (diamonds), with the respective level spacing 1dot indicated by

the arrows. U = 0.5, N = 104, VL,R = 10. The solid curve shows G(T )/2 for a single bar-

rier. Lower panel: Logarithmic derivative of Gp(T ). Solid line: 2αB ; dashed line: αB − 1;

dash-dotted line: 2αB − 1.

Figure . shows the peak conductance Gp(T ) for three different dot sizes Ndot in the up-

per panel, while in the lower panel the logarithmic derivative is plotted. For temperatures

larger than the bandwidth, the conductance scales as Gp(T ) ∼ T−1. This is because f ′(ε)
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Figure .: Transmission T (ε , T ) for several temperatures: left panel T = 0.004, right panel T =

0.063. The dashed line is the derivative of the Fermi function at the respective temperature.

The dot parameters are Ndot = 100, U = 1, N = 104 and VL,R = 10. This shows that for

low temperatures (), a single transmission peak determines the conductance, while for

higher temperatures (Kirchhoff) many peaks contribute.

and the transmission in equation (.) vary only very little over the band, but f ′(ε) de-

creases with increasing temperature as 1/T . For temperatures below the dot level spacing

1dot (indicated by the arrows), the peak conductance decreases as Gp(T ) ∼ TαB−1 ().

This exponent is marked in the lower panel by the dashed line. In the  regime the conduc-

tance integral is dominated by a single peak in the transmission T (ε , T ) with a width 0 < T

(cf. figure ., left panel). As the temperature is lowered, the  regime extends down to

T∗ where T = 0. In G(VG) the peaks are well separated and have a width w(T ) ∼ T .

For the above parameters and dots with Ndot ≥ 4, the conductance shows a third regime

for 1dot
<
∼ T <

∼ 1. In this region, the conductance increases with increasing temperature,

leading to a non-monotonic overall T dependence. For large dots Ndot
>
∼ 30, the conduc-

tance increases according to the power law Gp(T ) ∼ T 2αB , indicated by the solid line in the

lower panel of figure .. Many peaks in the transmission T (ε , T ) contribute to the con-

ductance (cf. figure ., right panel). This regime is most clearly seen for strong barriers

VL,R � 1 and large dots Ndot � 1.

If we add the resistances of both barriers separately according to Kirchhoff ’s law, 1/G =

1/GL + 1/GR , we obtain the solid curve in the upper panel of figure .. As our data lie on

this curve for T >
∼ 1dot, we suggest the following interpretation: the electrons first tunnel

through one barrier with a certain probability, then incoherently through the next. Only as

the temperature is lowered to T ≈ 1dot, the electron “sees” both barriers coherently and

tunnels resonantly, such that the conductance increases towards e2/h as T → 0.

It is thus only in the low-temperature range where it makes a difference whether VG is
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Figure .: On- and off-resonance conductance. Upper panel: G(T ) for U = 0.5, N = 104, VL,R = 10,

and Ndot = 100. On resonance 1VG = 0 (circles), near resonance |1VG | = 0.001

(squares), and in a conductance minimum with |1VG | = 0.04 (diamonds). The off-

resonance curves lie on the resonance curve for T >
∼ |1VG |, then cross over to decay as

Gp(T ) ∼ T 2αB . Lower panel: Logarithmic derivative of G(T ). Solid line: 2αB ; dashed line:

αB − 1. At low temperature the double barrier off resonance behaves like a single impurity.

tuned to resonance or not (cf. figure .). If the gate voltage is slightly off resonance,1VG 6=

0 and |δVG | � 1dot, the conductance is identical to the resonant case for T >
∼ 1VG , while

for lower temperatures the double barrier acts as a single impurity of strength |1VG |, hence

the conductance scales as G(T ) ∼ T 2αB .
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Figure .: Conductance for different interaction strength. Upper panel: Peak conductance Gp(T ) for

U = 0.5 (full symbols) and U = 1 (open symbols). Curves are shown for dot sizes Ndot = 2

(red) and Ndot = 100 (blue). Lower panel: Logarithmic derivative of G(T ). The depen-

dence of the exponents on the interaction strength support the claim that the exponents are

αB − 1 and 2αB , respectively.
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. Transport through double barriers

Up to this point, we have presented conductance data for the weak interaction strength

U = 0.5 (αB = 0.165). The numerical exponent of −0.835 in the  regime was identified

with αB − 1, and the exponent 0.330 in the Kirchhoff regime with 2αB. Figure . shows the

exponents for a different value of U : at U = 1 (αB = 0.35), the exponents −0.65 and 0.70

can be read off, confirming this identification within the numerical accuracy. A comparison

of the exponents for strong and weak barriers can be found in [ ].

For strong barriers, large dot size and weak interaction, there is no indication of a power

law with exponent 2αB − 1 claimed by [ ,  , Hügle&Egger ]. Con-

sider, therefore, a dot with parameters as close as possible to those in [Hügle&Egger ]:

weak to intermediate barriers, intermediate dot size and larger U (cf. figure .). For a small
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Figure .: Weak barriers, Upper panel: Gp(T ) for U = 1.5, N = 104, Ndot = 10 with VL,R = 0.8

(circles), Ndot = 30 with VL,R = 1.5 (squares), and Ndot = 50 with VL,R = 0.8 (diamonds).

The arrows indicate 1dot for the different dot sizes. Lower panel: Logarithmic derivative of

Gp(T ). Solid line: 2αB ; dashed line: αB − 1. For small dots, the 2αB power law is not clearly

developed; however the conductance agrees with the  data [Hügle&Egger ].

dot Ndot = 10 (circles), neither the exponent αB − 1 (dashed line) nor 2αB (solid line) is

clearly developed. For larger dots Ndot = 30 (squares) and Ndot = 50 (diamonds), the

αB − 1 exponent () is clearly visible, but the Kirchhoff exponent 2αB is still not reached.

In the  data [Hügle&Egger ] the conductance is fitted to a slope of 1/3 in a log-log

plot, which is interpreted as scaling with exponent 2αB − 1 () for αB = 2/3. Our data

shows the conductance curve with a slope of 0.3 . . . 0.7, depending on the dot parameters,

but no fixed scaling exponent. Therefore, we interpret this as non-universal behavior.

Figure . shows the resonant peak conductance for strongly asymmetric barriers. The

Kirchhoff regime is unchanged qualitatively as both barriers are very strong. For lower

temperatures one observes a  regime which crosses over into single-impurity scaling
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Figure .: Strongly asymmetric barriers, Upper panel: Gp(T ) for VL = 5, VR = 50, U = 0.5, N =

104, Ndot = 2 (circles) and Ndot = 20 (squares). Lower panel: Logarithmic derivative of

Gp(T ). Solid line: 2αB ; dashed line: αB − 1.

Gp(T ) ∼ T 2αB for small dots at very low temperatures.
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Figure .: Effective exponent of 1 − Gp(T )/(e2/h) for a small dot with Ndot = 1, U = 1, N = 104,

and intermediate to weak hopping barriers tl ,r . Dash-dotted line: 2K.

For a small dot (Ndot = 1) with weak barriers the conductance approaches the perfect

value e2/h according to the power law [Kane&Fisher b, Furusaki&Nagaosa ] (cf. fig-

ure .)

e2

h
− Gp(T ) ∼ T 2K .

Thus, our method yields up to four different power laws within the same framework.
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5.3 Summary

I have demonstrated that the f is a powerful method for multi-scale problems. As applica-

tions I have studied Friedel oscillations off an impurity or boundary in an interacting wire,

and transport through a double barrier. Both problems were previously investigated using

effective field-theoretical models; in the cases where exact results for such models are known

I have obtained quantitative agreement for weak to intermediate interactions 1/2 ≤ K ≤ 1.

For the Friedel oscillations at T = 0, I observed the exponent K at large distances and 2K − 1

for weak impurities at short distances [ ].
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Figure .: Schematic plot of the different regimes for the scaling of the conductance Gp(T ) at resonance

for symmetric barriers found using our method. The upper panels have higher barriers than

the lower ones; the right panels have larger dot sizes than the left ones. 1W = π vF/N is the

energy scale of the interacting wire.

For resonant tunneling, depending on the parameters of the quantum dot, I found sev-

eral temperature regimes with power-law scaling as well as non-universal behavior (cf. figure

.) [ ,  ]. All these temperature regimes are obtained within the

same approximation scheme. The crossover between the regimes can be studied in detail.

For parameters for which a comparison is possible the results agree with the ones obtained

in lowest-order perturbation theory in the barrier height and inverse barrier height. I did not
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find any indications of a  regime with the exponent 2αB − 1 predicted from an approx-

imate Master-equation approach, and seemingly supported by  data. If it were present,

our method should be able to reveal such a regime since its scaling exponent differs from the

 exponent already at leading order in the interaction.
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6 Conclusions and outlook

In this thesis I investigate the role of symmetries and conservation laws in the functional

renormalization-group formalism, and study specifically Friedel oscillations and transport

in  correlated electron systems.

In the functional renormalization group (f) method an energy cutoff scale is introduced

in the bare propagator as a flow parameter (Chapter ). By solving coupled differential flow

equations for the Green functions, the effective behavior on all energy scales can be com-

puted for a given microscopic model. Because the full flow-equation hierarchy can be solved

exactly only in a few special cases, for instance the Luttinger model [ ], in most

practical applications one has to truncate the hierarchy by setting the flow of, say, the three-

particle and higher Green functions to zero. This approximation is justified perturbatively

in the renormalized interaction or some other small parameter. For applications such as the

 Hubbard model and  impurity problems, different basis sets of Green functions have

proven to be particularly useful.

The presence of continuous symmetries in the bare action leads by the Noether theorem

to conservation laws and Ward identities relating Green and response functions (Chapter ).

The solution of the infinite flow-equation hierarchy preserves the symmetry once the cutoff

is removed. The truncated flow equations with a momentum cutoff, however, generally

violate the Ward identities. After discussing previous results from the high-energy physics

literature, I show that if a manifestly gauge-invariant construction is possible as, for instance,

in the temperature-flow scheme, the Ward identities between Green and response functions

can be satisfied exactly despite truncations.

The related property of self-consistency is satisfied by construction in the conserving ap-

proximations [Baym&Kadanoff ], and it would be desirable if it were also satisfied in

truncated f flows. However, I show that the commonly used truncations generally violate

self-consistency. For special reduced models it has been shown that truncated flow equa-

tions can be modified to satisfy self-consistency and even yield the exact mean-field solution

[Katanin ,  ], so the hope remains that this may be generalized to arbitrary

interaction. However, in the  lattice model of the Luttinger liquid, the truncated f is

surprisingly successful and self-consistency does not appear to play an important role on the

level of our approximation.

Correlated electron systems in one dimension show Luttinger-liquid behavior with a strong

interplay between interaction and impurities. The f method is particularly apt to com-
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pute the single-particle and transport properties of a lattice model of spinless fermions with

one or two impurities at all energy scales (Chapter ). For systems with up to  sites the

results agree well with the numerically exact . For large systems the f reproduces the

asymptotic, universal power laws known from thermodynamic Bethe ansatz and bosoniza-

tion, as well as various field-theoretical methods, and in addition indicates the onset of and

crossover between different power-law regimes.

I have concentrated on two observables: the spatial density profile for Friedel oscillations

and the conductance. In the exact solution the density profile can be obtained from the full

propagator; within our approximation it is much more accurate to instead treat the density-

response vertex as a separately flowing composite operator. On the other hand, the conduc-

tance is completely determined by the full propagator because current-vertex corrections do

not arise in our approximation in accordance with Ward identities. The practical usefulness

of the method relies on the fast computation of loop integrals (appendix B); a little-known

mathematical trick is used to develop a new algorithm linear instead of quadratic in the sys-

tem size which allows to treat lattices as large as 107 sites very accurately.

The Friedel oscillations off an impurity or boundary (Chapter ) obey the characteris-

tic power laws and show a crossover to the linear-response regime, both for repulsive and

attractive interaction. The measured exponents agree with the exact values to linear order

in the interaction; however the deviations are small up to U ≈ 1.5 because we have in-

corporated the flow of the interaction vertex [ , Andergassen ]. A double

barrier features several distinct power laws in the conductance as a function of temperature

[ ,  ]. We reproduce the exponents for the limiting cases treated in

earlier works but in addition observe non-universal behavior in the intermediate parameter

and temperature regions. This serves to clarify a contentious issue in the literature where

two different universal scaling laws have been claimed for a certain parameter range: our

data agree qualitatively with the numerically exact  [Hügle&Egger ] but suggest an

interpretation in terms of a non-universal crossover regime. In conclusion, it is remarkable

that our simple approximation captures on an equal footing effects which originate from

very different physical processes.

As an outlook there are several promising extensions of the current scheme. (i) The elec-

tron spin should be included to make the model more realistic [Andergassen ]. Prelim-

inary results indicate that for the typical size of carbon nanotubes (N ∼ 104), the results are

even farther from the asymptotic behavior than in the spinless case, so the accurate treat-

ment of the non-universal behavior is even more important. (i i) X. Barnabé-Thériault

studied junctions and rings pierced by a flux, and connected to several interacting leads

[ a,  b]. He showed that the interpretation of the complicated behav-

ior of such systems is greatly simplified if one considers not the (real) conductance but the

(complex) Green function at the interfaces to the leads as the relevant observable: if plot-
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ted parametrically for different impurity strengths and energy scales, one arrives at a simple

flow diagram in the complex plane. (i i i) The investigation of non-equilibrium phenomena

using a Keldysh variant of the f has been started [Jakobs ]. (iv) There are interesting

Luttinger-liquid properties which appear only at two-loop order in the interaction, related

to inelastic scattering. To take them into account one would need to include the frequency

dependence of the interaction vertex or two-loop diagrams into the flow equation.

The f provides a powerful tool to compute properties of  lattice models where all

microscopic parameters can be flexibly modeled. It captures the effects on many energy

scales, yielding universal scaling as well as non-universal behavior.
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A Heat equation

I hope to develop a better intuition of the formal procedures and transformations involved

in the functional formalism by repeating them on a simple, well-known example: the heat

equation in one dimension. Given a temperature distribution u0(x) at initial time t = 0, the

heat flow governed by the equation

∂t ut (x) = ∂2
x ut (x), ut=0(x) = u0(x), (A.)

determines the temperature distribution ut (x) at any later time t ≥ 0.

In the left column below, we start with the solution of (A.) in integral form, a convolution

with the Green function, and transform it in several steps into the differential form. At the

same time in the right column, we start with the functional integral definition (.) of the

effective interaction V because the generating functional e−V is the one formally most closely

related to the temperature distribution ut (x) at fixed time t = 1:

ut (x) =

∫
∞

−∞

dy Gt (x − y) u0(y) e−V[χ ,χ̄ ]
= e(χ̄ ,Qχ)−G[η=Qχ ,η̄=Qt χ̄ ]

=

∫
∞

−∞

dy
1

√
4π t

e−
(x−y)2

4t u0(y) =
1

Z0

∫
[dψψ̄ ] e([ψ̄−χ̄ ],Q[ψ−χ ])

× e−V0[ψ ,ψ̄ ]

measure: dµt (x) = N · e−
x2

4t dx,
∫

dµt (x) = 1

=

∫
dµt (y − x) u0(y) =

∫
dµQ[ψ − χ , ψ̄ − χ̄ ] e−V0[ψ ,ψ̄ ]

shift of variables:

=

∫
dµt (y) u0(y + x) =

∫
dµQ[ψ , ψ̄ ] e−V0[ψ+χ ,ψ̄+χ̄ ]

= u0(∂s)

∫
dµt (y) e(y+x)s

∣∣∣
s=0

= e−V0[δϕ̄ ,δϕ ]

×

∫
dµQ[ψ , ψ̄ ] e(ϕ̄,ψ+χ)−(ψ̄+χ̄ ,ϕ)

∣∣∣
ϕ=0
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A Heat equation

completing the square: N
∫

e−
y2

4t +ys dy = et s2

= u0(∂s) et s2
exs
∣∣∣
s=0

= e−V0[δϕ̄ ,δϕ ] e(ϕ̄,Cϕ) e(ϕ̄,χ)−(χ̄ ,ϕ)
∣∣∣
0

= u0(∂s) et∂2
x exs

∣∣∣
s=0

= e−V0[δϕ̄ ,δϕ ] e(δχ ,Cδχ̄ ) e(ϕ̄,χ)−(χ̄ ,ϕ)
∣∣∣
0

= et1 u0(x) = e1C e−V0[χ ,χ̄ ] .

The solution of the heat equation is most conveniently formulated in Fourier space where

the Laplacian 1 = −k2 is diagonal. However, on the field-theory side perturbation theory

in the interaction V0 leads to an expansion of e−V0 in powers of χ , which corresponds to

an expansion of u0(x) in powers of position x, not momentum k. Therefore, we will try to

solve the heat equation in real space to make the analogy clearer. On the way we shall obtain a

generalization of Hermite polynomials as basis functions and see how they are obtained from

a generating function, the  analog of generating functionals. In the left column, we will

first expand u0(x) in powers of x and then apply et1 to it; in the right column, we proceed

in the opposite order, first applying et1 and then expanding in powers of x:

ut (x) = et1 u0(x) (A.)

= et1
[

u0(∂s) exs
]

s=0
=

[
u0(∂s) et s2

+xs
]

s=0
(A.)

= et1
∞∑

k=0

u(k)0 (0)
k!

[
∂ k

s exs
]

0
=

∞∑
k=0

u(k)0 (0)
k!

[
∂ k

s et s2
+xs
]

0
(A.)

=

∞∑
k=0

u(k)0 (0)
k! et1 xk

=

∞∑
k=0

u(k)0 (0)
k! H t

k(x). (A.)

In the last line, we have used “rescaled Hermite polynomials” H t
k(x) defined by

H t
k(x) = et∂2

x xk , et s2
+xs

=

∑
k

1

k!
H t

k(x) sk (A.)

which are related to (usual) Hermite polynomials Hk(x),

Hk(x) = e−∂2
x (2x)k , e−s2

+2xs
=

∑
k

1

k!
Hk(x) sk (A.)

by

H t
k(x) = (−t )k/2Hk(x/

√
−4t ). (A.)

Thus, once we have expanded the initial condition into modes u(k)0 (0), they evolve in time

independently of each other according to the t dependence of H t
k(x). As there are infinitely

many modes in u0(x) ∼ e−V0[χ ,χ̄ ], however, it turns out that other parametrizations are

more efficient in our applications.
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B Efficient computation of tridiagonal loops in O(N)

B.1 Propagator

For the frequency cutoff at T = 0 and 3 < 30 < ∞ the flow equation for the self energy

(.) can be written as

∂36
3
1′,1 = −

1

2π

∑
2,2′

031′,2′;1,2 2 Re
[
G̃3

2,2′(i3)
]

. (B.)

In order to compute its right-hand side, one needs to invert the tridiagonal matrix

T = G−1
0 (i3)−63 , (B.)

where T is complex symmetric (not hermitean) with diagonal elements ai := i3+µ−63
i ,i ,

i = 1, . . . , N , and first off-diagonal elements bi := t −63
i ,i+1, i = 1, . . . , N − 1. Note that

Im(ai ) = 3 > 0 such that T is non-singular and its inverse well-defined.

The inverse G̃3(i3) = T−1 is not tridiagonal but a full matrix which can be computed by

standard methods inO(N 2) time. However, for an interaction that does not extend beyond

nearest neighbors on the lattice, only the tridiagonal part of G̃ is required, which can be

computed inO(N ) time, such that much larger lattices can be treated. We shall first explain

how this is done and then present the resulting algorithm that can directly be incorporated

into a computer program.

Under certain assumptions (see below), a matrix can be uniquely factorized into a lower

unit triangular matrix L, a diagonal matrix D, and an upper unit triangular matrix U (“

factorization”): T = LDU [ ]. For a tridiagonal matrix T the unit triangular ma-

trices L and U are in fact unit bidiagonal: their matrix elements are unity on the diagonal,

and only the first off-diagonal is nonzero. Since our T is symmetric we have L = U T . Thus

we obtain a factorization of the form

T = U+T D+U+
=

 1

U+

1 1

U+

2 1
. . . . . .

D+

1

D+

2

D+

3
. . .

1 U+

1

1 U+

2

1
. . .
. . .


where the label “+” distinguishes this factorization from another one used below. The pre-

scription to compute the elements D+

i and U+

i is well known and can be found for example
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B Efficient computation of tridiagonal loops in O(N)

in [ ]. Starting in the upper left corner one proceeds to increasing row and column

numbers until one arrives at the lower right corner of T :

D+

1 := a1, U+

i := bi/D+

i , D+

i+1 := ai+1 − biU
+

i (i = 1, . . . , N − 1) . (B.)

This works well since in our case Im(D+

i ) ≥ 3 > 0, such that one never divides by zero.

To compute the inverse G̃ = T−1, one could directly calculate (U+)−1(D+)−1(U+T )−1.

It is however easier and more accurate to find the inverse by solving the linear system of

equations TG̃ = 1, where 1 is the identity matrix, by “back substitution”. To be specific,

consider the i th column vector G̃·,i of G̃:

ei = TG̃·,i = U+T (D+U+G̃·,i ) = U+T gi , U+G̃·,i = (D+)−1gi (B.)

where ei is the i th unit vector. The first step is to solve the linear system U+T gi = ei for gi ,

and the second step to solve U+G̃·,i = (D+)−1gi for G̃·,i . To solve a tridiagonal linear system

for one vector takesO(N ) time, so solving for the full inverse matrix G̃ takesO(N 2) time.

Now we shall derive an algorithm to compute the elements of gi and G̃·,i . Begin with the

last column i = N : U+T gN = eN can be solved from the first to the last row and gives

gN = eN . Next U+G̃·,N = (D+)−1eN can be solved starting from the last row, G̃N ,N =

1/D+

N . From there one can work upwards by back substitution, G̃ j ,N = −U+

j G̃ j+1,N ( j =

1, . . . , N − 1). For the other columns i < N , one cannot take the shortcut and has to solve

both linear systems for gi and G̃·,i . But it is now important to realize that for any column

vector G̃·,i+1, if we somehow know the diagonal element G̃i+1,i+1, the next element above

the diagonal is

G̃i ,i+1 = −U+

i G̃i+1,i+1 (i = 1, . . . , N − 1) . (B.)

Thus, we have a prescription how to go up one row in G̃. Together with the symmetry of

G̃, i.e., G̃i ,i+1 = G̃i+1,i , which follows from the symmetry of T , we get the first off-diagonal

element one column to the left without solving the two linear systems in (B.). Hence, it is

possible to compute directly the tridiagonal part of the inverse. However, there is another

algorithm which is much more accurate for near-singular matrices at the end of the  flow:

the double factorization [Meurant ]. It does not rely on the symmetry of G̃ but uses the

complementary “” factorization

T = U−D−L−
= U−D−U−T , (B.)

where the matrix elements are obtained as

D−

N := aN , U−

i := bi/D−

i+1, D−

i := ai − biU
−

i (i = N − 1, . . . , 1) . (B.)
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B. Bubble

We proceed as for the  factorization above and get

G̃1,1 = 1/D−

1 (B.)

G̃i ,i+1 = −U−

i G̃i ,i . (B.)

We can combine equations (B.) and (B.) to relate consecutive diagonal elements:

G̃i+1,i+1 = −G̃i ,i+1/U
+

i = G̃i ,i U−

i /U
+

i = G̃i ,i D+

i /D−

i+1 . (B.)

Thus, we start with (B.) and use the U−D−L− decomposition to go one matrix element

to the right in the inverse matrix, from the diagonal to the first off-diagonal (B.), while the

L+D+U+ decomposition allows to go down by one, back to the next diagonal element (B.).

There is no need to compute the full inverse matrix.

One can implement the algorithm without knowing the derivation by using equations

(B.) and (B.)–(B.). One can further eliminate the U ’s using equations (B.) and (B.)

and implement the algorithm such that only the input vectors ai , bi and the output vectors

G̃i ,i , G̃i ,i+1 enter the temporary storage. This double factorization is numerically accurate

to more than  significant digits (using double precision) even for large lattices (106 sites)

and almost singular matrices with |ai | ∼ 10−15 which appear at the end of the flow for half

filling.

B.2 Bubble

Even the  of the flow equations (.) for the density-response vertex R3 and the flow of

the self energy for T > 0 in equation (.) can be computed in O(N ) time [Enss ]. In

both cases the  of the flow has the form of a trace of a bubble with two vertices and two

propagators,

tr(UG1TG2) = tr(U M ) (B.)

where we have defined the product

M = G1TG2 (B.)

with U , T tridiagonal matrices (“vertices”) and G1, G2 inverse tridiagonal matrices (“propa-

gators”). In order to compute the trace in the end and also as a useful intermediate result in

the flow equation, we need the tridiagonal part of M , i.e., Mi i , Mi ,i+1 and Mi+1,i .

According to [Meurant ] the inverse of a tridiagonal matrix generally has the following

structure: the upper triangle is spanned by two vectors xi , yi , while the lower triangle is





B Efficient computation of tridiagonal loops in O(N)

spanned by two vectors ui , vi :

G1;ik =

u1i v1k i ≥ k

x1k y1i i ≤ k

11i i = k

G2;k j =

u2k v2 j k ≥ j (lower triangle)

x2 j y2k k ≤ j (upper triangle)

12k k = j (diagonal)

(B.)

On the diagonal, the upper and lower triangles agree, and we define an abbreviation 1i :=

xi yi = ui vi for it. The four vectors have the following interpretation: ui (multiplied by v1) is

the first column, vi (multiplied by uN ) the last row; xi (multiplied by y1) the first row, and yi

(multiplied by xN ) the last column. Each of these vectors can be computed via the L+D+U+

and U−D−L− decompositions which relate one row or column to the next or previous:

ui+1

ui
= −L−

i

vi

vi+1
= −L+

i (B.)

xi+1

xi
= −U−

i

yi

yi+1
= −U+

i (B.)

Consider first the diagonal elements Mi i , then the off-diagonal elements Mi ,i+1 and Mi+1,i

will be slight variations of it. The tridiagonal matrix T = (a, b, c) has diagonal elements ai ,

above the diagonal bi and below the diagonal ci :

Mi i =

∑
k

[
G1;ikakG2;ki + G1;ikbkG2;k+1,i + G1;i ,k+1ckG2;ki

]
=

{∑
k≤i

u1i v1kak y2k x2i −11i ai12i +

∑
k≥i

y1i x1kaku2k v2i

}
+

{∑
k<i

u1i v1kbk y2,k+1x2i +

∑
k≥i

y1i x1kbku2,k+1v2i

}
+

{∑
k<i

u1i v1,k+1ck y2k x2i +

∑
k≥i

y1i x1,k+1cku2k v2i

}
= Q+

i −11i ai12i + Q−

i

where Q+

i are the terms on the left side inside each curly bracket (lower k indices) and Q−

i

those on the right side (higher k indices), so up to now we have just split the terms in the k

sum into two groups. The point of defining the Q’s like this is the following: Q+

i+1 can be

computed from Q+

i inO(1) time and likewise Q−

i from Q−

i+1, so going from Mi i to Mi+1,i+1

is anO(1) operation. Thus we can compute the whole diagonal of M inO(N ) time!

The recursion relation for Q+

i is read off from the above partition:

Q+

i = u1i x2i

∑
k<i

(
v1kak y2k + v1kbk y2,k+1 + v1,k+1ck y2k

)
+11i ai12i
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B. Bubble

Q+

i+1 = u1,i+1x2,i+1

∑
k<i+1

(
v1kak y2k + v1kbk y2,k+1 + v1,k+1ck y2k

)
+11,i+1ai+112,i+1

=
u1,i+1

u1i

x2,i+1

x2i
Q+

i + u1,i+1v1i bi y2,i+1x2,i+1 + u1,i+1v1,i+1ci y2i x2,i+1

+11,i+1ai+112,i+1

= L−

1i Q
+

i U−

2i − L−

1i11i bi12,i+1 −11,i+1ci12iU
−

2i +11,i+1ai+112,i+1

and likewise for Q−

i :

Q−

i = y1i v2i

∑
k≥i

(
x1kaku2k + x1kbku2,k+1 + x1,k+1cku2k

)
Q−

i = U+

1i Q−

i+1L+

2i −11i bi12,i+1L+

2i − U+

1i11,i+1ci12i +11i ai12i .

In the same way the off-diagonal elements Mi ,i+1 and Mi+1,i are determined:

Mi ,i+1 =

∑
k

[
G1;ikakG2;k,i+1 + G1;ikbkG2;k+1,i+1 + G1;i ,k+1ckG2;k,i+1

]
=

{∑
k≤i

u1i v1kak y2k x2,i+1 +

∑
k>i

y1i x1kaku2k v2,i+1

}
+

{∑
k<i

u1i v1kbk y2,k+1x2,i+1 + u1i v1i bi y2,i+1x2,i+1 +

∑
k>i

y1i x1kbku2,k+1v2,i+1

}
+

{∑
k<i

u1i v1,k+1ck y2k x2,i+1 + u1i v1,i+1ci y2i x2,i+1 +

∑
k>i

y1i x1,k+1cku2k v2,i+1

}
= −Q+

i U−

2i + (11i bi12,i+1)+ (U+

1i11,i+1ci12iU
−

2i )− U+

1i Q−

i+1

and

Mi+1,i =

∑
k

[
G1;i+1,kakG2;ki + G1;i+1,kbkG2;k+1,i + G1;i+1,k+1ckG2;ki

]
=

{∑
k≤i

u1,i+1v1kak y2k x2i +

∑
k>i

y1,i+1x1kaku2k v2i

}
+

{∑
k<i

u1,i+1v1kbk y2,k+1x2i + u1,i+1v1i bi y2,i+1x2i +

∑
k>i

y1,i+1x1kbku2,k+1v2i

}
+

{∑
k<i

u1,i+1v1,k+1ck y2k x2i + u1,i+1v1,i+1ci y2i x2i +

∑
k>i

y1,i+1x1,k+1cku2k v2i

}
= −L−

1i Q
+

i + (L−

1i11i bi12,i+1L+

2i )+ (11,i+1ci12i )− Q−

i+1L+

2i .
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After the full derivation, let us summarize the algorithm. We observe that certain combi-

nations of terms appear frequently so we define the following abbreviations:

Ai := 11i ai12i (B.)

Bi := 11i bi12,i+1 (B.)

Ci := 11,i+1ci12i . (B.)

At the beginning of the algorithm, Q+

i and Q−

i need to be computed via the recursion for-

mulas

Q+

i+1 := L−

1i Q
+

i U−

2i − L−

1i Bi − CiU
−

2i + Ai+1 (B.)

Q−

i := U+

1i Q−

i+1L+

2i − Bi L+

2i − U+

1i Ci + Ai (B.)

with initial conditions

Q+

1 = A1 (B.)

Q−

N = AN . (B.)

Then the tridiagonal components of M can be computed in any order:

Mi ,i := Q+

i − Ai + Q−

i = Q+

i − Bi L+

2i − U+

1i Ci + U+

1i Q−

i+1L+

2i (B.)

Mi ,i+1 := Bi − Q+

i U−

2i − U+

1i Q−

i+1 + U+

1i CiU
−

2i (B.)

Mi+1,i := Ci − L−

1i Q
+

i − Q−

i+1L+

2i + L−

1i Bi L+

2i . (B.)

Finally, the trace (B.) is

tr(U M ) :=

∑
i

(Ui i Mi i + Ui+1,i Mi ,i+1 + Ui ,i+1Mi+1,i ). (B.)
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Deutsche Zusammenfassung

In eindimensionalen Metallen können sich Elektronen frei in einer Richtung bewegen, wäh-

rend ihre Bewegung in die zwei transversalen Richtungen stark eingeschränkt ist. Die Wech-

selwirkung zwischen den Elektronen führt zu Luttinger-Flüssigkeits-Verhalten mit ungewöhn-

lichen Eigenschaften, die sie von üblichen (Fermi-Flüssigkeits-)Metallen unterscheiden. Ins-

besondere beeinflussen Störstellen das Niederenergieverhalten von Luttinger-Flüssigkeiten

sehr stark. Bei abstoßender Wechselwirkung wächst die Rückstreuamplitude auf kleineren

Energieskalen, bis schließlich bei T = 0 der Leitwert unterdrückt und der Draht effektiv

in zwei Teile geteilt ist. Die lokale Zustandsdichte nahe einer Störstelle, sowie das räumliche

Dichteprofil im Abstand von der Störstelle, gehorchen charakteristischen Potenzgesetzen, die

nur vom Bulkparameter K abhängen, der in Luttinger-Flüssigkeiten ein Maß für die Stärke

der Wechselwirkung ist. Der Leitwert einer einzelnen Störstelle bei unterschiedlichen Stör-

stellenparametern fällt mit einem Einparameter-Skalenansatz auf eine einzige Kurve zusam-

men. Eine Doppelbarriere zeigt bereits deutlich vielseitigere Eigenschaften, weil sie auf Reso-

nanz abgestimmt werden kann und mit der Entfernung zwischen den Barrieren und der Ver-

stimmung von der Resonanz zusätzliche Skalen besitzt. Der Leitwert verhält sich als Funktion

der Temperatur nichtmonoton und zeigt verschiedene Potenzgesetze sowie ein kompliziertes

nichtuniverselles Übergangsverhalten in den dazwischen liegenden Parameterbereichen.

In den letzten Jahren haben Experimente mit Kohlenstoff-Nanoröhrchen es ermöglicht,

die Effekte von einzelnen Störstellen in einem ansonsten reinen eindimensionalen Metall zu

untersuchen. Dabei wurden einige Vorhersagen aus feldtheoretischen Methoden bestätigt,

allerdings folgte der Leitwert einer Doppelbarriere nicht den erwarteten asymptotischen Po-

tenzgesetzen. Dies hat zu einem erneuten Interesse am theoretischen Verständnis der Dop-

pelbarriere in mittleren Parameterbereichen geführt, die Experimenten zugänglich sind. Ver-

schiedene analytische und numerische Methoden wurden auf ein Modell der Doppelbarriere

mit spinlosen Fermionen angewandt. Sie zeigten teils Übereinstimmung, teils Abweichung

von den experimentellen Daten. Das hat uns veranlasst, die funktionale Renormierungs-

gruppe, die wir bereits für Luttinger-Flüssigkeiten mit einer Störstelle und Probleme mit

konkurrierenden Instabilitäten eingesetzt haben, auch auf dieses Problem anzuwenden.

Die funktionale Renormierungsgruppe (f) wurde in den letzten Jahren als neue Metho-

de unter anderem zur Untersuchung von Fermisystemen entwickelt. Sie ist besonders effizi-

ent in niedrigen Dimensionen. Man beginnt mit einem konkreten mikroskopischen Modell

und erhält, indem man Hochenergiemoden nacheinander ausintegriert, das effektive Verhal-
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Deutsche Zusammenfassung

ten auf allen Energieskalen. Damit ist es möglich, sowohl universelle Skalengesetze als auch

nichtuniverselles Übergangsverhalten zu berechnen.

Formal sind die f-Flussgleichungen eine unendliche Hierarchie gekoppelter Differenti-

algleichungen, die den Fluss aller Greenfunktionen mit sinkender Energieskala beschreiben.

Diese Hierarchie von Flussgleichungen liefert am Ende des Flusses die exakte Lösung in allen

Ordnungen der Störungstheorie. In der Praxis jedoch muss die Hierarchie trunkiert werden,

z.B. indem der Fluss höherer Greenfunktionen vernachlässigt wird, was perturbativ in der

renormierten Wechselwirkung oder einem anderen kleinen Parameter gerechtfertigt ist. Im

Gegensatz zu anderen Renormierungsgruppenmethoden fließen nicht nur wenige Kopplun-

gen, sondern ganze Funktionen.

Für eindimensionale Probleme mit ein oder zwei Störstellen nähern wir die Wechselwir-

kung durch eine effektive Nächstnachbarkopplung an, rechnen jedoch mit dem vollen ef-

fektiven Potential der Verunreinigungen. Unsere Näherung ist perturbativ in der Wechsel-

wirkung, aber nichtperturbativ in der Stärke der Verunreinigung. Die so genäherten Fluss-

gleichungen führen bereits zum erwarteten universellen Skalenverhalten in der lokalen Zu-

standsdichte. Um das räumliche Dichteprofil zu erhalten, ist es erforderlich, die Dichteant-

wortfunktion als Erwartungswert eines zusammengesetzten Operators separat fließen zu las-

sen. Wir arbeiten mit einem Modell spinloser Fermionen; die Erweiterung auf den realisti-

scheren Fall von Fermionen mit Spin befindet sich in der Entwicklung. Wir haben unsere

f-Ergebnisse für Systeme mit bis zu  Gitterplätzen mit Daten der numerisch exak-

ten Dichtematrix-Renormierungsgruppenmethode () verglichen. Für größere Syste-

me konvergieren unsere Ergebnisse gegen die asymptotischen Potenzgesetze, die aus dem

Betheansatz und der Bosonisierung bekannt sind. Es wird gezeigt, dass auf der Stufe unserer

Näherung keine Korrekturen zum Stromvertex in der Kuboformel für den Leitwert auftre-

ten, in Übereinstimmung mit den Wardidentitäten. Wir sind daher in der Lage, den Leitwert

konsistent mit derselben Näherung über mehrere Größenordnungen in der Temperatur zu

bestimmen, bei beliebiger Stärke der Verunreinigung.

Neben den formalen Entwicklungen hängt der praktische Nutzen einer Methode entschei-

dend von der benötigten Rechenzeit ab. Mit Hilfe eines wenig bekannten mathematischen

Satzes wurde ein Algorithmus für die Schleifenintegrale in der Flussgleichung entwickelt, der

linear statt wie bisher quadratisch mit der Systemgröße skaliert. Für ein Gitter mit .

Plätzen dauert die vollständige Integration der Flussgleichung damit nur wenige Minuten

anstelle von Tagen, und sogar ein System mit 107 Gitterplätzen konnte berechnet werden.

Dies ermöglicht es uns, interessante Bereiche in einem großen Parameterraum viel schneller

zu finden.

Das Verschwinden der Stromvertexkorrekturen im Leitwert führt auf die allgemeinere Fra-

ge der Rolle von Symmetrien und Erhaltungssätzen im f-Formalismus. Das oben vorge-

stellte mikroskopische Modell beispielsweise hat eine lokale U (1)-Symmetrie, aus der die





Erhaltung der elektrischen Ladung und die Wardidentitäten folgen. Insbesondere für Trans-

portrechnungen ist es entscheidend, die Wardidentitäten auch in Näherungslösungen exakt

zu erfüllen. Es stellt sich die Frage, ob die üblichen Näherungen in der f, insbesondere die

Trunkierung der Flussgleichungshierarchie, die Wardidentitäten erfüllen. Damit verwandt

ist die Frage der Selbstkonsistenz der Näherung, die sich als Beziehung zwischen Greenfunk-

tionen verschiedener Ordnung schreiben lässt: beispielsweise erhält man den renormierten

Stromvertex in der exakten Lösung auch aus der Zweiteilchen-Greenfunktion, wenn man

zwei der äußeren Linien durch Einfügen eines nackten Stromvertex schließt. Dies ist eine we-

sentliche Eigenschaft der erhaltenden Näherungen, die per Konstruktion selbstkonsistent sind

[Baym&Kadanoff ]. Hingegen sind trunkierte Flussgleichungen im Allgemeinen keine

selbstkonsistenten Näherungen, wie wir anhand eines Beispiels illustrieren.

Die Arbeit gliedert sich wie folgt. In Kapitel  wird der f-Formalismus vorgestellt. Wir

beginnen mit einem kurzen Überblick über die erzeugenden Funktionale der zusammenhän-

genden, amputierten Greenfunktionen und der Einteilchen-irreduziblen Vertexfunktionen.

Anschließend wird ein Infrarot-Cutoff im freien Propagator eingeführt, der die Moden un-

terhalb einer Energieskala 3 unterdrückt. Die Ableitung der Funktionale nach dieser Skala

führt auf die Renormierungsgruppenflussgleichungen: entwickelt man sie nach den einzel-

nen Greenfunktionen, so erhält man eine unendliche Hierarchie gekoppelter Differential-

gleichungen in 3. Die Anfangsbedingung der Flussgleichungen ergibt sich aus dem Hamil-

tonoperator eines mikroskopisch definierten Modells. Durch den Fluss werden nacheinander

die Moden hoher Energie ausintegriert, bis man am Ende ein effektives Modell erhält. Ein

wesentlicher Vorteil dieses Verfahrens ist, dass die rechte Seite der Flussgleichungen auch

dann regulär bleibt, wenn in einfacher Störungstheorie unphysikalische Divergenzen auftre-

ten. Damit hat sich die f bereits bei Problemen mit Infrarotdivergenzen bewährt, z.B. in

der Hochenergiephysik bei der Behandlung von Eichtheorien sowie in der Festkörperphy-

sik für das zweidimensionale Hubbardmodell und eindimensionale Modelle mit Störstellen.

Die Herleitung der Flussgleichungen ist hier in einigen Punkten einfacher und verständlicher

dargestellt als in der Literatur. Wir schließen mit einem Vergleich der besonderen Stärken der

verschiedenen Schemata.

In Kapitel  werden die Wardidentitäten, die aus den kontinuierlichen Symmetrien des mi-

kroskopischen Modells folgen, im funktionalen Formalismus hergeleitet. Ein Impuls-Cutoff

verletzt jedoch im Allgemeinen diese Wardidentitäten, was zu modifizierten Wardidentitä-

ten führt und insbesondere für die Behandlung der Eichtheorien in der Hochenergiephysik

ein Problem darstellt: nur wenn man den Fluss der vollen, unendlichen Hierarchie verfol-

gen oder zumindest kontrollieren kann, werden die Symmetrien am Ende des Flusses, wenn

der Cutoff verschwindet, erfüllt. In den letzten zehn Jahren wurden dafür im Wesentlichen

zwei Ansätze verfolgt: einerseits kann man die exakten Wardidentitäten als Zwangsbedin-
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gung auf jeder Skala 3 in der genäherten Lösung einsetzen und die Qualität dieser Nähe-

rung numerisch kontrollieren. Alternativ wird in der sogenannten Hintergrundfeldmethode

ein zusätzliches, externes Eichfeld eingeführt, das die manifeste Eichinvarianz wieder her-

stellt, allerdings zu dem Preis, dass der Eichfixierungsterm auf komplizierte Weise von der

Energieskala abhängt. Dagegen lassen sich die Flussgleichungen ohne dynamisches Eichfeld,

wie sie in der Festkörperphysik vorkommen, unter bestimmten Bedingungen, z.B. im Tem-

peraturflussschema, manifest eichinvariant formulieren. Wir zeigen, dass dann sogar trun-

kierte Flussgleichungen die Wardidentitäten zwischen Green- und Antwortfunktionen exakt

erfüllen.

In der Frage der Selbstkonsistenz leiten wir zunächst die selbstkonsistente Formulierung

der Wardidentitäten her und geben einen Überblick über die Konstruktion der erhaltenden

Näherungen von Baym und Kadanoff. An einem Beispiel können wir jedoch zeigen, dass

die üblichen Trunkierungen der f-Flussgleichungen im Allgemeinen nicht selbstkonsis-

tent sind. Nur in einigen Fällen, wie z.B. dem reduzierten -Modell, sind modifizierte,

trunkierte Flussgleichungen bekannt, die die in diesen Fällen exakte Molekularfeldlösung

reproduzieren. Andererseits stimmen unsere Ergebnisse für eindimensionale Modelle mit

Störstellen derart gut mit den bekannten exakten Lösungen überein, dass die exakte Erfül-

lung der Selbstkonsistenz — über die Ordnung der Näherung hinaus — offenbar hier nicht

wesentlich ist.

In Kapitel  wenden wir den allgemeinen f-Formalismus auf ein konkretes Modell

spinloser Fermionen in einer Dimension (Luttinger-Flüssigkeit) mit einzelnen Störstellen

an und untersuchen insbesondere die Einteilchen- und Transporteigenschaften. In diesem

technischen Kapitel leiten wir die genaue Form der Flussgleichungen auf dem Gitter her.

Wir erklären die Details des Cutoffs bei endlichen Temperaturen, die Trunkierung der Fluss-

gleichungshierarchie und die Parametrisierung der fließenden Vertizes. Am Ende des Flus-

ses erhalten wir so das effektive Verunreinigungspotential und das renormierte, räumliche

Dichteprofil. In unserer Näherung ergeben sich die Transporteigenschaften aus dem Streu-

problem nichtwechselwirkender Fermionen im renormierten Verunreinigungspotential. Es

wird gezeigt, dass die Stromvertexkorrekturen zum Leitwert nicht auftreten, da sie gemäß

den Wardidentitäten proportional zum Imaginärteil der Selbstenergie sind, der in unserer

Näherung verschwindet. Der Algorithmus für die Berechnung der rechten Seite der Fluss-

gleichung, dessen Laufzeit linear mit der Systemgröße skaliert, wird in Anhang B hergeleitet.

In Kapitel  stellen wir unsere neuen Ergebnisse für Friedeloszillationen im Dichtepro-

fil und den temperaturabhängigen Leitwert einer Doppelbarriere vor. Beide Fragestellungen

wurden zuvor mit effektiven feldtheoretischen Modellen untersucht; in den Fällen, in denen

es exakte Ergebnisse für diese Modelle gibt, finden wir eine gute quantitative Übereinstim-

mung für schwache bis mittlere Wechselwirkungsstärke 1/2 ≤ K ≤ 1.

Für die Friedeloszillationen im Dichteprofil bei T = 0 fällt die Amplitude der Oszillatio-
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Abbildung D.: Effektiver Abklingexponent der Amplitude der Oszillationen im Dichteprofil als Funkti-

on des Abstands von einer Störstelle. Die Störstelle hat die Stärke V = 0.01, 0.1, 0.3, 1,

10 (von unten nach oben) und liegt in der Mitte einer Kette von 218
+ 1 Gitterplätzen

(K = 0.72, halbe Füllung). Wegen der endlichen Systemgröße knicken die Kurven bei

| j − j0| � 104 nach oben ab. Die Abbildung zeigt den Übergang vom linearen Ant-

wortverhalten für V � 1 zum asymptotischen Niederenergieverhalten für V � 1.

nen mit dem Abstand vom Rand oder von einer Störstelle gemäß einem Potenzgesetz ab,

dessen Exponent durch den Bulkparameter K gegeben ist. Im Falle schwacher Störstellen be-

obachten wir zunächst lineares Antwortverhalten mit dem Exponent 2K − 1, der jedoch für

große Abstände in K übergeht (siehe Abbildung D.).

Für resonante Doppelbarrieren beobachten wir, je nach Wahl der Parameter, bis zu vier

verschiedene Bereiche universellen Skalenverhaltens mit unterschiedlichen Potenzgesetzen,

aber auch nichtuniverselles Verhalten in den Übergangsbereichen (siehe Abbildung D.).

Im Gegensatz zu früheren Arbeiten können wir auch den Übergang zwischen den Po-

tenzgesetzen im Detail untersuchen. Damit können wir eine alternative Interpretation neuer

-Daten [Hügle&Egger ], die qualitativ mit unseren Daten übereinstimmen, vor-

schlagen: der Anstieg, der dort als neues universelles Potenzgesetz mit dem Exponenten

2αB − 1 (correlated sequential tunneling) erklärt wird, erscheint in unseren Rechnungen als

nichtuniverseller Übergang zwischen den Potenzgesetzen 2αB und αB − 1. Es ist bemerkens-

wert, dass wir alle diese Potenzgesetze, die ihre Ursache in ganz unterschiedlichen physikali-

schen Effekten haben, über mehrere Größenordnungen in der Temperatur innerhalb dersel-

ben Näherung erhalten (siehe Abbildung D.).

Die f erweist sich somit als eine leistungsfähige Methode, um die Eigenschaften von

eindimensionalen Systemen zu berechnen, deren mikroskopische Modellparameter sich fle-
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Abbildung D.: Temperaturabhängiger Leitwert Gp(T ) einer resonanten Doppelbarriere für verschie-

dene Größen Ndot des eingeschlossenen Quantenpunktes. Oben: Ndot = 2 (Kreise) und

100 (Rauten). Unten: Logarithmische Ableitung (effektiver Exponent) von Gp(T ). Die

horizontalen Linien stellen verschiedene Exponenten von Potenzgesetzen dar, die durch

den Randexponenten αB = 1/K − 1 ausgedrückt sind: αB − 1 charakterisiert uncor-

related sequential tunneling, während 2αB im Kirchhoff-Regime gilt (siehe Kapitel ).

xibel variieren lassen. Indem Effekte auf vielen Energieskalen beitragen, liefert sie sowohl

universelle Skalengesetze als auch nichtuniverselles Verhalten.
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Abbildung D.: Schematische Skizze der verschiedenen Temperatur-Skalenbereiche des Leitwerts Gp(T )

einer symmetrischen Doppelbarriere in Resonanz. Die Barrierenhöhe V ist in den obe-

ren beiden Graphen größer, der Abstand zwischen den beiden Barrieren nimmt nach

rechts hin zu. Die Energieskalen auf der horizontalen Achse sind der Niveauabstand

1W = π vF/N des isolierten, wechselwirkenden Drahtes, die Skala T ∗, bei der die

Breite der Resonanz gleich der Temperatur ist, der Niveauabstand 1dot des isolierten

Quantenpunktes zwischen den Barrieren, und die Bandbreite B.
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