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The hydrodynamic attractor is a concept that describes universal equilibration behavior in which
systems lose microscopic details before hydrodynamics becomes applicable. We propose a setup to
observe hydrodynamic attractors in ultracold atomic gases, taking advantage of the fact that driving
the two-body s-wave scattering length causes phenomena equivalent to isotropic fluid expansions.
We specifically consider two-component fermions with contact interactions in three dimensions and
discuss their dynamics under a power-law drive of the scattering length in a uniform system, em-
ploying a hydrodynamic relaxation model. We analytically solve their dynamics and find the hy-
drodynamic attractor solution. Our results establish the cold atom systems as a new platform for
exploring hydrodynamic attractors.

Introduction.—Hydrodynamics universally describes
the space-time evolution of charge densities of systems
close to thermal equilibrium [1]. Hydrodynamic equa-
tions do not depend on the microscopic details of systems,
which are applicable to broad fields of physics from con-
densed matter [2] to high-energy physics [3, 4]. Its uni-
versality is based on the coarse-graining of microscopic
elements into macroscopic fluid cells. For time scales suf-
ficiently longer than relaxation times, one can describe
the dynamics of the fluid cells in terms of charge densi-
ties and their derivatives, and systematically write down
hydrodynamic equations based on gradient expansions.
The hydrodynamic equations at leading order in the ex-
pansion describe the ideal fluid, those up to the first order
describe the Navier-Stokes fluid, and further higher-order
corrections can be found as needed.

However, recent high-energy heavy-ion collision exper-
iments reported that their initial dynamics immediately
after the impact of two relativistic nuclei can be described
hydrodynamically, even though it is far from equilib-
rium [5–9]. This “unreasonable” effectiveness of hydro-
dynamics triggered a reconsideration of its applicability,
and suggests the existence of non-equilibrium universal
attractors to hydrodynamics, which cannot be captured
within naive gradient expansions in hydrodynamics [10].
Such attractors, called hydrodynamic attractors, have
been actively studied and found from various microscopic
theories such as hydrodynamics, kinetic theory [11], and
holography [10, 12] (see review papers [13–17]).

The hydrodynamic attractor is also relevant for small
systems whose typical time and length scales are com-
parable to their relaxation times and mean free paths.
Recently, in cold atoms, such small systems were realized
with the development of experimental techniques. Relax-
ation times of strongly interacting Fermi gases were mea-
sured through initial state preparation and time-resolved
measurements, both in trapped gases [18, 19] and in uni-
form systems [20–22]. In particular, the detailed collec-
tive dynamics of a few strongly correlated fermions were
measured [23]. These experiments make cold atomic sys-

FIG. 1. Protocol for driving the scattering length to real-
ize the hydrodynamic attractor in a uniform system without
fluid velocities. The scattering length is kept at a constant
value ak up to time t = tk and then approaches the unitary
limit a−1(t) → 0 asymptotically with a power law of time,
see Eq. (11). To probe various initial conditions, the ini-
tial scattering length ak and time tk are varied while keeping
ã = ak(τζ/tk)α fixed for k = 1, 2, 3, . . . Once the drive has
started for t > tk, the scattering length follows a single curve.

tems an important new research platform for hydrody-
namic attractors.

In this Letter, we propose a setup to study hydro-
dynamic attractors in cold atoms. We consider a two-
component Fermi gas in three dimensions whose short-
range interaction is fully characterized by the two-body
s-wave scattering length and discuss its hydrodynamic
behavior when the scattering length is changed in time.
In this system, the time variation of the scattering length
at fixed volume leads to phenomena equivalent to the
isotropic fluid expansions of the gas because there are
no other intrinsic reference scales [24]. In other words,
by temporally varying the scattering length in a uniform
state without fluid velocities, one can arbitrarily drive the
system out of equilibrium, equivalent to isotropic fluid
expansion, while the fluid remains uniform and at rest.
Taking advantage of this equivalence, we show that hy-
drodynamic attractors can be explored in cold atomic
systems by driving the scattering length to the strongly
interacting, unitary limit over time, as schematically de-
picted in Fig. 1.

Bulk viscosity.—Let us start with a brief review of the
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bulk viscosity, which characterizes dissipation in isotropic
fluid expansions. According to the linear-response the-
ory, the complex bulk viscosity ζ(ω) at frequency ω is
provided by [25–28]

ζ(ω) =
RΠΠ(ω + i0+)−RΠΠ(i0

+)

i(ω + i0+)
, (1)

whereRΠΠ(w) ≡ i
∫∞
0

dt
∫
dx eiwt−ik·x⟨[Π̂(t,x), Π̂(0,0)]⟩

is the response function of the modified trace of the
stress tensor, Π̂ ≡ π̂−(∂p/∂N )E N̂ −(∂p/∂E)N Ĥ. Here,

π̂ =
∑

i Π̂ii/3, N̂ , and Ĥ are the pressure operator, the
number density operator, and the Hamiltonian density
operator, respectively, with p = ⟨π̂⟩, N = ⟨N̂ ⟩, and
E = ⟨Ĥ⟩.

The two-component fermions with a resonant zero-
range interaction are described by the Hamiltonian den-
sity [29]

Ĥ =
∑

σ=↑,↓

ψ̂†
σ

−∇2

2m
ψ̂σ + g0ψ̂

†
↑ψ̂

†
↓ψ̂↓ψ̂↑, (2)

where ψ̂†
σ is the creation operator for a fermion with

spin σ. In the dimensional regularization, the coupling
constant g0 is related to the scattering length a via
g0 = 4πma. In this system, the pressure operator satis-
fies

π̂ =
2

3
Ĥ+

Ĉ
12πma

, (3)

up to irrelevant total derivatives, with the contact den-
sity operator Ĉ ≡ (mg0)

2ψ̂†
↑ψ̂

†
↓ψ̂↓ψ̂↑. This operator iden-

tity is the nonrelativistic counterpart of the condition of
tracelessness due to conformal invariance and the sec-
ond term on the right-hand side measures the breaking
of the conformal symmetry. If the interaction strength
is tuned to the unitary limit, i.e., |a| = ∞, the second
term in Eq. (3) vanishes, and accordingly the equation of
state obeys p = 2E/3. In the unitary limit, therefore, the
modified trace Π̂ turns into zero, and the complex bulk
viscosity ζ(ω) becomes zero identically [30, 31].

Substituting the definition of the modified trace Π̂ and
Eq. (3) into Eq. (1), the complex bulk viscosity is ex-
pressed in terms of the response function of the contact
density:

ζ(ω) =
1

(12πma)2
RCC(ω + i0+)−RCC(i0

+)

i(ω + i0+)
, (4)

where the commutator of the Hamiltonian and particle
number operators with any operator in the grand canoni-
cal average can safely be dropped. The response function
of the contact density captures how the contact density
at time t changes in response to a variation of the scat-
tering length at time t = 0 as

⟨[Ĉ(t,x), Ĉ(0,0)]⟩ = −4πm

(
∂⟨C(t,x)⟩
∂a(0,0)−1

)
S,N

(5)

at constant entropy and particle number [28, 32]. Thus,
ζ(ω) can be measured via changes in the scattering
length, as well as isotropic expansion.
At low frequencies, ζ(ω) is well described by the Drude

form of

ζ(ω) =
iχ

ω + iτ−1
ζ

, (6)

where τζ is the relaxation time for the bulk viscosity that
captures the details of many-body dynamics. The sum
rule χ = (1/π)

∫∞
−∞ dω ζ(ω) = (1 + 2/d)p−N (∂p/∂N )S

is a thermodynamic property [1, 33]. Both τζ and χ
are known analytically at high temperatures [32, 34–36]
and numerically even at low temperatures in the strongly
correlated fluid [32]. Although the complex bulk viscos-
ity has a high-frequency tail proportional to ω−3/2 due
to the short-distance singularity of the contact interac-
tion [37, 38], this is irrelevant for the intermediate- and
long-time behavior of the dynamics. More technically,
the Drude form is systematically introduced by the mem-
ory function formalism [39], which has recently been suc-
cessfully applied to systems without well-defined quasi-
particles [40], such as the unitary Fermi gas near the
critical temperature [41]. Furthermore, the Drude form
is fundamental to providing a systematic and unified de-
scription for deriving the hydrodynamic equations of mo-
tion [42].
Time-dependent scattering length in hydrodynamics.—

Let us consider hydrodynamically a specific situation in
which the scattering length a(t) is varied over time in a
uniform system without fluid velocities. Then, the energy
density is produced at the rate of

Ė(t) = C(t)
4πma(t)2

ȧ(t), (7)

which is known as the dynamic sweep theorem [43–45].
Here, the contact density expectation value C(t) is di-
vided into two parts as

C(t) = Ceq[a(t)] + 12πma(t)π(t), (8)

where the first term gives the instantaneous contact den-
sity determined in thermal equilibrium with the scatter-
ing length a(t), and π(t) in the second term describes the
dissipative correction to the first term in hydrodynamics.
Facilitated by the fact that complex bulk viscosity is

well described by the Drude form at low frequencies, we
incorporate the relaxation time τζ = ζ(ω → 0)/χ into
hydrodynamics [42]. We suppose that π(t) is given as a
solution of

τζ π̇(t) + π(t) = −ζ[a(t)]Va(t), (9)

where ζ[a] is the static bulk viscosity coefficient
limω→0 ζ(ω) for given scattering length a. Here, Va(t)
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is the bulk strain rate tensor modified by the time-
dependent scattering length and is given by [46]

Va(t) ≡ −3∂t ln a(t). (10)

Whereas the bulk strain rate tensor is given by the di-
vergence of fluid velocities in ordinary hydrodynamics,
Va(t) also has the time derivative term of the scatter-
ing length. This is a consequence of the equivalence be-
tween isotropic fluid expansion and temporal contraction
of the scattering length. Remarkably, one can thus drive
the fluid out of equilibrium by the scattering length and
observe how it relaxes back toward equilibrium via the
contact, without moving parts in a uniform system.

If we take the long-time limit t/τζ → ∞, i.e., the limit
of τζ → 0, in Eq. (9), π(t) is reduced to π(t)|NS =
−ζ[a(t)]Va(t), which gives the Navier-Stokes hydrody-
namic result. Furthermore, higher-order hydrodynamic
corrections beyond the Navier-Stokes level can be ob-
tained systematically by expanding π(t) with respect to
τζ . In relativistic systems, hydrodynamic equations with
relaxation times in the form of Eq. (9) are commonly
employed to preserve causality and are referred to as the
Müller-Israel-Stewart theory [47–49].

Hydrodynamic attractor.—In order to realize the hy-
drodynamic attractor, we drive the scattering length to
bring the system out of equilibrium. We compare several
drives with different initial conditions to reveal the uni-
versal attractor in the relaxation dynamics. Specifically,
we investigate the situation where the system asymptot-
ically approaches the unitary limit by a power-law vari-
ation of the scattering length with exponent α > 0 as

ak(t)
−1 =

{
a−1
k t < tk,

a−1
k (t/tk)

−α t > tk,
for k = 1, 2, . . .

(11)

where ak is a constant scattering length up to time tk.
Here, k is a subscript to distinguish the drives for dif-
ferent initial conditions. To make the drive the same
at long times, we fix ak(τζ/tk)

α =: ã, which gives the
scattering length at the relaxation time in the power-law
drive. Therefore, at long times, all the driving protocols
lie on a single curve that asymptotically approaches the
unitary limit at a power α, as shown in Figure 1.

We suppose that the system is sufficiently close to the
unitary limit. Near the unitary limit, the static bulk
viscosity ζ[a] is proportional to a−2 [50], so that we take
an approximated form as ζ[a(t)] ≃ ζ(2)a(t)−2 with ζ(2)

being a constant. Then, Eq. (9) for t > tk turns into

τζ π̇(t) + π(t) = 3ζ[ã]
ατ2αζ
t2α+1

, (12)

and its analytical solution is found to be

π(t) = πatt(t) + πinie
−t/τζ , (13)

where πini = −etk/τζπatt(tk) is determined from the ini-
tial condition π(tk) = 0 because the system is in equilib-
rium with a constant scattering length up to time t = tk.
Here, πatt(t) is given by

πatt(t) =
3ζ[ã]α

τζ
(−1)2α+1e−t/τζΓ(−2α,−t/τζ), (14)

with Γ(s, x) being the incomplete Gamma function [51].
The first term of Eq. (13), πatt(t), depends on ak and tk
not separately but only through the fixed parameter ã,
while the second term explicitly depends on tk. There-
fore, πatt(t) is independent of the initial condition.
Let us investigate the behavior of the solution π(t) in

the long-time limit, where the Navier-Stokes hydrody-
namics have to be reproduced. The first term πatt(t) is
expanded for long times t≫ τζ as

πatt(t) = 3ζ[ã]
ατ2αζ
t2α+1

[
1 + (2α+ 1)

τζ
t
+O

(
(τζ/t)

2
)]
,

(15)

where the exponential factor e−t/τζ in Eq. (14) is harm-
less in the expansion with respect to t/τζ due to the
asymptotic behavior of the incomplete Gamma function,
Γ(−s,−z) = (−1/z)s+1ez/Γ(s+1)

∑∞
n=0 Γ(s+n+1)z−n

for |z| → ∞. In this expansion, the first term coincides
with the Navier-Stokes result, and the second term gives
a second-order hydrodynamic correction. In contrast, the
initial condition in the second term in Eq. (13) has an
exponential damping factor e−(t−tk)/τζ , which cannot be
expanded with respect to τζ/t, and is called the non-
hydrodynamic mode.
The key point is that the expansion (15) is asymp-

totic with convergence radius zero. The coefficient of the
n th-order term in the expansion is, indeed, proportional
to Γ(2α + n + 1) and diverges factorially. This facto-
rial divergence makes the gradient expansion underlying
hydrodynamics a divergent series and significantly less
accurate for small t/τζ . On the other hand, πatt(t) it-
self, given analytically in Eq. (14), universally describes
the system accurately, independent of the initial condi-
tions, for t/τζ ≳ 1 after the non-hydrodynamic mode has
decayed exponentially. Because the universality emerges
before the time scale t ≫ τζ at which hydrodynamics
becomes accurate, πatt(t) is called the hydrodynamic at-
tractor.
Note that while we have found πatt(t) as the exact so-

lution of Eq. (12), it can also be obtained from the Borel
summation of the expansion (15) [52]. In other words,
πatt(t) has a non-analytic contribution, which cannot be
directly captured in the expansion (15). For example,
the attractor solution for α = 1/2 is expanded for short
times t≪ τζ as

πatt(t)|α=1/2 =
3ζ[ã]

2τζ

[
−τζ
t
+ γ + ln

t

τζ
+O(t/τζ)

]
,

(16)
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FIG. 2. The hydrodynamic attractor solution (blue thick
line) for the deviation of the dimensionless contact den-
sity from its equilibrium value, c(t) − ceq[a(t)] ≡ (C(t) −
Ceq[a(t)])/(12πma(t))× (τζ/ζ[a(t)]), as a function of t/τζ un-
der the drive with a power α = 1/2. We also plot nu-
merical solutions (black thin lines) of Eq. (13) for tk/τζ =
0.1, 0.3, 0.5, . . . , 3.5 and hydrodynamic results of zeroth-order,
first-order, and second-order (orange, green, and red dashed
line, respectively) from the expansion (15). The universal at-
tractor solution corresponds to the numerical solution with
tk/τζ = 1.347 . . .

with γ = 0.5772 . . . being Euler’s constant. The Borel
summation for effective theories is one of the common
approaches to finding the hydrodynamic attractors [10].

Contact density.—Figure 2 plots the deviation of the
dimensionless contact density c(t) ≡ C(t)/(12πma(t)) ×
(τζ/ζ[a(t)]) from its instantaneous value under the drive
of the scattering length with a power α = 1/2. Here,
the dimensionless contact density does not depend on
the fixed parameter ã. Numerical solutions of Eq. (12)
for tk/τζ = 0.1, 0.3, . . . , 3.5 (black thin lines) remain
zero (their equilibrium values) until the start of driv-
ing at t = tk, and then take positive values as shown in
Fig. 2. Importantly, the numerical solutions converge im-
mediately to the universal attractor solution (blue thick
line) before being reduced to the hydrodynamic solutions
(dashed lines).

From the perspective of the Navier-Stokes solution,
the attractor appears to result from an effective bulk
viscosity coefficient that varies at short times before it
approaches its equilibrium value at long times. The ef-

fective bulk viscosity coefficient ζ
(α)
eff [a(t)] can be defined

for t > tk by representing the hydrodynamic attractor
solution in the form of the Navier-Stokes result [12]:

πatt(t) = 3ζ
(α)
eff [a(t)]

α

t
. (17)

From the explicit form of the attractor solution (14), we
find

ζ
(α)
eff [a(t)]

ζ[a(t)]
=

(
− t

τζ

)2α+1

e−t/τζΓ(−2α,−t/τζ). (18)

The effective viscosity ζ
(α)
eff [a(t)] has non-analytic contri-

butions in the expansion with respect to t/τζ , analogous
to the short-time expansion of πatt(t) in Eq. (16).

0 5 10 15 20
t/τ ζ

0.5
1.0
1.5
2.0
2.5

ζ eff
(α ) [a(t)]/ζ [a(t)]

α=1/2 α=1 α=3/2 α=2 α=5/2
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FIG. 3. The effective, time-dependent bulk viscosity coeffi-
cients reproduce the attractor solution when inserted into the
Navier-Stokes dynamics (18); shown here for different drive
exponents α.

Figure 3 plots the effective bulk viscosity as a function
of t/τζ for various powers. Since the ratio (18) measures
the deviation of the attractor solution from the Navier-
Stokes result, it asymptotically approaches unity in the
long-time limit. The ratio has a peak for intermediate
times and is suppressed for short times. These tendencies
are generally found in the effective viscosity coefficients
defined by the hydrodynamic attractor [12].

Discussion and outlook.—In this Letter, we have pro-
posed a driving protocol of the scattering length to ob-
serve the hydrodynamic attractor in cold atoms; this pro-
tocol is given by Eq. (11) and schematically depicted in
Fig. 1. Employing the hydrodynamic equation with the
relaxation time [Eq. (9)], we have analytically found the
attractor solution and the non-hydrodynamic mode as
Eq. (13). The dynamics of the contact density in our
protocol is plotted in Fig. 2, where the solutions from dif-
ferent initial conditions converge to the attractor solution
already before the time scale where the hydrodynamics
become relevant. Similarly, one can find the dynamics of
other thermodynamic variables such as the energy den-
sity by integrating Eq. (7). The deviation between the
attractor solution and the Navier-Stokes solution is mea-
sured as the ratio of the effective viscosity coefficient in
Eq. (18) and Fig. 3. Since we can choose the power α
arbitrarily, these results would be useful for measuring
the bulk viscosity coefficient ζ[a] near the unitary limit,
or more precisely ζ(2).

Since our analysis neglects the high-frequency tail of
the correlation function due to the singularity of the
short-range interaction, the short-time behavior of our
results is not exact. However, the details near the ini-
tial time immediately disappear as non-hydrodynamic
modes, and the dynamics universally follow the attractor
solution for intermediate and long times. On the other
hand, the power-law drive at a power α = 1/2 leads
to another universality in the short-time dynamics due
to the scale invariance (t → λ2t and x → λx) of the
zero-density nonrelativistic system [53]. It will be worth-
while to explore how this short-time universality and the
intermediate- and long-time universality of the hydrody-
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namic attractor can be connected.
It is also worthwhile to remark that our proposed pro-

tocol is analogous to a relativistic hydrodynamic attrac-
tor in a Hubble expansion [54]. This is because the time
variation of the scattering length corresponds to the vari-
ation of the spatial metric. Therefore, it is significant to
explore hydrodynamic attractors in cold atom systems,
where the initial-time dynamics can be directly observed,
unlike in heavy-ion collision experiments. Specifically,
the scattering length can be tuned by changes in the
magnetic field [55], while the contact dynamics have been
measured with high resolution in time [56]. In particu-
lar, our proposed protocol allows the choice of arbitrary
power of the driving and, moreover, allows various initial
states to be realized in a well-controlled manner.
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Supplemental Materials:
Hydrodynamic Attractor in Ultracold Atoms

Derivation of the attractor solution from the Borel summation

Definition of the Borel summation

We consider a formal power series:

A(z) =

∞∑
n=0

anz
n, (S1)

where an is a real constant. Here, A(z) is supposed not necessarily to converge. For later convenience, we assume
that the coefficient an has a factorial factor proportional to Γ(n + p + 1) for p ∈ R, rather than the usual factorial
factor Γ(n+ 1). Let us introduce the Borel transform of A(z) as

Bp[A](s) ≡
∞∑

n=0

an
Γ(n+ p+ 1)

sn+p. (S2)

Then, the Borel summation of A(z) is defined as

Sp[A](z) ≡ P

∫ ∞

0

ds e−sz−pBp[A](sz), (S3)

where P represents the principal value. Note that the definitions of the Borel transform and the Borel summation
here are slightly extended from the usual definitions with p = 0 because of the factorial factor Γ(n + p + 1) of the
coefficient an.

The Borel transform Bp[A](s) of a series A(z) can have singularities at s > 0. When a series A(z) is given as a
perturbative solution of a certain problem with a small parameter z, the singularities of the Borel transform Bp[A](s)
correspond to non-perturbative contributions, which are not captured in the expansion with respect to z such as
e−1/z [57]. However, such non-perturbative contributions are irrelevant as they correspond to non-hydrodynamic
modes for our purposes focusing on hydrodynamic attractors. Thus, we take the principal value in the definition of
the Borel summation Sp[A](z) as a simple method to avoid the singularities.

Expanded solution of Eq. (12)

Based on the perspective of gradient expansions in hydrodynamics, we solve Eq. (12) by expanding π(t) with respect
to τζ/t, which is small in the long-time limit. By factoring out the trivial prefactor 3ζ[ã]ατ2αζ /t2α+1 corresponding to
the right-hand side of Eq. (12), we expand π(t) as

π(t) = 3ζ[ã]
ατ2αζ
t2α+1

π̃(τζ/t), π̃(z) =

∞∑
n=0

πnz
n. (S4)

Substituting this expansion into Eq. (12), we find

πn =
Γ(2α+ n+ 1)

Γ(2α+ 1)
for n = 0, 1, 2, . . . , (S5)

where the coefficients are determined independently of the initial condition for π(t). Here, the leading-order solution
coincides with the Navier-Stokes hydrodynamic result, and the n th-order solution gives the (n+1) th-order hydrody-
namic correction. Importantly, since πn is proportional to Γ(2α+ n+ 1) and diverges factorially, the expansion (S4)
does not converge. Nevertheless, we can obtain a meaningful result for π(t) involving information up to infinite order
using the aforementioned Borel summation.
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Borel summation of π(t)

The Borel transform of π̃(z) is computed as

B2α[π̃](s) =

∞∑
n=0

πn
Γ(n+ 2α+ 1)

sn+2α =
1

Γ(2α+ 1)

s2α

1− s
. (S6)

Although the summation in the Borel transform converges only for |s| < 1, its defined domain can be extended to
s ∈ C except for s = 1 by an analytic continuation. Subsequently, its Borel summation is computed as

S2α[π̃](z) =
1

Γ(2α+ 1)
P

∫ ∞

0

ds e−s s2α

1− sz
= e−1/z(−z)−2α−1Γ(−2α,−z−1). (S7)

Therefore, the corresponding Borel summation of π(t) is obtained as

πBorel(t) = 3ζ[ã]
ατ2αζ
t2α+1

S2α[π̃](τζ/t) = 3ζ[ã]
α

τζ
(−1)2α+1e−t/τζΓ(−2α,−t/τζ), (S8)

which is identical to the attractor solution (14) in the main text.
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