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Study (controlable ?) non perturbative methods in many-body physics and field theory
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Thermodynamic potential as a functional of the propagator

Flow of the effective action

Two exact formulae

These formulae are useful mostly for the approximations that they suggest 

One can use one formalism to shed light on the other (this talk) 
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(can be generalized)
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Figure 1: The three skeleton diagrams that contribute to �[G] at order 4-loop.

2. Generalities

We consider a scalar field theory with the classical action
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in d-dimensional Euclidean space (in this paper we shall be mainly concerned with the case d = 4). Our goal

in this section is to relate the 2PI and the FRG formulations of the same cutoff theory, thereby leaving aside

the issues of ultraviolet divergences and renormalization, which will be addressed in the following sections.

Thus, all momentum integrals are supposed to be evaluated with an ultraviolet regulator characterized

by a cutoff scale ⇤uv. Except in a few cases where explicit calculations are done, the regulator, and the

corresponding cutoff scale, will be left implicit.

Figure 2: The diagrams that contribute to ⌃[G] up to order 3-loop. These are obtained from the skeletons of �[G] shown in
Fig. 1 by taking a functional derivative with respect to G.
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Basics of 2PI formalisms (1)

Luttinger-Ward functional 

Self-energy

Self-consistency condition Stationarity property



I(q, p) = 2 �⌃(p)
�G(q) = 4 �2�

�G(q)�G(p) = I(p, q)

Figure 4: The skeleton diagrams that contribute to the kernel I(q, p) up to order 2-loop, i.e. the contributions to I2(q, p).
These are obtained from the skeletons of �4[G] by taking two functional derivatives with respect to G, which amounts to
cutting two lines in the diagrams of �, two lines that are subsequently labelled respectively p and q. These diagrams are 2-line
irreducible in the s channel, defined by the external lines that carry momentum p. Only the t channel contributions of the
one-loop and two-loop diagrams are shown (the u channel diagrams are obtained from the t channel ones by exchanging the q
lines, as in Fig. 3).

Figure 5: The skeleton diagrams that contribute to the 4-point function �(4)(p, q) at order one-loop. The first diagram, which
is reducible in the s channel, is obtained by iterating the 4-point vertex (the lowest order contribution to I) once in the
Bethe-Salpeter equation. The other two diagrams are 2-line irreducible in the s channel, and correspond respectively to the
one-loop contributions of the t and u channels to the kernel I(p, q).
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Basics of 2PI formalisms (2)

Irreducible kernel

Bethe-Salpeter equation
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Basics of functional RG 

Flow equation (Wetterich)

Infinite hierarchy of coupled flow equations for the n-point functions 

Equation for the 2-point function
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And so on…..
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Figure 6: Graphical illustration of Eq. (19).

where ⌃(p) ⌘ ⌃[G]. For  = 0, since the regulator vanishes, this equation reduces trivially to the gap

equation of the original theory, Eq. (4). Now, by taking a derivative of ⌃ with respect to the scale  and

using the extension of Eq. (3) to the deformed theory, we obtain
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where the irreducible kernel I(q, p) appears. A graphical illustration of this equation is presented in Fig. 6.
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The left-hand-side of this equation can be interpreted as the product of a continuous matrix M, with matrix

elements M(q, p) ⌘ �(q � p) +

1
2 G

2
(q) I(q, p), acting from the right on a continuous vector @⌃ with

components @⌃(q). Consider now the extension of Eq. (8) to the deformed theory
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where the subscript  on I means that the functional derivative defining the kernel I (see Eq. (7)) is to be

evaluated for G = G. It is easily checked using Eq. (22) that the inverse matrix M

�1
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M
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 (q, p). Multiplying both sides of Eq. (21) by this inverse matrix and

using Eq. (22) once more, one arrives finally at a flow equation for ⌃(p) that involves in its right hand side
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Equation for the 2-point function (or self-energy)

The theory in the presence of  R(q)

All formal relations between n-point functions hold for any  

One can then take derivatives w.r.t. 

…. thereby obtaining flow equations

This is NOT quite the usual flow equation
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Figure 7: Graphical illustration of Eq. (23). In the right hand side, we have used the Bethe-Salpeter equation (22) in order to
express �(4) in terms of I.

From the way Eq. (23) was obtained, it is clear that solving the coupled set of equations (22)-(23) is

equivalent to solving the gap equation (18) for each value of . These coupled equations constitute therefore

an alternative formulation of a given �-derivable approximation: a flow equation for ⌃(p), coupled with a

Bethe-Salpeter equation for �

(4)
 that needs to be solved at each step in . Note that this approximation

involves explicitly only the kernel I, a known functional of G once a choice of skeletons has been made

for �. Solving the gap equation by this procedure requires specifying appropriate initial conditions. These

will be discussed shortly.

Still another possible formulation is obtained by coupling Eq. (23) to the differential version of Eq. (22).

By taking the derivative of Eq. (22) with resect to , one gets
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where M was defined above in terms of G and I. By multiplying both sides of this equation by M
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The exact flow equation 
for the 2-point function

Solving the Bethe-Salpeter equation to get  �(4)(q, p)

and using this equation to eliminate I(q, p)

we are left with 



A possible truncation scheme (1)

Truncate the Luttinger-Ward functional (keeping selected skeletons)

Obtain the kernel I(q, p) = 4 �2�
�G(q)�G(p)

Then solve the coupled equations
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NB.  i) The solution is independent of the choice of the "regulator"

ii) Not only a truncation of fRG, but an alternative to solving the 2PI equations



A possible truncation scheme (2)

Instead of solving the Bethe-Salpeter eqn., write a flow equation for the 4-point function(whose explicit expression is given above after Eq. (22)), and using Eq. (22), one ends up with
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Note that I has dropped out of the equation for @�
(4)
 , which depends now only on @I. In this formu-

lation, the solution of the gap equation requires only the knowledge of @I, which is a known functional of

G, once � is given. We shall see explicit examples in the last section.

At this point it is useful to make a closer comparison with the usual flow equations for �

(2) and �

(4).

We first identify @⌃(p) with @�
(2)
 (p) (cp. Eq. (17) and Eq. (18)). Doing so, one recognizes in Eq. (23)

the equation obtained from that satisfied by the effective action �[�], Eq. (15), after taking two derivatives

with respect to the field �, and letting � vanish (recall that we denote the two- and four-point functions

at vanishing field by �
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follows that the alternative formulations of �-derivable approximations which we discussed above can be

seen as being equivalent to a specific truncation of the infinite hierarchy of renormalization group equations

in which the usual flow equation for the two-point function is closed by means of the 2PI relation between

the two-point and the four-point functions (Eqs. (7) and (8)). Note that such truncations are ‘exact’, in the

sense that the propagator obtained at the end of the flow, where  = 0, is independent of the choice of the

regulator. Such an approximation has already been explored in [Cite our 3d paper]

2.3. �-derivable approximations as truncations of the fRG equations

In order to appreciate the nature of this truncation, it is useful to recall that the usual flow equation for

the 4-point function reads
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NB.  This equation is NOT the "usual" flow equation for the 4-point function

= +



self-consistent behavior:
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where the notation f ⇠ ln, or equivalently @f ⇠ 

0 is meant to indicate that the growth of f at large

 is slower than any power of . As a specific illustration of the argument, let us consider the flow equation

for the 4-point function, Eq. (26). We note first that the loop momentum l in this equation is bounded by

, because @R(l) plays the role of an ultraviolet cutoff at the scale  (e.g. @R(l) ⇠ 

2
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by plugging the expected behaviors (82) into Eq. (26), using the fact that the regulated propagators at

large  behave as �2 and taking into account the four dimensional phase space integration ⇠ 

4, one easily

verifies that the leading order behaviors of the integrals in Eq. (26) are indeed ⇠ 
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initial assumption that �

(4) ⇠ ln. This argument can be easily extended to arbitrary n-point functions,

thereby verifying the equations (82) and justifying the statement made earlier that �⇤[�] becomes simple

if ⇤ is sufficiently large. Note that we have used the fact that there are no tree level couplings for n > 4:

all n-point functions, with n > 4 are induced by loop corrections (it is easy to verify using the same power

counting argument that a tree-level value of the 6-point function would induce n-point function growing

with ⇤ as ⇤

↵ with positive ↵).

The relations (82) exhibit the expected behaviors of the n-point functions at large , that is in the region

where we want to specify the initial conditions. From the point of view of renormalization, this behavior

of the n-point function indicates that the theory is controlled in the UV by two parameters, m and � (in

addition to the field normalization Z), which become large when the scale ⇤ gets large, all other n-point

functions becoming increasingly small as ⇤ gets larger and larger [UV quasi fixed point, two relevant direc-

tions]. These two parameters translate into initial conditions on the 2 relevant n-point functions, namely the

mass m⇤ and the 4-point function at zero momentum, �⇤. [Of course, these parameters may be re-expressed

in terms of the renormalized quantities, that is, in terms of the values of the corresponding n-point functions

at  = 0. A REVOIR]

This general structure gets modified when one performs a truncation of the flow equations, such as

that discussed in the present paper based on 2PI relations for the 4-point function. Let us recall the flow

equations that we have obtained in Sect. 2 for the 2-point and the 4-point functions. The flow of ⌃ is given
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Renormalization issues

Standard lore in fRg: things become "simple" at the "cutoff scale"

One expects of course similar features in the 2PI truncation… 
                        …but working out the "details" turned out to be tricky

 Not a priori obvious that the integrals are finite
(whose explicit expression is given above after Eq. (22)), and using Eq. (22), one ends up with
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the skeleton expansion (i.e., the 4-point function is the sum of skeleton diagrams with a given number of

loops calculated with resummed propagators). In order to alleviate the notation, we drop the superscript

(4) on �

(4), and denote the 4-point function simply by �, with �

(l) being its l loop contribution. We write
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where we have separated the tree contribution (l = 0) for reasons that will become clear as we proceed. By

truncating this equation at order L loops, we get
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The sum involves only ��

(l)’s with l  L � 1 which are determined in the renormalization of lower loop

orders. Their role is as usual to absorb subdivergences so that there remains only an overall divergence in

Eq. (52), absorbed in ��

(L). An illustration with the first few terms in the loop expansion is given in Fig. 9.

We have, schematically,

Figure 9: The contributions �(l) for l = 0, 1, 2. The contribution of the 2-line irreducible kernel, as well as the relevant iterations
of the Bethe-Salpeter, are indicated at each loop order.

�
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= �0 = �, �1 = �+ ��

(1)
+ �

2
�

(1) (53)
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Divergences, and subdivergences…..

In addition to counterterms needed to renormalise the kernel I
an infinite number of counterterms are needed to renormalise the BS equation…. 

Consider the loop expansion of the 4-point function



the finite parts of �m2 and �Z is done with the renormalization conditions (36). The gap equation reads
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where ⌃

(l) is defined in Eq. (45). The counterterms ��

(l) and ��

BS
(L) absorb the coupling constant countert-

erms, while the remaining global divergences, whose momentum dependence is of the form ↵ p
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In what follows we shall use the formulation of �-derivable approximations in terms of flow equations and

see how the quantity �
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(l) arise in a natural a way. In fact, the flow equations simplify considerably

the handling of counterterms, as we shall see. We shall show that one can obtain an equivalent formulation
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3.4. Illustration with the 2-loop example

We can again use the 2-loop example as an illustration (see Sect. 2.4). We note that the irreducible kernel

is the 4-point vertex and it does not require counterterm. The iteration of the bubble diagram contains

divergences that require the counterterm ��
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where the full propagator is to be obtained by solving the gap equation (see below), and we have used the

notation for the 4-point function introduced above. The counterterm �

BS
(0), which contains contributions to all

orders in �, can be determined by imposing the renormalization condition �
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coupling constant. Note that this counterterm does not depend on the mass M (and hence on the solution

of the gap equation). One gets the formal expression
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Note that the leading order contribution to ��

BS
(0) is a�

2
= ��

(1)
b , the counterterm needed to absorb the

divergence of the first iteration of the BS equation. This corresponds to the renormalization of � in the

s-channel, the other two channels will enter with I only at next order.
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(l) is defined in Eq. (45). The counterterms ��

(l) and ��

BS
(L) absorb the coupling constant countert-

erms, while the remaining global divergences, whose momentum dependence is of the form ↵ p

2
+ �, are

absorbed in �m

2 and �Z.

In what follows we shall use the formulation of �-derivable approximations in terms of flow equations and

see how the quantity �

BS
(L) and �

(l) arise in a natural a way. In fact, the flow equations simplify considerably

the handling of counterterms, as we shall see. We shall show that one can obtain an equivalent formulation

of �-derivable approximations in terms of finite flow equations, provided one introduces �

BS
 and �

(l)
 as

dynamical quantities, that is quantities which also obey (finite) flow equations. The initial conditions for

�

BS
 and �

(l)
 will be seen as the counterparts of the different counterterms ��
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(L) and ��

(l).

3.4. Illustration with the 2-loop example

We can again use the 2-loop example as an illustration (see Sect. 2.4). We note that the irreducible kernel

is the 4-point vertex and it does not require counterterm. The iteration of the bubble diagram contains

divergences that require the counterterm ��

BS . The renormalized Bethe-Salpeter equation reads
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where the full propagator is to be obtained by solving the gap equation (see below), and we have used the

notation for the 4-point function introduced above. The counterterm �

BS
(0), which contains contributions to all

orders in �, can be determined by imposing the renormalization condition �

BS
(0) = �, with � the renormalized

coupling constant. Note that this counterterm does not depend on the mass M (and hence on the solution

of the gap equation). One gets the formal expression
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(q). (67)

Note that the leading order contribution to ��

BS
(0) is a�

2
= ��

(1)
b , the counterterm needed to absorb the

divergence of the first iteration of the BS equation. This corresponds to the renormalization of � in the

s-channel, the other two channels will enter with I only at next order.
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At this point we consider the renormalized gap equation which reads
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where it is understood that the momentum integrals are calculated with a (sharp) ultraviolet cutoff, i.e.,

q  ⇤uv. In order to determine the mass counterterms, it is convenient to differentiate ⌃ with respect to

m

2, as in Eq, (12). We note first that �m

2 is proportional to m

2 so that d�m
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2. Then a
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The equation (69) becomes then simply
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Clearly, @⌃/@m2 can be made finite by the choice
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It seems that one does not recover the leading order perturbation theory. Pb with the quadratic divergence

of the tadpole, which is independent of m2 and therefore drops out of the derivative of �m2 w.r.t. m

2.

In fact, it is useful to redo perturbation theory. We shall need the following two integrals
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In leading order we have

¯

⌃

(1)
=

�R

2

I(mR) + �r

(1)
, (74)

and we may choose �r

(1) to absorb the divergence of I, which we call Idiv. That is

�r

(1)
= ��R

2

Idiv(mR). (75)
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A simple example (1)

Figure 1: The three skeleton diagrams that contribute to �[G] at order 4-loop.

2. Generalities

We consider a scalar field theory with the classical action
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, (1)

in d-dimensional Euclidean space (in this paper we shall be mainly concerned with the case d = 4). Our goal

in this section is to relate the 2PI and the FRG formulations of the same cutoff theory, thereby leaving aside

the issues of ultraviolet divergences and renormalization, which will be addressed in the following sections.

Thus, all momentum integrals are supposed to be evaluated with an ultraviolet regulator characterized

by a cutoff scale ⇤uv. Except in a few cases where explicit calculations are done, the regulator, and the

corresponding cutoff scale, will be left implicit.

Figure 2: The diagrams that contribute to ⌃[G] up to order 3-loop. These are obtained from the skeletons of �[G] shown in
Fig. 1 by taking a functional derivative with respect to G.
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Figure 4: The skeleton diagrams that contribute to the kernel I(q, p) up to order 2-loop, i.e. the contributions to I2(q, p).
These are obtained from the skeletons of �4[G] by taking two functional derivatives with respect to G, which amounts to
cutting two lines in the diagrams of �, two lines that are subsequently labelled respectively p and q. These diagrams are 2-line
irreducible in the s channel, defined by the external lines that carry momentum p. Only the t channel contributions of the
one-loop and two-loop diagrams are shown (the u channel diagrams are obtained from the t channel ones by exchanging the q
lines, as in Fig. 3).

Figure 5: The skeleton diagrams that contribute to the 4-point function �(4)(p, q) at order one-loop. The first diagram, which
is reducible in the s channel, is obtained by iterating the 4-point vertex (the lowest order contribution to I) once in the
Bethe-Salpeter equation. The other two diagrams are 2-line irreducible in the s channel, and correspond respectively to the
one-loop contributions of the t and u channels to the kernel I(p, q).
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Figure 4: The skeleton diagrams that contribute to the kernel I(q, p) up to order 2-loop, i.e. the contributions to I2(q, p).
These are obtained from the skeletons of �4[G] by taking two functional derivatives with respect to G, which amounts to
cutting two lines in the diagrams of �, two lines that are subsequently labelled respectively p and q. These diagrams are 2-line
irreducible in the s channel, defined by the external lines that carry momentum p. Only the t channel contributions of the
one-loop and two-loop diagrams are shown (the u channel diagrams are obtained from the t channel ones by exchanging the q
lines, as in Fig. 3).

Figure 5: The skeleton diagrams that contribute to the 4-point function �(4)(p, q) at order one-loop. The first diagram, which
is reducible in the s channel, is obtained by iterating the 4-point vertex (the lowest order contribution to I) once in the
Bethe-Salpeter equation. The other two diagrams are 2-line irreducible in the s channel, and correspond respectively to the
one-loop contributions of the t and u channels to the kernel I(p, q).

7

�[G] ⌃(p) = 2 ��
�G(p) I(q, p)

A simple example (2)

and @�
(4)
 (q, p) keep essentially similar forms, with modified parameters m ! m⇤ and � ! �⇤, that is

Z ⇤

⇤0

d @�
(2)
 (p) = m

2
⇤ �m

2
+ (Z⇤ � 1)p

2
+O

✓
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⇤

◆
, (87)

Z ⇤

⇤0

d @�
(4)
 (q, p) = �⇤ � �+O

✓
⇤phys

⇤

◆
. (88)

In other words, the flow between ⇤0 and ⇤ can be entirely absorbed into a redefinition of the parameters

that determine the initial conditions. We need to specify the scale to which ⇤ is to be compared. Note that

⇤ � ⇤phys. Now recall that  plays a role similar to the external momenta in the loop integral. When  is

small compared to the scale of the external momenta, the effect of  is negligible: there is no flow. When 

is large, the opposite situation prevails: the n-point function becomes independent of momenta. The flow

is important only when  is of the order of the external momenta (or the mass). Another issues comes

in: if the external momenta are large, say of the order of ⇤uv, then the flow is small at large : there is

indeed little phase space for the loop integral before reaching the decoupling, and that remains the case at

decoupling. It follows that whatever momentum dependence is put in at the initial scale at large momenta

will survive the flow almost unaltered. In short, very short wavelength fluctuations are unaffected by the

flow. But our main concern are physical fluctuations with momenta smaller than ⇤phys. For them, that is

in the regime where ⇤phys ⌧ ⇤, the momentum dependence of the n-point functions can be simply ignored:

one can imagine expanding the loop integrals in powers of p/⇤ ⇠ ⇤phys/⇤ since the presence of the regula-

tor eliminates possible infrared divergences that could invalidate such an expansion. Note however that the

parameter M⇤ differs form m by a term of order ⇤, while Z⇤�1 and �⇤�� are proportional to � ln(⇤uv/⇤).

We should discuss somewhere the choice of parameterizing the theory in terms of bare versus renormalized

couplings

To summarize, there are three main issues that we want to discuss: i) whether the truncated flow

equations can be made finite; ii) how to fix the initial conditions; iii) the dependence on the bare parameters

(as opposed to the renormalized ones). These threes issues are interrelated, and we shall examine them in

details by considering successive approximations, 2-loop, 3-loop and 4-loop. New features arise at each level,

with the 4-loop case being the general one.

4.1. 2-loop

The flow equations were already given in Sect. 2.4. These are Eq. (30) for ⌃ and Eq. (31) for �, which

we reproduce here for convenience:

@⌃ = �1

2

�

Z

q
(@R)G

2
(q), @� = �1

2

�

2
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q
@G
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(q). (89)
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m2
 = m2 = m2

⇤ +
�⇤
2

R

q

n

G(q) �G⇤(q) + (m2
 � m2

⇤)G2
⇤(q)
o

@m2
 = � 1

2�
R

q(@R)G2
(q)

The two equations to be solved

Solution

Elimination of "subdivergences " is automatically taken care of 
by the coupled flow equations 



Conclusions

• Two non perturbative methods were compared

• Approximation schemes exist where they completely match

• The comparison help to clarify some renormalisation issues in 
non perturbative schemes, such as 2PI

• Truncating the fRG flow equations with 2PI relations may be 
useful in some applications 


