Bound states in the ϕ^{4} model

Bertrand Delamotte, LPTMC, Université Paris VI

Heidelberg, March 2017

Collaborators

F. Benitez (Univ. Montevideo, Uruguay)
F. Rose (Univ. Paris)
F. Léonard (Univ. Paris)

Bound states in the Ising model: State of the art
$\mathrm{d}=2$: Theory

- many exact results close to criticality from conformal theory and S-matrix: A.B. Zamolodchikov, Int. J. Mod. Phys. A 3743 (1988)
- At $T=T_{c}$, with $B \neq 0$ (and small) seven "bound states"
- only two below the threshold $2 m_{0}$ of the multi-particle continuum
- $m_{1} / m_{0}=(1+\sqrt{5}) / 2$ (golden ratio).
- No bound state for $T<T_{c}$ and $B=0$.
d=2: Experiment
Quasi-1d quantum Ising ferromagnet: $\mathrm{CoNb}_{2} \mathrm{O}_{6}$, first bound state seen by neutron scattering R. Coldea et al. Science 327177 (2010).

Open question: what about $T<T_{c}$ and $B \neq 0$?

Bound states in the Ising model: State of the art

d=3: Theory

- one bound state for $T<T_{c}(B=0)$
- simple argument from the quantum $(2+1)$ system at $T=0$,
- $m_{1} / m_{0} \sim 1.8$ for $T \rightarrow T_{c}^{-}$
- many theoretical and numerical approaches: Bethe-Salpeter, exact diagonalization, Monte-Carlo.

Bethe-Salpeter at leading order is OK but very large (and unphysical) correction at next order.
\Rightarrow need for nonperturbative methods.

NPRG and the BMW approximation

Naive answer from perturbation theory: the ratio between the two first excited levels is an integer: $m_{0}, 2 m_{0}, \cdots$
\Rightarrow Need to go beyond naive perturbation theory to describe bound states (e.g. resummation of infinitely many diagrams).

But "impossible" within the derivative expansion of the NPRG.
\Rightarrow Need to go beyond the derivative expansion and keep the full momentum dependence of the two-point function.
\Rightarrow Need BMW (Blaizot-Mendez-Wschebor) approximation.

Signature of a bound state in the spectral function
Instead of the lattice Ising model, we consider the ϕ^{4} theory:

$$
\begin{equation*}
S[\varphi]=\int d^{d} x\left\{\frac{1}{2}(\nabla \varphi(x))^{2}+\frac{r_{0}}{2} \varphi^{2}(x)+\frac{u_{0}}{4!} \varphi^{4}(x)\right\} . \tag{1}
\end{equation*}
$$

Monte Carlo simulations: bound states detected by studying $\langle\varphi(x) \varphi(0)\rangle_{c}$ in the broken phase.

Usually:

$$
\begin{equation*}
\langle\varphi(x) \varphi(0)\rangle_{c} \underset{x \rightarrow \infty}{\sim} A e^{-m x}, \text { with } m=\xi^{-1} \tag{2}
\end{equation*}
$$

Non trivial spectrum: sub-leading exponential(s) as well:

$$
\begin{equation*}
\langle\varphi(x) \varphi(0)\rangle_{c} \underset{x \rightarrow \infty}{\sim} A_{0} e^{-m x}+A_{1} e^{-M x}+\ldots \tag{3}
\end{equation*}
$$

Non trivial spectrum:

$$
\begin{equation*}
\langle\varphi(x) \varphi(0)\rangle_{c} \underset{x \rightarrow \infty}{\sim} A_{0} e^{-m x}+A_{1} e^{-M x}+\ldots \tag{4}
\end{equation*}
$$

In Fourier space:

$$
\begin{align*}
G(p) & =\int d^{d} x\langle\varphi(x) \varphi(0)\rangle_{c} e^{-i p x} \\
& \underset{p \rightarrow 0}{\sim} \frac{A_{0}^{\prime}}{p^{2}+m^{2}}+\frac{A_{1}^{\prime}}{p^{2}+M^{2}}+\cdots \tag{5}
\end{align*}
$$

\Rightarrow analytic continuation $G(\omega=i p)$ has poles at the values of the masses of the system.

Work Plan:

- Compute the momentum dependence of the two-point function $\Gamma^{(2)}(p)$ and invert it to get $G(p)$;
- Analytically continue it: $p \rightarrow i p$;
- Find the poles.

BMW does point 1 for us.
Padé approximants followed by an evaluation on the complex axis $(G(i p-\epsilon))$ do point 2 .

BMW approximation

$$
\begin{gather*}
\partial_{k} \Gamma_{k}^{(2)}(p, \phi)=\int_{q} \partial_{k} R_{k}\left(q^{2}\right) G_{k}^{2}(q)\left[\Gamma_{k}^{(3)}(p,-p-q, q) \times\right. \tag{6}\\
\left.G_{k}(p+q) \Gamma_{k}^{(3)}(-p, p+q,-q)-\frac{1}{2} \Gamma_{k}^{(4)}(p,-p, q,-q)\right] .
\end{gather*}
$$

with the full propagator

$$
\begin{equation*}
G_{k}(p, \phi)=\left(\Gamma_{k}^{(2)}(p, \phi)+R_{k}(p)\right)^{-1} \tag{7}
\end{equation*}
$$

Problem: The hierarchy of flow equations is not closed \Rightarrow need for a closure that preserves the full momentum dependence of $\Gamma_{k}^{(2)}(p, \phi)$
\Rightarrow approximations on $\Gamma_{k}^{(3)}, \Gamma_{k}^{(4)}$.

BMW approximation

Based on two remarks:

1. $q<k$ because of $\partial_{k} R_{k}\left(q^{2}\right)$
\Rightarrow replace $q \rightarrow 0$ in the vertex functions $\Gamma_{k}^{(3)}, \Gamma_{k}^{(4)}$
\Rightarrow replace

$$
\begin{aligned}
& \Gamma_{k}^{(3)}(p, q-p,-q ; \phi) \rightarrow \Gamma_{k}^{(3)}(p,-p, 0 ; \phi) \\
& \Gamma_{k}^{(4)}(p,-p, q,-q ; \phi) \rightarrow \Gamma_{k}^{(4)}(p,-p, 0,0 ; \phi)
\end{aligned}
$$

2. $\Gamma_{k}^{(n)}\left(p_{1}, \cdots, p_{n-1}, 0 ; \phi\right)=\frac{\partial}{\partial \phi} \Gamma_{k}^{(n-1)}\left(p_{1}, \cdots, p_{n-1} ; \phi\right)$

$$
\begin{gather*}
\partial_{k} \Gamma_{k}^{(2)}(p, \phi) \simeq \int_{q} \partial_{k} R_{k}\left(q^{2}\right) G_{k}^{2}(q)\left[\Gamma_{k}^{(3)}(p,-p, 0 ; \phi) \times\right. \tag{8}\\
\left.G_{k}(p+q) \Gamma_{k}^{(3)}(-p, p, 0 ; \phi)-\frac{1}{2} \Gamma_{k}^{(4)}(p,-p, 0,0 ; \phi)\right] .
\end{gather*}
$$

BMW approximation

$$
\begin{align*}
& \partial_{k} \Gamma_{k}^{(2)}(p, \phi) \simeq \int_{q} \partial_{k} R_{k}\left(q^{2}\right) G_{k}^{2}(q)\left[\Gamma_{k}^{(3)}(p,-p, 0 ; \phi) \times\right. \tag{9}\\
&\left.G_{k}(p+q) \Gamma_{k}^{(3)}(-p, p, 0 ; \phi)-\frac{1}{2} \Gamma_{k}^{(4)}(p,-p, 0,0 ; \phi)\right]
\end{align*}
$$

"finally"

$$
\partial_{k} \Gamma_{k}^{(2)}(p, \phi) \simeq J_{3}(p, \phi)\left(\partial_{\phi} \Gamma_{k}^{(2)}(p, \phi)\right)^{2}-\frac{1}{2} J_{2}(p, \phi) \partial_{\phi}^{2} \Gamma_{k}^{(2)}(p, \phi)
$$

and
$J_{n}(p, \phi)=\int_{q} \partial_{k} R_{k}\left(q^{2}\right) G_{k}^{n-1}(q, \phi) G_{k}(p+q, \phi)$

$$
\Gamma_{k=0}^{(2)}(p ; \phi=0) \text { for } T<T_{c}
$$

Δ is the mass of the fundamental particle (the inverse correlation length) at the LPA'.

Padé approximants

Necessary to perform an analytic continuation.
Procedure:

- We compute $G(p)$ for $N=30$ to 50 values p_{i} of p equally spaced in an interval $\omega_{\min } \sim \Delta$ and $\omega_{\max } \sim 10 \Delta$,
- We construct a [(N-2)/N] Padé approximant $F(p)$ of $G(p)$, even in p, that satisfies $F\left(p_{i}\right)=G\left(p_{i}\right)$ for all i,
- We compute $\operatorname{Im}[F(\omega=i p-\epsilon)]$ which is an approximation of $\operatorname{Im} G(i p)$,
- The peaks of F correspond to the poles of $G(i p)$.

Results in $d=3$

Very good resolution of the main peak, small dispersion of the second peak.
In $d=3$ and for $T \rightarrow T_{c}$, we find $m_{1} / m_{0}=1.82(2)$. Monte Carlo: 1.83(3),
Continuous unitary transformations: 1.84(3)
Exact diagonalization: 1.84(1).

Results in other dimensions

Results in agreement with exact results in $d=2$.

Conclusions and perspectives

BMW + analytic continuation works remarkably well, at least for Ising.

Possible to study "non integrable perturbations" in $d=2: T<T_{c}$ together with a magnetic field.

More difficult: 3-state Potts model in $d=2$ and $d=3$ where a bound state is expected.

