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Bound states in the Ising model: State of the art

d=2: Theory

@ many exact results close to criticality from conformal theory
and S-matrix:

o At T = T, with B # 0 (and small) seven “bound states”

@ only two below the threshold 2myg of the multi-particle
continuum

e mi/mg = (1++/5)/2 (golden ratio).
@ No bound state for T < T, and B = 0.

d=2: Experiment
Quasi-1d quantum lIsing ferromagnet: CoNb,QOg, first bound state
seen by neutron scattering

Open question: what about T < T, and B # 07



Bound states in the Ising model: State of the art

d=3: Theory

@ one bound state for T < T, (B =0)

@ simple argument from the quantum (2+1) system at T =0,
@ my/mg~18for T — T
°

many theoretical and numerical approaches: Bethe-Salpeter,
exact diagonalization, Monte-Carlo.

Bethe-Salpeter at leading order is OK but very large (and
unphysical) correction at next order.

= need for nonperturbative methods.



NPRG and the BMW approximation

Naive answer from perturbation theory: the ratio between the two
first excited levels is an integer: mg,2mg, - - -

= Need to go beyond naive perturbation theory to describe bound
states (e.g. resummation of infinitely many diagrams).
But “impossible” within the derivative expansion of the NPRG.

= Need to go beyond the derivative expansion and keep the full
momentum dependence of the two-point function.

= Need BMW (Blaizot-Mendez-Wschebor) approximation.



Signature of a bound state in the spectral function

Instead of the lattice Ising model, we consider the ¢* theory:
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Monte Carlo simulations: bound states detected by studying
(p(x)p(0))c in the broken phase.

Usually:

(p()p(0))c ~ Ae™™, with m=¢ (2)
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Non trivial spectrum: sub-leading exponential(s) as well:

(P()p(0))c ~ Age ™ + Are M4 (3)
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Non trivial spectrum:

(p(x)p(0))e ~ Age™™ + Are M 4. (4)
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In Fourier space:
6(p) = [ d*x(e()p(0))ce ™
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= analytic continuation G(w = ip) has poles at the values of the
masses of the system.



Work Plan:

@ Compute the momentum dependence of the two-point
function T (p) and invert it to get G(p);

@ Analytically continue it: p — ip;
@ Find the poles.

BMW does point 1 for us.

Padé approximants followed by an evaluation on the complex axis
(G(ip —€)) do point 2.



BMW approximation

o P(p.0) = [ 0RUPIGH@) [P (p-p—.0) %

@) 1 (4) (©)
Gk(p+a)r (=p, p+q,—q)— 35" (P,—p, q,—q)]-
with the full propagator
Gu(p,6) = (T (p,0) + Re(p)) (7)

Problem: The hierarchy of flow equations is not closed

= need for a closure that preserves the full momentum
2

dependence of r(k )(p, ?)

T (3) 4
= approximations on [',”", ', 7.



BMW approximation

Based on two remarks:

1. g < k because of dxRk(q?)
= replace g — 0 in the vertex functions FE), FS:‘)

= replace
r(p.q - p.—a;6) = T (p,—p,0;9)
r(p,—p,q—a:0) = T (p,~p,0,0;9)

0
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BMW approximation

Gk(p+q)r‘ ) p,0: )~ % )(p, p,0,0;9)| .

“finally”
W (p, ¢) = h(p, 9) (0¢ (p,cb)) —sz(p,cb)@pr(2 (p;9)

and

Jn(p, @) =/8kRk(q2)GL’_1(q, ¢)Gr(p+q, )



I'Ei)o(p; ¢p=0)for T < T,

A is the mass of the fundamental particle (the inverse correlation
length) at the LPA'.



Padé approximants

Necessary to perform an analytic continuation.
Procedure:

@ We compute G(p) for N =30 to 50 values p; of p equally
spaced in an interval wpin ~ A and wmax ~ 104,

@ We construct a [(N-2)/N] Padé approximant F(p) of G(p),
even in p, that satisfies F(p;) = G(p;) for all i,

e We compute Im[F(w = ip — €)] which is an approximation of
ImG(ip),

@ The peaks of F correspond to the poles of G(ip).



Results in d =3
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Very good resolution of the main peak, small dispersion of the
second peak.

Ind=3and for T — T, we find my/mg = 1.82(2).

Monte Carlo: 1.83(3),

Continuous unitary transformations: 1.84(3)

Exact diagonalization: 1.84(1).




Results in other dimensions
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Results in agreement with exact results in d = 2.



Conclusions and perspectives

BMW + analytic continuation works remarkably well, at least for
Ising.

Possible to study “non integrable perturbations” ind =2: T < T,
together with a magnetic field.

More difficult: 3-state Potts model in d = 2 and d = 3 where a
bound state is expected.



