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Bound states in the Ising model: State of the art

d=2: Theory

many exact results close to criticality from conformal theory
and S-matrix: A.B. Zamolodchikov, Int. J. Mod. Phys. A 3 743 (1988)

At T = Tc , with B 6= 0 (and small) seven “bound states”

only two below the threshold 2m0 of the multi-particle
continuum

m1/m0 = (1 +
√

5)/2 (golden ratio).

No bound state for T < Tc and B = 0.

d=2: Experiment
Quasi-1d quantum Ising ferromagnet: CoNb2O6, first bound state
seen by neutron scattering R. Coldea et al. Science 327 177 (2010).

Open question: what about T < Tc and B 6= 0?



Bound states in the Ising model: State of the art

d=3: Theory

one bound state for T < Tc (B = 0)

simple argument from the quantum (2+1) system at T = 0,

m1/m0 ∼ 1.8 for T → T−c

many theoretical and numerical approaches: Bethe-Salpeter,
exact diagonalization, Monte-Carlo.

Bethe-Salpeter at leading order is OK but very large (and
unphysical) correction at next order.

⇒ need for nonperturbative methods.



NPRG and the BMW approximation

Naive answer from perturbation theory: the ratio between the two
first excited levels is an integer: m0, 2m0, · · ·

⇒ Need to go beyond naive perturbation theory to describe bound
states (e.g. resummation of infinitely many diagrams).

But “impossible” within the derivative expansion of the NPRG.

⇒ Need to go beyond the derivative expansion and keep the full
momentum dependence of the two-point function.

⇒ Need BMW (Blaizot-Mendez-Wschebor) approximation.



Signature of a bound state in the spectral function

Instead of the lattice Ising model, we consider the φ4 theory:

S [ϕ] =

∫
ddx

{
1

2

(
∇ϕ(x)

)2
+

r0
2
ϕ2(x) +

u0
4!
ϕ4(x)

}
. (1)

Monte Carlo simulations: bound states detected by studying
〈ϕ(x)ϕ(0)〉c in the broken phase.

Usually:

〈ϕ(x)ϕ(0)〉c ∼
x→∞

Ae−mx , with m = ξ−1 (2)

Non trivial spectrum: sub-leading exponential(s) as well:

〈ϕ(x)ϕ(0)〉c ∼
x→∞

A0e
−mx + A1e

−Mx + . . . (3)



Non trivial spectrum:

〈ϕ(x)ϕ(0)〉c ∼
x→∞

A0e
−mx + A1e

−Mx + . . . (4)

In Fourier space:

G (p) =

∫
ddx 〈ϕ(x)ϕ(0)〉c e−ipx

∼
p→0

A′0
p2 + m2

+
A′1

p2 + M2
+ · · ·

(5)

⇒ analytic continuation G (ω = ip) has poles at the values of the
masses of the system.



Work Plan:

Compute the momentum dependence of the two-point
function Γ(2)(p) and invert it to get G (p);

Analytically continue it: p → ip;

Find the poles.

BMW does point 1 for us.

Padé approximants followed by an evaluation on the complex axis
(G (ip − ε)) do point 2.



BMW approximation

∂kΓ
(2)
k (p, φ) =

∫
q
∂kRk(q2)G 2

k (q)
[
Γ
(3)
k (p,−p−q, q)×

Gk(p+q)Γ
(3)
k (−p, p+q,−q)− 1

2Γ
(4)
k (p,−p, q,−q)

]
.

(6)

with the full propagator

Gk(p, φ) =
(

Γ
(2)
k (p, φ) + Rk(p)

)−1
(7)

Problem: The hierarchy of flow equations is not closed
⇒ need for a closure that preserves the full momentum

dependence of Γ
(2)
k (p, φ)

⇒ approximations on Γ
(3)
k , Γ

(4)
k .



BMW approximation

Based on two remarks:

1. q < k because of ∂kRk(q2)

⇒ replace q → 0 in the vertex functions Γ
(3)
k , Γ

(4)
k

⇒ replace

Γ
(3)
k (p, q − p,−q;φ)→ Γ

(3)
k (p,−p, 0;φ)

Γ
(4)
k (p,−p, q,−q;φ) → Γ

(4)
k (p,−p, 0, 0;φ)

2. Γ
(n)
k (p1, · · · , pn−1, 0;φ) =

∂

∂φ
Γ
(n−1)
k (p1, · · · , pn−1;φ)

∂kΓ
(2)
k (p, φ) '

∫
q
∂kRk(q2)G 2

k (q)
[
Γ
(3)
k (p,−p, 0;φ)×

Gk(p+q)Γ
(3)
k (−p, p, 0;φ)− 1

2Γ
(4)
k (p,−p, 0, 0;φ)

]
.

(8)



BMW approximation

∂kΓ
(2)
k (p, φ) '

∫
q
∂kRk(q2)G 2

k (q)
[
Γ
(3)
k (p,−p, 0;φ)×

Gk(p+q)Γ
(3)
k (−p, p, 0;φ)− 1

2Γ
(4)
k (p,−p, 0, 0;φ)

]
.

(9)

“finally”

∂kΓ
(2)
k (p, φ) ' J3(p, φ)

(
∂φΓ

(2)
k (p, φ)

)2
− 1

2
J2(p, φ) ∂2φΓ

(2)
k (p, φ)

and

Jn(p, φ) =

∫
q
∂kRk(q2)Gn−1

k (q, φ)Gk(p+q, φ)



Γ
(2)
k=0(p;φ = 0) for T < Tc
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∆ is the mass of the fundamental particle (the inverse correlation
length) at the LPA’.



Padé approximants

Necessary to perform an analytic continuation.
Procedure:

We compute G (p) for N =30 to 50 values pi of p equally
spaced in an interval ωmin ∼ ∆ and ωmax ∼ 10∆,

We construct a [(N-2)/N] Padé approximant F (p) of G (p),
even in p, that satisfies F (pi ) = G (pi ) for all i ,

We compute Im[F (ω = ip − ε)] which is an approximation of
ImG (ip),

The peaks of F correspond to the poles of G (ip).



Results in d = 3
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Very good resolution of the main peak, small dispersion of the
second peak.
In d = 3 and for T → Tc , we find m1/m0 = 1.82(2).
Monte Carlo: 1.83(3),
Continuous unitary transformations: 1.84(3)
Exact diagonalization: 1.84(1).



Results in other dimensions
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Results in agreement with exact results in d = 2.



Conclusions and perspectives

BMW + analytic continuation works remarkably well, at least for
Ising.

Possible to study “non integrable perturbations” in d = 2: T < Tc

together with a magnetic field.

More difficult: 3-state Potts model in d = 2 and d = 3 where a
bound state is expected.


