Truncated Unity Functional renormalization group (TUfRG) for 2D lattices: getting more quantitative

1. $f R G$: quantitative issues
2. TUfRG in momentum space: recent results
3. TUfRG for frquency dependence: outlook

Carsten Honerkamp
Institute for Theoretical Solid State Physics
RWTH Aachen University

Support DFG FOR 723, FOR 912, SPP1458/9 \& Ho2422/x-x, RTG 1995

Functional RG for Hubbard-type models

Model bandwidth Λ
bandwidth (few eVs)
functional renormalization group (fRG): lower Λ

$$
\begin{aligned}
H_{\mathrm{int}} & =U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}+V_{1} \sum_{\langle i, j\rangle, s, s^{\prime}} n_{i, s} n_{j, s^{\prime}} \\
& +V_{2} \sum_{\langle\langle i, j\rangle\rangle, s, s^{\prime}} n_{i, s} n_{j, s^{\prime}}+V_{3} \sum_{\langle\langle\langle i, j\rangle\rangle\rangle, s, s^{\prime}} n_{i, s} n_{j, s^{\prime}}
\end{aligned}
$$

Interaction at scale $\sim \mathrm{eV}$
not much structure,
mean-field decoupling ambiguous/impossible

Intermediate energy scales: particle-hole pairs, particle-particle loop corrections generate structure in effective low-energy interaction

$$
H_{\mathrm{eff}}=\frac{1}{2} \sum_{\substack{\vec{p}, \vec{p}^{\prime}, \vec{q} \\ s, s^{\prime}}} V\left(\vec{p}, \vec{p}^{\prime}, \vec{p}+\vec{q}\right) c_{\vec{p}+\vec{q}, s}^{\dagger} c_{\vec{p}^{\prime}-\vec{q}, s^{\prime}}^{\dagger} c_{\vec{p}^{\prime}, s^{\prime}} c_{\vec{p}, s}
$$

\Rightarrow e.g. guided mean-field decoupling

Functional Renormalization Group (fRG):

Provides low-energy effective action \& momentum structure $V_{\Lambda}\left(k, k^{\prime}, k+q\right)$! Removes ambiguities of mean-field decouplings.

Functional RG

fRG captures all one-loop contributions: unbiased description of competing orders

Λ-derivative of 1-loop diagram
$\mathrm{k}=$ wavevector, band, frequency

Keep track of wavevector structure: \boldsymbol{N}-patch - Discretize Brillouin zone into N patches - More recently: channel decomposition \& form factor expansion Often neglected: self-energy, higher-order interactions, frequency dependence

Brillouin zone

Flow to strong coupling

Standard cases without self-energy feedback:
Flow to strong coupling

Leading low-energy correlations

Energy scales
\rightarrow 'Weather forecast'

Metzner, Salmhofer et al. RMP 2012

1. Quantitative issues: testing fRG for materials

Take model Hamiltonian with parameters given, e.g., by DFT \& cRPA

Single-particle parameters, fit or Wannier matrix elements

$$
\begin{aligned}
H & =H_{K}+H_{U} \\
H_{K} & =\sum_{R n, R^{\prime} n^{\prime}} c_{R r}^{\dagger} t_{R n, R^{\prime} n} c_{R^{\prime} n^{\prime}}, \\
H_{U} & =\frac{1}{2} \sum_{R, n n^{\prime}, m m^{\prime}} c_{R n}^{\dagger} c_{R n^{\prime}} U_{n n^{\prime} R, m m^{\prime} R^{\prime}} c_{R^{\prime} m}^{\dagger} c_{R^{\prime} m}
\end{aligned}
$$

Interaction parameters, e.g., Wannier matrix elements, cRPA

- Can fRG become quantitative low-energy frontend of ab-initio theory?
- Besides groundstate: Energy scales for phase transitions \& relevant excitations? Trends within material families?

Trends in 1111 iron arsenide superconductors

$\underset{\text { J. }}{\mathbf{J}|\mathbf{A}| \mathbf{C} \mid \mathbf{S}}$
Published on Web 02/23/2008
Iron-Based Layered Superconductor $\mathrm{La}\left[\mathrm{O}_{1-\mathrm{x}} \mathrm{F} \times \mathrm{F}\right] \mathrm{FeAs}(x=0.05-0.12)$ with $T_{\mathrm{c}}=26 \mathrm{~K}$

Yoichi Kamihara, ${ }^{*, \dagger}$ Takumi Watanabe, ${ }^{\ddagger}$ Masahiro Hirano, ${ }^{\dagger, \S}$ and Hideo Hosono ${ }^{\dagger, \ddagger, \S}$

Table I. Maximum T_{c} in each $R \operatorname{FeAs}\left(\mathrm{O}_{1-x} \mathrm{~F}_{x}\right)$. The F concentration x, which gives the maximum T_{c} is shown. $T_{\mathrm{c}}^{\mathrm{Max}}$ is determined at the onset temperature of superconducting transition in resistivity measurements.

	R								
	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	
$T_{\mathrm{c}}^{\mathrm{Max}}(\mathrm{K})$	28	41	52	52	55	36	46	45	
x	0.11	0.16	0.11	0.11	0.1	0.17	0.1	0.1	

Ishida, K., Nakaii, Y. \& Hosono, H. To what extent iron-pnictide new
superconductors have been clarified: A progress report. J. Phys. Soc. Jpn 78, 062001 (2009).
Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che,
X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao: Chin. Phys. Lett. 25
(2008) 2215.

La-1111 versus Sm-1111

Why is T_{c} in La-1111 much lower than in Sm-1111?

RE-OFeAs 'RE-1111' RE=La,Sm, ...

Trends in 1111 iron arsenides

fRG for 8-band model reproduces sizable T_{c}-difference for pairing, while keeping AF-SDW scale unchanged

Lichtenstein, Maier, Platt, Thomale, CH, Boeri, Andersen PRB 2014

Gaps in bi- \& trilayer graphene

Spontaneously gapped ground state in suspended bilayer graphene

F. Freitag, ${ }^{1}$ J. Trbovic, ${ }^{1}$ M. Weiss, ${ }^{1}$ and C. Schönenberger ${ }^{1, *}$

Phys. Rev. Lett. 108, 076602 (2012)

Clean current-annealed suspendend BLG

Evidence for a spontaneous gapped state in ultraclean bilayer graphene
Wenzhong Bao ${ }^{\text {a,b, }, 1}$, Jairo Velasco, Jr. ${ }^{\text {a, } 1, ~ F a n ~ Z h a n g ~}{ }^{\text {c,d,1 }, ~ L e i ~ J i n g ~}{ }^{\text {a }}$, Brian Standley ${ }^{\text {e }}$, Dmitry Smirnov ${ }^{\dagger}$, Marc Bockrath ${ }^{\text {a }}$, Allan H. MacDonald ${ }^{c, 2}$, and Chun Ning Lau ${ }^{\text {a,2 }}$

Proc. Nat. Acad. Sci., 109, 10802 (2012) Trilayer: Nature Physics, 7, 948 (2011), Lee, C.N. Lau et al. 2014

Also: Nijmegen (Maan) group

Gap scale $\approx 2-3 \mathrm{meV}$ $T_{c} \approx 5 \mathrm{~K}$ in bilayer, Even larger in trilayer (40 meV)

Model for layered graphene

E.g. AB (bernal) stacked bilayer:

$$
\begin{aligned}
& H_{l}^{\|}=-t \sum_{\sigma, \vec{R}, \vec{\delta}_{i}}\left(b_{l, \sigma}^{\dagger}\left(\vec{R}+(-)^{l-1} \vec{\delta}_{i}\right) a_{l, \sigma}(\vec{R})+\text { h.c. }\right) \\
& H^{\perp}=-t_{\perp} \sum_{\sigma, \vec{R}}\left(a_{1, \sigma}^{\dagger}(\vec{R}) a_{2, \sigma}(\vec{R})+\text { h.c. }\right)
\end{aligned}
$$

Four bands, 2 quadratic band crossing points @ K,K

Take ab-initio-derived interaction parameters ('constrained RPA'), interpolate between mono-layer and graphite values

$$
\begin{aligned}
H_{\mathrm{int}} & =U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}+V_{1} \sum_{\langle i, j\rangle, s, s^{\prime}} n_{i, s} n_{j, s^{\prime}} \xlongequal{\underline{U_{03}^{\prime 3}(e)}} \\
& +V_{2} \sum_{\langle\langle i, j\rangle\rangle, s, s^{\prime}} n_{i, s} n_{j, s^{\prime}}+V_{3} \sum_{\langle\langle\langle i, j\rangle\rangle\rangle, s, s^{\prime}} n_{i, s} n_{j, s^{\prime}}
\end{aligned}
$$

N-Layer graphene @ charge neutrality

Single layer: Raghu, Scherer ${ }^{0}$, CH et al., PRL 2008

AB bilayer, ABC trilayer
Scherer ${ }^{(N-1)}$, Uebelacker, CH, $2012 \quad V_{1} / t$

The 'scale challenge'

fRG scales for gaps in layered graphene seems far too large compared to experiment, even with 'realistic' model parameters

Sources of error:
N-patch fRG (in-)sufficient approximation?

Th. Lang et al. PRL 2012, compares QMC gaps with fRG scale, pure onsite Hubbard U

* Model incorrect? Other interactions? Long-range Coulomb!
* Model parameters incorrect? cfRG instead of cRPA?

Resolve patching ambiguities

Choice of representative wavevectors for patches matters:

Daniel D. Scherer, Michael M. Scherer, C. Honerkamp, Phys. Rev. B 92 (2015)

Yanick Volpez, Daniel D. Scherer, and Michael M. Scherer

 Phys. Rev. B 94, 165107 (2016) by charge-modulated phase

Convergence requires several patch rings

2. Truncated unity fRG in momentum space

- Builds on channel decomposition à la Salmhofer et al. (Husemann, Salmhofer, PRB 2009)
- Incorporates numerical advantages of singular-mode (SM-)fRG, Q.H. Wang et al. PRB 21012
- Idea: insert resolutions of unity in momentum space factor basis into one-loop RG eqns

- Truncation of basis provides physically transparent approximation \& high momentum resolution
- Parallelizes nicely on high-performance architectures (= headroom for attacking frequency-dependence, selfenergies, \cdots)

Channel decomposition

Husemann, Salmhofer, Giering, Eberlein \& Metzner, Maier \&CH ... Karrasch et al.

Instead of one function of three variables, use three functions P, D, C of one 'strong/bosonic' variable

$$
s=k_{1}+k_{2}, \quad t=k_{3}-k_{1}, u=k_{4}-k_{1}
$$

$P(1,3 ; 5)$	$D(1,4, t)$	$C(1,3 ; n)$
$S=1+2$	$t=3-1$	$u=4-1$

Data for $\mathrm{V}_{\Lambda}\left(k_{1}, k_{2}, k_{3}\right)$ from 2D Hubbard model, CH (2000)

Channel decomposition

Instead of one function of three variables, use three functions P, D, C of one 'strong/bosonic' variable

$$
s=k_{1}+k_{2}, \quad t=k_{3}-k_{1}, u=k_{4}-k_{1}
$$

$$
V_{\Lambda}\left(k_{1}, k_{2}, k_{3}\right)=V_{0}\left(k_{1}, k_{2}, k_{3}\right)+P_{\Lambda}\left(k_{1}, k_{3} ; s\right)+D_{\Lambda}\left(k_{1}, k_{4} ; t\right)+C_{\Lambda}\left(k_{1}, k_{3} ; u\right)
$$

$P(1,3 ; 5)$
$S=1+2$

$t=3-1$

$u=4-1$

'weak/fermionic variables', captured by smooth form factors $f_{x}(k)$, form factor expansion:

Particle-particle diagram $\mathcal{T}_{\text {pp }}$

Direct particle-hole diagrams $\mathcal{T}_{\mathrm{ph}}^{\mathrm{d}}$

Form factor basis: bonds on real space lattice
 $$
\begin{aligned} & P_{\Lambda}\left(k_{1}, k_{3} ; s\right)=\sum_{x_{1}, x_{3}} f_{x_{1}}\left(k_{1}\right) f_{x_{3}}^{*}\left(k_{3}\right) P_{\Lambda}\left(x_{1}, x_{3} ; s\right) \\ & \mathbf{e} x_{i}=\vec{b}_{i} \end{aligned}
$$

Form factors/basis functions $f_{n}(\boldsymbol{k})$ most easily organized on real space Bravais lattice spanned by bond vectors

$$
\vec{b}=b_{1} \vec{e}_{1}+b_{2} \vec{e}_{2}
$$

real lattice

$f_{\vec{b}}(\vec{r})=\delta_{\vec{r}, \vec{b}}$ bond functions

reciprocal lattice

$$
\begin{gathered}
f_{\vec{b}}(\vec{k})=e^{i \vec{k} \cdot \vec{b}} \text { bond exponentials } \\
f_{l}(\vec{k})=\sum_{R \in \mathcal{G}} a_{l}(R) f_{R \vec{b}}(\vec{k}) \\
f_{d_{x^{2}-y 2}}(\vec{k}) \propto \cos k_{x}-\cos k_{y}
\end{gathered}
$$

For most cases:
Short bonds b most important <=> form factors $f_{n}(\boldsymbol{k})$ smooth
C. Platt, W. Hanke, R. Thomale, Adv. Phys. 2013

Fermion bilinear interaction

In real space, P-interaction becomes pair-pair scattering:

Channel decomposition is way of rewriting full interaction as sum of interactions between all possible/necessary fermion bilinears!
particle-hole-pairs,
particle-particlepairs no spin flip
particle-hole-pairs, spin flip
$V_{\Lambda}\left(k_{1}, k_{2}, k_{3}\right)=V_{0}\left(k_{1}, k_{2}, k_{3}\right)+P_{\Lambda}\left(k_{1}, k_{3} ; s\right)+D_{\Lambda}\left(k_{1}, k_{4} ; t\right)+C_{\Lambda}\left(k_{1}, k_{3} ; u\right)$
Intuitive representation with meaningful truncations

Numerically still hard

Particle-particle diagram $\mathcal{T}_{\text {pp }}$

Typical $C\left(k_{1}, k_{3} ; u\right)$ vs. strong momentum u
\rightarrow need to integrate over sharp peaks

$$
V_{\Lambda}\left(k_{1}, k_{2}, k_{3}\right)=V_{0}\left(k_{1}, k_{2}, k_{3}\right)+P_{\Lambda}\left(k_{1}, k_{3} ; s\right)+D_{\Lambda}\left(k_{1}, k_{4} ; t\right)+C_{\Lambda}\left(k_{1}, k_{3} ; u\right)
$$

(other channels similar)

Truncated unity fRG: matrix flow equations

Consider flow of pairing interaction

$$
\dot{P}_{\Lambda}\left(k_{1}, k_{3} ; s\right)=\frac{T}{N_{L}} \sum_{k} V_{\Lambda}\left(k_{1}, k ; s\right) L_{\mathrm{PP}}(k ; s) V_{\Lambda}\left(k, k_{3} ; s\right)
$$

Insert (truncated) unities:

Truncate sum, only take relevant form factors, bonds $|x|<R$

$$
V_{\Lambda}\left(k_{1}, k ; s\right)=\sum_{k^{\prime}} \delta_{k, k^{\prime}} V_{\Lambda}\left(k_{1}, k^{\prime} ; s\right)=\frac{1}{N} \sum_{x^{\prime}} e^{i k x^{\prime}} \sum_{k^{\prime}} e^{-i k^{\prime} x^{\prime}} V_{\Lambda}\left(k_{1}, k^{\prime} ; s\right)
$$

$\dot{P}_{\Lambda}\left(k_{1}, k_{3} ; s\right)=\sum_{x^{\prime}, x^{\prime \prime}}\left[\frac{1}{N} \sum_{k^{\prime}} V_{\Lambda}\left(k_{1}, k^{\prime} ; s\right) e^{-i k^{\prime} x^{\prime}}\right] \cdot\left[\frac{T}{N_{L}} \sum_{k} e^{i k\left(x^{\prime}-x^{\prime \prime}\right)} L_{\mathrm{PP}}(k ; s)\right] \cdot\left[\frac{1}{N} \sum_{k^{\prime \prime}} e^{i k^{\prime \prime} x^{\prime \prime}} V_{\Lambda}\left(k^{\prime \prime}, k_{3} ; s\right)\right]$

Project both sides on form factor basis: $\dot{P}_{\Lambda}\left(x_{1}, x_{3} ; s\right)=\frac{1}{N} \sum_{k_{1}, k_{3}} e^{i k_{1} x_{1}} \dot{P}_{\Lambda}\left(k_{1}, k_{3} ; s\right) e^{-i k_{3} x_{3}}$

$$
\Longrightarrow \quad \dot{P}_{\Lambda}\left(x_{1}, x_{3} ; s\right)=\frac{1}{N} \sum_{x^{\prime}, x^{\prime \prime}} P[V]_{\Lambda}\left(x_{1}, x^{\prime} ; s\right) L_{\mathrm{PP}}\left(x^{\prime}, x^{\prime \prime} ; s\right) P[V]_{\Lambda}\left(x^{\prime \prime}, x_{3} ; s\right)
$$

Flow eqns become matrix products of projected couplings and loops (no slow integrals)

$$
L_{\mathrm{PP}}\left(x^{\prime}, x^{\prime \prime} ; s\right)=\frac{T}{N_{L}} \sum_{k} e^{i k\left(x^{\prime}-x^{\prime \prime}\right)} L_{\mathrm{PP}}(k ; s)
$$

How does well it work?

J. Lichtenstein, D. Sanchez dIP, D. Rohe, CH, S.A. Maier

Computer Physics Communications 2017

Phases and convergence in $t-t^{*}$ Hubbard model

Bonds kept for form factors

Bosonic momentum discretized with 1000 (D) or 6600 (C,P) points

Look at momentum-resolved response function (beyond RPA) Include long-range Coulomb interactions

Response functions beyond RPA

High momentum resolution for 'bosonic' variables (~ 60001 points) permits study of response functions beyond RPA

Peaks of C-channel (=spin channel) at van Hove filling for different t^{\prime} :
TUfRG has weaker peak splitting than random phase approximation (RPA)

J. Lichtenstein, S.A. Maier, D. Sanchez de la Pena, D. Rohe, CH, CPC 2017

3. TUfRG for frequencies: Why?

- Width Ω of interactions on frequency axis matters for critical scales, see e.g. BCS

$$
V_{\mathrm{ph}-\text { med. }}\left(\omega_{1}, \omega_{3}\right)=V_{0} \frac{\Omega^{2}}{\left(\omega_{1}-\omega_{3}\right)^{2}+\Omega^{2}}
$$

w/o frequency dependence, as previous $\mathrm{fRG}(\Omega=\infty)$
with frequency dependence

$$
T_{c}^{\Omega}=\Omega e^{-\frac{1}{\rho_{0}\left|V_{0}\right|}}
$$

Frequency structure of phonon-mediated interaction
 $$
V_{\text {ph-med. }}\left(\omega_{1}, \omega_{3}\right)=V_{0} \frac{\Omega^{2}}{\left(\omega_{1}-\omega_{3}\right)^{2}+\Omega^{2}}
$$

Effective interaction near Cooper instability,
large for $\omega_{1}, \omega_{3}<\Omega$

$$
L_{\mathrm{PP}}(T)=T \sum_{\left|\omega_{n}\right|<\Omega} \rho_{0} \int_{-W}^{W} d \epsilon \frac{1}{\omega_{n}^{2}+\epsilon^{2}} \approx 4 \rho_{0} \int_{T}^{\Omega} \frac{\frac{d \omega}{2 \pi} \frac{\tan ^{-1} \frac{W}{\omega}}{\omega} \approx \rho_{0} \log \frac{\Omega}{T}}{\begin{array}{c}
-6-4-2<2
\end{array}} \begin{gathered}
\omega_{3} / \Omega
\end{gathered}
$$

Critical scales with frequency dependence, for spin-fluctuation pairing, the hard way

- For spin-fluctuation-mediated pairing: $\Omega=\Omega_{\text {sf }}$ (\sim mass of spin fluctuations)
- Simple two-patch model (= toy model for spin-fluctuation pairing), interactions depending on three Matsubara frequencies

$g_{2}+g_{3}$ leading: AF instability
$g_{3}-g_{4}$ leading: d-wave pairing instability

Tuning parameter $\Delta_{\text {ext }}>0$ suppresses AF channel

Freq.dep. couplings $g_{i}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$
for 2D Hubbard: Giering, Salmhofer 2012; Uebelacker, CH 2012

Frequency basis

Label frequency basis function by imaginary time $t \in[0, \beta]$

$$
\begin{array}{r}
f_{\tau}\left(i \omega_{n}\right)=\frac{1}{\sqrt{\beta}} e^{i \omega_{n} \tau} \quad \tau_{l}=l \Delta \tau \quad \text { with } \quad l \in 0, \ldots N_{\tau}-1 \quad \text { and } \quad \Delta \tau=\frac{\beta}{N_{\tau}} \\
\Longrightarrow \text { sampling rate } f_{s}=1 / \Delta \tau=N_{\tau} / \beta \quad \omega_{\max }=2 \pi \cdot \frac{f_{s}}{2}=N_{\tau} \pi T
\end{array}
$$

Matrix elements phonon propagator

$$
\begin{aligned}
D_{\tau, \tau^{\prime}}\left(\tau_{m}\right) & =\frac{1}{\sqrt{N_{\tau}}} \sum_{\nu} \delta_{l, 0} \delta_{l^{\prime}, 0} N_{\tau} D_{0} \frac{\Omega^{2}}{\nu^{2}+\Omega^{2}} e^{-i \nu \tau_{m}} \\
& =\beta \delta_{\tau, 0} \delta_{\tau^{\prime}, 0} \sqrt{N_{\tau}} \frac{D_{0} \Omega}{2} n_{B}(\Omega)\left\{e^{\Omega \tau_{m}}+e^{-\Omega \tau_{m}} e^{\beta \Omega}\right\}
\end{aligned}
$$

Phonon propagator projected on P channel

$$
P_{\tau, \tau^{\prime}}(s)\left[V^{\left(D_{0,0}\right)}\right]=\delta_{\tau, \tau^{\prime}} \beta \frac{D_{0} \Omega}{2} n_{B}(\Omega)\left\{e^{\Omega \tau_{l}}+e^{-\Omega\left(\tau_{l}-\beta\right)}\right\}
$$

P channel flow equation $\frac{d}{d \Lambda} P_{\Lambda}\left(\tau, \tau^{\prime} ; s\right)=N_{\tau}^{-1} \sum_{\tau^{\prime \prime}, \tau^{\prime \prime \prime}} P_{\Lambda}\left(\tau, \tau^{\prime \prime} ; s\right) \dot{L}_{\mathrm{PP}}^{\Lambda}\left(\tau^{\prime \prime}, \tau^{\prime \prime \prime} ; s\right) P_{\Lambda}\left(\tau^{\prime \prime \prime}, \tau^{\prime} ; s\right)$
Projected bubble $\quad L_{\mathrm{PP}}^{\epsilon, \epsilon^{\prime}}\left(\tau, \tau^{\prime} ; s\right)=T \sum_{\omega_{n}} \frac{1}{i \omega-\epsilon} \frac{1}{-i \omega+i s-\epsilon^{\prime}} e^{i \omega_{n}\left(\tau_{l}-\tau^{\prime}\right)}$

$$
=\frac{1}{-i s+\epsilon+\epsilon^{\prime}}\left\{\left[1-n_{F}\left(\epsilon^{\prime}\right)\right] e^{i s\left|\tau-\tau^{\prime}\right|} e^{-\epsilon^{\prime}\left|\tau-\tau^{\prime}\right|}-n_{F}(\epsilon) e^{\epsilon\left|\tau-\tau^{\prime}\right|}\right\}
$$

Critical scales in BCS model

TUfRG with frequency basis: test for phonon-mediated pairing

Seems to work ok!

Test in 2-patch model

(Fast) frequency-
3

Freq.dep. couplings $\Delta_{\text {ext }} / W$ $g_{i}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$

Conclusions

- Functional RG is a versatile tool to explore low-energy physics of interacting fermions in low dimension, for material studies qualitatively useful (see R. Thomale)
- Quantitative precision is currently improved
- Wavevector-TUfRG allows to reach high resolution and convergence wrt to form factor basis
- Frequency-TUfRG should work as well ...

