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A relativity and gravity

Surprisingly, the concepts behind general relativity as a theory of gravity are entirely
geometrical and require differential geometry as a description of the geometry and
dynamics of space time. In this script for the lecture on general relativity as a master-
level course at Heidelberg University we will encounter gravity as a geometric effect
of spacetime and the geometrisation of physical laws, understand the structure of
the laws of Nature by drawing analogies between classical and relativistic mechanics
of point particles, the theory of scalar and vectorial fields, touch on concepts like
invariance, covariance and symmetries, and will develop an intuition about gravity.
There are three great applications of general relativity: black holes, FLRW-cosmologies
and gravitational waves, and in all these areas there have been major experimental
and observational advances in the last couple of years.

In this script we will mostly use a coordinate-based description of tensors with
explicit indices. For those, we adopt the summation convention, with Greek indices
running over all spacetime coordinates and Latin indices over the spatial ones, should
the coordinate choice allow this. only coordinate choices aligned

with the spatial hypersurfaces
have this!

A.1 Why is classical Newtonian gravity insufficient?

It is important to realise that at the time of A. Einstein’s thinking about relativity,
there was no actual need to abandon I. Newton’s theory of gravity. The perihelion
shift of Mercury could have easily have had systematic origins, and many of the
arguments against Newton gravity to be the ultimate theory of gravity are purely
conceptual.

First of all, there is no dynamics of the gravitational potential Φ in Newton’s
theory. According to the Poisson-equation as the field equation of Newton-gravity,

∆Φ(xi , t) = 4πG ρ(xi , t), (A.1)

the potential is source by the density field ρ in an instantaneous way as the Laplace-
operator ∆ can, unlike the d’Alembert-operator □, not generate any retardation.

The missing retardation could be easily fixed, though. Motivated by the ideas of
special relativity that there is no clear distinction between the t- and xi-coordinates,
one could make the replacement

∆ = δij ∂i∂j → □ = ηµν ∂µ∂ν = ∂2
ct − ∆ (A.2)
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a. relativity and gravity

which gives a Lorentz-covariant field equation,

∆Φ(xi) = 4πG ρ(xi) → □ Φ(xµ) = 4πG ρ(xµ) (A.3)

with proper retarded (and advanced) potentials. We can quickly check that there
is propagation of excitations of Φ with c along a light cone: Plane waves Φ ∼
exp(±iηµν kµxν) yield □Φ = −ηµν kµkνΦ = 0 with a null-vector kµ, ηµν kµkν = kµk

µ = 0.
That this ”covariantised” field equation already allows wave-like excitations of the
gravitational field is foreshadowing the emergence of gravitational waves in proper
relativistic theory.

Then, the (energy) density ρ should be the tt-component of the energy momentum
tensor Tµν as suggested by special relativity and follow a Lorentz-transformation rule
when boosting from one Lorentz-frame to another: But the gravitational potential in
Newton’s theory is scalar and would necessarily be equal in all frames. In fact, there
should be additional components of the gravitational field beyond Φ if it was to be
sourced by the energy momentum-tensor Tµν.

A.2 What would be the most general classical theory of gravity?

It turns out that Newtonian gravity is not even the most general classical (i.e. non-
relativisic, and of course non-quantum) theory of gravity! For seeing this, we would
approach the construction of a field equation from a variational principle, by writing
down an action integral S =

∫
d3x L(Φ, ∂iΦ) with a Lagrange-density L(Φ, ∂iΦ) that

is dependent on the potential Φ and the first derivative ∂iΦ. Hamilton’s principle
δS = 0 would then suggest that

δS = δ

∫
d3xL(Φ, ∂iΦ) =

∫
d3x

∂L
∂Φ

δΦ+
∂L

∂∂iΦ
δ∂iΦ =

∫
d3x

(
∂L
∂Φ
− ∂i

∂L
∂∂iΦ

)
δΦ = 0

(A.4)

by using δ∂iΦ = ∂iδΦ and performing an integration by parts, so that we can extract
the Euler-Lagrange-equation

∂L
∂Φ
− ∂i

∂L
∂∂iΦ

= 0 (A.5)

which determines the field equation once the Lagrange density L is chosen. Certainly,
Newton would have wanted to have a linear field equation such that the superposition
principle is valid, and the Ostrogradsky-theorem disallows terms of higher derivative
order beyond second derivatives, and we would like an isotropic gravitational field
around a spherically symmetric matter distribution. These arguments imply that
there can be at most squares of the potential in the Lagrange-density as the Euler-
Lagrange equation decreases the order by one through differentiation, and that there
should be the invariant δij∂iΦ∂jΦ (as a scalar product of two vectors it is invariant
under rotations) as a kinetic term in the Lagrange-density: Therefore, the most general
Lagrange-density would be

L(Φ, ∂iΦ) =
1
2
δij ∂iΦ∂jΦ + 4πGρΦ + λΦ +

m2

2
Φ2, (A.6)

with the Newtonian gravitational constant G and two new constants, m and λ. Of
course, as Lagrange-densities only ever appear inside integrals, it is only determined
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a.2. what would be the most general classical theory of gravity?

up to an integration by parts, so the kinetic term can equally written as

L(Φ, ∂iΦ) = −1
2
Φ δij ∂i∂jΦ + · · · , (A.7)

with Φδij∂i∂jΦ = Φ∆Φ. For carrying out the variation, one needs to substitute the
Lagrange-density into the Euler-Lagrange equation. We obtain for please always use new names

for the indices in the variation!

L =
1
2
δab∂aΦ∂bΦ (A.8)

the derivative

∂L
∂∂iΦ

=
1
2
δab

(
∂∂aΦ

∂∂iΦ
· ∂bΦ + ∂aΦ

∂∂bΦ

∂∂iΦ

)
=

1
2

(
δab δia ∂bΦ + δab ∂aΦ · δib

)
= ∂iΦ

(A.9)

and finally

∂i
∂L

∂∂iΦ
= ∂i∂

iΦ = ∆Φ, (A.10)

while the derivative with respect to the field Φ itself is very easy,

∂L
∂Φ

= 4πGρ + λ + m2 Φ, (A.11)

such that Newton’s field equation should be of Yukawa-form, and being inhomoge-
neous even in vacuum, (

∆ −m2
)
Φ = 4πG ρ + λ. (A.12)

While the value of the gravitational constant G ≃ 10−11m3/kg/s2 is well known, the
cosmological constant λ is in fact non-zero and plays a role on scales above 1025m, but
is completely irrelevant inside the Solar System. It would, however, have the funny Many people claim that the cos-

mological constant is a part of a
relativistic theory of gravity, but
this is just untrue.

consequence that there would be gravitational effects in empty space! Specifically for
ρ = 0 the field equation becomes

∆Φ = λ such that
1
r2

∂
∂r

(
r2∂Φ

∂r

)
= λ (A.13)

and the solution for the gravitational acceleration gr reads

∂Φ
∂r

= −gr =
λ

r2

∫
dr r2 =

λ

3
r, (A.14)

increasing linearly with distance: This is in fact observed in cosmology on very large
scales in the distance-redshift-relation of supernovae!

The additional constant m is very difficult to interpret classically, but we should see
what effects it might have, by solving the resulting field equation. In three dimensions
or more, and on scales below 1025m, the case m = 0 reduces the field equation in
vacuum to ∆Φ = 0, i.e. to
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a. relativity and gravity

∆Φ =
1

rn−1
∂
∂r

(
rn−1 ∂

∂r
Φ

)
= 0, (A.15)

suggesting that
(
rn−1 ∂

∂rΦ
)

should be constant for equation to be valid. Specif-
ically in 3 dimensions on obtains a scale-invariant Coulomb-potential, Φ ∝ 1/r
whereas a nonzero value for m introduces a scale in the form of a Yukawa-potential
Φ ∝ exp(−mr)/r. For Newton, it must have been an empirical fact that m would be
vanishing as there are perfectly Keplerian orbits in the Solar System.Debye-screened electrostatic

fields in polarisable media is
a good example of Yukawa-
potentials.

Let us come to the fact that orbits of planets in the Solar System are almost
perfectly Keplerian: A very instructive derivation of Kepler’s third law is to use
mechanical similarity transforms of the classical action S, in particular for power-law
potentials just as the Coulomb-potential.

S =
∫

dt L(xi , ẋi) with L(xi , ẋi) =
m
2
δij ẋi ẋj −m Φ (A.16)

If we introduce a scaling of distance and time with the transformations x→ αx and
t → βt, the kinetic term transforms according to T → α2

β2 T and the potential term
with Φ → αn Φ if the potential is in fact a power law of with exponent n, Φ ∼ xn.

If the two scaling factors are related through α2

β2 ∼ αn, L changes only by an overall
factor, which can not matter because the Hamiltonian principle is invariant under
affine transformations of the action (or equivalently, of the Lagrange function):

L → aL + b implies S → aS + b with S =
∫

dt L (A.17)

such that
δS = 0 → δ (aS + b) = a δS = 0, (A.18)

and a cancels. Therefore, the two scalings in length and time can not be independent
and their relation must depend on the exponent of the power law of the potential: This
is summarised by the similarity condition t2 ∼ x2−n, which is sometimes referred to
as classical similarity: Motion inside a potential with a given exponent is described by
an equivalence class of Lagrange-functions (and their solutions), which get mapped
onto each other by a similarity transform. The most basic choices of n correspond to
well known problems in classical mechanics:

n = 2 t2 ∼ x0 isochronism of a pendulum (A.19)

n = 1 t2 ∼ x inclined plane, constant acceleration (A.20)

n = 0 t2 ∼ x2 inertial motion with constant velocity (A.21)

n = −1 t2 ∼ x3 Kepler’s third law (A.22)

Supposedly, the first case was discovered by G. Galilei himself, who noticed that
the oscillation period of a pendulum (measured with the pulse on his wrist) did
not depend on the amplitude. The last case, Kepler’s third law of planetary motion,
is necessarily a consequence of the 1/r-form of the potential and any Yukawa-type
contribution would break the scaling relation.

Besides, Kepler’s third law provides a neat trick to remember the units of the
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a.2. what would be the most general classical theory of gravity?

gravitational constant, G ∼ 10−11m3/kg/s2, where one can immediately recognise
the three powers of length divided by the two powers of time! For our Sun, GM⊙ ∼
1019 m3/s2 ∼ (1 AU)3/(1 yr)2. But mechanical similarity applied to the Solar System
is a really powerful concept: All planetary orbits are scaled versions of each other,
and for measuring distances one really only needs a calendar!

We have obtained Φ ∝ 1/r from direct solution of Poisson’s equation in the case
ρ = 0, but there needs to be a fundamental argument why this is necessary, and
this argument comes in the shape of Gauß’s law. The gravitational acceleration gi is
given as the gradient gi = −∂iΦ, and has in a spherically symmetric case only a radial
component, gr = −∂rΦ. It is linked to the Poisson equation by

∆ Φ = δij ∂i∂jΦ = −δij ∂igj = −divg = 4πG ρ (A.23)

suggesting that the divergence of the acceleration is ∆Φ and proportional to ρ.
Recasting the Poisson-equation into integral form yields∫

V

d3r divg =
∫
∂V

dA · g = −4πG ·
∫
V

d3rρ = −4πGM. (A.24)

Here,
∫

dA · g is the flux of the field through the surface ∂V = 4πr2 for a spherical
integration volume V appropriate for the isotropic case. As a consequence, the ac-
celeration decreases ∝ 1/r2 as the flux needs to be the same at every distance and
surfaces increase ∝ r2! Now we can set up an entire chain of arguments: The flux
of g⃗ through surfaces ∂V is constant, so g needs to be ∝ 1/r2 and Φ ∝ 1/r. Then,
mechanical similarity requires that t2 ∝ r3. And in addition, Bertrand’s theorem
makes sure that the orbits are closed ellipses.

At this point it is a very large surprise that Mercury, the planet closest to the
Sun where perhaps the gravitational field behaves unusual, shows a tiny violation
of Kepler’s third law and in fact of Bertrand’s theorem, too: Neither is the orbit a
closed ellipse nor is Kepler’s law fulfilled. There is a small precession of the point of
closest approach to the Sun, called perihelion precession, amounting to 43 arcseconds
in about 1000 orbits (The number is usually stated as 43 arcseconds in 100 years,
but this refers to Earth years!). By now, we know many systems that show pericentre
precession, even much more pronounced than Mercury in the Solar System. For in-
stance, PSR 1913+10 with 4 arcseconds per orbit, PSR J0737-3039 with 20 arcseconds
per orbit, and the system OJ287 with 40◦ per orbit! For a precession to appear, the
gravitational field needs to be stronger in the vicinity of a massive object compared
to the Newtonian prediction, and neither m nor λ could achieve this: They both
correspond to long-distance modifications of gravity: That would be a very strong
argument for the necessity of a new theory of gravity. And we can see a tiny glimpse
onto geometry. Combining the constant of gravity G with the speed of light c,

G
c2 ∼ 10−28m/kg (A.25)

which assigns a length scale to the field generating mass. With the specific value
M⊙ ≃ 1030kg for the mass of the Sun on obtains

GM⊙
c2 ∼ 102m (A.26)
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a. relativity and gravity

which we will encounter later as the Schwarzschild radius of the Sun. Perhaps we
can change how surfaces scale with r?

A.3 Lorentz-geometry

The foundational idea of general relativity is differential geometry, i.e. a varying
geometry of spacetime, with locally Minkowskian properties, i.e. we will see that
the laws of special relativity will be valid locally in freely falling reference frames.
Lorentz-transforms and rotations apply locally to the transitions between frames with
different orientation relative to each other or moving at constant velocities υ relative
to each other. The homogeneity of spacetime should be respected by the coordinate
choice, meaning that it should not single out certain spacetime points.

An observer looking at two coordinate choices could measure the rate at which
the coordinates xµ and x′µ are drifting by as a function of her or his proper time τ,
defining the velocity

dxµ

dτ
= const. ,with xµ =

(
t
xi

)
∼ 4-vector (A.27)

which is constant for inertial motion and suitably chosen coordinates, and the
corresponding acceleration

d2xµ

dτ2 = 0, and identically in S′ :
d2x′µ

dτ2 = 0 (A.28)

which then vanishes. Then, the relation between the two velocities and accelerations
is given by

dx′µ

dτ
=

∂x′µ

∂xν
dxν

τ
, with Jacobian

∂x′µ

∂xν
(A.29)

d2xµ

dτ2 =
∂x′µ

∂xν
d2xν

dτ2 +
∂2x′µ

∂xν∂xρ
dxν

dτ
dxρ

dτ
, (A.30)

where
∂2x′µ

∂xν∂xρ
= 0 (A.31)

for transformations between frames that are linear and therefore conserve homo-
geneity. The solution for x′µ(xν) follows then as

x′µ = Aµ
ν x

ν + aµ, (A.32)

implying that the transformation between frames should be affine.
Let’s construct this transform from the most general transition between two

frames, where we align for simplicity the coordinate axes with the direction of

relative motion, taken to be the x-axis. There is an event with coordinates
(
t
xi

)
in

S and
(
t′

x′i

)
in S′, and the two frames move with a relative (constant) velocity υ. A

linear transform would then the only one to respect the homogeneity of spacetime
(nonlinear transforms would always single out certain spacetime points), so we make
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a.3. lorentz-geometry

the ansatz:

x′ = ax + bt, a, b arbitrary, but x = υt must imply x′ = 0 (A.33)

x′ = 0 = aυt + bt = (aυ + b) t ⇒ b = −aυ, and: (A.34)

x′ = a(x − υt) (∗) (A.35)

Reversing the roles of S and S′ implies that

x = ax′ + bt′ but x′ = −υt must imply x = 0 (A.36)

x = 0 = −aυt′ + bt′ = (−aυ + b) t′ ⇒ b = +aυ, and: (A.37)

x = a(x′ + υt′) (∗∗) (A.38)

But this relation between x and x′ is not yet fixed without an additional assumption
that determines the value of a. Here, Nature would have in fact a choice! Either, Nature
could work with a universal time coordinate (or rather, a parameter, as it does not
participate in transforms unlike the other coordinates). A universal time parameter
would require that t = t′ , which is the defining property of Galilei-transforms. Then,

x′ = a(x − υt) (A.39)

x = a(x′ + υt) = a(a(x − υt) + υt) = a2x + (1 − a) υt = x (A.40)

which can only be realised if a = 1. Nature chose instead, for very good reasons, the
speed of light to be equal in all frames, c = c′, which requires Lorentz- instead of
Galilei-transforms between frames. In this choice,

x′ = ct′ = a(ct − υt) (A.41)

x = ct = a(ct′ − υt′) (A.42)

⇒ c2tt′ = a2(c − υ)(c + υ) · tt′ , (A.43)

where the third equation was obtained by multiplying the first two. Dividing by tt′

and solving for a yields the Lorentz-factor γ,

a = γ =
1√

1 − β2
, with β =

υ

c
(A.44)

We should note that Lorentz-transformations, due to their linearity, do not ’mix’ the
spatial coordinates. The Lorentz-factor γ diverges at β = 1 and would indeed become
imaginary for values β > 1. Taylor-expanding γ for small velocities β gives the result
that

γ ∼ 1 +
∂2γ

∂β2

∣∣∣∣∣
β=0
·
β2

2
= 1 +

β2

2
, with

∂γ

∂β

∣∣∣∣∣
β=0

= 1 (A.45)

which is perfectly consistent with the fact that for low velocities β≪ 1 and γ ≃ 1,
Lorentz- and Galilei-transforms are indistinguishable. Writing ct and arranging the

temporal and spatial coordinates into a vector xµ =
(
ct
x

)
allows to use the standard
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a. relativity and gravity

matrix-form of the Lorentz-transformation by eliminating x′ from (*) and (**):

x′ = γ (x − vt) = γ (x − βct) (A.46)

ct′ = γ (ct − βx), (A.47)

so that one arrives at (
ct′

x′

)
=

(
γ −βγ
−βγ γ

) (
ct
x

)
(A.48)

encapsulating the Lorentz-transform in a matrix Λµν, with x′µ = Λ
µ
νxν.

We have seen that coordinates undergo a joint transformation and that any physi-
cal statement on coordinates of an event is only sensibly within a specified frame S.
From that one might wonder if there is a way to make true statements about physical
properties of a system independent from a specification of a frame: That is exactly the
idea of a Lorentz-invariant. Similarly to rotations, where r2 = δijx

ixj are invariant,
which essentially corresponds to the statement cos2 α + sin2 α = 1 if the rotation is
parameterised by an angle α, one can define invariants for Lorentz transforms and
relate them to the rapidity ψ which is indicative of the relative velocity between the
frames.

Setting coshψ = γ and sinhψ = βγ (which is sensible if you look at the range
of values of γ and βγ, and compare with the hyperbolic functions), one obtains the
relation tanhψ = βγ

γ
= β between the rapidity and the dimensionless velocity β = υ/c.

Lorentz-transformations can then be written compactly as(
ct′

x′

)
=

(
coshψ sinhψ
sinhψ coshψ

) (
ct
x

)
, (A.49)

as a hyberbolic rotation, suggesting an invariant through cosh2(ψ) − sinh2(ψ) =
γ2 − β2γ2 = γ2(1 − β2) = 1, which we have already derived by direct calculation,
(ct′)2 − x′2 = (ct)2 − x2.

Analogous to rotations we write the Lorentz-invariant as s2 = (ct)2 − x2 by intro-
ducing the Minkowski-metric,

ηµν =
(
+1 0
0 −1

)
. (A.50)

such that one can write s2 = ηµν x
µxν. In contrast to the invariant r2 in Euclidean

space, Lorentz-invariants can be positive, negative or zero, and as the sign of the
Lorentz-invariant is of course conserved under transforms, too, the classification into
timelike (s2 > 0), spacelike (s2 < 0) and lightlike (or null, s2 = 0) is very suggestive.

Let’s now imagine the motion of a point through spacetime: The Lorentz-invariant
reads

s2 = (ct)2 − x2 = (ct′)2 − x′2 = (cτ)2 (A.51)

in two frames S and S′, and the choice of comoving coordinates x′ = 0 defines
proper time t′ = τ, which is read off a clock in the rest frame S′. Rewriting the
Lorentz-invariant for infinitesimal coordinate differences,

ds2 = (cdt)2 − dx2 = (cdτ)2, (A.52)

10
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then shows that the passage of coordinate time dt and proper time dτ differ by an
inverse Lorentz-factor,

dτ =
√

1 − β2dt with β =
1
c

dx
dt

(A.53)

That implies that the length ds of the spacetime curve that a point takes is actually
measure by the comoving clock displaying proper time dτ, at least for timelike motion
with velocities β < 1!

At this point, by merging the temporal coordinate with the spatial coordinates
we obtained R4 with a particular geometric structure, given by the Minkowski scalar
product ⟨x, y⟩ = ηµνx

µyν, trading the positive definiteness of the Euclidean scalar
product for the ability to define general invariants.

A.3.1 Lie-groups and the generation of the Lorentz-group

Rotations and Lorentz-boosts are the fundamental transforms that leave a Lorentzian
spacetime invariant. Both transformations are (non-Abelian) groups and are param-
eterised by real numbers, the rotation angles in the first and the rapidities in the
second case. One might ask now the question whether there is something analogous
to a basis of these groups, such that all group elements can be addressed by a suitable
choice of the rotation angle or the rapidity: It turns out that this presumption is true,
and it brings us to the topic of Lie-groups. Lie-groups are continuously parameterised
groups and are generated from a basic building block, called, well, a generator.

If we choose the set of Pauli-matrices, There are many different def-
initions of Pauli-matrices, we’re
using the real-valued ones here,
which in a real-valued linear com-
bination, are a basis of the space
of 2 × 2-matrices.

σ(0) =
(
+1 0
0 +1

)
, σ(1) =

(
+1 0
0 −1

)
, σ(2) =

(
0 +1
−1 0

)
, σ(3) =

(
0 +1

+1 0

)
, (A.54)

to begin with, we can investigate which type of transformation could be generated
by substituting them into and exponential series, for instance

Λ = exp
(
Ψ · σ(3)

)
=

∑
n

1
n!

(
ψ · σ(3)

)n
. (A.55)

For evaluating the matrix-valued exponential series, one needs to know all powers of
the matrix in question. In the case of the Pauli-matrices, it is easy to show that only
ever other Pauli-matrices appear. Specifically for σ(3) one gets:(

σ(3)
)0

= σ(0),
(
σ(3)

)1
= σ(3),

(
σ(3)

)2
= σ(0),

(
σ(3)

)3
= σ(3). (A.56)

Then, the exponential series can be summed,

Λ = σ(0) ·
∑
n

ψ2n

(2n)!
+σ(3)

∑
n

ψ2n+1

(2n + 1)!
= σ(0) ·coshψ+σ(3) ·sinhψ =

(
coshψ sinhψ
sinhψ coshψ

)
,

(A.57)

and one recovers the expression for the Lorentz-transform as a hyperbolic rotation. T
he invariant detΛ = cosh2 ψ − sinh2 ψ = 1, which otherwise appears as a property of
the hyperbolic function, comes out naturally like this: Using ln detΛ = tr lnΛ with
Λ = exp(ψ · σ(3)) implies that ln detΛ = ψ · trσ(3) = 0, because Pauli-matrices (with
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a. relativity and gravity

the exception of σ(0)) are traceless. Then, the determinant needs be equal to one.
Surely, boosts and rotations are groups, but how does one need to combine their

continuous parameters? This question is readily answered by the tools that Lie-groups
provide: For instance, two successive boosts

Λ(φ) · Λ(ψ) = exp
(
φ · σ(3)

)
· exp

(
ψ · σ(3)

)
= exp

((
φ+ ψ

)
σ(3)

)
= Λ

(
φ+ ψ

)
, (A.58)

implying that rapidities (and not the velocities!) are in fact additive parameters for
boosts. If one wants to revert to velocities, one can use the addition theorem for the
hyperbolic tangent:

tanh(φ) + tanhψ = tanh(φ+ ψ) ·
[
1 + tanh(φ) · tanhψ

]
(A.59)

We have just shown that rapidities add for boosts, and from the commutativity of
the addition of real numbers one should then obtain the commutativity of the boosts
into the same direction:

Λ(φ) · Λ(ψ) = Λ
(
φ+ ψ

)
= Λ

(
ψ + φ

)
= Λ(ψ) · Λ(φ), (A.60)

which implies for the inverse boost that

Λ(ψ) · λ(−ψ) = Λ(ψ − ψ) = Λ(0) = id ⇒ Λ(ψ)−1 = Λ(−ψ) (A.61)

as a perfectly intuitive result: The inverse boost is that with the inverse velocity
or rapidity. In complete analogy we would have obtained rotations by starting the
constructing with σ(2) instead of σ(3).Lorentz-transforms are orthog-

onal, but with respect to η, not δ. Finally, one could ask the question what happens if rotations around different
axes and boosts into different directions are combined. If both transformations are
generated by basis elements A and B in an exponential series, their successive
application exp(A) exp(B) is only equal to exp(A + B) if the generators commute,
[A, B] = AB − BA = 0, which is not the case in every of our examples. The Rubik’s
cube demonstrates nicely that rotations in 3 dimensions do not commute, and neither
do boosts: In fact, if one moves from one inertial frame into another by a combination
of two boosts and moving back by interchanging the two boosts leaves you with a
rotation! In the case of non-commuting generators, the two transformation need to be
combined using the Baker-Hausdorff-Campbell-formula,my most favourite formula of

all of physics!

exp(A) exp(B) = exp(A + B) · exp
(
− 1

2
[A, B]

)
, (A.62)

to lowest order, or exactly if [A, [A, B]] = 0 and [B, [B, A]] = 0 is valid. In fact, one can
define a set of generators in 4d for the group comprising rotations around all three
axes and boosts into all 3 directions with a very rich algebra of generators, called the
Lorentz-algebra.

A.4 relativistic motion through spacetime

It might come as a surprise that variational principles, being so typical of classical
mechanics, only make sense in the context of relativity: Here, there is a well define
geometric interpretation, the Lagrange-function and the action are measurable quan-
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a.4. relativistic motion through spacetime

tities, many properties such as their convexity and their affine invariance are made
sure by geometry, they are naturally invariant under Lorentz-transforms and there is
a natural pathway to include gravity.

A.4.1 variational principles for relativistic mechanics

The fundamental idea of variational principles (and which ironically is not present
clearly in classical mechanics) is to link invariant quantities of a system in the form of
the Lagrange-function with a covariant equation of motion. Specifically, the Lagrange
function L(xi , ẋi) of classical mechanics

L(xi , ẋi) =
m
2
δij ẋ

i ẋj −m Φ (A.63)

is invariant as the norm of ẋi is unaffected by rotations of the coordinate systems and
because the scalar potential Φ does not have any internal degrees of freedom. With
Hamilton’s principle δS = 0 for the variation of the action

S =
∫

dt L(xi , ẋi) (A.64)

one obtains through the Euler-Lagrange equation a covariant equation of motion

ẍi = −∂iΦ, (A.65)

which sets two vectors in relation to each other, namely the acceleration ẍi and the
potential gradient ∂iΦ, which of course have the same transformation properties.
While this is a perfectly valid example of covariance generated from an invariant
Lagrange-function, one should note that while it is invariant unter rotations, it is not
invariant under Galilei-transforms.

Let’s take a leap of faith and replace the Lagrange-function by something rela-
tivistic, for instance the proper time τ =

∫
dτ, which is measurable with a clock, fully

Lorentz-invariant as

ds2 = c2dτ2 = c2dt2 − γijdxidj = ηµνdx
µdxν, (A.66)

and has an intuitive geometric interpretation as the arc-length of the trajectory
through spacetime in the geometry defined by the Minkowski-metric ηµν.

Suppose that a particle travels through spacetime along a trajectory xµ(τ). Then,
we can define the 4-velocity uµ as the rate at which the coordinates pass by the
observer,

uµ =
d
dτ

xµ(τ) =
d
dτ

xµ(τ) =
dt
dτ

d
dt

xµ = γ ·
(

c
υi

)
(A.67)

with Lorentz-factor dt
dτ = γ. The normalisation of the 4-velocity can be computed

straightforwardly,
ηµνu

µuν = uµu
µ = γ2 ·

(
c2 − υiυi

)
= c2, (A.68)

because γ2
(
1 − β2) = 1 for βi = υi

c . The 4-velocity, or the tangent to the trajectory

xµ(τ) is therefore timelike ηµν uµuν = c2 > 0 and the particle moves inside the light
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cone.

Inertial motion of a free particle should proceed along a straight line as a natural
result of the relativistic variational principle. Indeed, starting with the arc-length s

S =

B∫
A

ds =

B∫
A

cdτ = c ·
B∫

A

dt
γ

(A.69)

of a trajectory linking the spacetime points A to B we obtain the elapsed proper time
τ (which can be measured by a clock carried along by the particle) or the integrated
laboratory time

∫
dt/γ, weighted by the Lorentz-factor, which is responsible for

relativistic time dilation: dτ = dt ·
√

1 − δij βiβj = 1
γ
· dt, and because γ ≥ 1, dτ is

always smaller than dt and proper time elapses slower.

This would imply that the Lagrange function of a free particle is L(ẋi) = 1/γ, and
that the action S is in fact the arc-length of a trajectory. In the slow-motion limit∣∣∣β∣∣∣≪ 1 one should recover the classical Lagrange-function: Taylor-expanding yields

S ≃ −mc2

B∫
A

dt ·
(
1−

δij

2
βiβj

)
= +mc2

B∫
A

dt ·δij βiβj +const. = m ·
B∫

A

dt ·δij υiυj (A.70)

with irrelevant prefactors, as affine transformations S→ aS + b with two constants
a, b drop out in the Euler-Lagrange-equation. Effectively, the non-relativistic limit
yields the kinetic energy as the leading-order term of the proper time integral.

Funnily, Lorentz-covariance is lost in the non-relativistic limit and Galilei-invariance
is not generated: If one carries out a Galilei-transform by setting xi → xi + υi t, and
ẋi → ẋi + υi one obtains:

L =
1
2
δij ẋ

i ẋj → 1
2
δij ẋ

i ẋj + δij ẋ
iυj +

1
2
δijυ

iυj = L +
d
dt

(
δijx

iυj + δijυ
iυj · t

)
, (A.71)

where the additional term is a total time derivative with no influence on the varia-
tional principle: We find ourselves in the weird situation that we need a new concept
to remedy the error made by classical Galilei-invariance!

Is inertial motion really proceeding along a straight line? Hamilton’s principle
requires that δS = 0, so

δS = −mc2 δ

B∫
A

dτ = −mc2

B∫
A

ηµν

2dτ
·
[
dxµ · δdxν + δdxµ · dxν

]
= −mc2

B∫
A

ηµν
dxµ

dτ
δdxν,

(A.72)

where we have used the symmetry of the integrand to get rid of the factor 1/2. For
continuing, we interchange variation and differentiation, δdxν = dδxν and perform
an integration by parts

δS = +mc2

B∫
A

dτ ηµν
d2xµ

dτ2 dxν, (A.73)
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where d(dxµ/dτ) = (d2xµ/dτ2) dτ, and with the assumption of vanishing variation on
the boundary. The result then is that the 4-acceleration needs to vanish,

d2xµ

dτ2 = 0 (A.74)

for fulfilling Hamilton’s principle, and the equation of motion is solved to yield
xµ(τ) = aµτ + bµ with two integration constants: In fact, the solution is a straight line
through spacetime.

A.4.2 Legendre-transforms and Hamilton-functions

We have seen in the last chapter that the Lagrange-function is much more a statement
of causal motion in spacetime and has little to do with energies: Those appear after
Legendre-transform, which is always well defined because the Lagrange function is a
convex functional in ẋ - this is, incidentally, the same reason why the variation yields a
unique result and finds a unique extremum. In fact, the relativistic Lagrange-function
L = 1/γ is perfectly convex as it always lies above its tangent: To visualise this, one
can write 1/γ =

√
c2 − υ2, whose graph is a semi-circle!

Not only do convex functions have uniquely defined Legendre-transforms, but
the Legendre-transformed function is again convex, making sure that the inverse
transform is possible, too. Starting with the relativistic Lagrange-function

L(ẋ) =
1
γ

=
√

c2 − ẋi ẋi (A.75)

we can define the canonical momentum

pi =
∂L
∂ẋi

=
ẋi√

c2 − ẋi ẋj
(A.76)

which we need to convert into a relation for υ(p): Let’s do this in one dimension for
simplicity.

p2
[
c2 − υ2] = υ2, p2c2 = υ2

(
1 + p2

)
→ υ =

cp√
1 + p2

(A.77)

Then, the Legendre-transform, replacing ẋ = υ by p can be carried out and the
Hamilton-function H can be obtained:

H(p) = ẋ
∂L
∂ẋ
− L(ẋ(p)) = v · v

√
c2 − v2

+
√

c2 − v2 = vp +
v
p

= c ·
√

1 + p2, (A.78)

and if we include the prefactor mc2:

H(p) =
√

(mc2)2 + c2p2 ≃ mc2 +
p2

2m
+ · · · , (A.79)

where mc2 is the rest mass and p2

2m is the kinetic energy which appear in a Taylor-
expansion in the last step.

For massive particles the energy-momentum-relation H allows statements about
dispersion: In fact, phase and group velocities can not be equal for massive particles,
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a. relativity and gravity

H/p , dH/dp, but one can show that

υph · υgr =
H
p

dH
dp

=
cp√

1 + p2

c
√

1 + p2

p
= c2 (A.80)

i.e. that the geometric mean of phase and group velocity is the speed of light. That in
turn implies that the phase velocity of massive particles needs to be υph > c if their
group velocity is subluminal, υgr < c. And, as a shortcut,

c2 =
H
p

dH
dp

=
d(H2)
d(p2)

(A.81)

which can be integrated to give H2 = (cp)2 + const, with the rest mass as the integra-
tion constant.

We have already encountered the classification of Lorentz-vectors in timelike,
spacelike and lightlike, and we saw that 4-velocities uµ are normalised according
to ηµνuµuν = c2 > 0 with the associated motion inside the light cone. Clearly, that
normalisation is conserved under Lorentz-transforms, but one might be curious as to
the possibility whether forces could accelerate a particle to super-luminous speeds:
A classical argument would be that this would be energetically impossible due to
relativistic mass increase (which is really only a consequence of proper time dilation),
but there is a more elegant, geometric argument. Acting on a charged, massive particle
with a Lorentz-force leads to the equation of motion

duµ

dτ
=

q

m
Fµνuν. (A.82)

Multiplying both sides with uµ then gives a relation how the normalisation of uµ

would change under the influence of a Lorentz-force:

uµ
duµ

dτ
=

1
2

d
dτ

(
uµu

µ
)

=
q

m
Fµνuµuν = 0, (A.83)

where the last term is vanishing as a contraction between an antisymmetric tensor
Fµν and a symmetric one, uµuν, making sure that the normalisation uµu

µ = c2 is
conserved and the motion of a massive particle is restricted to the inside of the light
cone: Electromagnetic forces can therefore not push a particle outside the light cone
and it is impossible to achieve superluminal speeds.

At this point, the Lorentz-geometry arises because of the requirement that the
speed of light was equal in al inertial frames, but one might ask if there is a more
fundamental reason: As it is, the constancy of c might just be an empirical observation.
The truth is very far from that as the Lorentz-geometry is a natural way for Nature
to construct hyperbolic partial differential equations as her field equations (where
Maxwell’s equations or even the gravitational field equation are just examples). Hyper-
bolic (partial) differential equations are peculiar because they (i) realise a unique time
evolution for specified initial conditions, (ii) are perfectly time-invertible and (iii)
show causal propagation: There is a finite speed (in our case c) at which excitations
of the fields travel, and the Lorentzian structure of spacetime makes sure that the
light cones are in fact identical in all frames: In this way one can be sure that the
initial conditions for the evolution of the fields at a given coordinate are identical in
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all frames!
That implies that the fundamental Lorentzian structure of spacetime is in fact

compatible with the hyperbolicity of the field equations. This is reached by defining
a partial differentiation ∂µ with respect to the coordinates,

∂µ =
(
∂ct

−∂i

)
(A.84)

where the minus-sign is added to make sure that the divergence of xµ is equal to the
dimensionality, i.e. 4:

∂µx
µ =

∂xµ

∂xµ
= 4 = ∂ct(ct) + ∂ix

i = 1 + 3 = ηµν ∂
µxν, (A.85)

and the corresponding linear form is given by ∂µ = ηµν∂
ν = (∂ct , ∂i). Then, the

d’Alembert-operator would be naturally Lorentz-invariant because it is defined as a
Lorentz-scalar,

□ = ∂µ∂
µ = ηµν∂

µ∂ν = ∂2
ct − ∆, (A.86)

and typical wave equations like □Φ = 0 would generate a light cone, as propagation
of excitation proceeds with velocities ±c:

□ Φ =
(
∂2

ct − ∂2
x

)
=

(
∂ct + ∂x

)(
∂ct − ∂x

)
Φ = 0. (A.87)

The same property is reflected by the wave vectors being null: Φ = exp
(
± ikαxα

)
solves the wave equation

□ Φ = ηµν ∂µ∂νΦ = 0 (A.88)

only of ηµνkµkν = 0, which holds again in every frame. Giving the components of the
wave vector kµ the interpretation of the angular frequency ω and the spatial wave
vector ki ,

kµ =
(
ω
c
ki

)
(A.89)

shows first of all the dispersion-free propagation along the light cone, as the nor-
malisation ηµνkµknu = 0 implies that ω2/c2 − k2 = 0 and therefore a proportionality
ω = ±ck, such that the phase velocity ω/k and the group velocity dω/dk are identical
and dispersion is not taking place. Secondly, the (relativistic) Doppler-effect can kµ being a null-vector and

dispersion-free propagation are
equivalent.

be derived by projecting kµ onto an observer’s 4-velocity uµ. At rest, uµ has only a
temporal nonzero component of c, such that ω = ηµνu

µkµ, but for a moving observer
with u′µ one obtains

ω′ = ηµνu
′µkν = γ(ω − υiki). (A.90)

A.4.3 non-relativistic motion in weak gravitational potentials

In anticipation of general relativity we should have a look at changing the geometry
of spacetime and to move away from a Lorentzian space. And we need to make sure
that the relativistic line element is in fact the relativistic generalisation of the classical
Lagrange-function.
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a. relativity and gravity

Weak gravitational potentials Φ = −GM/r sourced by a mass M at distance r
perturb the line element

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
δij dxidxj (A.91)

such that one recovers in the Minkowski-metric at large distances r ≫ 2GM/c2. If
that is the case, the passage of proper time of a stationary observer where dxi = 0
would be dilated

ds2 = c2dτ2 ≃
(
1 +

2Φ
c2

)
c2dt2 (A.92)

and proper time would in fact depend on the presence of gravitational potentials!
That would then imply that the variational principle should find a different trajectory
if Φ is nonzero compared to the case Φ = 0. The action would again be given as the
line element, but now derived from the actual perturbed metric gµν instead of the
Minkowski-metric ηµν:

S = −mc

B∫
A

ds = −mc

B∫
A

dτ ·
√
gµν uµuν using ds2 = gµν dxµdxν (A.93)

Substituting the 4-velocity uµ with the spatial component γυi then yields for the
action

S = −mc

B∫
A

dτ · γ
√(

1 +
2Φ
c2

)
c2 −

(
1 − 2Φ

c2

)
· δij vivj (A.94)

which is then approximated to give

S ≃ −mc

B∫
A

dt

√
c2 ·

(
1 +

2Φ
c2 − δij β

iβj
)

(A.95)

and finally Taylor-expanded to yield

S =≃ −mc2

B∫
A

dt
(
1 +

Φ

c2 −
δij β

iβj

2

)
(A.96)

so that we finally arrive at

S =

B∫
A

dt
(
mδij

1
2
υiυj −mΦ

)
=

B∫
A

dt L (A.97)

where we recognise the classical Lagrange function in the integrand, with a kinetic
and a potential term.
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A.4.4 photon propagation on the Lorentzian spacetime

Up to this point, have shown that the archetypical hyperbolic wave equation □Φ = 0
is solved in fact by plane waves Φ ∼ exp(±iηµν kµxν) with a wave vector kµ which
is null, ηµνkµkν = 0. The same should be true for the propagation of electromag-
netic waves, so we need to make sure that Maxwell’s equations provide a pathway
to obtain a hyperbolic wave equation for the field tensor Fµν. Specifically, the ho-
mogenous Maxwell-equation (or the Bianchi-identiy) should be the relevant here, as
electromagnetic waves are vacuum solutions.

∂λFµν + ∂µFνλ + ∂νFλµ = 0, (A.98)

to which one can apply the differentiation ∂λ to obtain

∂λ∂
λFµν + ∂λ∂

µFνλ + ∂λ∂
νFλµ = 0. (A.99)

Identifying the d’Alembert operator ∂λ∂λ = □ and using commutativity of partial
derivatives, ∂λ∂µ = ∂µ∂λ as well as the antisymmetry of the field tensor, Fνλ = −Fλν

and ∂λ∂
ν = ∂ν∂λ this becomes

□Fµν − ∂µ∂λFλν + ∂ν∂λFλµ = 0. (A.100)

Now in vacuum, i.e. in the absence of a source ȷµ = 0, the field equation is ∂µFµν = 0
and in fact there is a wave-equation with for the field tensor,

□Fµν = ηαβ ∂α∂β Fµν = 0. (A.101)

Analogously to the case of a scalar field one expects a plane wave of the type
Fµν ≃ exp(±iηγδ kγxδ) to solve this equation. Doing that, it is a good idea to use
different indices for the differentiation and for the quadratic form ηγδ k

γxδ and to
rename the indices with the Kronecker-δ appearing through ∂αx

µ = ∂xµ/∂xα = δ
µ
α.

□Fµν = ηαβ ∂α∂β exp(±iηγδ k
γkδ) = (±i)2 · exp

(
± iηγδ k

γxδ
)
ηγβ k

γkβ = 0, (A.102)

recovering the null-condition ηγβ kγkβ = 0, confirming that excitations of the elec-
tromagnetic field do in fact travel along null-lines, which implies that the Maxwell-
equations respect the fundamental Lorentzian structure of spacetime.

The field equation makes sure that the excitations of the fields are perpendicular
to the propagation direction and that the wave is indeed transverse: Again, using the
ansatz Fµν = F(0),µν exp(±iηγδ kγxδ)) one immediately convinces oneself that

∂µFµν = F(0),µν · ∂µ exp(±iηγδ kγxδ) = (±i) exp(±iηγδ k
γxδ) · ηγµF(0),µνkγ = 0 (A.103)

and therefore ηγµF(0),µνkγ = 0. In terms of the field components of the electric field
Ei this means that δijkiEj = 0, and the analogous statement for the magnetic field
Bi would be obtained from the dual field tensor ηγµF̃(0),µνkγ = 0, as a consequence of
electromagnetic duality in vacuum.

Photons move along null-lines, so the arc length measured along their trajectory
xµ will always come out as zero: That means that one can not work with the proper
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a. relativity and gravity

time τ. Using a new affine parameter λ to address the points along the trajectory xµ(λ)
suggests the definition of the wave vector kµ = dxµ/dλ, because

ds2 = ηµν dxµdxν = ηµν
dxµ

dλ
dxν

dλ
· dλ2 = ηµν k

µkνdλ2 = 0 (A.104)

At this point, we should start to be careful not to link the Lorentz-geometry to any
particular coordinate choice. When considering light cone coordinates, du = cdt + dx
and dv = cdt − dx the line element is given by

ds2 = ηµν dxµdxν = c2dt2 − dx2 = (cdt + dx)(cdt − dx) = du · dv, (A.105)

and the corresponding Lorentzian metric is represented by the matrix

ηµν =
1
2

(
0 1
1 0

)
(A.106)

in these coordinates. Surely, the geometry is identical and has not been changed by
the new definition of coordinates, and the spectrum of eigenvalues of the new metric
is identical.

A.4.5 photon propagation through weak gravitational fields

At this point we should derive a puzzling result, which was in fact the first proper
prediction of general relativity: that gravitational fields have a stronger effect on the
motion of relativistic particles such as photons compared to non-relativistic particles.
We start by introducing a weak perturbation to the Minkowski-metric and define the
line element

ds2 = gµν dxµdxν (A.107)

with gµν being the metric tensor. For fixed Cartesian coordinates and a weak gravita-
tional potential Φ with |Φ| ≪ c2 the line element becomes

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
δij dxidxj . (A.108)

It will be the case that for slow motion
∣∣∣ẋi ∣∣∣ ≪ c the classical equation of motion is

valid and will come out as ẍi = −∂iΦ, as expected, by variation of
∫

dτ. There is some
intuition to this result because a non-relativistic particle moves essentially only along
the ct-axis of the coordinate frame, so that dτ is approximately equal to (1 + Φ/c2)dt.

Photons need an entirely different argumentation, because they always follow
null-lines, ds2 = 0. For that case we can define an effective speed of propagation

dx
dt

= c ·

√√
1 + 2Φ

c2

1 − 2Φ
c2

� c ·
(
1 +

2Φ
c2

)
(A.109)

such that we can define an index of refraction, which is proportional to 2Φ instead
of Φ! That realisation prompted A. Eddington in 1919 to measure gravitational light
deflection during a Solar eclipse and the deflection angle was indeed twice as large as
expected from a Newtonian theory.
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B topological and metric structure of spacetime

General relativity requires that the idea of a vector-space (with Lorentzian geometry)
as a model for spacetime is given up. From the example of the perihelion precession
of the planet Mercury we saw that the gravitational field around massive objects
like the Sun is stronger compared to the prediction of a Newtonian theory: This is
surprising, because the 1/r-form of the potential is a direct consequence of the fact
that surfaces of spheres scale ∝ r2, so typical for a Euclidean vector-space. The new
model for spacetime that was pioneered by Albert Einstein and by David Hilbert
was that of a manifold: A topological space with a metric and a differential structure,
and ultimately, curvature as an expression of the gravitational field. The decisive
property of curved manifolds is a locally defined, varying geometry, encapsulated by
the metric, which becomes dependent on the coordinates.

The topological structure explains the connectivity of sets of spacetime points
and introduces open sets, which are used to construct continuous mappings of the
spacetime points onto their coordinates. Changes from one coordinate choice to
another need to be invertible and differentiable (which is called a diffeomorphism).
Adding a metric structure to the manifold allows the measurement of norms of
vectors and the angle between them, and the construction of invariants. Finally, the
construction of parallel transport and that of a covariant derivative allows statements
about variations of vector- and tensor-fields defined on the manifold. We need to
make sure that all these structures are compatible with each other.

B.1 metric structure of manifolds and coordinate transforms

We have already encountered weak perturbations to the Minkowski-metric ηµν medi-
ated by the gravitational field in the limit of weak fields |Φ| ≪ c2 (which is only valid
in a particular coordinate choice!). A general metric tensor gµν defines an infinitesimal
contribution ds2 to the line element,

ds2 = gµνdx
µdxν (B.110)

between two points that have an infinitesimal coordinate difference dxµ. With this
definition, the metric tensor is symmetric as ds2 would not pick up any antisymmetric
contribution in the contraction with dxµdxν.

The line element ds2 is scalar, under coordinate transformations we should obtain:

ds2 = gµν dxµdxν = gµν ·
∂xµ

∂x′ρ
∂xν

∂x′σ
dx′ρdx′σ (B.111)

isolating the transformation rule for the metric to be

gµν ·
∂xµ

∂x′ρ
∂xν

∂x′σ
≡ g ′ρσ, (B.112)

and is naturally inverse to that of vectors like dxµ

dx′µ =
∂x′µ

∂xν
dxν, (B.113)

making sure that the coordinate transformation by the Jacobian and its inverse cancel
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each other,
∂xµ

∂x′ν
∂x′ν

∂xρ
=

∂xµ

∂xρ
= δ

µ
ρ (B.114)

The interpretation of ds2 as the arc-length of a trajectory through spacetime is
still that of proper time, ds2 = c2dτ2, measured on a clock comoving with a massive
particle. We will show that photons would follow null-lines, ds2 = 0, so that the
definitions of light-cones and their associated causal structure is valid on metric
manifolds in exactly the same way.

A metric defines a geometry by defining distances and angles: It is a mapping of a
pair of vectors x, y onto a positive number obeying the three metric axioms:

1. g(x, y) ≥ 0, if g(x, y) = 0 ↔ x = y positive definiteness
Because from a physical motivation, the classification of vectors into timelike,
spacelike and lightlike is incredibly important, we will soften this axiom and
allow negative values for ds2 = g(dx,dx) = gµν dxµdxν: This, ultimately, defines
a pseudo-Riemannian geometry.In relativity we’re dealing with

pseudo-metrics: ds2 is negative
for space-like vectors, but those lie
outside the light cone and do not
correspond to causal processes. 2. g(x, y) = g(y, x) symmetry

This axiom is fulfilled by gµν being a symmetric, real valued tensor defining a
quadratic form

3. g(x, y) + g(y, z) ≥ g(x, z) triangle inequality
Again, there might be physical situations, where a ”detour” is shorter than the
direct path, and the classical example for this is the twin paradoxon: Lightlike
vectors have smaller norms than timelike vectors.

You would not believe how much I’d like at this point to go off on a tangent about
the necessity of a metric structure and the possibility of having geometries that are
defined in different ways, for instance avoiding scalar products. Instead, I would just
like to emphasise that the only metric geometry allowing for hyperbolic evolution of
the field equations along an invariant light cone is the Lorentzian one.

It is important to clarify the relation between an arbitrary geometry gµν and the
Lorentz-geometry ηµν: If one zooms in onto a single point of spacetime, it should have
a locally Minkowskian shape and allow for the local choice of Cartesian coordinates
(called normal coordinates in this context). Clearly, with a coordinate transform one
can transform the metric

g ′ρσ(x) = gµν(x) · ∂x
µ

∂x′ρ
∂xν

∂x′σ
(B.115)

at one point in such a way that it becomes diagonal with eigenvalues λµ, because it is
symmetric. A rescaling of the coordinates xµ → xµ

√
λµ would then make gµν identical

to ηµν.

But it should not be possible to bring the entire manifold to a Lorentzian shape
and to choose globally Cartesian coordinates: To show this, we need to overcome the
idea that an arbitrary coordinate transform would be able to define just the right
transform to ensure gµν = ηµν at every point. Let’s consider a general coordinate
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b.1. metric structure of manifolds and coordinate transforms

transform xµ(x′ν) at a point P:

xµ(x′) = xµ
∣∣∣
P

+
∂xµ

∂x′ν
∣∣∣
P

(
x′ν − x′νP

)
(B.116)

+
1
2

∂2xµ

∂x′ν∂xρ
∣∣∣
P
·
(
x′ν · x′νP

)(
x′ρ − x′ρP

)
(B.117)

+
1
3!

∂3xµ

∂x′ν∂x′ρ∂x′σ
∣∣∣
P

(
x′ν − x′νP

)(
x′ρ − x′ρP

)(
x′σ − x′σP

)
+ · · · (B.118)

and count the number of degrees of freedom that is provided at every order of the
Taylor-expansion and see if they suffice to have g = η and to make all derivatives of g
appear at arbitrary order. If that would be the case, a coordinate transform could be
found that diagonalises the metric at every point and makes it globally Minkowskian,
across the entire manifold.

1. At lowest order, there are are more degrees of freedom provided by the coordi-
nate transform to diagonalise the metric gµν and have unit diagonal entries: We
can adjust the coordinate transform to make gµν = ηµν at the point P, because
counting the degrees of freedom yields

∂xµ

∂x′ν
∼ n2 (B.119)

because there are n choices for x and n independent choices for x′

g ′µν ∼
n(n + 1)

2
(B.120)

because the metric is a symmetric, real-valued n×n matrix. The counting shows
that n2 > n(n + 1)/2 for every number of dimensions n, so there are enough
degrees of freedom to adjust gµν = ηµν locally at P.

2. At second order, the number of degrees of freedom provided by the coordinate
transform is exactly that needed to make the first derivatives of the metric
vanish at P.

∂2xµ

∂x′ν∂x′ρ
∼ n2(n + 1)

2
(B.121)

because the differentiations should not be counted twice for ν = ρ, and

∂g ′µν
∂x′ρ

∼ n2(n + 1)
2

(B.122)

because there are n possible differentiations of a symmetric matrix. Surprisingly,
the degrees of freedom provided by the coordinate transform suffice exactly to
have the derivatives ∂ρgµν disappear locally at P.

3. At third order, the number of degrees of freedom provided by the coordinate
transform falls short of the number needed to make the second derivatives of
the metric at the point P disappear.

∂3xµ

∂x′ν∂x′ρ∂x′σ
∼ n · n(n + 1)(n + 2)

6
(B.123)
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because all derivatives must be different, while

∂g ′µν
∂x′ρ∂x′σ

∼ n(n + 1)
2

· n(n + 1)
2

(B.124)

because both the metric and the double partial are symmetric. As n2(n + 1)(n +
2)/6 > n2(n + 1)2/4, the second derivatives of the metric can not be made to
vanish at P in the general case.

Continuing this line of reasoning shows that the problem exacerbates: The num-
bers of degrees of freedom provided by the coordinate transforms always falls short
of the degrees of freedom needed to make higher order derivatives of the metric
vanish. From that we conclude that there can only be two cases: Either the manifold
is already Lorentzian but with an unfortunate coordinate choice, in which case there
is a global construction of normal coordinates, or the manifold has new properties
expressed by the non-vanishing second derivatives of the metric: This is in fact the
curvature, as a new intrinsic property of the manifold that exists in any coordinate
choice. But even if that is the case, our argument shows that the spacetime structure
is locally Lorentzian with a Minkowski-metric.

B.2 locally Minkowskian structure and the equivalence principle

While this argument is elegant, we might ask if the coordinate choice that achieves a
locally flat structure has a particular physical meaning: This is in fact the case, as an
expression of the equivalence principle which stipulates that gµν = ηµν and ∂ρgµν = 0
in a freely falling frame of reference. In such a freely falling frame, one recovers
(locally!) perfectly Lorentzian geometries and the laws of special relativity are valid,
for instance Maxwell’s equations as defined on a flat, Minkowskian spacetime. The
”size” r of the freely falling laboratory in which special relativity applies at least
approximatively is given by the requirement that curvature effects associated with
the second derivatives of the metric can not be dominant:

1
r2 =

∣∣∣∂2g

∂x2

∣∣∣ −→ r =
∣∣∣∂2g

∂x2

∣∣∣− 1
2 (B.125)

And we will see in a second that the Christoffel-symbols Γ αµν = gαβ

2

[∂gµβ
∂xν +

∂gβν
∂xµ −

∂gµν
∂xβ

]
will be zero, due to their proportionality to ∂g, and that the covariant derivative
∇µυα = ∂µυ

α + Γ αµβ υ
β reverts back to the partial derivative ∂µυ

α.

B.3 vectors and fields on manifolds

Let us start with the picture that a manifold as the continuum of spacetime points has
been given coordinates by a suitable mapping, so every point P has coordinates, xµ.
Changing from one coordinate set xµ to a new set x′ν should be done in an invertible,
differentiable way. The manifold itself is not a vector space, but we can define abstract
fields on the manifold: If they have internal degrees of freedom, their components
can be expressed in the local set of basis vectors spanning the tangent space (or
cotangent space, if their degrees of freedom rather correspond to linear forms instead
of vectors).

One of the easiest geometric objects we can define is a curve C(λ) = xµ(λ) visiting
the spacetime points xµ as the (possibly affine) parameter λ evolves. If there is a scalar

24

https://en.wikipedia.org/wiki/Equivalence_principle
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field φ(xµ) defined on the manifold, the rate at which the field amplitude changes
along the curve xµλ would be given by

dφ
dλ

=
d

dλ
φ(xµ(λ)) =

dxµ

dλ
∂φ

∂xµ
= uµ

∂φ

∂xµ
(B.126)

and we recognise in the last term the scalar multiplication of the field gradient
∂Φ/∂xµ into the tangent vector uµ = dxµ/dλ. In this sense, one can think of the
tangent uµ and of dxµ as vectors. In transforming from on set of coordinates to
another set shows that the vector uµ and the linear forms ∂µφ transform consistently:

dφ
dλ

= uµ
∂φ

∂xµ
= uνδ

µ
ν ·

∂φ

∂xµ
= uν

∂x′α

∂xν
∂xµ

∂x′α
∂φ

∂xµ
= u′α

∂φ

∂x′α
(B.127)

so that in fact the vector uµ transforms with the Jacobian and the linear form ∂µφ
with the inverse Jacobian of the coordinate transform.

We can run all possible curves through the point xµ and get a complete set of
tangent vectors which would ultimately constitute, after proper orthonormalisation, a
local basis set: the basis of the tangent space TPM at the point P with the coordinates
xµ: It is important to realise that the tangent space’s basis set exists for a given choice
of coordinates and that a different coordinate choice would induce a new basis set.
In particular, a neighbouring point Q can have a different tangent space TQM. That
implies that if we take the same abstract vector υ and express it with the basis sets at
TPM and TQM in coordinates υµ, the tuples will in general differ, and that one needs
a more elaborate concept of differentiating vectors than just partial derivatives: the
covariant derivative.

Up to this point, the manifold has two structures: the topological structure which
defines open sets and allows the definition of continuous coordinate mappings, and
the metric structure which defines the geometry through a scalar product. The two
structures are compatible with each other, as the definition of open sets with the
metric is never in contradiction with the topology. The next step is the definition of a
differentiable structure constructed with parallel transport.

B.4 parallel transport and the covariant derivative

Parallel transport generates a perfect copy of an abstract vector at a different spacetime
position. After defining coordinates and therefore entries of a vector tuple, the parallel
transported copy υµ∥ (x+δx) of the vector υµ(x) at a new, infinitesimally distant position
x + δx is given by

υ
µ

∥ (x + δx) = υµ(x) − Γ µαβ υ
α(x) · δxβ + · · · (B.128)

at lowest order. It is conventional to use a minus-sign in front of the Christoffel-
symbol Γ µαβ , which generates the transformation rule for the vector υµ, because we
have a different set of tangent vectors at x + δx compared to the point x, and therefore
different expansions of the same vector into two different basis sets. In fact, the best
way to visualise the Christoffel-symbol is to think of Γ µαβ as a transformation matrix
in the indices α and µ acting on the components υα for shifts in any possible direction
δxβ.

There are cases where the connection is trivially zero, that is when index by
index the components of the parallel-transported vector are identical to the original
vector, which would be the case in a vector-space or a flat manifold with Cartesian
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coordinates. In the general case, the tangent spaces at x and x + δx are not identical
and have a different set of basis vectors, so the expansion of the abstract vector,
although it is in fact identical at x and x + δx under perfect parallel transport, needs
to be different.

With this definition of parallel transport we can ask whether a vector field υ has
changed moving from x to x + δx, or equivalently, if it has a derivative. It is senseless
just to compare the entries of the vectors as they exist in different tangent spaces,
rather, we need to compare the vector field at x + δx with a parallel transported
version of υ taken from x to x + δx.

Taking the limit δxβ → 0 to get the differential rate of change yields

∇βυµ = lim
δxβ→0

υµ(x + δx) − υµ∥ (x + δx)

δxβ
= lim
δxβ→0

υµ(x + δx) − υµ(x)
δxβ

+ Γ µαβ · υ
α(x) · δx

β

δxβ
(B.129)

such that the covariant derivative is given by

∇βυµ = ∂βυ
µ + Γ µαβ υ

α (B.130)

if we substitute the partial derivative as the index-by-index comparison of the entries
υµ at the two infinitesimally separated points. For scalar fields Φ there is no distinction
between the covariant derivative and the conventional partial derivative, ∇µ = ∂µφ
because there are no internal degrees of freedom whose entries would change if
the set of basis vectors is different, hence the field can only have a derivative if it
assumes a different value. Using Cartesian coordinates on a flat manifold allows the
usage of the connection Γ µαβ = 0, because all tangent spaces are identical (or aligned)
and vectors do not change their entries moving from one tangent space to another,
therefore υµ∥ (x + δx) = υµ(x) in parallel transport and consequently, ∇βυµ = ∂βυ

µ.
Higher-order tensors require a Christoffel-symbol for every index

∇βTµν = ∂βTµν + Γ µαβ Tαν + Γ ναβ Tµα (B.131)

because their basis set is the Cartesian product of the basis of TPM, one factor for
each index.

The covariant differentiation can be constructed for linear forms (or covariant
vectors) in a way that is compatible with the differentiation of (contravariant) vectors:
Because a product υµwµ = gµνυ

µwµ would be scalar, the covariant derivative reverts
back into a partial one:

∇β
(
υµwµ

)
= ∂β

(
υµwµ

)
= ∂βυ

µ · wµ + υµ · ∂βwµ. (B.132)

If we require the covariant differentiation to obey a Leibnitz-rule, the last term can
be written as:

∇β
(
υµwµ

)
= ∇βυµ · wµ + υµ∇βwµ =

(
∂βυ

µ + Γ µαβ υ
α
)
wµ + υµ∇βwµ (B.133)

Then, the term ∂βυ
µ · wµ drops out and renaming the indices µ↔ α

υµ
(
∇βwµ

)
= υµ ·∂βwµ− Γ

µ

αβ υ
αwµ = υµ∂βwµ− Γ αµβ υ

µwα = υµ
(
∂βwµ− Γ αµβ wα

)
(B.134)
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gives the final result
∇βwµ = ∂βwµ − Γ αµβ wα (B.135)

for the covariant derivative of a linear form, with a minus-sign instead of a plus-sign.

Up to this point, the connection has been arbitrary but we will now focus on Levi-
Civita-connections: Those are metric-compatible and torsion-free, and can therefore
be computed from the metric and its derivatives. A metric manifold with such a
connection and the corresponding covariant derivative is referred to as a Riemannian
geometry. It is important to achieve the compatibility between the metric and the
differentiable structure of the manifold so that we can compute the connection coeffi-
cients from the metric itself. Scalar products υµwµ = gµν υ

µwν between two vectors
υ and w that are parallel transported should be identical: The parallel transport of
two abstract vectors only changes the tuples υµ and wµ because the tangent spaces
change and a different basis set is provided at every point. The scalar product is an
abstract measure of the lengths and relative orientations of the two vectors and that
statement should be invariant:

g(υ(x),w(x)) = g(υ∥(x + δx),w∥(x + δx)) (B.136)

For that to be conserved, parallel transport by δxβ should not change anything,
neither the length nor the relative orientation of the two vectors, υ∥(x+ δx) = υ(x+ δx),
and δxβ∇βυµ is necessarily zero. Stating that the scalar product of parallel-transported
vectors remains constant is equivalent to

δxβ ∇β g = δxβ ∇β
(
υµwµ

)
= δxβ ∇β

(
gµνυ

µwν
)

= 0 (B.137)

As the covariant derivatives obeys a Leibnitz-rule, one can write

δxβ ∇β
(
gµν υ

µwν
)

= δxβ
(
∇β gµν · υµwν + gµν ∇β υµ · wν + gµν υ

µ ∇βwν
)

(B.138)

and therefore, as δxβ∇βυµ = 0 and δxβ∇βwν = 0 as an expression of parallel transport,

δxβ ∇β gµν · υµwν = 0. (B.139)

Because that statement must be valid for every index choice, we can isolate the metric
compatibility condition

∇β gµν = 0, (B.140)

stating that the covariant derivative of the metric must be zero. On the other hand,
the metric is a covariant tensor, so its covariant derivative is explicitly given by

∇β gµν = ∂β gµν − Γ αβµ gαν − Γ αβν gµα = 0. (B.141)

As a second condition, we require symmetry of the Christoffel-symbol in the lower
two indices,

Γ αµν = Γ ανµ , (B.142)

which is called the torsion-free condition of the connection. With that, we can write
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out eqn. B.141 with cyclically permuted indices (µ, ν, β):

∇µ gνβ = ∂µ gνβ − Γ αµν gαβ − Γ αµβ gνα = 0 (B.143)

as well as
∇νgµβ = ∂ν gβµ − Γ ανµ gαβ − Γ ανβ gµα = 0 (B.144)

and combine all three by computing B.143 +B.144 − B.141 = 0:

∂µ gβν− Γ αµν gαβ− Γ αβµ gαν+∂ν gµβ− Γ αµν gαβ− Γ αβν gµν−∂β gµν+ Γ αβµ gαν+ Γ αβν gµν = 0.
(B.145)

Finally, we solve for the Christoffel-symbol Γ αµν :

∂µ gβν + ∂ν gµβ − ∂β gµν = 2Γ αβν gαβ (B.146)

and isolate Γ γµν by multiplication with the inverse metric gβγ,

Γ αµν gαβg
βγ = Γ

γ
µν =

gβγ

2

(
∂µ gβν + ∂ν gµβ − ∂β gµν

)
(B.147)

by using gαβg
βγ = δ

γ
α. Please keep in mind that

υα = δαβ υ
β = gαβ vβ = gαβgβγ υ

γ → gαβgβγ = δαγ (B.148)

as the defining equation for the inverse metric gµν for any metric gµν. It is a standard
exercise to show that the Christoffel-symbol Γ αµν is not a tensor, but that the covariant
derivatives ∇β υµ and ∇β wµ are.

B.5 geodesics as autoparallel curves

A curve xµ(λ) parameterised by λ can be autoparallel in the sense that the tangent
uµ = dxµ/dλ does not change, or equivalently, that the tangent vector uµ is always a
parallel transported version of itself along the curve. Then, writing ẋµ = uµ = dxµ/dλ
for simplicity,

ẋβ∇βẋα = 0 (B.149)

because ẋ
µ

∥ (x + δx) = ẋµ(x + δx). We can substitute the explicit form of the covariant
derivative to get

ẋβ∇βẋν = ẋβ
[
∂βẋ

α + Γ αβµ ẋ
µ
]

= ẋβ · ∂βẋα + Γ αβµ ẋ
βẋµ = 0 (B.150)

Rewriting the first term as a differentiation along λ yields

ẋβ∂βẋ
α =

dxβ

dλ
∂ẋα

∂xβ
=

d
dλ

(
ẋα

)
= ẍα (B.151)

which defines the standard form of the geodesic equation,

ẍα + Γ αµν ẋ
µẋν = 0. (B.152)
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A curve that obeys this equation of motion and follows an autoparallel line is called a
geodesic. Geodesics generalise the concept of a straight line through Euclidean space
to manifolds, where straight and autoparallel are equivalent. One would already
suspect at this point that inertial motion, where no accelerations are felt, corresponds
to motion along an autoparallel line. But at the same time, freely falling motion
through a gravitational field would likewise be characterise by a feeling of perfect
weightlessness and the absence of inertial forces: And one is correct in guessing
that geodesics are in fact trajectories through spacetime followed by freely falling
particles.

Because the rate at which particle pass by the coordinates does not need to be
constant for inertial motion (imagine a particle drifting off-centre through Euclidean
space with polar coordinates) we should not use the statement r̈ = ϕ̈ = 0 as a char-
acterisation of inertial motion, possibly motivated by Newtonian thinking. Instead,
autoparallelity condition would be the proper thing to do. And as the connection has
been defined to be metric compatible, we immediately see that the modulus of the
velocity, defined as the scalar product gµνẋµẋν, is conserved.

It is possible to reverse-engineer Newton’s equation of motion in a gravitational
field with our knowledge of relativity and to rediscover the geodesic equation, adding
perhaps some support for the idea on the connection between autoparallelity and
geodesic motion: Newton’s equation of motion reads

ẍi + ∂iΦ = 0 (B.153)

for a particle falling through the gravitational potential, where no accelerations can
be felt. The dot denotes the derivative with respect to laboratory time, which for
small velocities is equal to the proper time, t = τ. Because we already suspect that the
potential is measured in units of c2 as suggested by the weak field-metric, one can
write:

ẍi + ∂i Φ

c2 · c · c = 0. (B.154)

Perhaps the two cs are just the t-component of the 4-velocity in the slow motion
limit,

ẍi + ∂i Φ

c2 ẋ
t ẋt = 0 (B.155)

with coordinates (a tuple!) and velocities (a vector!)

xµ =
(
ct
xi

)
, ẋµ =

(
c
υi

)
, (B.156)

where the difference between coordinate time and proper time vanishes, and γ = 1.
If we identify the Christoffel-symbol

Γ itt = ∂i Φ

c2 (B.157)

with a suitable derivative of the metric, one gets

ẍi + Γ itt ẋ
t ẋt = 0 (B.158)
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Finally, making everything covariant by replacing i with α and reinstating τ instead
of t

d2xα

dτ2 + Γ αµν
dxµ

dτ
dxν

dτ
= 0 (B.159)

one obtains the geodesic equation, with the affine parameter τ. This immediately
poses the question if these statements are only true for a particular choice of the
affine parameter. This is not the case, as geodesics are invariant under affine reparam-
eterisations λ→ λ′!

We have seen that autoparallelity of the tangent vector is equivalent to the geodesic
equation,

ẋβ∇βẋµ = 0 → ẍβ + Γ βµν ẋµẋν = 0 (B.160)

where

ẋβ =
dλ
dλ′

dxβ

dλ
and ẍβ =

d
dλ′

( dλ
dλ′

dxβ

dλ

)
(B.161)

yielding the following conversion

d
dλ′

(( dλ
dλ′

)
· dxβ

dλ

)
+ Γ βµν

dλ
dλ′

dxµ

dλ
· dλ

dλ′
dxν

dλ
= 0 (B.162)

from the chain rule, and by applying the Leibnitz-rule,

d2λ

dλ′2
· dxβ

dλ
+

( dλ
dλ′

)2 d2xβ

dλ2 + Γ βµν
dλ
dλ′

dxµ

dλ
· dλ

dλ′
· dxν

dλ
= 0 (B.163)

such that
d2xβ

dλ2 + Γ βµν
dxµ

dλ
· dxν

dλ
= − d2λ

dλ′2
·
(dλ′

dλ

)2
· dxβ

dλ
(B.164)

If there is now a linear relationship between λ and λ′, the derivative d2λ/dλ′2

vanishes, making sure that one recovers the geodesic equation in both parameters:
In fact, there seems to be an entire class of affine parameters which are all equally
suited to be used to define autoparallelity or the geodesic equation, all related by
affine transformations λ′ = aλ + b.

In classical mechanics with ẍi + ∂iΦ = 0 as the equation of motion, this looks
like nothing particular beyond mechanical similarity: t → at + b implies that ẍ
acquires a factor a−2, but Φ has units of velocity2, so that it will have a factor of a−2,
too, which cancels. But we can make an interesting statement about the relativistic
Doppler-effect, which arises as a projection of a photon’s wave vector kµ onto the
observer’s world line with the tangent uµ, ω = gµνu

µkν. Clearly, reparameterisation
of uµ brings in a factor of a−1, but the photon wave vector should not change, such
that the frequency only changes by a single factor of a−1: We can not work with the
same affine parameter for photons and massive particles.

In fact, the wave vector as the tangent to the photon geodesic is normalised to zero,
gµνk

µkν = 0, while there is a particular choice of the affine parameter for massive
particles such that the tangent is normalised to c2. With the proper time τ and
tangents uµ = dxµ/dτ one always obtains the normalisation gµνu

µuν = c2. And, in
both cases, geodesic motion conserves this normalisation as a consequence of metric
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compatibility ∇αgµν and the autoparallelity condition uα∇αuµ = 0:

uα∇α
(
gµν u

µuν
)

= uα∇α gµν · uµuν + gµν u
α∇α uµ · uν + gµν u

µuα∇αuν = 0 (B.165)

B.6 geodesic motion through a variational principle

Relativity surprises with the idea that the variational principles of classical mechanics
have a clear geometric meaning: Particles move along trajectories in spacetime with
extremised arc lengths. The central result of the last chapter was that autoparallelity
leads to the geodesic equation and that autoparallel lines are straight in a general
sense: But is straight equivalent to shortest? Writing down the action as the integrated
arc length gives

S =

B∫
A

ds =

B∫
A

√
gµν

dxµ

dλ
dxν

dλ
dλ =

B∫
A

dλ L
(
xµ, ẋµ, gµν

)
(B.166)

with L being the generalised Lagrange function. A variation of the trajectory xµ(λ)→
xµ(λ) + δxµ(λ) by δxµ(λ) generates a variation δS of the arc length,

δS =

B∫
A

dλ
[ ∂L
∂xα

δxα +
∂L
∂ẋα

δẋα
]

with δẋα =
d

dλ
δxα (B.167)

which can be recast into

δS =

B∫
A

dλ
[ ∂L
∂xα

− d
dλ

∂L
∂ẋα

]
δxα (B.168)

through an integration by parts, where no variation is done at the end points A and
B. Then, the Euler-Lagrange equation

d
dλ

∂L
∂ẋα

=
∂L
∂xα

(B.169)

can be isolated, as it applies to the generalised Lagrange function

L
(
xµ, ẋµ, gµν

)
=

√
gµν

dxµ

dλ
dxν

dλ
(B.170)

which depends on the trajectory and its tangent, apart from the metric itself defining
the geometry. The derivatives can be directly computed, keeping in mind that the
metric itself is a function of the coordinates, for the derivative with respect to the
coordinates,

∂L
∂xα

=
1

2L

∂gµν
∂xα

· dxµ

dλ
dxν

dλ
(B.171)

and for the derivative with respect to the velocities,
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∂L
∂ẋα

=
1

2L
· gµν

(∂ẋµ
∂ẋα

· ẋν + ẋµ · ∂ẋ
ν

∂ẋα
)

=
1

2L

(
gαν ẋ

ν + gµα ẋ
µ
)

=
1
L
gαµ ẋ

µ (B.172)

Substitution into the Euler-Lagrange-equation yields

d
dλ

(1
L
· gαµ ẋµ

)
= − L̇

L2 gαµ ẋ
µ+

1
L
ġαµ ẋ

µ+
1
L
gαµ ẍ

µ =
1
L

[
− L̇

L
gαµ ẋ

µ+
∂gαµ
∂xν

· ẋµẋν+ gαµẍ
µ
]

(B.173)

where the derivative of the metric is given by the chain rule, ġαµ = ∂ν ġαµ · ẋν, so that
one arrives at

d
dλ

(1
L
· gαµ ẋµ

)
=

1
L

[
− L̇

L2 gαµ ẋ
µ +

∂gαµ
∂xν

· ẋµẋν + gαµ ẍ
µ
]
, (B.174)

which leads to

− L̇
L
gαµ ẋ

µ +
∂
∂xν

gαµ ẋ
µẋν + gαµ ẍ

µ =
1
2

∂gµν
∂xα

ẋµẋν (B.175)

with a symmetrisation 1
2

(∂gαµ
∂xν + ∂gνα

∂xµ

)
of the second term one then obtains

ẍα +
1
2

(∂gαµ
∂xν

+
∂gνα
∂xµ

−
∂gµν
∂xα

)
ẋµẋν =

L̇
L
· ẋα (B.176)

Multiplying this relation with the inverse metric gβα shows the emergence of the
Christoffel symbol,

ẍβ +
gβα

2

(∂gαν
∂xµ

+
∂gµα
∂xν

−
∂gµν
∂xα

)
ẋµẋν =

L̇
L
· ẋβ (B.177)

which one can replace in the equation,

ẍβ + Γ βµν ẋµẋν =
L̇
L
· ẋβ =

S̈
Ṡ
ẋβ. (B.178)

The arc length S =
∫

dλ L has the derivatives L = Ṡ and L̇ = S̈. If in particular an
affine parameter is chosen, then S̈ = 0, and one obtains the classic geodesic equation,

ẍβ + Γ βµν ẋµẋν = 0. (B.179)

Conceptually, the geodesic equation joins straight, autoparallel motion and with
the principle of external proper time or minimal arc length to arbitrary geometry, as
the proper time is a preferred affine parameter because it has a measurable physical
meaning.

There is a number of interesting properties of gravity: Firstly, all objects experience
the same acceleration irrespective of their mass; with acceleration being meant as
the rate of the rate at which the coordinates pass by the object, not as a physical
acceleration which is always absent in free fall. This is very much different for e.g.
electrically charged particles experiencing electromagnetic fields. In this case, the arc
length is computed with
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S =

B∫
A

(
dτ +

q

m
gµν Aµdxν

)
(B.180)

with a vector potential Aµ. Clearly, the decisive quantity here is the specific charge
q/m, and particles with different specific charge will follow different trajectories
through the same field Aµ.

This specific charge for gravitational fields would correspond to the ratio between
the gravitational mass as the coupling strength of massive particle to the gravitational
field and the inertial mass. This ratio has been found to be unity at the level of 10−11,
giving a strong empirical indication of the universality of gravity. In fact, variation
δS = 0 of (**) gives

d2xα

dτ2 + Γ αµν
dxµ

dτ
dxν

dτ
=

q

m
Fαµ

dxµ

dτ
(B.181)

so that any deviation from freely-falling motion must be proportional to the specific
charge q

m , with Fαµ = gαβFβµ.
Gravitational lensing is naturally explained by the geodesic equation even the

photon has a vanishing mass, mγ = 0. It is sufficient to use the geodesic equation
for the wave vector kµ of the photon as the force-free, gravitational left hand side of
the geodesic equation allows for phenomena like gravitational lensing, effectively
through

dkα

dλ
+ Γ αµν k

µkν = 0, (B.182)

for the wave vector kµ = dxµ/dλ for the affine parameter λ , τ parameterising the
photon trajectory xµ(λ).

Lastly, inertial motion through a vector space with Cartesian coordinates suggest
a Euclidean straight line: d2xα

dτ2 = 0→ xα = aατ + bα, because in Cartesian coordinates
the metric is constant and the Christoffel-symbol vanishes.

Geodesic, autoparallel motion corresponds to freely falling particles, generalising
the idea of inertial motion to curved manifolds, as a representation of gravitational
fields. One should be careful, however, to associate gµν , ηµν or Γ αµν , 0 to gravita-
tional fields, as both statements can be true locally in a certain coordinate choice.
Rather, one should think of geodesic motion as taking care of the coordinate choice
by establishing autoparallelity of a straight line, irrespective of the presence of curva-
ture or gravity. Both inertial motion and freely falling motion are, in addition, both
characterised by a sensation of perfect weightlessness of an observer moving along
with the particle, and are therefore, a priori indistinguishable.

B.7 equivalence and the relativistic origin of Newton’s axioms

The geodesic equation is a description of a straight line (in the autoparallel sense)
through spacetime and should, as such, be a generalisation of the law of inertia and
the Newtonian equation of motion. In fact, Newton’s inertial law states that force-free
motion proceeds at constant speed along a straight line, which is perfectly fulfilled
by the geodesic equation: Straight actually means autoparallel, as the proper concept
for more complicated coordinate choices, and the normalisation gµνu

µuν = c2 of the
velocity uµ is conserved. Force-free in the Newtonian sense might pertain to both
inertial motion through a flat spacetime or freely-falling motion through a curved
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spacetime: There is no fundamental difference between these two cases. To take things
to extremes, one could say that Newton’s first axiom is the definition of the word
”straight”: As soon as there are no accelerations measured, the trajectory is necessarily
autoparallel.

We have already seen that the Newtonian equation of motion ẍi +∂iΦ = 0 with the
gravitational potential Φ is hidden in geodesic equation for small velocities and weak
fields, exactly the limit Newton could have been aware of. Writing ẍi + ∂iΦ = 0 to
allude at force-free motion is in the spirit of the geodesic equation ẍα + Γ αµν ẋ

µẋν = 0,
and only non-gravitational forces would replace the zero on the right hand side, for
instance an electromagnetic force,

d2xα

dτ2 + Γ αµν
dxµ

dτ
dxν

dτ
=

q

m
gµν Fαν

dxµ

dτ
(B.183)

for a particle with specific charge q/m experiencing electromagnetic fields Fαν. With
this idea in mind, I personally don’t like to speak about gravitational forces: Rather, I
would call them gravitational accelerations which get modified by non-gravitational
accelerations that are computed from the actual field with the specific charge q/m as
the coupling constant, to yield an actual acceleration.

Ultimately, the third axiom actio = -reactio (with a minus-sign, as actio and reactio
take place in opposing directions!) is the most interesting in view of relativity. It
concerns non-geodesic motion with the appearance of inertial forces (reactio), which
are opposed to the actual forces (actio) acting on a particle. To understand where this
might come from we should first have a look at the way how classical inertial forces
like the centrifugal force or the Coriolis-force are contained in the geodesic equation.
In the slow-motion limit with τ = t, γ = 1, fixed ut = c and ui = υi we get

d2xi

dt2 + Γ iµν
dxµ

dt
dxν

dt
=

d2xi

dt2 + Γ itt c2 + Γ imt υ
mc + Γ itn cυn + Γ imn υ

mυn =
q

m
f i , (B.184)

with a non-gravitational acceleration q
m f i . The Christoffel symbol is symmetric in

the lower two indices Γ imn = Γ inm because of the torsion-free condition and Γ itt =
∂i Φ

c2 specifically would be the gradient of a classical gravitational potential. Then,
fundamentally, there are two terms in the geodesic equation, Γ imn υ

mυn ∼ (Ω × υ) × υ
corresponding to a centrifugal acceleration which is quadratic in the velocities, and
the Coriolis acceleration 2Γ imt υ

mc ∼ 2Ω × υ with the factor 2 appearing naturally out
of the two identical terms linear in the velocity υ.

This is in fact a surprising result: The velocity-dependent inertial accelerations
appear as the non-relativistic limit of the geodesic equation, up to terms ∝ υ2 because
of the term Γ iµν u

µuν. It seems to be the case that the velocity dependence of accelera-
tions is natural, similar to the Lorentz force ∝ υ ×B. Here, υ1 is the highest power that
can be generated by q

mgµνFανuµ. The term Γ itt = ∂i Φ
c2 is an eternal source of confusion:

The geodesic equation with such a term clearly refers to autoparallel motion along a
straight line, but one tends to think of a curved trajectory, for instance when thinking
about throwing a ball along a parabolic curve. But please keep in mind that there is
a second definition of straightness corresponding to the Minkowski-space with the
metric ηµν that one might use instinctively instead of gµν. Balls and planets follow
autoparallel lines through spacetimes, and parabolas and elliptical orbits (besides,
the parabola that is followed by a ball is only the second order Taylor-expansion of an
elliptical orbit around the Earth’s centre) are straight, otherwise Newton’s first axiom
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b.7. equivalence and the relativistic origin of newton’s axioms

could not be fulfilled.
If there is really the equivalence between inertial accelerations and gravitational

accelerations, as made clear by Einstein’s elevator argument, there should be a deep
connection between the two. First of all, inertial motion in e.g. rotating or accel-
erating coordinate frames is the uninteresting case, because the geodesic equation
makes the job of computing the rate of change of the passage of the coordinates
perfectly and all we see are coordinate effects. It becomes more interesting if there
is a non-gravitational force acting on a particle such that inertial forces appear as a
consequence of, well, the change of the state of motion, but relative to what? At this
point Mach’s principle comes in and clarifies that inertial frames are defined in by
the large-scale distribution of matter in the Universe. If there is a perfect equivalence
between inertial and gravitational forces, we should be able to ask how inertial ac-
celerations are sourced and what their gravitational origin is, after having thought
of gravitational accelerations to be inertial: They vanish in freely falling frames and
affect all objects in exactly the same way irrespective of their mass. Coming back to
Newton’s third axiom we should suspect that the inertial reactio is in fact gravita-
tionally induced, because the state of motion changes relative to the masses in the
Universe, and because there is an additional velocity dependent gravitational force
acting on the particle.

A second striking example is the rotational flattening of the Sun, whose diameter
at the equator is larger than the diameter taken at the poles, as a consequence of the
centrifugal force acting on it due to its rotation. But how would you interpret the same
observation from a frame co-rotating with the Sun? There, the entire universe rotates
in the opposite direction and there is an additional component of the gravitational
field which pulls on the Sun’s equator.

There is an interesting remainder of the idea that accelerated frames and gravita-
tional potentials are equivalent left in classical mechanics: A boost into a frame with
constant acceleration ai is defined by

x′i = xi +
1
2
ai t2 → ẋ′i = ẋi + ai t, (B.185)

such that the Lagrange-function L transforms accordingly,

L′ =
m
2
δij ẋ

′i ẋ′j = L +
m
2

(
2δij ẋ

iaj t + δij a
iaj t2

)
(B.186)

The last term can be written as a total derivative, t2 = d(t3/3)/dt and does not
matter in the variation, as total derivatives of functions that only depend on time and
coordinate (but not velocity) never have an influence on the variational principle. The
second term, however, can be rewritten using the fundamental theorem of calculus,
as a differentiation of an integral,

d
dt

∫
dt ẋi · t =

d
dt

∫
dt xi = xi (B.187)

so that we can apply an integration by parts in the last step. Collecting these results
yields

L′ = L −m δij x
iaj , (B.188)

so that the Lagrange-function has acquired a new term that corresponds to a potential
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with a constant slope: This is classical equivalence between a linear potential and a
frame accelerated at a constant rate.

B.8 geodesic deviation, curvature and gravity

Geodesics as autoparallel lines through spacetime are the trajectories of freely falling
particles. The geodesic equation computes the rates of change ẍµ of the passage ẋµ

of the coordinates past the particle, completely independent from the presence of
curvature. Actually, neither the metric gµν nor the Christoffel-symbol Γ αµν do contain
information about gravity, and neither does the covariant derivative ∇µ: They are
all constructed to deal with the arbitrariness of coordinate choices. In addition, wegµν , ηµν does not imply that

there is gravity, and neither does
Γ αµν , 0, and neither does ∂µ ,
∇µ!

already know that the gravitational field does not exist at a single point, because both
conditions gµν = ηµν and Γ αµν = 0 can always be achieved locally by a coordinate
transform.

A possible idea would be to look at the relative motion of freely falling particles.
Locally, every particle experiences perfect weightlessness, but that does not imply
that the relative acceleration must be zero. Imagine two astronauts holding hands
and falling through space(time) and following Keplerian orbits around the Earth. The
astronaut on the lower orbit moves with a higher velocity according to Kepler’s first
law and would actually accelerate away from the astronaut in the higher orbit. Such
an experiment could serve as an experiment to determine whether gravitational fields
(or spacetime curvature) is present, because it is non-local and because it would be
sensitive to the second derivatives ∂2g of the metric, which partially resist coordinate
transforms as they can not be made to vanish.

The quantity determining the relative acceleration between two freely falling
particles is the Riemann-tensor,

Rαµνβ =
(∂Γ αµν
∂xβ

−
∂Γ αµβ
∂xν

+ Γ αρβ Γ
ρ
µν − Γ αρν Γ

ρ

µβ

)
. (B.189)

It is through ∂Γ ∼ ∂(g∂g) composed of second derivatives of the metric which shows
that it contains information about the manifold that can not be made to vanish by a
coordinate transform. We will see in the next chapter that it contains all information
about curvature of the manifold and the deviation from a Lorentzian geometry. In
particular, the geodesic deviation equation

d2υα

dλ2 = Rαµνβ · u
µuνυβ (B.190)

defines the experiment one can test for the presence of gravitational fields. If there
is no relative acceleration d2υα/dλ2 = 0 for every index choice one must conclude
that the Riemann curvature vanishes, Rαµνβ = 0 and that the motion of the two test
particles takes place in Minkowskian space, but possibly with a weird coordinate
choice.
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C differential structure of spacetime and
curvature

C.1 Riemann curvature tensor

The connection, which establishes parallel transport of vectors and tensors across a
manifold, defines the covariant derivative of these quantities because a proper rate
of change can be measured through the comparison of e.g. a vector with the parallel
transported counterpart. The Levi-Civita connection is singled out among all possible
connections as the (i) metric compatible ∇αgµν = 0 and (ii) torsion-free Γ αµν = Γ ανµ
one, in which case the connection coefficients can be computed from the metric gµν
and its first derivatives ∂αgµν alone. The metric structure of a manifold gµν, with an
additional differential structure ∇α, defines the Riemann-geometry.

All these ideas and concepts are independent from actual curvature and are rather
an expression of the choice of coordinates as they only use the metric and its first
derivatives, for which there is always a coordinate transform to make them vanish lo-
cally, and because only second derivatives would contain information about curvature,
we should use them to quantify it. Additionally, we would like to have a covariant
quantification of curvature in the form of a tensor: the Riemann curvature. Only if
the Riemann-curvature is nonzero, Rαβµν = 0 as a properly covariant expression, the
manifold is flat. None of the statements gµν = ηµν, ∇α = ∂α, or Γ αµν = 0 are able to
make a statement about curvature.

C.1.1 Riemann curvature in parallel transport

The order of parallel transport of vectors and tensors matters in shifts along different
directions. Starting with the expression for parallel transport by δx̄β,

υµ(x + δx) = υµ(x) − Γ µαβ · υ
α(x) δxβ (C.191)

we can define two paths: first a shift by δx̄ followed by a shift by δx,

υµ(x + δx) + δx) = υµ(x + δx) − Γ µαβ (x + δx) · υα(x + δx) · δxβ (C.192)

which evaluates to

= υµ(x)−Γ µαβ (x)·υα(x)δxβ−
[
Γ
µ

αβ +
∂Γ

µ

αβ

∂xγ
·δxγ

]
·[υα(x)−Γ αγδ (x)υγ(x)δxδ]·δxβ (C.193)

with Γ µαβ (x+δx̄) = Γ
µ

αβ (x)+
∂Γ

µ

αβ

∂xγ (x)·δxγ being the Taylor-expansion of the Christoffel-
symbol at x + δx̄. Alternatively, the two shifts can be interchanged, for a parallel
transport first by δx and then by δx̄.

υµ((x + δx) + δx) = υµ(x + δx) − Γ µαβ (x + δx) · υα(x + δx) · δxβ (C.194)

yielding

υµ(x)−Γ µαβ (x) ·υα(x)δxβ−
[
Γ
µ

αβ (x)+
∂Γ

µ

αβ

∂xγ
δxγ

][
υα(x)−Γ αγδ (x)υγ(x)δxδ

]
·δxβ (C.195)
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c. differential structure of spacetime and curvature

with an equivalent Taylor-expansion. Then, the change δυµ in parallel transport to
the point x + δx + δx̄ along two different paths is given by

δυµ = υµ((x + δx) + δx) − υµ((x + δx) + δx) = Rµαβγ · υ
α δxβ δxγ (C.196)

where we can isolate the Riemann-curvature,

Rµαβγ =
∂

∂xβ
Γ
µ
αγ −

∂
∂xγ

Γ
µ

αβ + Γ µ
δβ
Γ δαγ − Γ

µ

δγ
Γ δαβ , (C.197)

after renaming γ↔ β in the second expression to have δxβ δxγ). Flat manifolds with
vanishing Riemann curvature Rµαβγ = 0 would necessarily exhibit no change at all of
the transported vector, i.e. δυµ = 0.In a flat manifold the Riemann-

tensor is zero in every coordinate
choice.

Of course, the contravariant index ν can be lowered with a contraction,

Rµαβγ = gµνRναβγδ. (C.198)

And it is important to memorise the antisymmetry of the Riemann tensor in every
index pair,

Rµαβγ = −Rαµβγ = −Rµαγβ = +Rαµγβ (C.199)

as well as the algebraic Bianchi-identity,

Rµαβγ + Rµβγα + Rµγαβ = 0 (C.200)

with cyclic index permutation of the last three indices while keeping the first index
fixed.

C.1.2 Riemann-curvature from covariant derivatives

Covariant derivatives (into different direction) in contrast to partial derivatives, do
not commute.

(∇µ∇ν − ∇ν∇µ)υα =
[
∇µ ,∇ν

]
υα = −Rαβµνυ

β, (C.201)

and the commutator defines, as before, the Riemann curvature Rαβµν. Concerning
the index structure, it is best to remember that for every choice of µ and ν there is an
transformation in α and β acting on the vector υβ. As vectors are rotated in parallel
transport with a Levi-Civita connection, α and β are an antisymmetric index pair
because they effectively encode a rotation matrix. µ and ν are likewise an antisym-
metric index pair, due to the commutator in the definition of the Riemann curvature,
[∇µ,∇ν] = −[∇ν,∇µ].

Acting on a vector υµ with covariant differentiation ∇β yields

∇βυµ = ∂βυ
µ + Γ µ

βδ
υδ = t

µ

β (C.202)

with a tensor t
µ

β as a result. In further covariant differentiation ∇γ one needs to
watch out for co- and contravariant indices, with different signs in their respective
Christoffel-symbols:

∇γ t
µ

β = ∂γ t
µ

β − Γ
α
γβ t

µ
α + Γ µγα t α

β (C.203)
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Substituting eqn. C.202 into eqn. C.203 gives:

∇γ(∇βυµ) = ∂γ∂βυ
µ − ∂γΓ

µ

βδ
· υδ − Γ µ

βδ
∂γ υ

δ − Γ αγβ ·
[
∂αυ

µ + Γ µ
αδ
υδ

]
(C.204)

If one interchanges the order of differentiation and builds the antisymmetric combi-
nation ∇µ∇ν − ∇ν∇µ one can isolate the Riemann tensor,

Rµαβγ =
∂

∂xβ
Γ
µ
αγ −

∂
∂xγ

Γ
µ

αβ + Γ µ
δβ
Γ δαγ − Γ

µ

δγ
Γ δαβ . (C.205)

as the partial derivatives of υµ drop out, according to ∂γ∂βυ
µ = ∂β∂γυ

µ.
The two approaches are related to each other as parallel transport of a vector υα is

performed using the covariant derivative as an operator, δxβ ∇β. One can think about
extending this infinitesimal parallel transport to parallel transport operator for finite
distances by exponentiation. Then, parallel transports with shift operators

exp(δxβ ∇β)υµ = υµ(x + δx) shift vector (C.206)

would follow the Baker-Hausdorff-Campbell formula,

exp(δxβ ∇β) exp(δxγ ∇γ) ≃ exp(δxβ ∇β + δxγ ∇γ) exp
(
−1

2
· δxβ δxγ [∇β,∇γ]

)
(C.207)

where translations into different directions would not notice about the presence of
curvature in the case [∇β ,∇γ] ∼ Rµαβγ , 0.

Tensors that are derived from the Riemann-curvature by contraction with the
metric include the Ricci-curvature Rµβ

Rµβ = gαν Rαµνβ, (C.208)

where the contraction over the first and third index is the only sensible one, given
the antisymmetry of the Riemann-tensor in the first and last index pair. Further
contraction yields the Ricci-scalar R

R = gµβ Rµβ = gµβ gαν Rαµνβ (C.209)

which is a quantification of the (local) curvature, similarly to the Kretschmann-scalar
K,

K = Rαµνβ Rαµνβ = gαγ gµρ gνσ gβδ Rαµνβ Rγρσδ (C.210)

Both curvature scalars are independent from the coordinate choice and are a conve-
nient quantification of curvature.

The Ricci-tensor and the Ricci-scalar define the Einstein-tensor Gµν,

Gµν = Rµν −
R
2
gµν (C.211)

which is surprisingly the only rank-2 tensor with vanishing covariant divergence,
gαµ∇αGµν = 0 (the other one being the metric itself, gαµ∇αgµν = 0, due to metric
compatibility), as will become relevant in the next chapter.
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c. differential structure of spacetime and curvature

C.1.3 What happens to vectors in parallel transport?

Levi-Civita connections are constructed to be metric-compatible which will imply
that vectors, if transported around a closed loop, will conserve their norm. Then, the
only way in which they can be affected in by curvature is a rotation: One can in fact
make that determination because the transported vector is brought back into the
original tangent space if the connection is torsion-free.

We can compute explicitly that the norm of a vector υ does not change, expressing
parallel transport by δxµ with the covariant derivative δxµ∇µ as an operator acting on
a geometric object like a vector or a scalar product. Bringing in the commutator of ∇µ
is a convenient way of interchanging the order of parallel transport from the starting
point to the destination and to subtract the two results from each other: If the norm
is conserved, the result should be zero.

gαβυ
αυβ → δxµδxν[∇µ,∇ν]

(
gαβ υ

αυβ
)

= δxµδxν
(
∇µ∇ν − ∇ν∇µ

)(
gαβ υ

αυβ
)

(C.212)

Metric compatibility ensures that ∇g = 0, so we obtain, dropping the common
prefactor δxµδxν,

= gαβ ∇µ∇ν
(
υαυβ

)
− gαβ ∇ν∇µ

(
υαυβ

)
(C.213)

Expanding the expression with the Leibnitz-rule yields

= gαβ
(
∇µ∇ν υα · υβ + ∇ν υα · ∇µ υβ + ∇µ υα · ∇ν υβ + υα ∇µ∇ν υβ

)
−

gαβ
(
∇ν∇µ υα · υβ + ∇µ υα ∇ν υβ + ∇ν υα ∇µ υβ + υα ∇ν∇µ υβ

)
(C.214)

and reordering the terms

= gαβ
(
∇µ∇ν − ∇ν∇µ

)
υα · υβ + gαβ υ

α
(
∇µ∇nu − ∇ν∇µ

)
υβ (C.215)

Finally, identifying the Riemann curvature and renaming the indices in the second
term gives:

= gαβ Rαγµν υ
γυβ + gαβ υ

α Rβγµν υγ = 2 Rαγµν υ
αυγ = 0, (C.216)

which is zero as a consequence of the antisymmetry of the Riemann-tensor in the
first index pair: The norm of υα is conserved.

In exactly the same way one can show that the scalar product gαβυαwβ between
two vectors υα and wβ is conserved. Indeed, repeating the entire calculation shows
that[
∇µ ,∇ν

](
gαβ υ

αwβ
)

=
(
∇µ∇ν − ∇ν∇µ

)(
gαβ υ

αwβ
)

= . . . = Rαγµν
(
υαwγ + υγwα

)
= 0,

(C.217)

keeping in mind that the tensor
(
υαwγ + υγwα

)
is perfectly symmetric.

With these results, we can revisit the defining equation of Riemann-curvature:

[∇µ,∇ν]υα = Rαβµνυ
β (C.218)

where the antisymmetry in the µν-index pair is obvious because of the commutator,
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[∇µ,∇ν] = −[∇ν,∇µ]. If a vector υα is transported in a loop and compared to the
original vector, it can not have changed its norm because of metric compatibility, and
it exists (if the manifold is torsion-free) at the same point and can be decomposed in
terms of the basis of the same tangent space. The only possible difference between
the vectors is a rotation, and this is exactly the meaning of the Riemann-tensor (and
which gives you a great way to memorise its antisymmetry in the index pair αβ): It is
essentially a rotation matrix in αβ for every µν-pair.

D sources of the gravitational field

D.1 gravity and matter

The source of gravity in the Poisson equation ∆Φ = 4πGρ as the field equation is the
matter density ρ. As a scalar potential Φ is identical in all frames. To make the source
consistent with the field, we need to assume in Newtonian gravity that the density
ρ is identical in all frames, too, in contradiction with relativistic effects like mass
increase and length contraction that would affect the matter density, and with the
fact that from a moving frame of reference ρ would be perceived as a momentum
density rather than a matter density. For Newtonian gravity this is all irrelevant as
the Poisson equation states a relation between two absolute quantities. The continuity
equation for the matter density

∂t ρ + ∂i(ρ υ
i) = 0 (D.219)

is phenomenological and expresses the idea that matter is not arbitrarily created or
annihilated, and the partial derivatives refer to spacetime as being Euclidean, but in
the spirit of Galilean relativity, but weirdly with a static relation between ρ and Φ.

Electrodynamics building on Lorentzian relativity does things better: The source
of the electromagnetic field Fµν in Maxwell’s equation ∂µFµν = 4π/c ȷν is the 4-current
density as a Lorentz-vector ȷµ. Neither the charge density nor the current density
are absolute but depend on the state of motion of the observer relative to the charge.
As ȷµ is a timelike vector (because charges are tied to massive particles), it is always
possible to boost into the rest-frame of a charge with a suitable Lorentz-transform,
ȷµ → Λ

µ
αȷα. There should be a consistent transformation between all terms of a

formula, so Maxwell’s field equation

∂µFµν =
4π
c
ȷν (D.220)

implies, that the Faraday-tensor Fµν should transform, too, Fµν → Λ
µ
αΛ

µ

βFαβ as well
as the partial derivative ∂µ = Λ α

µ ∂α, which inherits its transformation property from
the coordinates. The relativistic charge density ȷµ is conserved,

∂µȷ
µ = ∂ct(cρ) + ∂i ȷ

i = 0, (D.221)

consistently in all Lorentz-frames, because ∂µȷ
µ is a scalar.

It is fun to notice that the Maxwell equation and the Lorentz-equation introduce a
nice consistency between the fields and the charges: Multiplying the Lorentz-equation
for the acceleration of a charge
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d. sources of the gravitational field

duα
dτ

=
q

m
ηβγ Fαβuγ (D.222)

with ηαδ uδ yields the conservation of the normalisation of the velocity as a timelike
vector

ηαδ uδ
duα
dτ

=
1
2

d
dt

(
ηαδ uαuδ

)
=

q

m
ηαδηβγ Fαβuγuδ = 0 (D.223)

while simultaneously acting on the Maxwell equation with the differentiation ηγν ∂γ

ηβµ ∂β Fµν =
4π
c
jν (D.224)

shows that the charge is conserved ∂µȷ
µ = 0

ηβµ ηγν ∂β∂γ Fµν =
4π
c
ηγν ∂γjν = 0 (D.225)

In both cases, the contraction of the antisymmetric tensor Fµν with the symmetric
tensors ∂µ∂ν and υµυν implies the conservation.

We would like these ideas to be realised for gravity as well: There should be a
source of gravity with a proper covariant conservation law and a consistent transfor-
mation between the source and the field, all of course consistent with the Poisson
equation in the limit of static sources and weak gravitational fields. With the knowl-
edge of special relativity one notices a decisive difference between ρ as a charge
density and ρ as a matter density: One can imagine that a cloud of charge gets
Lorentz-contracted by a factor of γ as seen from an observer moving relative to the
charge, implying that the charge density ρ is indeed the ct-component of a time-like
Lorentz-vector. A cloud of matter seen from an observer moving relative to it would
experience the same Lorentz-contraction, but there is relativistic mass increase in
addition to it, introducing two instead of a single power of γ. This transformation
property can not be reconciled with a single-indexed quantity like ȷµ but requires a
double indexed quantity: In fact, we will introduce the energy-momentum tensor Tµν

with Ttt = ρc2 in accordance with this idea.

D.2 (relativistic) fluids as sources of gravity

Fluids are a continuum description of matter, i.e. a field where at every point the
density and the velocity are defined: It is a valid picture to think of the fluid as being
composed of small fluid elements across which the gradients of the fields do not
vary strongly and linearisations apply. Fluid elements react to forces exerted by the
surrounding fluid if their size is changed or if their shapes are distorted by gradients
of the velocity field across the fluid element; in general there is a force Fi = σijdAj

acting on the surface element dAj , parameterised by the shear tensor σij , which
is necessarily symmetric, σij = σji . While this relation is in general tensorial, the
separation σij → σij + pδij would define a traceless anisotropic stress tensor σij and
the isotropic pressure p. Effects in the relation of anisotropic stress are parameterised
by the shear viscosity and if in addition there are no viscous effects in relation to the
change of volume of fluid element parameterised by the bulk viscosity, the fluid is
ideal and only shows dynamic effects in relation with pressure p.

An ideal fluid is therefore characterised by density, pressure and velocity, and
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d.2. (relativistic) fluids as sources of gravity

these quantities are assembled into the energy momentum tensor Tµν,

Tµν =
(
ρ +

p

c2

)
uµuν − p gµν (D.226)

and we will convince ourselves retrospectively that this is the correct quantity, by
showing the equivalence of covariant conservation of Tµν by means of a continu-
ity equation gαµ∇αTµν = 0 and the equations of relativistic fluid mechanics. The
components of the energy momentum tensor,

Tµν =
(
Ttt Tti
Tjt Tij

)
(D.227)

contain the energy density Ttt , the energy flux in i−direction, Tjt being the component
j of momentum density and Tij the projection of the i−momentum in j-direction. In
the local rest frame with Cartesian coordinates one would obtain gµν = ηµν as well as
uµ = (c, 0)t such that

Tµν =


ρc2

p
p

p

 (D.228)

The trace gµνTµν has the value ρc2 − 3p, which likewise is true in any frame and any
geometry: gµνTµν = (ρ + p/c2)gµνuµuν − pgµνgµν = ρc2 − 3p because gµνuµuν = c2 and
gµνgµν = δ

µ
µ = 4. Many fluids are characterised by a fixed relation between pressure

p and energy density ρc2, which is referred to as the equation of state parameter
w = p/(ρc2). With the equation of state, the trace becomes gµνTµν = (1 − 3w)ρc2.
A good way to remember this is the realisation that for photons the relationship
p = ρc2/3 holds, implying that gµνTµν = 0 as w = +1/3, in accordance with a direct
computation of the energy-momentum tensor from the Maxwell-Lagrange-density.

The conservation law gαµ ∇αTµν = 0 for the energy momentum tensor is vectorial
(in the index ν), in contrast to the corresponding law for the charge density gαµ∇αȷµ =
0, which is a scalar expression. To make sense of it nonetheless, one can project the
vector gαµ ∇αTµν = 0 onto the velocity uµ and a plane perpendicular to it. Computing
the gradient gαµ ∇αTµν = 0 yields

gαµ∇α
[(
ρ+

p

c2

)
uµuν−pgµν

]
= gαµ

[
∇α

(
ρ+

p

c2

)
·uµuν+

(
ρ+

p

c2

)
∇α(uµuν)−∇α p ·gµν

]
= 0

(D.229)

keeping in mind that metric compatibility states that ∇αgµν = 0 and that the product
of velocities in the second term resolves to gαµ∇α(uµuν) = gαµ∇αuµ ·uν+ gαµ uµ ·∇αuν.

Computing uνgαµ∇αTµν = 0 as the projection of the covariant conservation law
onto uν yields, if applied to the form of eqn. D.229 :

= gαµ ∇α
(
ρ +

p

c2

)
· uµuνuν + gαµ

(
ρ +

p

c2

)
· ∇αuµ · uνuν−

gαµ
(
ρ +

p

c2

)
· uµuν ∇αuν − gαµ ∇α p · gµν uν (D.230)

where we can carry out a number of simplifications: uνuν = c2 in the first and second
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d. sources of the gravitational field

term. Then, ∇α(uνuν) = 0 = uν∇αuν + ∇αuν · uν = 2 · uν∇αuν implies that the third
term vanishes, and finally gαµ ∇α p · gµν uν = gαµ gµν∇αp uν = δαν ∇α p · uν = ∇αp · uα.
Therefore, one arrives at

uνgαµ∇αTµν = gαµ ∇α
(
ρ +

p

c2

)
· c2 uµ + gαµ

(
ρ +

p

c2

)
∇αuµ · c2 − ∇α p · uα = 0 (D.231)

and lastly
uνgαµ∇αTµν = gαµ

[
∇α

(
ρ c2 · uµ

)
+ p∇αuµ

]
= 0 (D.232)

which is exactly the relativistic continuity equation. The non-relativistic limit is
recovered by setting ρ c2 ≫ p as well as uµ = (c, υi)t with γ = 1, and using Cartesian
coordinates implies gαµ = ηαµ as well as ∇α = ∂α:

gαµ
[
∇α(ρc2 ·uµ) +p∇αuµ

]
= ηαµ

[
∂α ρc2 ·uµ+ρc2∂αuµ+p∂αuµ

]
≃ c2 ·ηαµ∂α(ρuµ) = 0

(D.233)

where the last term in the brackets reads

∂t ρ + ∂i(ρ υ
i) = 0 (D.234)

in the preferred coordinate frame, which is exactly the continuity equation from
classical continuum mechanics: But unlike classical mechanics, where continuity is
an empirical finding, it results in relativity from the covariant conservation of Tµν.

We can resubstitute the conservation law eqn. D.232 into the divergence D.229
and see how we can isolate a statement about the conservation of momentum density.
Again writing out gαµ∇αTµν = 0 for the energy momentum tensor of an ideal fluid
and writing out the expression fully gives:

gαµ∇αTµν = gαµ
[
∇α(ρuµ)uν+

p

c2∇αuµ ·uν+∇αp ·
uµuν

c2 +
p

c2 uµ∇αuν+ρ·uµ∇αuν−∇αpgµν
]

(D.235)

where the sum of the first two terms correspond exactly to the continuity equa-
tion D.232 (up to a pre-factor of c2), and are therefore zero. Consequently,

gαµ∇αTµν = gαµ
[(uµuν

c2 − gµν
)
· ∇α p +

(
ρ +

p

c2

)
· uµ∇αuν

]
= 0 (D.236)

In this way, one arrives at the relativistic Euler equation as an expression of momen-
tum conservation:

gαµ
[(uµuν

c2 − gµν
)
∇α p +

(
ρ +

p

c2

)
uµ∇α uν

]
= 0 (D.237)

First, we see that only pressure gradients perpendicular to the velocity are ever
relevant,

gαµ
(uµuν

c2 − gµν
)
∇αp = ∇⊥p (D.238)

because one applies a projection operator on the gradient in pressure, projecting out
the component of ∇µ p perpendicular to uµ, and secondly, if the motion of a fluid
element proceeds along a geodesic with autoparallelity uµ∇µuν = 0 given,
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(
ρ +

p

c2

)
gαµuµ∇αuν =

(
ρ +

p

c2

)
uµ ∇µuν (D.239)

that those pressure gradients must be zero! Pressure gradients would push a fluid
element away from the geodesic that characterises free fall.

The nonrelativistic limit can be constructed by approximating the autoparallelity
condition,

uµ∇µuν ≃ uµ∂µu
ν = c∂ctu

j + ui∂iu
j (D.240)

which shows that the nonlinearity of the Euler-equation has a relativistic origin, and
furthermore for a flat background where ∇µ = ∂µ that

ρ
(
∂tu

j + ui∂iu
j
)

= −∂jp (D.241)

or equivalently, that

∂tu
j + ui∂iu

j = −
∂jp

ρ
(D.242)

which is the classical Euler-equation for ideal fluid mechanics. Allowing for weak,
static Newtonian gravity one work with the approximation that pressure is scalar
(actually it is only a partial trace of the energy momentum tensor!), so ∇αp = ∂αp and
we obtain for the covariant derivative

uµ ∇µuν = uµ
(
∂µuν − Γ αµν uα

)
(D.243)

while Newtonian gravity is a weak and static perturbation to the line element,

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
δij dxidxj (D.244)

from which we isolate the two metric functions

gtt =
(
1 +

2Φ
c2

)
and gii = −

(
1 − 2Φ

c2

)
(D.245)

Working towards the nonrelativistic limit we would replace gαβ = ηαβ but keep
the derivative ∂µgαβ with the exception ∂ctgµν = 0 as Newtonian fields are neces-
sarily static. The derivatives of the metric then reflect potential gradients, ∂i gµν =
± 2

c2 ∂iΦδµν which become the Christoffel-symbol Γ itt ∼ +∂jΦ. So ultimately, we ar-
rive at the Euler-equation of classical ideal fluid mechanics including a gravitational
potential Φ,

∂tu
j + (ui∂i)u

j = −
∂jp

ρ
− ∂jΦ, (D.246)

from the covariant divergence gαµ∇αTµν = 0. Alternative to resubstituting we can
take the vector gαµ∇αTµν = 0 and project it straight away onto a plane perpendicular
to uν, by means of a projection operator P

νρ
⊥ = uνuρ/c2 − gνρ, to arrive at the Euler-

equation.
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d. sources of the gravitational field

D.3 fields as sources of gravity

Relativistic gravity should be compatible with relativistic fields as well as fluids,
similarly to electrodynamics which is equally valid for a classical charge density as a
source or a charge density that is computed from the probability determined by the
wave functions of the particles according to the Born-postulate: This is made sure
by the fact that fields can be assigned an energy-momentum tensor as an expression
of local energy density, momentum density and stress, which obeys automatically
relativistic conservation laws as soon as the Lagrange-density L of the fields does not
explicitly depend on the coordinate, meaning that the working principle of the fields
should be identical everywhere and at every time.

A scalar field φ on an arbitrary, possibly curved spacetime with metric gµν for
instance would be described by the Lagrange-function

L = L(φ,∇αφ, gµν) (D.247)

if its dynamics is universal, so that L depends on the field φ and its derivative ∇αφ
(which would of course be = ∂αφ as φ is scalar, but let’s use the covariant formalism),
but not explicitly on the coordinates xµ. The action integral would read

S =
∫

d4x
√
−det g L (D.248)

where the additional factor
√
−det g makes sure that the volume element is invariant

under coordinate transforms (we come to this in the next chapter). The field equation
follows from variation according to Hamilton’s principle δS = 0. Specifically,

δS =
∫

d4x
√
−det g

(∂L
∂φ

δφ+
∂L

∂∇αφ
δ∇αφ

)
(D.249)

Using the interchangeability δ∇αφ = ∇αδφ and integration by parts while keeping
the variation on the boundary fixed gives

δS =
∫

d4x
√
−det g

(∂L
∂φ
− ∇α

∂L
∂∇αφ

)
= 0 (D.250)

from which we extract the Euler-Lagrange equation, now in a covariant formulation
ready to work on a curved background,

∇α
∂L

∂∇αφ
=

∂L
∂φ

(D.251)

Next, it’d be great if an expression for the energy momentum tensor Tµν would
directly follow from the coordinate independent Lagrange-function L, possibly along
with a covariant conservation law in the form gαµ∇αTµν = 0. In fact, if L(φ,∇αφ) does
not depend on position the variation δL is given by

δL =
∂L
∂φ

δφ+
∂L

∂∇αφ
δ∇αφ = ∇α

[ ∂L
∂∇αφ

δφ
]

+
∂L
∂φ

δφ− ∇α
∂L

∂∇αφ
· δφ (D.252)

where in the last step the Leibnitz-rule was used to introduce the derivative of the
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d.3. fields as sources of gravity

product ∂L/∂∇αφ δφ, which suggests that the Euler-Lagrange-equation should be
substituted,

δL = ∇α
[ ∂L
∂∇αφ

δφ
]

+
(∂L
∂φ
− ∇α

∂L
∂∇αφ

)
︸               ︷︷               ︸

=0

δφ → δL = ∇α
[ ∂L
∂∇αφ

δφ
]

(D.253)

Next, we need to write the variation in L from an infinitesimal translation of
the field δφ (because the Lagrange-density does not change itself as a function of
coordinate, it can only change if the fields themselves are different!), i.e. to think of a
way of actually generating the variation from an infinitesimal shift in the coordinates:

φ (xµ + δxµ) = φ (xµ) + ∇νφ (xµ) · δxν + . . . (D.254)

again using covariant derivatives for generality. Then, the field variation δφ is given
by

δφ = φ(xµ + δxµ) − φ(xµ) = ∇νφ · δxν = gµν ∇µφ δxν (D.255)

On the other hand, shifting the Lagrange function L by an amount δxβ is easily
achieved by the displacement defined through the covariant derivative, δxβ∇β =
gαβδxβ∇α:

δL = gαβ ∇αL · δxβ. (D.256)

Combining both yields

δL = gαβ ∇αL · δxβ = ∇α
[ ∂L
∂∇αφ

· gµν ∇µφ δxν
]

(D.257)

As the same covariant derivative ∇α acts on both terms, they can be combined to give

∇α
[
L · δxα − ∂L

∂∇αφ
gµν ∇µφ δxν

]
= 0 (D.258)

This equation would be perfect if it was independent of the shift δx, but it appears
with different indices in the two terms. A possible remedy is a renaming δxα =
gαµ gµν δx

ν = δαν δx
ν, so that the formula becomes

∇α
[
gαµ gµν L −

∂L
∂∇αφ

∇νφ
]
δxν = gαµ ∇α

[
L gµν −

∂L
∂∇µφ

∇νφ
]
δxν = 0 (D.259)

where we can identify the energy momentum tensor as computed for the field φ from
its Lagrange-function L(φ,∇αφ, gµν),

Tµν =
∂L

∂∇µφ
∇νφ− Lgµν (D.260)

including the conservation law gαµ ∇αTµν = 0 in a covariant formulation. The idea,
that the energy-momentum tensor Tµν mediates between the field and the gravita-
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tional field equation is very interesting: As soon as the dynamics of the fields are
universal, Tµν is defined , covariantly conserved, and computable from L, irrespective
of the actual substance. In this sense, general relativity is the gravitational theory
of systems with conserved energy and momentum in the same way as Maxwell-
electrodynamics is the electromagnetic theory for systems with conserved charges.

E gravitational field equation

E.1 what should be realised in a gravitational field equation?

The field equation for gravity should first of all be a tensorial relationship between
curvature and the energy-momentum tensor the source of gravity, with a symmetric
curvature tensor isolated from the full Riemann curvature. Tensorial relationships
are necessary to have a consistent and well-defined transformation property of all
terms in the field equation. The field equation should operate on a 4-dimensional
background and allow for wave-like propagating solutions.

The field equation should obey covariant energy-momentum conservation. As a
second order partial differential equation (because the Riemann-curvature is made
from the second derivatives of the metric) it should be hyperbolic and allow modes
to propagate on the light cone. In contrast to our first attempts at constructing a
generalisation of the Poisson-equation within special relativity, there should be a
natural explanation why m = 0 but why λ , 0. But nevertheless, the limit of the field
equation for weakly perturbed, static spacetimes should fall back on the classical
Poisson equation ∆Φ = 4πGρ + λ (I’m trying to make a point that the cosmological
constant λ was always part of a classical theory).

It is a surprising result found by D. Lovelock that general relativity is unique as a
relativistic theory of gravity for conserved energy and momentum in 4 dimensions
with a second order hyperbolic and local field equation with a single dynamical field,
the metric gµν. It is an astonishing fact that the field equation of general relativity is as
fundamental as the Maxwell equations with nothing more fundamental from which
it could be derived. So all we can hope is to go through arguments why the equation
is sensible and how physical concepts are realised. I should mention that there are
ideas in relation to constructive gravity with the central idea that the theory for the
material fields (like Aµ) already fixes the dynamics of the metric gµν up to the point
that the gravitational field equation can be constructed from the Lagrange-density of
the Maxwell-field.

E.2 construction of the field equation

The first issue in the quest to link the Riemann curvature Rαβµν to the energy-
momentum tensor Tµν is the different rank of the two tensors. The Ricci-curvature
Rβν = gαµRαβγµ would be (up to an overall sign) the only non-vanishing contraction
of the Riemann-curvature and it would be symmetric as well, as can be shown with
the algebraic Bianchi-identity,

Rαβµν + Rαµνβ + Rανβµ = 0 (E.261)

for the cyclic permutation of β, µν while keeping the first index α fixed. Applying a
contraction with gαµ to the algebraic Bianchi-identity gets rid of the second term due
to the antisymmetry of Rαµνβ in αµ. Then,
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e.2. construction of the field equation

gαµRαβµν + gαµRανβµ = gαµRαβµν − gαµRανµβ = Rβν − Rνβ = 0 (E.262)

again using antisymmetry, this time of Rανβµ in the second index pair, which shows
the symmetry of the Ricci tensor, Rβν = Rνβ. Then, the Ricci-scalar R = gβνRβν =
gαµgβνRαβµν as a contraction of the Ricci-tensor Rβν is well-defined and not fixed to
zero by any index exchange symmetry.

Would Rµν ∝ Tµν be viable field equation? Covariant energy-momentum conserva-
tion requires that gαµ∇αTµν = 0, but one can show that the divergence gαµ∇αRµν , 0,
so that the field equation would be inconsistent. Instead, one needs a more elaborate
curvature quantity: the Einstein-tensor Gµν. Starting from the differential Bianchi-
identity

∇τ Rαβµν + ∇µ Rαβντ + ∇ν Rαβτµ = 0 (E.263)

with cyclic permutation in τ, µν and α, β fixed, one can make the substitution Rαβτµ =
−Rαβµτ in the last term with the index antisymmetry in the second pair. Contraction
with gαµ yields:

gαµ∇τ Rαβµν + gαµ ∇µ Rαβντ − gαµ∇ν Rαβµτ = 0 (E.264)

Using metric compatibility ∇αgµν = 0 in the last term, followed by a contraction
with gβτ then introduces the Ricci-scalar R, because gαµgβτRαβµτ = R. The first term
gives gαµgβτ∇τRαβµν = gβτ∇τRβν, which is the divergence of the Ricci-tensor. The
most complicated term is the middle one: Starting from the algebraic Bianchi-identity
Rαβντ + Rαντβ + Rατβν = 0 one can construct the argument that Rβαντ = Rαντβ + Rατβν
using the antisymmetry in the first index pair of the first term, followed by the
contraction of ∇µRβαντ, over βτ and αµ, which comes out as gβτgαµ[Rαντβ + Rατβν],
where the first term vanishes due to the (anti)symmetry of the indices and only
gαµ∇µRαν is left over, with an additional overall minus-sign. Realising that this term
is, like the first one, the divergence of the Ricci-tensor albeit with different (internal)
indices, the final result is:

2gαµ∇µRαν − ∇νR → gαµ∇µ [2Rαν − Rgαν] = 0 (E.265)

indicating that this particular combination of the Ricci-tensor, the Ricci-scalar and
the metric is divergence-free and could appear in the field equation. Commonly, one
defines the Einstein-tensor Gµν

Gµν = Rµν −
R
2
gµν (E.266)

for this purpose, which inherits its symmetry from Rµν and gµν. It is a memorable
result that the trace of Gµν

gµνGµν = gµνRµν −
R
2
gµνgµν = R − R

2
δ
µ
µ = R − 4

R
2

= −R. (E.267)

is just the negative Ricci-scalar R.

Realising that the metric is the second rank-2 tensor with vanishing divergence
due to metric compatibility suggests as a possible gravitational field equation There is no ”derivation” of the

field equation, it is so fundamen-
tal that we don’t know any more
fundamental principle from which
it could originate!49
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e. gravitational field equation

dimension 1 2 3 4
Tµν 1 3 6 10
Rµν 0 1 6 10
Rαβµν 0 1 6 20

Table 1: Numbers of entries of Tµν, Rµν and Rαβµν as a function of the dimensionality n of
spacetime: While the number of entries of Tµν is simply determined by symmetry Tµν = Tνµ,
the entries of Rµν and Rαβµν must be derived from the index exchange symmetries, for in-
stance, that there can not be any curvature in 1 dimension, because the non-commutativity
of the covariant derivative in different directions never arises: there is only one direction. In
3 dimensions, there can not be any curvature beyond Ricci-curvature and the gravitational
field would only exist at locations where the energy-momentum tensor is nonzero. Only in
4 dimensions or more there are components of curvature beyond Ricci curvature and the
gravitational field can exist away from the source.

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λgµν (E.268)

with two gravitational constants G and Λ. It is a second-order nonlinear hyperbolic
partial differential equation which respects the local covariant energy-momentum
conservation and constitutes 10 independent relations in 4 dimensions, due to the
symmetry of Rµν, gµν and Tµν. Hyperbolicity of the field equation is a consequence of
the sign-change in the signature (+,−,−,−) of the metric gµν, which falls back onto the
Minkowskian-metric in freely-falling frames, gµν = ηµν, and ultimately, hyperbolicity
will allow for wave-type solutions: gravitational waves!

One issue needs considerable explanation: The Riemann-curvature as a complete
characterisation of the spacetime curvature has 20 entries in 4 dimensions (reduced
from 44 = 256 to 20 by the index exchange symmetries), but the field equation only
fixes half of the curvature, similarly to the Poisson equation ∆Φ = 4πGρ, where only
the trace ∆Φ = δij∂i∂jΦ of the tidal field tensor ∂i∂jΦ is determined by the field
equation. In electrodynamics, the field equation □Aµ = 4π/c ȷµ in Lorentz-gauge
∂µAµ = 0 fixes 4 of the 10 derivatives ∂α∂βAµ, so this is really a common feature
for all field theories. If this was not the case, we could have only Ricci-curvature,
and it could only exist at places where the energy-momentum tensor is nonzero,
Tµν , 0. Clearly, this would be a weird theory of gravity, as the field should be free to
propagate away from the source into spacetime.

E.3 Ricci- and Weyl-curvature

In classical gravity, ∆Φ = δij∂i∂jΦ is invariant as the trace of the tidal field ∂i∂jΦ: It
does not change under rotations of the coordinate system and links the potential to
the source 4πGρ. Starting with Φ one obtains the gravitational acceleration gj = −∂jΦ,
of which one can compute the divergence divg = δij∂igj = −δij∂i∂jΦ which tells you
about a nonzero ρ at the point where ∆ acts on Φ. Vice versa, however, does ∆Φ = 0
not imply that there is no gravitational field, it only implies that at that particular
location there is no source, and clearly can gravity exist at locations outside the field
generating matter, for instance on the surface of the Earth. This suggests that one
would like to separate ∆Φ from ∂i∂jΦ and define the traceless shear

Φ̃ij = ∂i∂jΦ −
∆Φ

3
δij . (E.269)
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Φ̃ij are the components of the tidal shear that are sourced elsewhere and propagate
to the point where the derivatives of Φ are computed.

E.4 curvature invariants

There are two possible ways to quantify geometric properties of manifolds, or, in
fact, tensorial or vectorial fields: Either, one is able to write down a relation between
tensors of compatible rank and index structure, in which case all terms in an equation
transform covariantly under coordinate transforms, or one can construct invariants
by a full index contraction. Then, one obtains a scalar which is necessarily invariant
under coordinate transforms and has to assume an identical value in all frames. That
is the reason why scalars are so convenient: Their entries do not only for a given
coordinate choice but are universally true. What one gives up, however, is a significant
part of the information that gets lost in contraction. But sometimes, scalars have a
physical interpretation and can isolate important information on a tensor.

In classical gravity, we can compute the tidal field ∂i∂jΦ as the curvature ana-
logue and build contractions of this quantity, for instance with the Euclidean metric:
δij∂i∂jΦ = ∆Φ is rotationally invariant (reflecting the fundamental properties of
Euclidean spaces, and proportional to 4πGρ + λ). Or, one constructs the quadratic
quantity δaiδbj∂a∂bΦ ∂i∂jΦ, which corresponds to the Frobenius-norm of Phi which
is positive definite: We can conclude Φ = 0 from a vanishing Frobenius-norm, but we
can not do that from ∆Φ = 0, which only means that at that particular location no
source of the field exists.

The central quantity for curvature in relativity is the Riemann-tensor Rαβµν, with
a range of possibilities to form a scalar. For instance, the Ricci-scalar R = gαµgβνRαβµν
would be a quantity analogous to ∆Φ, as it is proportional to the trace of the energy
momentum tensor T = gµνTµν, minus 4Λ if the cosmological constant is included.
That’s clearly only the curvature that is generated locally by Tµν (and by Λ), but
not the complete curvature. In analogy to the Frobenius-norm one could think of
Kretschmann-scalar K = RαβµνRαβµν = gαµgβνgγρgδσRαβγδRµνρσ.

The Weyl-tensor Cαβµν would correspond to the traceless tidal shear Φ̃i , because
the locally generated part of the curvature has been eliminated. Then, clearly both
δij Φ̃ij and gαµgβνCαβµν vanish. But δaiδbj Φ̃abΦ̃ij is not required to be zero by ∆Φ = 0,
and neither is the Weyl-scalar C = CαβµνCαβµν = gαµgβνgγρgδσCαβγδCµνρσ: It would
serve as an invariant quantification of the curvature at a point of all gravitational
fields that are sourced elsewhere. As such, the Weyl-curvature Cαβµν is a covariant
generalisation of the traceless tidal tensor Φ̃ij .

E.5 weak and static gravity

General relativity needs to be consistent with classical gravity in the limit of weak
curvature and static gravitational fields consistent with a non-relativistic matter
distribution at rest. The trace of the field equation is given by

gµνRµν −
R
2
gµνgµν = −R = −8πG

c4 gµνTµν = −8πG
c4 T (E.270)

using R = gµνRµν, T = gµνTµν and gµνgµν = δ
µ
µ = 4, while the trace of the energy

momentum tensor is given by
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T = gµνTµν = gµν
[(
ρ+

p

c2

)
uµuν− p · gµν

]
=

(
ρ+

p

c2

)
gµν uµuν− pgµνgµν = ρc2 −3p ≃ ρc2

(E.271)

if the matter is non-relativistic, p ≪ ρc2, so that the Ricci-scalar just depends on the
matter density,

R = −8πG
c2 ρ. (E.272)

A weak perturbation an otherwise Minkowskian spacetime by a static gravitational
potential Φ has the form

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
δij dxidxj (E.273)

where the decomposition gµν = ηµν + hµν with the condition |hµν| ≪ 1 is only valid
in that particular Cartesian coordinate choice. Then, the inverse metric can be ap-
proximated to be gµν ≃ ηµν with an error of the order h2. The tt-component of the
Ricci-tensor in general given by

Rtt = ∂tΓ
µ

tµ − ∂µΓ
µ

tt + Γ νtµ Γ
µ

νt − Γ νtt Γ
µ
µν (E.274)

where the first term ∂tΓ
µ

tµ = 0 for static fields, and the squared Christoffel-symbols

+Γ νtµ Γ
µ

νt − Γ νtt Γ
µ
µν would contribute at order h2, so we neglect them. The only

contributing term is then

Rtt = −∂µΓ
µ

tt = −∂iΓ
i
tt = −∂i

(
δij

2

(
− ∂jhtt

))
=

1
2
δij∂i∂jhtt =

∆Φ

c2 (E.275)

because htt = 2Φ/c2. Collecting the results on the traces and the weak field, static
limit then yields

Rtt =
∆Φ

c2 =
4πG
c4 ρc2 → ∆Φ = 4πGρ, (E.276)

which one recognises as the classic Poisson field equation.

E.6 Weyl-curvature

There is a very good physical reason to decompose the Riemann tensor Rαβµν as
full quantification of curvature into two parts: The Ricci-curvature Rβν = gαµRαβµν,
which appears in field equation as Rβν − R/2 gβν and which is proportional to the
energy-momentum tensor Tβν, and the remaining curvature components, which form
the Weyl-tensor Cαβµν describing the curvature that has been sourced by energy and
momentum elsewhere and has propagated to the spacetime point under considera-
tion.

As already discussed, the field equation should not fully fix the curvature and
set it to be proportional to the source of the field, which is a typical structure in
all field equations. Electrodynamics, for instance, equates only 4 components of the
24 = 6 × 4 possible derivatives ∂βFµν of Fµν to be equal to the source ȷν according to
ηβµ∂

βFµν = 4π/c ȷν. But is there a constraint on the remaining 20 components? Yes, in
fact through the Bianchi-identity,
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e.6. weyl-curvature

∂λFµν + ∂µFνλ + ∂νFλν = 0 or, equivalently ηβµ∂βF̃µν = 0 (E.277)

with the dual tensor F̃µν = ϵµναβFαβ/2.
Similarly, the off-trace parts of the curvature form the Weyl-tensor which obeys

an analogous differential Bianchi-identity. In fact, it obeys the same antisymmetry
relations as the Riemann-tensor, i.e.

Cαβµν = −Cβαµν = −Cαβνµ (E.278)

as well as an algebraic Bianchi-identity

Cαβµν + Cαµνβ + Cανβµ = 0 (E.279)

and
gαµ Cαβµν = 0 (E.280)

and finally a differential Bianchi-identity

∇τCαβµν + ∇µCαβντ + ∇νCαβτµ = 0. (E.281)

Let’s construct a systematic decomposition of the Riemann curvature Rαβµν: From
any symmetric tensor Xαβ one can derive the quantity X̃αβµν

X̃αβµν = Aαµ gβν + Aβν gαµ − Aαν gβµ − Aβµ gαν. (E.282)

This definition of X̃αβµν makes sure that the quantity fulfils the properties

X̃αβµν = −X̃αβµν = −X̃βαµν and X̃αβµν + X̃αµνβ + X̃ανβµ = 0 (E.283)

i.e. effectively the index exchange symmetries of the Riemann-tensor, suggesting the
ansatz

Rαβµν = Cαβµν + a · R̃αβµν + b R · g̃αβµν (E.284)

with the Ricci-scalar R, and g̃αβµν and R̃αβµν from the metric gµν and the Ricci-
tensor Rµν, respectively. Then, the two factors a and b can be determined through
contraction.

This decomposition can be used to show an extremely interesting algebraic prop-
erty of the Weyl-curvature Cαβµν as the part of curvature that propagates: The tensor
can only be nonzero in more than four dimensions, suggesting that gravity can
only exist at locations where the energy momentum tensor is zero in less than four
dimensions, entirely defeating the purpose of a field theory:

• n = 1

no Riemann-curvature, Rαβµν = 0, because of the exchange symmetry in e.g. the
last two indices: There can’t be any curvature in one dimensions, because the
covariant derivatives always commute, as they apply only to a single direction.

• n = 2
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e. gravitational field equation

Riemann-curvature is always proportional to the Ricci-scalar and the metric, as
two-dimensional manifolds are always maximally symmetric,

Rαβµν =
R
2

(
gαµgβν − gανgβµ

)
(E.285)

• n = 3

Riemann-curvature is proportional to the Ricci-tensor and the Ricci scalar, but
the Weyl-tensor vanishes identically,

Rαβµν =
(
gβµ Rαν + gαν Rβµ − gβν Rαµ − gαµ Rβν

)
+

R
2

(
gαµgβν − gανgβµ

)
(E.286)

That implies that the full Riemann-curvature needs to vanish if Tµν is linked to
the Ricci-curvature as in the conventional field equation: There would not be
vacuum solutions in 2 or 3 dimensions.

• n = 4

Ricci- and Weyl-curvature can simultaneously exist

Rαβµν = Cαβµν +
1
2

(
gβµ Rαν + gαν Rβµ − gβν Rαµ − gαµ Rβν

)
(E.287)

and Rαβµν can be nonzero even if Rµν is zero as a consequence of Tµν = 0.

Spacetimes without Weyl-curvature, Cαβµν = 0 (as for instance FLRW-spacetimes)
are conformally flat and their metric can always be written as

gµν = Ω2(x)ηµν (E.288)

i.e. as originating with a (coordinate-dependent) conformal factor Ω2(x) > 0 from the
flat Minkowski-metric: This implies that the light cone structure of these spacetimes
is identical perfectly Minkowskian light cones: The conformal factor drops out in the
condition ds2 = gµνk

µkν = Ω(x)2ηµνk
µkν = 0. That would be automatically the case in

2 and 3 dimensions.
A direct computation (which is very tedious) shows that Weyl-curvature is in-

variant under conformal transformations gµν → Ω(x)gµν of the metric and that the
Weyl-tensor maps onto itself: Cαβµν → Cαβµν.

The differential Bianchi-identity is the dynamical equation for the Riemann cur-
vature:

∇τ Rαβµν + ∇µRαβντ + ∇ν Rαβτµ = 0 (E.289)

Contraction with gαµ then yields:

gαµ ∇τ Rαβµν + gαµ ∇µ Rαβντ + gαµ ∇ν Rαβτµ = 0 (E.290)

Identifying the Ricci-scalar in the first (and after an index swap) in the last term
yields:

gαµ ∇µ Rαβντ = ∇α Rαβντ = ∇ν Rβτ − ∇τ Rβν. (E.291)
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As the same differential Bianchi-identity applies to the Weyl-tensor Cαβµν as well,
one obtains a very similar result

gαµ ∇µ Rαβντ = ∇α Cαβντ = ∇ν Sβτ − ∇τ Sβν = Cβντ (E.292)

with the Schouten-tensor

Sβτ =
Rβτ
2
− R

6
gβτ (E.293)

and the Cotton-tensor
Cβντ = ∇ν Sβτ − ∇τ Sβν (E.294)

such that the differential Bianchi-identity assumes a shape that is in fact reminiscent
of the field equation in Maxwell-electrodynamics! For vacuum both Rβτ and R vanish,
such that the Sβτ is necessarily zero, implying that

gαµ∇µCαβντ = 0 invacuum. (E.295)

If there are is a field-generating energy momentum content Tβτ , 0, one would obtain
in a non-vacuum situation

gαµ ∇µ Cαβντ = ∇α Cαβντ = Cβντ =
4πG

c4 ·
[
∇νTβτ − ∇τTβν −

1
3

(
∇τT · gβν − ∇νT · gβτ

)]
(E.296)

similar to gαµ∇α Fµν = 4π/c ȷν.

E.7 Raychaudhuri-equation

The Raychaudhuri-equation gives a very pictorial and intuitive impression of the
effects of the two types of curvature (Ricci and Weyl). It’s even possible to apply the
concept to classical gravity, so let’s do this first: A bundle of geodesics xi(t) with
relative velocities υi

x′i = xi + υi t (E.297)

would exhibit relative motion

∂x′i

∂xj
= δij +

∂υi

∂xj
· t ≃ ∂x′i

∂xj
= exp

(∂υi
∂xj
· t

)
(E.298)

at order t, in the spirit of a Lie-generated transformation. The change of the volume
elements from d3x to d3x′ is given by

d3x′ = det
(∂x′
∂x

)
d3x (E.299)

with the Jacobian determinant of the coordinate change. Using my third most
favourite formula,

ln d3x′ = ln det
(∂x′
∂x

)
+ ln d3x (E.300)

55

https://en.wikipedia.org/wiki/Schouten_tensor
https://en.wikipedia.org/wiki/Cotton_tensor
https://en.wikipedia.org/wiki/Raychaudhuri_equation


e. gravitational field equation

following from ln det A = ln
∏
i
λi =

∑
i

ln λi = tr ln A for any non-singular matrix

A one arrives at

ln det
(∂x′
∂x

)
= tr ln

(∂x′
∂x

)
= tr ln exp

(∂υ
∂x

t
)

= t · tr
(∂υ
∂x

)
(E.301)

with the identification

tr
∂υ
∂x

= δij ∂jυi = −δij ∂j∂i Φ = −∆Φ = −4πGρ (E.302)

such that the matter density ρ (appearing through the substitution of the Poisson
equation ∆Φ = 4πGρ) inside a cloud of freely falling test particles (made sure by the
Newtonian equation of motion υ̇i + ∂iΦ = 0) causes a negative change of the volume.
Interestingly, the appearance of a cosmological constant λ would likewise contribute
to the volume evolution, and we witness this actually in cosmology.

The same intuition applies to a relativistic theory of gravity, as the Ricci-curvature
is responsible to the volume change of a spacetime volume. The picture that emerges
is that Ricci-curvature changes volumes while keeping their shape intact, and that
Weyl-curvature changes shapes while conserving their volumes (at least to lowest
order). In all theories this distinction is made by a decomposition into the trace and
the traceless part of the curvature.

E.8 nonlinearity and locality

The field equation of general relativity are nonlinear partial differential equations
with the important consequence that the superposition principle does not apply,
which was such a convenient tool in classical gravity for solving the Poisson equation
∆Φ = 4πGρ + λ. There, it’s always possible to separate the problems one faces when
determining the potential Φ from ρ: the inversion of the differential operator, to
account for boundary conditions (as the Poisson-equation is an elliptical partial
differential equation) and the possibly complicated geometry of the source ρ. In the
case of linear field theories one achieves that by means of a Green-function G(r, r′) as
a solution to the field equation for a point charge δD(r − r′), for simplicity on small
scales where λ = 0 in a good approximation:

∆
1

|r − r′ |
= 4πGδD(r − r′) (E.303)

Using linearity, the equation can be multiplied with ρ((r)) and integrated over d3r ′ .
Effectively, this is exactly the expression of the superposition principle as one adds
up the contributions to Φ at r from the source distribution ρ(r′):∫

d3r ′ ∆
ρ(r′)
|r − r′ |

= ∆

∫
d3r ′

ρ(r′)
|r − r′ |

= ∆Φ = 4πG
∫

d3r ′ ρ(r′)δD(r − r′) = 4πGρ(r)

(E.304)

so that

Φ(r) =
∫

d3r ′
ρ(r′)
|r − r′ |

(E.305)
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Schwarzschild-solution grav. waves FLRW-cosmologies white dwarfs
homogeneous t r ± ct r t
isotropic yes yes yes yes
varies along r r,t t r
gravity strong weak strong weak...strong

scales rS = 2GM
c2 linear physics ρcrit = 3H2

0
8πG eqn. of state

curvature Weyl Weyl Ricci Weyl + Ricci
sources vacuum solution vacuum solution p, ρ (ideal fluid) p, ρ (ideal fluid)

Table 2: Compilation of the simplest solutions of general relativity together with their sym-
metries and peculiar physical properties. It should be emphasised that a coordinate choice
has been taken which is particularly suited to the symmetry of the respective spacetimes.

is the required solution for the potential. Effectively, going from ρ to Φ relies on
linearity, and going from Φ to ρ uses the locality of the equation as it determines
the classical equivalent of Ricci-curvature. General relativity, however, is nonlinear,
because pictorially the Christoffel-symbols contain terms of the type g∂g, the Rie-
mann curvature (g∂g)2 and ∂(g∂g), and finally the Ricci-curvature terms of the type
g(g∂g)2 and g∂(g∂g). Despite the nonlinearities, the field equation is still local, as it
links the Ricci-part of the curvature to the energy-momentum tensor, as exemplified
by the consideration of the change in volume of freely falling clouds of test particles
in the Raychaudhuri-equation.

And I would like to mention, that the field equation of general relativity is a
hyperbolic differential equation: Therefore, the solution is already unique if initial
conditions are specified, while boundary conditions are not necessary. Hyperbolicity
makes sure that excitations of the gravitational field are propagating along the light
cones defined differentially by ds2 = gµνdxµdxν = 0. The nonlinearities of the field
equation make it very difficult to find solutions for arbitrary Tµν, as one can not use
the Green-method which would require linear superposition. But there are solutions
for reasonable simple and symmetric cases, which are listed in Table. E.8 and which
will be discussed in Sects. F, G and H.

F black holes

F.1 Schwarzschild black holes

The Schwarzschild geometry refers to the geometry outside of a spherically sym-
metric static matter distribution as a generalisation to the Newtonian gravitational
potential Φ = −GM/r. Just like the latter follows from the solution of the vacuum
(ρ = 0) Poisson-equation ∆Φ = 0 in the spherically symmetric case, K. Schwarzschild
obtained his solution from the gravitational field equation in vacuum. Tµν = 0 implies
directly T = gµνTµν = 0, such that the trace of the field equation becomes

gµνRµν −
R
2
gµνgµν = −R = −8πG

c4 gµνTµν = 0 → R = 0 (F.306)

restricting ourselves to scales≪ 1/
√
Λ, meaning that the cosmological constant can

be neglected. The trace relation implies that the Ricci-scalar R vanishes for vacuum
solutions as a general result. Then, what remains from the field equation is
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Rµν = 0 (F.307)

which is to be solved for a spherically symmetric, static case. It would be wrong to
conclude from Rµν = 0 that there could not be any curvature: There can not be any
Ricci-curvature Rµν in a vacuum case, but the field equation does not restrict the
Weyl-curvature Cαβµν, in the same way as the classical Poisson-equation only restricts
∆Φ = 0 but not the traceless tidal field ∂i∂jΦ−∆Φ/3 δij . Although there is no parallel
in Newtonian theory as there is no notion of general covariance, the Weyl-curvature
must obey the differential Bianchi-identity, which acts as the dynamic equation of
Cαβµν.

Guided by isotropy and staticity as symmetries, a suitable ansatz for the metric
could be

ds2 = A(r)dt2 − B(r)dr2 − r2
[
dθ2 + sin2 θdφ2

]
(F.308)

for an intuitive coordinate choice. Clearly, one would like to work with spherical
coordinates r, θ,ϕ, augmented by a temporal ct-coordinate. But there is some fineprint
attached to this: The ct-coordinate would be the conventional coordinate time at the
location of an infinitely distant observer, where A(r)→ 1 asymptotically to recover
Minkowskian space. In this asymptotically flat space, the coordinate time would be
identical to the proper time of observers at rest relative to the black hole. The radial
coordinate r has the same limit B(r)→∞ as r →∞ to make the spatial submanifold
appear as a flat Euclidean space. Clearly, the dependence of A and B on the radial
coordinate is there to encode curvature effects in the measurement of time intervals
and radial distances, and these curvature effects do not depend on time, as a reflection
of staticity.

The typical scaling ∝ 4πr2 of spheres of radius r is obtained by integration over
the two angles at fixed r, which in turn is actually defining the radial coordinate! The
area element is dA = √gθθgφφ = r2 sin θdθdφ such that

∫
4π

dA = r2

π∫
0

dθ sin θ

2π∫
0

dφ = 4π r2 (F.309)

i.e. the radial coordinate r is chosen in such a way that the scaling of surfaces of
spheres with radius is defined just like in flat Euclidean space, despite the fact that
there are curvature effects present. At least in this single coordinate direction, the
effects of curvature have disappeared through a suitable coordinate choice.

Writing the metric in this coordinate choice in matrix form

gµν =


A(r) 0 0 0

0 −B(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

 (F.310)

makes it apparent that it is diagonal, and the inverse can be found quickly using the
determinant det(gµν) = −A(r)B(r) · r4 sin2 θ, such that
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f.1. schwarzschild black holes

gµν =


A−1(r) 0 0 0

0 −B−1(r) 0 0
0 0 −r−2 0
0 0 0 −(r2 sin2 θ)−1

 (F.311)

Many of the Christoffel-symbols vanish due to the high degree of symmetry. If the
metric does not change in a certain coordinate direction along xα, ∂αgµν is zero and
does not contribute to the Christoffel-symbol. It is a technical exercise to show that
the nonzero Γ αµν are:

Γ ttr =
A′

2A
Γ rθθ = − r

B
Γ θφφ = − sin θcos θ (F.312)

Γ rtt =
A′

2B
Γ rφφ = − r sin2 θ

B
Γ
φ

rφ =
1
r

(F.313)

Γ rrr =
B′

2B
Γ θrθ =

1
r

Γ
φ

θφ
=

cos θ
sin θ

(F.314)

together with torsion-free condition Γ αµν = Γ ανµ , for switching the order of the two
covariant indices. From those, we can compute the Riemann-tensor and determine
the Ricci-tensor Rβν = gαµ Rαβµν as its contraction: Again, the nonzero elements of
Rβν are:

Rtt = −A′′

2B
+

A′

4B

(A′

A
+

B′

B

)
− A′

rB
= 0 (F.315)

Rrr =
A′′

2A
− A′

4A

(A′

A
+

B′

B

)
− B′

rB
(F.316)

Rθθ =
1
B
− 1 +

r
2B

(A′

A
− B′

B

)
(F.317)

Rφφ = Rθθ · sin2 θ (F.318)

which comes out diagonal but not proportional to the metric, as a reflection of the
presence of Weyl-curvature. Setting Rµν = 0 yields differential equations (the fourth
involving Rφφ = 0 is redundant because it is proportional to the third equation)
whose solution will fix the two functions A(r) and B(r). Adding B/A× eqn. F.315 and
adding it to eqn. F.316 yields

−A′′

2A
+

A′

4A

(A′

A
+

B′

B

)
− A′

rA
+

A′′

2A
− A′

4A

(A′

A
+

B′

B

)
− B′

rB
= 0 (F.319)

which immediately simplifies to

1
r

(A′

A
+

B′

B

)
= 0 (F.320)

The term in brackets needs to vanish exactly for any choice of r, so one can determine

A′

A
+

B′

B
= 0

∣∣∣ · AB, BA′ + AB′ =
d
dr

(AB) = 0 (F.321)

such that the product AB needs to be constant, AB = α. Substituting B = α/A and
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the derivative B′ = − α
A2 A′ into eqn. F.317,

Rθθ =
1
B
− 1 +

r
2B

(A′

A
− B′

B

)
= 0 (F.322)

from which one can isolate a differential equation for A,

A + rA′ =
d
dr

(rA) = α, (F.323)

and therefore rA = αr + k with an integration constant k. In this way, we have
obtained the two metric functions

A(r) = α
(
1 +

k
r

)
and B(r) =

(
1 +

k
r

)−1
(F.324)

where the two constants α and k need to be identified by comparison with a
Minkowski-metric that is weakly perturbed by a potential: In this way, we match up
the two solutions in the weak field limit and make them consistent with each other.

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dr2 − r2

(
dθ2 + sin2 θdφ

)
(F.325)

is the weakly perturbed line element with a potential Φ, in our case Φ = −GM/r
generated by an isotropic matter distribution with mass M according to the Poisson-
equation. Comparison with the Schwarzschild line element yields for the metric
functions (

1 +
2Φ
c2

)
= A(r) (F.326)

if α = c2 and k = −2GM/c2. With this identification, the Schwarzschild line element
becomes

ds2 =
(
1 − 2GM

c2r

)
c2 dt2 − 1

1 − 2GM
c2

dr2 − r2
(
dθ2 + sin2 θdφ

)
(F.327)

where one can read off the Schwarzschild-radius

rS =
2GM
c2 (F.328)

which assigns a length scale to the gravitational field generated outside a spherically
symmetric and static matter distribution of mass M. G/c2 ≃ 10−28m, so a good
number to remember is a few hundred meters for the Schwarzschild radius of the Sun
with M⊙ ≃ 1030kg. The Earth, with a considerably lower mass of M⊕ ≃ 1024kg has a
Schwarzschild radius smaller by a factor 106. But please be careful: The gravitational
field outside of every spherically symmetric matter distribution is of Schwarzschild
form, there is no requirement that the mass would be somehow concentrated to r < rS.

A subtle but very interesting point is that indirectly through the Newtonian
solution, we have introduced a boundary condition: Spacetime becomes flat and
Minkowskian at very large distances. This is necessary because by deactivating time-
evolution of the gravitational field (because of the assumption of staticity) the field
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equation as a hyperbolic partial differential equation falls back onto an elliptical
partial differential equation, which has only unique solutions if boundary conditions
are specified. In our case, this would be a Dirichlet boundary condition. The situation
is similar to the transition from □φ = 0 as a hyperbolic PDE to ∆φ = 0 as an elliptical
PDE if ∂ctΦ = 0.

I would like to emphasise that, as technically straightforward the comparison of
the two line elements may seem, there is quite a lot happening from a conceptual
point of view: With increasing radial distance one would expect the metric functions
to approach one, but also the definition of the radial coordinate r approaches the
Euclidean regime, so there is a smooth interpolation from the curved spacetime to
a flat one. It is interesting that through this matching of the two models the mass
gains a significance: Before, we only had two functions A and B, and the mass of
the field-generating object was nowhere to be found. As long as one deals with
spacetime as a curved manifold, the choice of coordinates is arbitrary and bears no
physical significance. Curvature varies with changing r, but r is not an indication of
distance, so one actually can not know how far away the black hole is, and neither
how curvature, mass and distance are related. In the asymptotically Minkowskian
spacetime, which is a vector space with normal coordinates, distance as coordinate
difference has an absolute sense, so the decrease of field strength with distance is
indicative of the mass.

Funnily enough, the same problem also arises in Newtonian gravity. For vacuum
solutions, ∆Φ = 0 is to be solved, yielding Φ ∝ 1/r in the spherically symmetric case,
which is perfectly scale invariant. As the superposition principle holds here (for the
Poisson-equation as a linear field equation), the scaling of Φ with M is natural, and
G is there to fix the units. But nowhere there is a moment where the prefactors are
determined by requiring Φ to have a specific value at a given distance, which would
effective amount to a Dirichlet boundary condition.

At this point one should make clear that it’d be very wrong to say that ”gravity
becomes strong” at r = rS, or that curvature would start to dominate, or that classical
gravity would need to get replaced by relativity. As a statement involving coordinates
this can not be universally true. There are certain things that the infinitely distant
observer can not compute at r = rS, but this is a consequence of the coordinate choice,
as spacetime is curved but perfectly regular, as none of the curvature invariants
diverges. Certainly one would notice an increase in e.g. the Kretschmann-scalar
K = 48r2

S /r
6 moving towards smaller r from the Minkowski-regime where K = 0, but

this is a relative statement between r →∞ and finite r.
As discussed in the chapter about the equivalence principle, any freely falling

frame recovers a perfectly Minkowskian spacetime with a coordinate choice making
sure that gµν = ηµν and Γ αµν = 0 locally. The amount of curvature the defines the size
of this laboratory in which special relativity holds for instance by δ = (r2

S /K)1/6. Even
at rS, motion of particles separated by less than δ is unaffected by curvature to first
order. Of course, δ becomes less as r decreases.

F.2 Birkhoff’s theorem

Up to this point we chose metric functions A(r) and B(r) of the Schwarzschild-metric
to be functions of the radial coordinate only

ds2 = A(t, r) dt2 − B(t, r) dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.329)
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Surprisingly, the result would have been identically the same if we had started
with an allowed time-dependence A(t, r) and B(t, r), as spherical symmetry disallows
time-dependences in vacuum. One might have noticed that up to now we used
three equations from the diagonal vacuum field equation Rµν = 0 to fix just two
functions A and B; please be reminded that Rφφ = 0 is automatically already fulfilled
by Rθθ = 0. If a time-dependence of the two metric functions is introduced, the
Christoffel-symbols and the Ricci-tensor become more complicated and contain time
derivatives, but the vacuum field equation enforces then staticity with the additional
third differential equation that is unused if one restricts A and B to be functions of
r only: Somehow, the assumption of static gravitational fields is superfluous if one
deals with a spherically symmetric vacuum solution.

This result is known as the Birkhoff-theorem: The fields outside spherically sym-
metric matter distributions need to be static and to be of the Schwarzschild-type.
For instance, a radially pulsating spherically symmetric matter distribution would
generate a perfectly static curved spacetime, and all that matters is the total mass
M. A remainder of the Birkhoff-theorem is present in Newtonian gravity: There, the
field of a spherically symmetric matter distribution was always computed as if the
matter was concentrated at the central point, which arose as a peculiarity of the
Poisson-equation. Many students ask at this point how a black hole can grow by
accreting matter if there is no dynamical evolution of the gravitational field, which
naively would be in contradiction with intuition, as a larger mass black hole should
show a stronger gravitational field. Accretion and black hole growth is only possible
if spherical symmetry is broken, though, even the case of accreting a spherically sym-
metric spherical shell of matter onto the black hole would not change the physical
situation: Outside of the shell, the field stays static and corresponds to the combined
masses of the shell and the black hole itself.

F.3 conformal scaling of the Schwarzschild solution

The Schwarzschild-geometry is a spherically symmetric vacuum solution: As such, it
possesses only Weyl-curvature and no Ricci-curvature. Weyl-curvature is invariant
unter conformal transformations of the metric, gµν → Ω2(x)gµν with a conformal
factor Ω2(x) > 0, so the question naturally arises, what the physical significance of a
conformally rescaled Schwarzschild solution actually might be. Conformal rescaling
is present in classical gravity too, ∆ Φ = 0 is invariant under Φ → Ω2 Φ, but we
would rather call this mechanical similarity of a scale-free potential: Increasing the
mass M can always be absorbed in Φ by going to larger distances r.

Applied to the Schwarzschild geometry, the metric transforms under conformal
transformations as

gµν → Ω2(r) · gµν and consequently ds2 → Ω2(r)ds2 (F.330)

where only Ω2(r) would respect the fundamental symmetry. Applied to the line
element in Schwarzschild coordinates we get:

dds2 =
(
1 − rS

r

)
c
(
Ωdt2

)2
− 1

1 − rS
r

(
Ωdr2

)
−
(
Ωr

)2(
dθ2 + sin2 θd2φ

)
(F.331)

with Schwarzschild radius rS = 2GM
c2 . Absorbing the conformal factor in a redefinition

of the coordinates
(
Ωdr2

)
= dR and

(
Ωr

)2
= R then gives
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ds2 =
(
1 − ΩrS

R

)
c2dτ2 − 1

1 − ΩrS
R

dR2 − R2
(
dθ2 + sin2 θdφ2

)
(F.332)

if the conformal factor is constant, R = Ωr → dR = Ω, and dτ = Ωdt. That is just
the Schwarzschild line element for an upscale mass,

rS = Ω · rS =
2G
c2

(
ΩM

)
, (F.333)

i.e. the Schwarzschild solution is invariant under conformal transforms; M→ ΩM
and rS → ΩrS is absorbed by r → Ωr and t → Ωt as coordinate choices, so we have
recovered a similarity transform and the class of Schwarzschild solutions for different
masses is just related by a constant stretching of the spacetime by a factor of Ω, which
is perhaps a bit surprising keeping in mind that r is not the Euclidean distance but a
geometrically constructed radial coordinate. Of course, in classical gravity the same
result would just be the scale-invariance of the potential, Φ = −GM

r .

Photon geodesics are invariant under conformal transforms:

ds2 = gµν k
µkν → Ω2 gµν k

µkν = 0 (F.334)

as the conformal factor Ω2 drops out, so we can explore the causal structure of
Schwarzschild spacetimes in their generality even though there is no scale invariance
as in the case of a classical Newtonian gravitational field Φ ∝ −1/r, because conformal
invariance replaces that particular concept.

Constructing radial photon geodesics for the Schwarzschild geometry sets dθ =
0, dφ = 0 such that the photons only propagate along r as time passes: The geodesic
equation does not predict any deviation as d2θ/dλ2 = 0 as well as d2φ/dλ2 = 0,
perfectly in agreement with intution - there should not be any acceleration in the
angular directions for a radially moving photon in a spherically symmetric field. The
Schwarzschild line element

ds2 =
(
1 − rS

r

)
c2dt2 − 1

1 − rS
r

dr2 − r2
(
dθ2 + sin2 θdφ2

)
= 0 (F.335)

with big(dθ2 + sin2 θ dφ2
)

= 0. Therefore, the photon visits the coordinates r as
measured by the passage of time t as measured by an infinitely distant observer as

dr
dt

= ±c −
(
1 − rS

r

)
(F.336)

with + for outgoing and − for infalling photons. This can be solved for the trajectory
t(r),

±c dt =
dr

1 − rS
r

(F.337)

and integrated to give

±ct = r + rS · ln(r − rS) + const using
∫

dr
1 − rS

r

= r + rS ln(r − rS) + const (F.338)
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At large distances r →∞, r + rS ln(r − rS) approaches r and the light cone becomes
Minkowskian ±ct = r, but at r = rS, the light cone collapses as the effective speed of
propagation of the photon approaches zero: It is unable to change the radial distance
(into any direction!) as time (of the infinitely distant observer) passes:

dr
dt

= ±c
(
1 − rS

r

)
→ 0 (F.339)

Therefore, photons would be unable to propagate away from a source at r = rS
and would certainly never reach an observer at r > rS: That’s the reason why black
holes are black. Please keep in mind that nowhere one would need concepts of
energy loss or redshifting of photons; instead, it is much clearer to think of the null-
condition ds2 = gµνdxµ/dλdxν/dλ = 0 as being generally true, and the effective speed
of propagation dr/dt being dependent on the particular coordinate choice.

F.4 coordinate singularity at the Schwarzschild radius

The Schwarzschild geometry has a diverging line element at r = rS, but that diver-
gence only concerns the metric and has no physical implication: Firstly, it is not
present in other coordinate choices and secondly, all curvature invariants stay finite
at the Schwarzschild-radius, for instance R = 0 for the Ricci-scalar and K = 48r2

S /r
6

for the Kretschmann-scalar.
All apparent irregularities at rS are only a consequence of the coordinate choice,

and so is this curious switch between timelike and spacelike distances at rS: The
Schwarzschild line element in Schwarzschild coordinates assumes the form

ds2 =
(
1 − rS

r

)
c2dt2 − 1

1 − rS
r

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.340)

where the first prefactor shows this behaviour,

(
1 − rS

r

) > 0 if r > rS

< 0 if r < rS
(F.341)

whereas the second prefactor shows exactly the opposite behaviour,

− 1
1 − rS

r

< 0 if r > rS

> 0 if r < rS
(F.342)

so that cdt > 0 and dr = 0 imply a positive ds2 at r > rS and a negative ds2 at r < rS,
while dr > 0 with cdt = 0 would cause ds2 to be negative at r > rS and positive at
r < rS, interchanging the classification of timelike and spacelike vectors.

F.5 Painlevé-Gullstrand-coordinates

Solving the geodesic equation for a massive particle that is initially at rest at infinity,
dr/dτ = 0 and dt/dτ = 1 by isolating the metric from the line element,

ds2 =
(
1 − rS

r

)
c2dt2 − 1

1 − rS
r

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.343)
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and computing the necessary Christoffel-symbols shows that massive particles do
not cross the horizon as viewed by an observer at infinity, in fact their velocity defined
as the rate at which they change the radial coordinate r in terms of t approaches zero:

dr
dt

= −c
(
1 − rS

r

)
·
√

rS

r
→ 0 at r = rS (F.344)

At this point, Painlevé and Gullstrand came up with this idea: As one is completely
free in choosing coordinates (as long as there is an invertible and differentiable way of
changing between them), one can have a non-uniform time-coordinate T(r) = t − a(r)
with the differential dT = dt − a′ dr, prime denoting a differentiation with respect to
the radial coordinate r. Using this new coordinate in the Schwarzschild line element
yields

ds2 =
(
1 − rS

r

)
c2

(
dT + a′(r) dr

)2
− 1

1 − rS
r

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.345)

with a non-diagonal term appearing in the metric,

ds2 =
(
1− rS

r

)
c2dT2+2a′

(
1− rS

r

)
cdT dr+

[(
1− rS

r

)
a′2− 1

1 − rS
r

]
dr2−r2

(
dθ2+sin2 θdφ2

)
(F.346)

Up to here, the function a(r) was unspecified, so we might set the term in front of
the dr-differential to unity, [(

1 − rS

r

)
a′2 − 1

1 − rS
r

]
≡ −1 (F.347)

provided that the differential equation

a′ = − 1
1 − rS

r

·
√

rS

r
(F.348)

has a solution. This is in fact the case as it is solved by

a(r) = rS · ln
(y + 1
y − 1

− 2y
)

with y =
√

r
rS

(F.349)

Then, the final form of the Schwarzschild line element in Painlevé-Gullstrand coor-
dinates is given by:

ds2 =
(
1 − rS

r

)
c2 dT2 + 2a′

(
1 − rS

r

)
c dT dr − dr2 − r2

(
dθ2 + sin2 θdφ2

)
(F.350)

which is perfectly regular at r = rS and allows tracking of particles through the
Schwarzschild horizon: Solving a radial geodesic for a massive particle with dr

dτ = 0

and dT
dτ = 1 as initial conditions shows that the particle approaches dr

dT = −c
√

rS
r =

−c at r = rS. It is weird to look at history and see that Painlevé and Gullstrand
were criticised for their coordinate construction because they ”assigned too much
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f. black holes

significance to the coordinates” when in fact they showed that coordinate choices
adapted to a physical problem at hand were possible and sensible.

F.6 propagation of fields on a curved spacetime

Light propagation on a curved spacetime differs technically in a very important
point from Minkowski spacetimes with Cartesian coordinates. There, when the wave
equation was formulated in terms of partial derivatives which required to compute
differentiations of a wave-type ansatz φ = exp(±ikµxµ), leading to ∂xµ/∂xα = δ

µ
α. The

situation is very different on a manifold, where partial differentiations are replaced
by covariant ones, and while ∂αx

µ remains well defined, ∇αxµ is a senseless operation:
Covariant differentiations can only be applied to vectors and tensors (well, and
scalars, ∇µφ = ∂µφ), but the coordinates form only a tuple! Only transformation of
infinitesimal coordinate differences dxµ is well defined in terms of a Jacobian, as
dxµ has the properties of a vector, but the coordinates themselves do not have this
property. In addition, even an expression like the scalar product kµxµ in exp(±ikµxµ)
is highly doubtful on a manifold, as it does not combine two vectors.Please never try to apply covari-

ant derivatives to coordinate tu-
ples, ∇αxµ is not defined!

Formulating a wave equation for a free scalar field φon a manifold starts inevitably
at the action integral

S =
∫

d4x
√−ggµν ∇µφ∇νφ (F.351)

and substitution into the Euler-Lagrange formula yields the covariant wave equation,

∇α
∂L

∂∇αφ
=

∂L
∂φ

→ gµν ∇µ∇νφ = 0 (F.352)

where the d’Alembert-operator is scalar, □ = gµν∇µ∇ν. Defining the vector υν =
∇νφ = ∂νφwhich points into the direction of the field gradients of φ, gives

gµν ∇µ
(
∇νφ

)
= gµν ∇µυν = ∇µ gµν υν = ∇µυµ = 0 (F.353)

using metric compatibility, so that we can formulate the covariant divergence, with
the suitable Christoffel-symbol, where two of the indices become equal.

∇µυµ = ∂µυ
µ + Γ µµα υα (F.354)

In particular, a Levi-Civita connection would have

Γ
µ
µα =

gµβ

2
·
[
∂µ gβα +∂α gµβ −∂β gµα

]
=

1
2

[
gµβ ∂µ gβα + gµβ ∂α gµβ − gµβ ∂β gµα

]
(F.355)

i.e. essentially

Γ
µ
µα =

1
2
gµβ ∂α gµβ (F.356)

There is a curious relation between the covariant divergence and the covolume
g = det(gµν). My third most favourite formula in theoretical physics says that

g = det(gµν) = exp ln det(gµν) = exp tr ln(gµν) (F.357)
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f.6. propagation of fields on a curved spacetime

relating the logarithm of the determinant with the trace of the matrix-valued loga-
rithm, which is easily checked in the principal axis frame. Then,

∂α g = g · ∂αtr ln(gµν)) g · tr ∂α ln(gµν)) = g · tr
(
g−1 · ∂α gµν

)
= g · gµν · ∂α gµν (F.358)

using the linearity of the derivative as well as the inverse metric. With the derivative
of the square root one then obtains

gµν ∂α gµν =
1
g
∂α g, and therefore

1
2
gµν ∂α gµν =

1
√−g

∂α
√−g. (F.359)

With this result one can write for the contracted Christoffel-symbol

Γ
µ
µα =

1
√−g

∂α
√−g (F.360)

and finally for the covariant divergence

∇µ υµ = ∂µ υ
µ + Γ µµα υα = ∂µ υ

µ +
1
√−g

∂α
√−g · υα

µ↔α
= ∂µυ

µ +
1
√−g

∂µ
√−g · υµ =

1
√−g

∂µ
(√−g υµ) (F.361)

using the Leibnitz-rule. With the covariant divergence, the wave equation becomes

gµν ∇µ∇ν φ =
1
√−g

∂µ
(√−g ∂µ φ

)
= 0 (F.362)

which is obviously not just ∂µ∂µφ = 0; there is clearly an influence from the back-
ground onto wave propagation, for instance from the spacetime around a black
hole.

We can solve the wave equation in the eikonal or geometric optics approximation,
where the changes in the geometric properties of spacetime take place on spatial
scales much larger than the wavelength, and temporal changes much larger than
the frequency. Again, we need to navigate through the fact that the coordinate tuple
xµ is not a vector: Writing Φ = A exp(iS/ϵ) with an amplitude A, a phase S(xµ) as a
function of the coordinates and a parameter ϵ which controls the rate of phase change
(which must be high in comparison to the scales on which spacetime changes its
geometry) one derives by heavy application of the Leibnitz-rule

∂ν Φ = ∂νA exp
( iS
ϵ

)
+

i
ϵ

A exp
( iS
ϵ

)
∂ν S (F.363)

as well as for the second derivative

∇µ ∂ν Φ = ∇µ∂νA exp
( iS
ϵ

)
+

i
ϵ
∂ν A exp

( iS
ϵ

)
∇µS +

1
ϵ
∇µ A exp

( i
ϵ

S
)
∂νS+

i
ϵ

A exp
( iS
ϵ

)
∇µ∂νS +

( i
ϵ

)2
A exp

( iS
ϵ

)
∇µ S∂ν S (F.364)
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Sorting the terms by powers in ϵ leads to 1/ϵ2 as the dominating term for high ϵ

(making sure the phase changes are fast) which exactly corresponds to geometric
optics,

gµν ∇µ∇ν Φ =
( i
ϵ

)2
Φgµν ∂µ S ∂ν S = 0 (F.365)

keeping in mind that the phase function is scalar. Defining the wave vector kµ as the
gradient in S one recovers the null-condition

gµν kµkν = 0. (F.366)

At order 1/ϵ on obtains

gµν ∇µ∇ν Φ =
( i
ϵ

) [
gµν

(
kµ ∂ν A + ∂µ A kν

)
exp

( iS
ϵ

)
+ gµν Φ∇µkν

]
= 0 (F.367)

which suggest a relation how the amplitude of the wave is transported through
spacetime,

2 kµ∂
µ A + A∇µ kµ = 0 (F.368)

Although we solved a wave-equation for a massless scalar field φ on a curved
background, the essential results are applicable to the Maxwell-field Aµ as well.

F.7 causal structure of black holes

The Schwarzschild-geometry is the unique solution for a spherically symmetric grav-
itational field in vacuum, but the particular choice of Schwarzschild coordinates,
motivated by the passage of time for the infinitely distant observer for t and the
Euclidean scaling of surfaces with radius r is unsuited to parameterise the metric
at rS = 2GM/c2: there exists a coordinate singularity. The issue is really only an
unfortunate choice of coordinates as all curvature invariants stay finite for every
finite r, and there is really only a divergence of the curvature invariants as conve-
nient coordinate-independent quantifications of curvature at r = 0. Additionally,
because the mass of the black hole in the Schwarzschild solution was injected into
the derivation only at the stage of embedding the spacetime into an asymptotically
flat Minkowski-spacetime with a weak perturbation caused by a Newtonian potential
Φ = −GM/r, the pecularity of the Schwarzschild radius only applies to the infinitely
distant observer.

Instead of using Schwarzschild coordinates (ct, r, θ,ϕ) one can find much better
coordinates by looking at the radial motion of null-geodesics, corresponding to in-
going or outgoing light rays. That is the foundational idea of Eddington-Finkelstein
coordinates, and we need two sets of coordinate as required by differential geome-
try: non-flat manifolds need to be covered by at least two sets of coordinate maps.
Null-geodesics are of course the expression of the causal structure of spacetime, as
hyberbolic differential equations cause massless fields to propagate along the light
cones and restrict massive fields to propagate strictly within the light cones.

The coordinates ct, r of photons in radial motion where dφ = dθ = 0 fulfil the
relation

ct = −r − rS · ln(r − rS) + const. (F.369)
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f.7. causal structure of black holes

obtained by direct integration of the Schwarzschild line element ds2 = 0 for massless
particles. The integration constant is defined to be a new coordinate p

p = ct + r + rS · ln(r − rS) (F.370)

with the differential dp

dp = c dt +
dr

1 − rS
r

(F.371)

that will be used to replace ct in the Schwarzschild line element,

ds2 =
(
1 − rS

r

)
c2 dt2 − 1

1 − rS
r

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.372)

to yield

ds2 =
(
1− rS

r

) [
dp2 −2 · 1

1 − rS
r

dpdr +
1

(1 − rS
r )2

dr2
]
− 1

1 − rS
r

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.373)

finally arriving at

ds2 =
(
1 − rS

r

)
dp2 − 2 dp dr − r2

(
dθ2 + sin2 θdφ2

)
(F.374)

with ds2 = 0 for photons. Clearly, any divergent behaviour of ds2 at r = rS is avoided.
The null-condition for radially moving photons suggests(

1 − rS

r

) (dp
dr

)2
= 2

dp
dr

(F.375)

with two distinct solutions: dp/dr = 0, i.e. p = const, and

dp
dr

=
2

1 − rS
r

→
p

2
= r + rS ln(r − rS) + const (F.376)

With p one can define a new time coordinate t′ :

t′ ≡ p − r = ct + rS · ln(r − rS (F.377)

such that the line element reads

ds2 =
(
1 − rS

r

)
c2 dt′2 − 2

rS

r
dt′ dr −

(
1 +

rS

r

)
dr2 − r2

( )
(F.378)

It is perfectly regular for the entire Schwarzschild geometry and has for null-lines
ds2 = 0 the two branches ct′ = −r + const.

ct′ = r + 2rS · ln(r − rS)
(F.379)
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In analogy, one can define retarded Eddington-Finkelstein coordinates q instead
of advanced ones for outward moving radial photons,

dq = c dt − dr
1 − rS

r

(instead of + sign) (F.380)

It is important to realise that the Eddington-Finkelstein coordinates approach
Minkowski-light cones at large distances from the black hole, and that they always
consist of a linear branch and a nonlinear one, making the light cone tilt towards
r = rS: After the coordinate change, this replaces the closing up of the light cones in
Schwarzschild coordinates. It illustrates the geometric origin of the event horizon.
For large distances, the outward travelling photon can reach even larger distances,
but at the Schwarzschild radius the outward travelling photon has to stay at r = rS,
and at smaller radii, the ”outward” travelling photon actually moves towards smaller
radii.

F.8 Kruskal-coordinates

Kruskal-coordiantes combine retarded and advanced Eddington-Finkelstein coordi-
nates to construct effectively Minkowskian light cones.dp = c dt + α · dr → c dt = dp − α dr

dq = c dt − α dr → c dt = dq + αdr
(F.381)

with α = 1/(1 − rS
r ). As we need c2dt2 in the Schwarzschild line element, we could

try out to substitute each of the two relations, each one providing one power of cdt:

ds2 =
1
α

c2 d2 − αdr2 =
1
α

dp dq + dp dr − dq dr − αdr2 − αdr2 =
1
α

dp dq (F.382)

after substitution of dp dr − dq dr = (dp − dq) dr = 2αdr2, which is obtained by
differencing both equations in eqn. F.381. Therefore, the Schwarzschild line element
reads

ds2 =
(
1 − rS

r

)
dp dq (F.383)

which is obviously a modified line element for light cone coordinates, and in
Minkowskian space at r →∞ one would recover ds2 = dpdq. In fact, reintroducing
new spatial and temporal coordinates (ct̄, r̄) through the conversioncdt = 1

2 (dp + dq)

dr = (dp − dq)
(F.384)

gives a line element that is even more reminiscent of Minkowski-space, again with a
prefactor approaching unity as r →∞.

ds2 =
(
1 − rS

r

)[
c2dt2 − dr2

]
(F.385)

At this point it might appear very surprising that one finds light cone coordinates
with a conformal factor 1 − rS/r for a non-conformally flat spacetime with clearly
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f.8. kruskal-coordinates

present Weyl-curvature Cαβµν! This contradiction is cleared up by realising that the
argument only concerns the 2-dimensional submanifold in (ct, r), and there is no
problem arising as 2-dimensional manifolds are always conformally flat as they are
unable to support Weyl-curvature: The Riemann-tensor can be written in terms of
the Ricci-curvature alone. Kruskal-coordinates with effec-

tively Minkowski-light cones only
exist for radially moving photons
in the (ct, r)-submanifold, which
is 2-dimensional and therefore
necessarily conformally flat!

Apart from that, there is a technical issue: The conformal factor Ω2(r) is 1 − rS
r is

zero at r = RS, but conformal factors are supposed to be strictly positive. To reach
conformal flatness we can introduce yet another coordinate transform (p, q)→ (P, Q),

ds2 =
(
1 − rS

r

)
dp dq =

(
1 − rS

r

)dp
dP

dq
dQ

dP dQ (F.386)

If the coordinate transformation can be constructed in a way that the conformal factor
1− rS

r is absorbed into the coordinates, the line element would simply be ds2 = dPdQ,
and one would have reached conformal flatness in the submanifold:(

1 − rS

r

)dp
dP

dq
dQ
∼ 1 (F.387)

Kruskal’s really bright idea was the choice

P = + exp
( P

2rS

)
, Q = − exp

( −q
2rS

)
→ dP

dp
=

P
2rS

,
dQ
dq

= +
Q

2rS
(F.388)

Then, the line element becomes

ds2 = −
(
1 − rS

r

)
· 4r2

S ·
dP
P

dQ
Q

=
(
1 − rS

r

)
4r2

S · exp
(
−

p

2rS
+

q

2rS

)
dP dQ (F.389)

with the consistency condition

1
2

(p − q) = r + rS · ln(r − rS) (F.390)

With this coordinate transform, the line element reads

ds2 = 4
(
1 − rS

r

)
r2

S · exp
(
− r
rS

)
· exp(− ln(r − rS)) dP dQ (F.391)

Further simplification with exp(− ln(r − rS)) = 1
r−rS

= 1
r ·

1
1− rS

r
then yields the Kruskal

line element

ds2 = 4 exp
(
− r
rS

) r3
S
r
· dP dQ (F.392)

where one power of rS has been added for consistency, as the line element has the
unit of a squared length and the coordinates (P, Q) are dimensionless. The conformal
factor is then

Ω2(r) = 4 exp
(
− rS

r

) r3
S
r

(F.393)

which is strictly positive and nonsingular everywhere with the exception of r = 0.
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F.9 Reissner-Nordström black holes

Clearly, the Schwarzschild black hole with its highly symmetric spacetime as a
solution to the vacuum field equation Rµν is a very attractive starting point to find
solutions for the relativistic field equation, which is simplified dramatically due to
the symmetries and the absence of a source. There is, perhaps a bit surprisingly,
an analytic solution for the gravitational field outside of a spherically symmetric
matter distribution which is electrically charged: the Reissner-Nordström black hole.
In this case, spherical symmetry and staticity is maintained, but the electric field
emanating from the charge distribution can propagate and its own energy content
can contribute to spacetime curvature in addition to the central mass. As such, the
solution is not a pure vacuum solution and possesses Ricci-curvature, sourced by the
nonzero energy-momentum-tensor of the electric field, alongside the Weyl-curvature
propagating away from the matter distribution.

With the same symmetry assumptions of isotropy and staticity, which suggests
the line element to be of the Schwarzschild type,

ds2 = A(r) c2 dt2 − B(r) dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.394)

with two (possibly different) metric functions A(r) and B(r), one does not only to
solve the gravitational field equation but also the vacuum Maxwell-equation

gαµ ∇αFµν = 0 ↔ Rµν = −8πG
c4 Tµν(F) (F.395)

in a self-consistent way: The first equation provides the field Fµν in vacuum for a
given spacetime geometry and defines source Tµν, which in turn sources the Ricci-
curvature Rµν and fixes the geometry. At this point, please keep in mind that the
Maxwell-field, due to the masslessness of the photon, has a vanishing trace T of the
energy momentum tensor.The scalars T and R are zero

here, but that does not imply that
Tµν and Rµν are zero! Let’s begin with the Maxwell-equation in vacuum, gαµ ∇αFµν = 0 or equivalently,

∇µFµν = 0. Writing out the covariant divergence

∇µFµν = ∂µFµν + Γ µµβ Fβν + Γ νµβ Fµβ (F.396)

shows that one term drops out, as a contraction of the symmetric Christoffel-symbol
Γ νµβ with the antisymmetric field tensor Fµβ. Then, the index structure suggests that
we can bring in the divergence formula for the index µ, yielding

∇µFµν = ∂µFµν + Γ µµβ Fβν =
1
√−g

∂µ(
√−gFµν) (F.397)

The covolume is readily computed to be −g = ABr4 · sin2 θ, implying that

d
dr

(√
AB r2Frt

)
= 0 (F.398)

as all other derivatives vanish as a consequence of the assumed symmetries, with
Frt = ∂rAt − ∂tAr being the only nonzero field component. To make things specific,
we make the ansatz Aµ =

(
Φ, 0, 0, 0

)
with the electrostatic potential Φ, where none of

the entries of Aµ can depend on time. The field tensor with contravariant indices is

72

https://en.wikipedia.org/wiki/Reissner\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Nordstr\unhbox \voidb@x \bgroup \accent 127o\protect \penalty \@M \hskip \z@skip \egroup m_metric


f.9. reissner-nordström black holes

then given by

Frt = g rµg tr Fµν = g rrg tt Frt = − E
AB

(F.399)

directly from ∂tFrt = 0 and the radial electric field ∂rFrt = E, along with the metric
coefficients g rr and g tt (no summation is implied in the second last term!), finally
suggesting the differential equation

d
dr

( r2E
√

AB

)
= 0, solved by E(r) =

√
AB · k

r2 (F.400)

At infinity one recovers Minkowskian geometry, sp A→ 1, B→ 1 and k should be
equal to Q

4πc in Gaussian units to yield the static Coulomb-potential:

E(r) =
√

AB · Q
4πcr2 (F.401)

That would be the solution for the electric field for the - apart from symmetries
- yet unknown background spacetime. The energy momentum tensor Tµν of the
Coulomb-field is given by

Tµν = gρσFµρ · Fνσ −
1
4
gµν FρσFρσ (F.402)

from the construction of Tµν from the Maxwell-Lagrange density S =
∫

d4x
√−g ·

gαµgβν FαβFµν it comes out as naturally traceless,

T = gµν Tµν = gρσgµν FµρFνρ −
1
4
gµνg

µν FρσFρσ = 0 (F.403)

with gµνg
µν = δ

µ
µ = 4.

The energy momentum-tensor Tµν now acts as the source of the gravitational field:
The vanishing trace implies that the Ricci-scalar is zero, too (that is in fact identical to
the Schwarzschild case as a vacuum solution), but the Ricci-scalar is otherwise liked
to the energy momentum-tensor through the field equation:

Rµν = −8πG
c4 Tµν (F.404)

The expressions for the Ricci-tensor are identical to those in the Schwarzschild case,
as the symmetries are identical:

Rtt = −4πG · E2

B
(F.405)

Rrr = +4πG · E2

A
(F.406)

Rθθ = −4πG · r2 E2

AB
(F.407)

only that the right side is nonzero due to the presence of the source Tµν. Specifically,
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the source components read:

Ttt == gρσ FtρFtσ −
1
4
· FρσFρσ = − E2

2B
(F.408)

Trr = gρσ FrρFrσ −
1
4
grr FρσFρσ =

E2

2A
(F.409)

Tθθ = gρσ FθρFθσ −
1
4
gθθ FρσFρσ = −r2 E2

2AB
(F.410)

using the form of the metric tensor and its inverse, the antisymmetry Fµν = −Fνµ
of the field tensor, and the expression FρσFρσ = FrtFrt + FtrFtr for the trace. In both
the Ricci-tensor and the energy momentum tensor, the information contained in the
φ,φ-components is redundant with that in the θ, θ-component.

Proceeding with solving the field equation we obtain for the Ricci-tensor com-
ponents specifically the same result as in the Schwarzschild case. Starting with B×
eqn. F.406 + A× eqn. F.406 needs to vanish, from which one arrives at:

A′B + B′A = 0 → d
dr

(AB) = 0 → AB = c2. (F.411)

Then, eqn. F.407 together with eqn. F.401 suggests that

A + rA′ = c2 ·
(
1 − G · Q2

4πc4 ·
1
r2

)
(F.412)

which can be simplified using A + rA′ = d
dr (rA) to give

A(r) = c2 ·
[
1 − 2GM

c2r
+

GQ
4πc4r2

]
(F.413)

in analogy to the Schwarzschild case. Collecting all results and defining q = GQ
4π2c4

yields the Reissner-Nordström line element,

ds2 =
(
1 − rS

r
+
q2

r2

)
c2 dt2 − 1

1 − rS
r + q2

r2

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.414)

as the spacetime geometry outside of a spherically symmetric matter and charge
distribution. There are a couple of interesting observations to make: Firstly, the
electric field E(r) is really a Coulomb-field in Schwarzschild coordinates, as AB = c2

one arrives at
E(r) =

Q
4πr2 (F.415)

which is perhaps not too surprising since the radial coordinate r in the Schwarzschild
geometry is constructed to keep the scaling of surfaces ∝ 4πr2 fixed. Thinking of the
Gauß-theorem applied to electrostatics one realises that the conservation of electric
flux is made sure by diluting the field over larger and larger surfaces at increasing
distance, such that the product remains constant. It is the particular construction
of the Schwarzschild radial coordinate that this argument applies exactly despite
curvature effects being present. Secondly, the new term proportional to q corresponds
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to the gravitational effect of the Coulomb field through its own energy content ∝ E2.
Thirdly, all arguments on coordinate singularities apply likewise, as the Reissner-
Nordström geometry has a finite curvature everywhere (except r = 0).

There is, however, a surprising result concerning the coordinate singularities: The
line element implies a very interesting coordinate singularity structure:

ds2 =
(
1 − rS

r
+
q2

r2

)
c2 dt2 − 1

1 − rS
r + q2

r2

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(F.416)

shows that what matters are solutions to the quadratic equation r2 − rrS + q2 =
0. If zeros exist, the metric function in front of the dr2-differential can diverge.
The existence of solutions of a quadratic equation is decided by the value of the

discriminant, Delta = 1 − rS
r + q2

r2 . If it is negative, there are no solutions and the
spacetime is regular everywhere. If it is zero, then there is a single solution of the
quadratic equation and a single singularity arises. The interesting case is a positive
discriminant: Then, there are two zeros and consequently, coordinate singularities at
two different radii. From a physical point of view, the solution of

r2 − rrS + q2 = 0 → r± =
rS ±

√
r2

S − 4q2

2
(F.417)

is determined by the comparison of mass and charge,
r2

S > 4q2 2 horizons

r2
S = 4q2 1 horizon at rS

r2
S < 4q2 no real valued solution→ interpretation unclear

(F.418)

as the Schwarzschild radius increases with mass. Interestingly, a highly charged black
hole has no horizons at all. There are analogies to Eddington-Finkelstein and Kruskal-
coordinates that can deal with the double horizon structure, but their construction is
very technical.

F.10 escape from a black hole

Almost every student asks the question, after the causal structure of black holes is
discussed, together with the impossible escape of photons form black hole if they
are emitted inwards of rS = 2GM/c2, whether a sufficiently powerful spaceship can
do that. Clearly, the spaceship is not in a state of freely falling motion but has non-
gravitational accelerations acting on it. A short answer would be that light cones form
the convex hull of all time-like geodesics, so the spaceship can at most travel inside
the light cones, for which we have derived the causal structure, most clearly in e.g.
Kruskal-coordinates.

Additionally, the causal structure is respected by electrodynamic forces: If they
are added to the geodesic equation, they constitute a source term on the right hand
side of the equation,

duα

dτ
+ Γ αµν u

µuν = −
q

m
Fαβuβ (F.419)

with the velocity uα = dxα/dτ, using proper time τ as an affine parameter, which is
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perfectly admissible as an affine parameter. uα is time-like, gµνuµuν = c2, and this
normalisation is conserved. Using autoparallelity, the equation of motion is rewritten
as

dxµ

dτ
∂uα

∂xµ
+ Γ αµν u

µuν = uµ
(
∂uα

∂xµ
+ Γ αµν

)
= uµ∇µuα = −

q

m
Fαβuβ. (F.420)

Multiplying both sides with uα makes the electromagnetic term vanish, as a con-
traction of an antisymmetric tensor Fαβ with a symmetric tensor uαuβ, while parallel
transport conserves the normalisation of uα because of metric compatibility; in a
sense the two concepts are completely independent and do not interfere with each
other. Explicitly,

uµ∇µ(uαu
α) = uµ∇µuα ·uα+uαu

µ∇µuα = uµuα
(
∂µuα − Γ

β
µα uβ

)
+uµuα

(
∂µu

α + Γ αµβ u
β
)

(F.421)

and finally
uµ∇µ(uαu

α) = uµ∂µ (uαu
α) = 0 (F.422)

because of the normalisation uαu
α = c2.

G friedmann-universes

G.1 Friedmann-Lemaı̂tre-Robertson-Walker cosmologies

Friedmann-Lemaı̂tre-Robertson-Walker spacetimes are highly symmetric solutions of
the gravitational field equation for a particular matter distribution: Even though there
is the cosmic large scale structure in the distribution of galaxies and strong inhomo-
geneities, fluctuations in the matter distribution are thought to subside approaching
scales above a few hundred Mpc. This is summarised by the cosmological principle,
which postulates that the matter and consequently the geometric properties of space-
time are homogeneous (they don’t change as a function of position in the Universe)
and isotropic (independent of the direction in which one observes the dynamics of
spacetime). The high degree of symmetry in the matter distribution allows to find
a non-vacuum solution to the gravitational field equation, and homogeneous and
isotropic geometries sourced by ideal fluids constitute the class of FLRW-cosmologies.
Observations of distant objects show that spacetime on these very large scales is
dynamic.

Fundamental observers in a FLRW-spacetime are thought to be freely falling and
are stationary with respect to their surrounding matter distribution. Their relative
motion can be described by geodesic deviation, but every observer would naturally
center a coordinate system on her or his position (allowed by symmetry) and perceive
the properties of spacetime isotropically at every point. Is is perfectly possible that
the world lines have intersected in the past (this was in fact the case!) and they might
intersect in the future (which won’t be the case according to our understanding).
The first intersection point is called the Big Bang, and we’ll come to the dynamic of
congruences of geodesics at a later time.

A natural choice of the time coordinate is then the proper time τ of those observers,
which need to be identical for every world line, again as a consequence of homogeneity,
motivating the definition of synchronous time t. Spatial coordinates are defined to be
comoving, meaning that every freely falling object stays at its respective coordinate.
This defines a slicing of spacetime into spatial hypersurfaces of constant time, and a
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g.2. flrw-cosmologies as maximally symmetric spacetimes

threading of spacetime in terms of world lines with a common passage of synchronous
coordinate time.

The metric defines for an arbitrary set a measurable spacetime distance in form of
the line element,

ds2 = gµν dxµdxν = c2 dt2 − gij dxidxj (G.423)

The orthogonality of spacetime slices and threads suggests the separation into
the temporal and spatial part of the metric. The line element measures the length
of a world line which is perceived by the observer as her or his elapsed proper
time, c2dτ2 = ds2 = c2dt2 if dxi = 0 for comoving observers, and therefore τ = t:
Synchronous, physical time is measured by clocks of the fundamental observers, and
elapses identically for everyone.

A particle at rest follows a world line defined by

xα =
(
ct
0

)
→ uα =

d
dτ

xα =
d
dt

xα =
(
c
0

)
(G.424)

and the tangent uµ needs to fulfil the geodesic equation - otherwise the particle could
not be freely falling. In fact,

duα

dτ
+ Γ αµν uµuν = 0 (G.425)

is fulfilled because the specific form of the tangents uµ requires just a single
Christoffel-symbol,

Γ αtt =
gαβ

2

(
∂t gtβ + ∂t gβt − ∂β gtt

)
= 0 (G.426)

which is necessarily zero: The changes of uµ vanish and the particles stay at their
comoving coordinates.

Symmetry requires that the metric gij can only be a function of t. In a frame where
gij is diagonal isotropy must hold, too, so all three eigenvalues must be identical:

ds2 = c2 dt2 − a2(t)g̃ij dxidxj (G.427)

where g̃ij can be Euclidean, g̃ij = δij , but it might as well be possible that the spatial
submanifold has a constant (otherwise homogeneity would not hold) spatial curvature.
Allowing for this case, the FLRW-line element assumes the shape

ds2 = c2 dt2 − a2(t)
[ dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2
]

(G.428)

with the scale factor a(t). The Euclidean case is recovered by k = 0. Spatially non-flat
universes would have k = +1 if they are spherical with a positive curvature, and
k = −1 if they are hyperbolical with a negative curvature.

G.2 FLRW-cosmologies as maximally symmetric spacetimes

FLRW-cosmologies are maximally symmetric spacetimes in what concerns the spatial
part (also called a maximally symmetric 3-space), as one can write the Riemann-
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curvature as a function of the Ricci-scalar and the metric alone:

Rαβµν =
R
12

(
gαµgβν − gανgβµ

)
(G.429)

which is traced back to the fact that there is no Weyl-curvature Cαβµν = 0 and that the
Ricci-tensor comes out proportional to the the metric, Rβν = R/4 gβν, self-consistent

with gβνRβν = R/4 gβνgβν = R/4 δββ = R.
The physical reason for the absence of Weyl-curvature is not only that FLRW-

solutions are non-vacuum solutions, but also that there are absolutely no propagation
effects of gravity, as the densities on every spatial hypersurface are constant. Absence
of Weyl-curvature implies conformal flatness and Minkowski-light cones in conformal
coordinates, and it is the case that the scale factor a(η) is exactly the conformal factor
Ω(η).

G.3 conformal flatness of FLRW-cosmologies

FLRW-cosmologies are systems with pure Ricci-curvature, and as their density on
any spatial hypersurface is constant, the Weyl-tensor is necessarily zero: There are
no propagation effects of gravity. As the Weyl-tensor vanishes, Cαβµν = 0 the FLRW-
spacetime is conformally flat and coordinates can be found where the metric can be
written as

gµν = Ω2(t)ηµν, (G.430)

where the conformal factor is in this particular case only a function of time; and
the suitable coordinate choice are conformal coordinates, the spatial part of which
is usually called comoving. Specifically, the line element for a spatially flat FLRW-
cosmology in physical time t and comoving coordinates r reads

ds2 = c2 dt2 − a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
(G.431)

If one defines conformal time dη = dt
a(t) → η =

∫
dt
a(t) , t one obtains a new temporal

coordinate different from physical time. While the length of the world line of a
particle at rest is measured in terms of proper time τ,

c2dτ2 = ds2 = c2dt2 → τ = t (G.432)

such that proper time τ and coordinate time t come out equal, and must be equal
everywhere due to the cosmological principle, conformal time intervals dη = dt/a(t)
have been short in the past and slow down as a(t) expands, and catch up with dt
today. In fact, the scale factor a(t) plays the role of the conformal factor Ω(t), as in
these coordinates the line element reads

ds2 = a2(t)
[
c2 dτ2 − dr2 + r2

(
dθ2 + sin2 θdφ2

)]
(G.433)

For radial (which can always be achieved using the cosmological principle, that
allows to centre the coordinate frame on the observer such that dθ = dφ = 0 along
the photon trajectory) light-like geodesics, one obtains

ds2 = a2(t)
[
c2dt2 − dr2

]
= 0 (G.434)
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and the scale factor as the conformal factor does not have any influence on light
propagation, if measured in terms of comoving radial coordinate r and conformal
time τ, in fact, in these coordinates one has perfectly conventional Minkowskian light
cones, cdη = ±dr and from that, cη = ±r. Whether the light cones expand to positive
or negative infinity in terms of physical time instead of conformal time, depends on
the relation dη = dt/a(t) which might be divergent in which case a horizon appears.

G.4 spatial curvature of FLRW-cosmologies

Perhaps a bit surprisingly, spatial curvature k , 0 which affects the scaling of the
surface of spheres with their comoving radii, does not imply deviations from confor-
mal flatness as spacetime property: Homogeneity and isotropy as symmetries are still
present, requiring the absence of Weyl-curvature, which in turn ensures conformal
flatness. A general FLRW line element including spatial curvature is

ds2 = a2
[
c2dη2 − 1

1 − kr2 dr2 − r2
(
dθ2 + sin2 θdφ2

)]
(G.435)

where k = −1 corresponds to negative, hyperbolic curvature, for which we define a
new radial coordinate r = sinh χwith the derivative dr/dχ = cosh χ, implying

ds2 = a2
[
c2 dη2 − cosh2 χ

1 + sinh2 χ
dχ2 − sinh2 χ ·

(
dθ2 + sin2 θdφ2

)]
(G.436)

with cosh2 χ ≡ 1 + sinh2 χ, and one finds again Minkowski light cones for radial
photon geodesics, ds2 = a2 ·

[
c2 dη2 − dχ2

]
.

Similarly k = +1 corresponds to a spacetime with positive, spherical curvature.
Definition of a new coordinate r = sin χ with the derivative dr/dχ = cos χ then
suggests for the line element,

ds2 = a2
[
c2 dη2 − cos2 χ

1 − sin2 χ
dχ2 − sin2 χ ·

(
dθ2 + sin2 θdφ2

)]
(G.437)

with cos2 χ = 1 − sin2 χ. Then again, radial photon geodesics will come out as
Minkowskian. It is even possible to redefine conformal coordinates as light cone
coordinates,

du =
1
2

(c dη− dχ) (G.438)

dv =
1
2

(c dη+ dη) (G.439)

where the line element would read ds2 = 4a2du dv, implying dudv = 0 for photons.

The geometric interpretation of spatial curvature k , 0 is a non-Euclidean scaling
of areas and volumes of spheres with their comoving radius (at a fixed time). Embed-
ding spatial part of a spherically curved FLRW-spacetime into a 4d Euclidean space

79

https://en.wikipedia.org/wiki/Cosmological_horizon


g. friedmann-universes

can be done with the transformation

x = R sin χ sin θ cosφ (G.440)

y = R sin χ sin θ sinφ (G.441)

z = R sin χ cos θ (G.442)

w = R cos χ (G.443)

with the constraint x2 +y2 +z2 +w2 = R2, defining the manifold. With this embedding,
one can compute the area A of a sphere with radius R,

A =
∫

dθ R sin χ
∫

dφR sin χ cos θ = 4πR2 sin2 χ (G.444)

as well as the volume V,

V =
∫

dχ R ·
∫

dθ R sin χ
∫

dφ R sin χcos θ = 2π2R3 (G.445)

Because sin2 χ ≤ 1 always, one obtains for positively curved spherical FLRW-
cosmologies surfaces that are smaller than that in a Euclidean space. Repeating
the exercise for hyperbolic, negatively curved cosmologies yields A = 4πR sinh2 χ,
and systematically larger areas, as well as a divergent volume V, both as χ→∞.

2do: redo with induced metric

G.5 cosmological redshift

The dynamics of the FLRW-spacetime has the effect that photons arrive at an observer
redshifted lower frequency (or higher wavelength), caused by the changing geometry
between emission and observation. To make the point that the lower frequency caused
by the increase in scale factor is a transformation effect, we can try the following:
Photon propagation is most conveniently described in conformal coordinates, where
absolutely no property of the photon changes with time. What changes, however, is
the definition of the scalar product that is needed to project the wave vector of the
photon kµ onto the world lines of the emitter and observer represented by the tangent
uµ, thereby defining the frequency ω = gµνu

µkν. ω is a physical observable and comes
out, as a scalar, independent of any coordinate choice for gµν, uµ and kµ.

In conformal coordinates metric reads

gµν =


+a2 0 0 0

0 −a2 0 0
0 0 −a2 0
0 0 0 −a2

 (G.446)

such that gµν = ηµν at a = 1, i.e. today, and provides the scalar product for projecting
kµ onto uµ.

The motion of galaxies is purely timelike along the ct- or cη-direction, and in
conformal coordinates every galaxy and every observer stays at their comoving
coordinate: dr = 0. The tangent uµ = dxµ/dτ = dxµ/dt is normalised to c2, so we get:Conformal time η is not an

affine parameter, so we can’t di-
rectly parameterise the world line
with η. But it’s perfectly permissi-
ble to take uµ = dxµ/dt as a vec-
tor and do a coordinate transform
switching from physical to confor-
mal time.
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gµν u
µuν = c2 = gηη u

ηuη → uη =
c
√gηη

=
c
a

(G.447)

because of the motion along the cη-direction only the η-entry of uµ is nonzero.
Photons follow null geodesics, so

c2 dη2 − dr2 = 0 → cη = ±r (G.448)

with a wave vector kµ = dxµ/dλ, using an affine parameter λ. kµ is normalised to
zero, gµνkµkν = 0 and has the entries kµ = (ω/c, k)t . Then, the projection of the wave
vector kµ onto the tangent of the world lines of comoving systems uµ is given by

ω′ = gµνk
µuν = a2kηuη = a2 · ω

c
c
a

= aω (G.449)

ω′ is the frequency today, where a = 1 by convention. Reformulating the result in
terms of wave length with the dispersion ω = ck (coming from gµνk

µkν = (ω/c)2− k2 =
0) and k = 2π/λ then implies

λ′ =
λ

a
(G.450)

such that the redshift z is defined as

z =
λ′ − λ
λ

=
1
a
− 1 → a =

1
1 + z

. (G.451)

G.6 cosmological horizons and causal structure

The introduction of conformal coordinates brushes over the fact that depending on
the cosmology photons are only given a finite time to propagate and can only reach
finite physical distances, both coming from the finite past or traveling into a possibly
finite future. Effectively, we ask the question whether there are limits to the light Please keep in mind that for a

vanilla model with Ωm = 0.3 and
ΩΛ = 0.7 this is in fact case! But
arbitrary FLRW-models could re-
alise anything.

cones, which are not apparent in terms of conformal coordinates. The particle horizon
is the limitation of the past light cone caused by a finite age of the Universe. The
maximum distance a photon could have traveled since a = 1 is given by

rPH = c

t0∫
ti

dt
a

= c

0∫
−∞

dη (G.452)

where for an actual computation one needs H = ȧ/a. The origin of the conformal
coordinate system in time is conveniently chosen to be η = 0 today. The event horizon
is the maximum distance that light emitted today could possibly cover in the future:

rEH = c

tf∫
t0

dt
a

= c

+∞∫
0

dη (G.453)

where it is clear that the behaviour of 1/a(t) is the decisive quantity that causes the
integrals to converge or to diverge, while the a(t) relation itself as a solution to the
Friedmann-equation depends on all gravitating fluids and their properties ρ and w.
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G.7 Friedmann-equations

Substituting the energy-momentum tensor Tµν into the gravitational field equation
and solving for gµν which in turn is needed for the motion of the fluid according to
gαµ∇αTµν is a nice example of how gravity, geometry and motion work together. Our
starting point is the FLRW-metric

ds2 = c2 dt2 − a2(t) ·
[ 1
1 − kr2 dr2 + r2

(
dθ2 + sin2 θdφ2

)]
(G.454)

with the choice of using physical time t (identical to proper time τ of comoving ob-
servers) and comoving distance r as coordinates: this is referred to as the synchronous
gauge, as the metric is constant on a spatial hypersurface defined through a constant
value of t. We have already made the point that the FLRW-spacetime is conformally
flat and has only Ricci-curvature. There is a single parameter, k, which determines the
spatial geometry on a spatial hypersurface, and the only dynamic degree of freedom
is the scale factor a(t), which changes the distance definition on each hypersurface,
moving from t to another time t′. It is a convention to set a = 1 today - there is a
priori no particular instant in time defined singled out by the FLRW-metric, so we
may bring in this human element.

Substitution of this metric into the field equation

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λgµν (G.455)

with a homogeneous and isotropic ideal fluid (the symmetries of the fluid need
to be consistent with the symmetries of the metric, and the fluid can only be ideal
as it otherwise would not obey local energy momentum conservation) yields the
Friedmann-equations as dynamical equations for a(t).

Turning to the energy-momentum tensor Tµν as the source of the gravitational
field and its covariant energy momentum conservation gαµ ∇αTµν = 0 (which we have
already shown to be equivalent to the equations of relativistic fluid mechanics on a
possibly curved background), one realises that the cosmological principle requiring
a homogeneous and isotropic fluid makes sure that the Euler-equation is trivially
fulfilled: There are no spatial gradients in p that would accelerate the fluid by non-
gravitational forces. In fact,(

ρ +
p

c2

)
gαµ uµ∇α uν = −gαµ

(uµuν
c2 − gµν

)
∇αp (G.456)

suggests that the relevant driving gradient in p gets projected onto a plane perpen-
dicular to uµ. The FLRW-symmetries disallow ∂ip in this hyperplane, but do not
restrict ∂tp. That component however, is in our coordinate choice perpendicular to
the hyperplane, so it can not affect the motion of the fluid. From that we conclude
that gαµ uµ∇α uν = 0, which is just the autoparallelity condition: The fluid elements
follow geodesics.

The continuity equation, however, is not trivial and reads

gαµ
[
∇α

(
ρc2uµ

)
+ p∇αuµ

]
(G.457)

Rewriting it in terms of a divergence
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∇µ
(
ρc2uµ

)
+ p∇µuµ = 0 (G.458)

using metric compatibility and using the divergence formula bringing in the covol-
ume

√−g
∂µ

(√−g(ρc2uµ
))

+ p∂µ
(√−guµ) = 0 (G.459)

reduces to a considerably more simple shape using comoving coordinates: There are
only derivatives ∂t and only ut = c, while

√−g = ca3:

ρ̇ + 3
ȧ
a

(
ρ +

p

c2

)
= 0 (G.460)

There is an intuitive but potentially misleading reinterpretation of the continuity
equation in the form of the adiabatic equation: While the mathematics is certainly
correct, the physical interpretation is a bit problematic. Establishing the relation
between the dp and da differentials,

dρ + 3
(
ρ +

p

c2

)da
a

= 0 (G.461)

and multiplying with a3 one can use the Leibnitz-rule to write

d
(
ρc2a3

)
= −p d(a3) (G.462)

which seems to suggest that the change in energy, given by the energy density
multiplied with the volume a3 is equal to the work done by changing the volume
against the pressure p, reminiscent of the first law of thermodynamics. Please keep
in mind, however, that pressure enters the field equations as a source of gravity and
that there are no gradients in p that could perform work.

But the argument suggests a new question: Where is the limitation in the relation
between pressure and energy density? Taking the trace of the field equation yields for
the Ricci-scalar R

R(t) =
8πG

c4 T + 4Λ (G.463)

with the trace of the energy-momentum tensor T

T = gµν ·
[(
ρ +

p

c2

)
uµuν − p gµν

]
= ρc2 − 3p (G.464)

such that one arrives at

R(t) =
8πG
c4

(
ρc2 − 3p

)
+ 4Λ (G.465)

which suggests that the Ricci-curvature is positive for all fluids with equation of state
w < +1/3, and in the absence of a cosmological a fully radiation dominated Universe
would have a vanishing Ricci-scalar, R = 0! Of course that is a direct consequence
of the masslessness of the photon that already makes sure that T = 0, and would
not imply that there is no Ricci curvature at all: The Ricci tensor would still be
non-vanishing.
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Then, one needs the Ricci-tensor Rµν as well as the Ricci-scalar R(t) for the field
equation, following the chain gµν → Γ αµν → Rαβµν → Rβν → R, for which there is
really no shortcut (apart from the Cartan-formalism). It’s important to realise that
the Ricci-tensor comes out proportional to the metric, as required for maximally
symmetric spacetimes, and therefore diagonal in our choice of coordinates,

Rtt = 3
ä
a

(G.466)

Rrr =
−c2

1 − kr2

(
aä + 2ȧ2 + 2c2k

)
(G.467)

Rθθ = − c
r2

(
aä + 2ȧ2 + 2c2k

)
(G.468)

Rφφ = Rθθ · sin2 θ (G.469)

such that contraction gµνRµν = R yields the Ricci-scalar,

R(t) =
6
c2

[ ä
a

+
( ȧ
a

)2
+

ck
a2

]
. (G.470)

Substitution into the gravitational field equation Gµν = −8πG/c4 Tµν − Λgµν and
separating ȧ from ä then yields the standard form of the Friedmann-equations

ä
a

= −4πG
3

(1 + 3w) ρ +
Λc2

3
(G.471)

and ( ȧ
a

)2
= +

8πGρ
3

+
Λc2

3
− c2k

a2 (G.472)

which relate the evolution of the scale factor a(t) to the presence of gravitating fluids,
curvature and the cosmological constant. In parallel, covariant energy momentum
conservation gαµ∇αTµν = 0 yields in these coordinates the adiabatic equationCovariant energy-momentum

conservation is already built into
the gravitational field equation, so
the adiabatic equation is not in-
dependent of the Friedmann equa-
tions.

ρ̇

ρ
+ 3(1 + w)

ȧ
a

= 0, (G.473)

from which the evolution of standard fluids with constant equation of state w can
directly be read off: The equation is equivalent to ∂t ln ρ = −3(1 + w)∂t ln a, which
is solved to be ρ ∝ a−3(1+w), so one obtains naturally ρ ∝ a−3 for matter, ρ ∝ a−4 for
radiation and a constant ρ for the cosmological constant.

For a single dominating fluid at critical density it is possible to relate the equation
of state directly to the deceleration

q = − äa
ȧ2 (G.474)

with this funky relationship:

3(1 + w) = 2(1 + q) (G.475)
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such that the following picture emerges:

w q (G.476)

+
1
3

+ 1 relativistic particles, e.g. photons (G.477)

± 0 +
1
2

non-relativistic matter (G.478)

− 1
3

0 pure curvature, empty universe, like a fluid w = −1
3

(G.479)

− 1 − 1 Λ ∼ like a fluid with eos w = −1 (G.480)

Fluids with positive equation of state have an attractive effect and slow down the
expansion of the Universe, but as a increases, they get diluted: ρ ∝ a−3(1+w) is a de-
creasing function for all w strictly larger than −1. Therefore any expanding Universe
will work its way towards smaller values equation of state as time passes. But as
soon as w < −1/3 something interesting happens as the deceleration changes its
sign: q > 0 for all fluids with w < −1/3, such that the expansion of the Universe gets
accelerated if the Universe has gotten large enough, that the densities are sufficiently
small. Weirdly, an empty and therefore maximally hyperbolically curved universe,
expands at a constant velocity: q = 0 for w = −1/3, and therefore ä = 0, from which
one integrates ȧ to be constant and a to be a linear function in time: There is no
gravity that changes the state of motion. While this may seem as an odd result, please
keep in mind that in a completely empty (and therefore hyperbolic universe) there is
no matter content that could by its gravitational action change the state of motion of
spacetime! Or, if you prefer a fancy argument, one can invoke the Birkhoff-theorem:
There is no gravitational dynamic outside a spherically symmetric matter distribution:
Surely, FLRW-universes are isotropic, and because there is nothing inside, one deals
with a vacuum solution, and therefore, the universe is in a state of inertial motion.

The logarithmic derivative of the scale factor as a function of time defines the
Hubble-Lemaı̂tre-function

H(a) =
ȧ
a

(G.481)

which defines the critical density ρcrit as a scale. Multiplying the first Friedmann-
equation G.472 with 1 = H2

0/H
2
0 yields

( ȧ
a

)2
= +

8πGρ
3

+
Λc2

3
− c2k

a2 (G.482)

so that we can identify

ρcrit =
8πG

3H2
0

(G.483)

with a numerical value of about 10−26kg/m3, roughly a few ten atoms per cubic
metre. Equivalent to the density scale is the Hubble-length

χH =
c

H0
(G.484)

roughly 1025m in size. Redefining the terms in the Friedmann-equation by introduc-
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ing the density parameters ΩX

Ωρ =
ρ

ρcrit
, ΩΛ =

Λ

3

( c
H0

)2
, Ωk = −k

( c
H0

)2
(G.485)

(please watch out for the minus-sign in the definition of Ωk : negative curvature k < 0
has a positive Ωk!) brings the first Friedmann-equation in the standard shape

H2(t) = H2
0 ·

[Ωρ

a3 + ΩΛ +
Ωk

a2

]
(G.486)

which helps us to understand the meaning of critical density: As H(t) = H0 at a = 1
necessarily,

Ωm + Ωk + ΩΛ = 1 (G.487)

so that spatial curvature can only arise if the densities do not add up to the critical
density. It seems natural that the gravitational field equation links the dynamics of
the metric and therefore geometric properties of spacetime to the gravitating effect
of all substances, but interestingly, we can use the field equation as well to assign
properties of material substances such as ρ and p (or equivalently w) to a geometric
property (curvature) or a phenomenon of gravity Λ.

G.8 cosmological constant Λ

The numerical value of the cosmological constant Λ = 10−50m−2 implies that it can
only play a substantial role on scales of 1025m an above, corresponding to the size
c/H0 of the observable Universe. The first Friedmann-equation shows that ultimately
a continued expansion will necessarily lead to a Λ-dominated Universe,

ȧ
a

= H0

√
Ωm

a3 +
Ωk

a2 + ΩΛ → H0

√
ΩΛ (G.488)

substantiating the idea that the cosmological fluids dominate in the order of de-
creasing equation of state w if the expansion is monotonic, ȧ > 0, i.e. if there is no
recollapse of the Universe. Similarly, the second Friedmann-equation shows that the
dynamics will be dominated by Λ because ρ is increasingly diluted, ρ→ 0:

ä
a

= −4πG
3

ρ +
Λc2

3
(G.489)

in a way that ä becomes proportional to a as well as ȧ as the expansion becomes
exponential,

a(t) ∼ exp
(√Λc2

3
t
)

(G.490)

leading to a deceleration of q = −äa/ ȧ2 = −1.
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G.9 size and age of FLRW-universes

It is a funny realisation that the age of the Universe as the elapsed time between
a = 0 and a = 1 can be finite or infinite, depending on the cosmological model; in
fact, whether the point a = 0 is reached in a finite past is determined by the matter
and energy content of the FLRW-cosmology, and usually high densities of matter or
radiation cause that time to be finite.

To be exact, the age of the Universe would be the elapsed coordinate time (and
hence the proper time) of a comoving observer, who has the right to center the
coordinate frame onto herself or himself. Then, dr = 0 and the age of the Universe
corresponds to the length of the observer’s world line. H = ȧ/a implies dt = da/(aH)
from the Hubble-Lemaı̂tre-function, and therefore

t =
∫

dt =

1∫
0

da
aH(a)

=
1

H0

1∫
0

da

a
√
Ωγ

a4 + Ωm
a3 + ΩΛ

(G.491)

where the inverse Hubble-Lemaı̂tre constant 1/H0 ≃ 1017s determines the scale of
the age of the Universe. While fluids with an equation of state w > −1/3 tend to
make the integral converge, very negative equation of state parameters w < −1/3
will cause infinite ts. A good example is a pure Λ-dominated Universe, where the
Hubble-Lemaı̂tre-function is constant. Then,

t =
∫

dt =

1∫
0

da
aH(a)

=
1

H0

1∫
0

da
a

=
1

H0

1∫
0

d ln a (G.492)

diverges logarithmically.
A related question is whether the Universe will exist an infinite time into the

future. Coming back to the example with a Λ-dominated Universe as ours, the scale
factor will increase exponentially in time, a(t) = exp(

√
Λt), such that there is a finite

a given at every time. The integral

t =
∫

dt =

∞∫
1

da
aH(a)

=
1

H0

∞∫
1

da
a

=
1

H0

∞∫
1

d ln a (G.493)

is divergent, too. In contrast, high values of the equation of state parameter w will
make the integral convergent. A weird example is an empty, hyperbolically curved

universe with Ωk = 1 and w = −1/3. Then, t = 1/H0

1∫
0

da is exactly 1/H0, so the age

is finite and the Universe will continue to exist into the infinite future.

G.10 quintessence: dynamical fluids with varying w

Up to this point, the equation of state w = p/(ρc2) was a property of the fluid and
expressed an intrinsic, unaltering property of the substance sourcing the gravitational
field, for instance relativistic matter with w = +1/3 or nonrelativistic matter with
w = 0. Interestingly, it was possible to map curvature as a property of spacetime
onto a fluid with w = −1/3 or to think of the cosmological constant as a substance
with w = −1. It is even possible to design an artificial fluid with a given ΩX and an
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equation of state wX that reproduces any expansion history H(t) that one might think
of, if one has the freedom to choose a function wX(t). Vice versa, it is an interesting
question if one could take this one step further and not only generate any Hubble
function H(t) with the freedom to choose wX(t), but to set up a field that changes by
interaction its gravitational properties such that it can vary its own equation of state:
That is the foundational idea behind quintessence, the fifth substance after radiation,
matter, curvature and the cosmological constant, substance meant here of course in a
gravitational sense.

The quintessence construction starts with a scalar field φwhich can only depend
on t in accordance with the cosmological principle. φ can interact with itself in the
sense of particle physics through the potential V(φ), a suitable Lagrange-function
would be

L(φ,∇αφ, gµν) =
1
2
gαβ∇αφ∇βφ− V(φ). (G.494)

Apart from direct self-interaction the scalar field φ sources a gravitational field as it
provides a nonzero energy momentum tensor, so as it evolves dynamically it does
that in a varying geometry; in fact, it is best to think of the dynamical equations
for φ and for gµν (or a(t), which is the only degree of freedom in the metric if the
FLRW-symmetries apply) as a coupled system with a joint solution.

Substitution into the corresponding Euler-Lagrange-equation for a scalar field φ
on an arbitrary and possibly curved background yields a wave equation with a source
term

gαβ∇α∇βφ = −dV
dφ

(G.495)

which is effectively a Klein-Gordon-equation with a driving term. It can be inter-
preted as the covariant divergence of the vector υα = ∇αφ = ∂αφ,

gαβ ∇α∇β φ = gαβ ∇α υβ = ∇α
(
gαβ υβ

)
= ∇α υα =

1
√−g

∂α
(√−g ∂αφ

)
(G.496)

The covolume
√−g is quickly derived for the FLRW-metric to be

√−g = ca3(t) and
cosmological principle makes sure that there are only variations along the ct-direction,
such that ∂µ → ∂t :

1
√−g

∂α
(√−g ∂αφ

)
=

1
a3 ·

(
3a2 ȧ φ̇+ a3φ̈

)
= φ̈+ 3

ȧ
a
φ̇ (G.497)

such that the final Klein-Gordon-equation on a FLRW-background with scale factor
a(t) reads

φ̈+ 3
ȧ
a
φ̇ = −dV

dφ
(G.498)

where we recognise the Hubble-Lemaı̂tre-function H(t) = ȧ/a. The energy-momentum
tensor Tµν as the source of the gravitational field can be derived from the Lagrange-
function and is covariantly conserved as L does not explicitly depend on the coordi-
nates, gαµ∇αTµν = 0,

Tµν =
∂L

∂∇µφ
∇ν φ− gµν L (G.499)
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specifically for the particular Lagrange-function,

Tµν = ∇µφ∇νφ− gµν
1
2
gαβ ∇αφ∇βφ+ V(φ)gµν (G.500)

which we view in terms of the energy-momentum tensor of an ideal fluid,

Tµν =
(
ρ +

p

c2

)
uµuν − pgµν (G.501)

in order to be able to identify terms involving the field φ and its derivative φ̇with
the fluid-mechanical quantities ρ and p.

The actual entries of Tµν can then be computed by enforcing the FLRW-symmetries,
where only t-derivatives are present; we identify the tt-component with the energy
density ρc2 of an ideal fluid

Ttt =
(
ρ +

p

c2

)
utut − p · gtt = ρc2 (G.502)

as uµ = (c, 0) in the comoving frame, and the trace g ijTij with the pressure,

g ijTij =
(
ρ +

p

c2

)
g ijuiuj − p g ijgij = +3a2p, (G.503)

where the trace g ijgij only encompasses the diagonal elements of the metric and
yields −3a2, while the first term g ijuiuj does not contribute, as the spatial components
of uµ are zero: the fluid is at rest in the comoving frame. Comparing these two
expressions with the energy-momentum tensor Tµν of the field φ then yields for the
tt-component

Ttt = ∂tφ · ∂tφ− gtt ·
1
2
g tt · ∂tφ∂tφ+ V(φ)gtt =

1
2
φ̇2 + V(φ) = ρc2 (G.504)

and correspondingly for the trace over the spatial components

g ijTij = −g ijgij
1
2
g tt∂tφ∂tφ+ g ijgijV(φ) = 3a2

(1
2
φ̇2 − V(φ)

)
= 3a2p (G.505)

Collecting the results yields for the equation of state w:

w =
p

ρc2 =
φ̇2 − 2V(φ)

φ̇2 + 2V(φ)
(G.506)

which is an amazingly interesting result: The coupled system of the Klein-Gordon-
equation and the Friedmann-equation allows a simultaneous evolution of φ and
a. φ and φ̇ determine the energy-momentum tensor Tµν and define the two fluid
properties ρc2 and p that enter the Friedmann-equation as source properties. The
Friedmann-equation in turn provides the solution for a(t) for a given fluid, and a(t)
enters the Klein-Gordon-equation as ȧ/a. Phenomenologically, one obtains a time-
varying equation of state w from the dynamics of the field φ: If the field is static, φ̇ = 0
and the equation of state w is equal to −1. In this case, φ mimicks a cosmological
constant. But it would be natural that φ is accelerated by the gradient in V(φ), as
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determined through the Klein-Gordon-equation, so φ̇ increases at the expense of
V(φ), and w will move away from −1 towards less negative numbers. In summary, the
coupled system of differential equations for φ(t) and a(t) allow the construction of
a Friedmann-universe with a dynamical fluid; the freedom to choose the equation
of state function w(t) is mapped onto the choice of the potential V(φ) and initial
conditions for φ. Effectively, one obtains repulsive gravity in the limit φ̇ ≪ V(φ),
making quintessence a possible explanation of dark energy.

H weak field gravity and gravitational waves

H.1 weak field gravity and gravitational waves

The gravitational field equation is a nonlinear, hyperbolic, partial differential equation.
We have already encountered that the nonlinearity forbids the usage of a Green-
function method for finding constructing solutions for a given Tµν, so that we can
only hope to find solutions for very simple matter distributions such as the black hole
solutions or the FLRW-cosmologies. While the gravitational field equation is certainly
compatible with the Poisson-equation in the limit of small spacetime curvature for
static matter distributions, it is a sensible question whether (i) there are gravitational
effects that can be attributed to motion in the sourcing matter distribution, and (ii)
the gravitational field can show dynamical behaviour on its own, in the form of
wave-type propagating excitations: This would be natural for a hyperbolic PDE. If
one replaces the Laplace operator ∆ = δij ∂

i∂j in the Poisson-equation ∆Φ = 4πGρ
(setting λ to zero for that instance) with the d’Alembert-operator □ = ηµν ∂

µ∂ν as
the relativistic invariant constructed from ∂µ, one obtains a typical wave equation
□ Φ = ∂2

ctΦ − ∆ Φ = −4πGρ with excitations travelling at the speed c away from the
source ρ, irrespective of the frame: this is exactly the expression of hyperbolicity,
i.e. the notion of a relativistically invariant light cone with wave-type excitations
propagating along null-lines: Substitution of a plane wave Φ ∝ exp(±ikµxµ) shows
that kµkµ = 0 and that ω = ±ck.

Incidentally (and I thank T. Baumgarte for this argument), requiring the matter
distribution ρ to be homogeneous cancels the position-dependence of Φ, yielding
∂2
ctΦ = −4πGρ, reminiscent of the second Friedmann-equation! This underlines the

reasoning that depending on symmetry, black hole solutions, FLRW-solutions and
wave-type solutions should naturally come out of the gravitational field equation at
similar levels of symmetry (which deactivates certain derivatives), and that only in
the limit of weak gravity one can expect to recover a pure wave equation.

H.2 nonlinearities in the field equation

The gravitational field equation is naturally nonlinear due to the construction of the
Ricci-curvature from the metric. This is pictorially summarised in the schematic

gµν → Γ αµν → Rαβµν → Rβν → R (H.507)

g∂g Γ 2 ∼ (g∂g)2 g2∂g g3∂g (H.508)

∂Γ ∼ ∂(g∂g) g∂(g∂g) g2∂(g∂g) (H.509)

where clearly contractions between the metric and its derivatives are needed for
computing the curvature. If symmetries are present, the complexity is significantly
reduced because in a suitably aligned coordinate system, the partial derivative of the
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metric with respect to the coordinate direction in which a symmetry is present, would
be zero: We have encountered this in the case of the Schwarzschild solution and the
FLRW-cosmologies. Additionally, both these solutions have defined natural scales, the
Schwarzschild radius rs = 2GM/c2 and the Hubble distance c/H0 (or, equivalently,
the critical density ρcrit = 3H2

0/(8πG)). In contrast, classical gravity in more than
three dimensions is scale free, as the potential follows a power law, as long as effects
of the cosmological constant are neglected on small scales,≪ 1/

√
Λ, reiterating the

argument that the cosmological constant is a perfectly admissible feature of classical
gravity.

From a conceptual point of view, we will formally and not just by analogy join
weak perturbations hµν of the otherwise Minkowskian metric ηµν,

gµν = ηµν + hµν with
∣∣∣hµν∣∣∣≪ 1 (H.510)

with the gravitational potential Φ, the gravitomagnetic field Ai and the gravitational
shear hij . It should be emphasised that in this process one loses general covariance
as this decomposition with weak perturbations makes statements about individual
entries of hµν, and their smallness compared to one can only be made in a preferred
coordinate system. There is, however, residual Lorentz-covariance pertaining to non-
accelerated frames of reference, i.e. a transformation law of the form

hµν → Λ α
µ Λ

β
ν hαβ (H.511)

with Lorentz-transforms Λ α
µ .

H.3 gauging of the metric

Transitions from one coordinate choice to another

xµ → x′µ = xµ + ξµ(x) (H.512)

where the differential function ξµ(x) defines the transform. The corresponding
Jacobian is given by

∂x′µ

∂xν
= δ

µ
ν +

∂ξµ

∂xν
+ O

(
∂2ξ

)
(H.513)

with its inverse Jacobian

∂xµ

∂x′ν
= δ

µ
ν −

∂ξµ

∂x′ν
+ O

(
∂2ξ

)
(H.514)

so that

∂x′µ

∂xν
· ∂x

ν

∂x′β
=

(
δ
µ
ν +

∂ξµ

∂xν
)
·
(
δνβ −

∂ξν

∂x′β

)
≃ δ

µ
ν δ

ν
β︸︷︷︸

δ
µ

β

− δµν
∂ξν

∂x′β︸  ︷︷  ︸
∂ξµ

∂x′β

+ δνβ
∂ξµ

∂xν︸ ︷︷ ︸
∂ξµ

∂xβ

= δ
µ

β (H.515)
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implying that we should not distinguish ∂ξµ

∂xβ
and ∂ξµ

∂x′β
at this order. With this definition

of a coordinate change, the metric transforms as

g ′µν =
∂xα

∂x′µ
· ∂x

β

∂x′ν
gαβ =

(
δαµ − ∂µξα

)(
δ
β
ν − ∂νξβ

)[
ηαβ + hαβ

]
≃

ηµν + hµν − δαµ ∂ν ξβ · ηαβ − ∂µ ξα δ
β
ν ηαβ = ηµν + hµν − ∂ν ξµ − ∂µ ξν (H.516)

from which we isolate the transformation rule of the perturbation

hµν → h′µν = hµν − ∂µ ξν − ∂ν ξµ (H.517)

The inverse metric obeys gµβgβν = δ
µ
ν by definition, such that

gµν = ηµν − hµν (H.518)

is a good enough approximation at that order and correct to O(h2), with the inverse
Minkowski-metric being hµν = ηµαηνβ hαβ.

gµβgβν =
(
ηµβ − hµβ

)(
ηβν + hβν

)
= ηµβηβν + ηµβ · hβν − hµβ · ηβν + O(h2) (H.519)

with ηµβηβν = δ
µ
ν, ηµβ · hβν = h

µ
ν = 0 and hµβηβν = h

µ
ν = 0 at lowest order, hµν =

gµαhαν =
(
ηµα−hµα

)
hαν � η

µαhαν. Effectively this implies that raising and lowering of
indices is done with ηµν instead of gµν, and that derivatives are replaced ∂αgµν = ∂αhµν
as ηµν is constant in Cartesian coordinates.

H.4 linearised gravitational field equation

So far we have set up the metric as weak perturbation of the Minkowski-metric
in Cartesian coordinates, determined the transformation properties and suitable
approximations for the inverse metric. In this preferred frame with a particular
coordinate choice we can continue to find a linearisation for curvature tensors, which
are all ultimately computed from partial derivatives of the metric and by contractions
with the metric.

The first step would be the Christoffel-symbols, where the inverse metric is
replaced by the inverse Minkowski-metric,

Γ αµν =
gαβ

2

(
∂µ gβν + ∂ν gµβ − ∂β gµν

)
≃

ηαβ

2

(
∂µ hβν + ∂ν hµβ − ∂β hµν

)
=

1
2

(
∂µ h

α
ν + ∂ν h

α
µ − ∂α hµν

)
, (H.520)

renaming one of the indices, by writing ∂α = ηαβ ∂β.
The Riemann-tensor is then derived in the limit that the dominating terms are

the derivatives of the Christoffel symbols (in turn with the inverse Minkowski metric
instead of the inverse actual metric), while the squared Christoffel-symbols are
discarded,

Rµαβγ = ∂γ Γ
µ

αβ − ∂β Γ
µ
αγ + Γ µ

δγ
Γ δαβ − Γ

µ

δβ
Γ δαγ (H.521)
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Applying all simplifications then yields the final result for the Riemann-tensor,

Rµαβγ =
1
2
∂γ

(
∂α h

µ

β + ∂β h
µ
α − ∂µ hαβ

)
− 1

2
∂β

(
∂α h

µ
γ + ∂γ h

µ
α − ∂µ hαγ

)
(H.522)

so that finally one arrives at

Rµαβγ =
1
2

[
∂γ∂α h

µ

β − ∂β∂α h
µ
γ + ∂β∂

µ hαγ − ∂γ∂µ hαβ
]

(H.523)

The contraction of the Riemann-tensor with the metric yields in a first step the
Ricci-tensor, where we will use in this approximation the inverse Minkowski metric
ηµν as in the case of the Christoffel-symbols,

Rαγ =
1
2

[
∂α∂γ h + □ hαγ − ∂γ∂µ hαµ − ∂µ∂α h

µ
γ

]
(H.524)

where one can define the trace h = h
µ
µ and recovers the d’Alembert-operator □ =

∂µ∂
µ.

Further contraction of the Ricci-tensor with ηµν gives the Ricci-scalar,

R =
1
2

[
∂α∂α h + □ h α

α − ∂α∂µ hαµ − ∂α∂µ hαµ
]

(H.525)

with a particular compact form using the trace h and the d’Alembert-operator □,

R = □ h − ∂α∂µ hαµ (H.526)

With these approximations, one can write down the field equation Rµν − R/2 gµν =
−8πG/c4 Tµν (setting Λ = 0 as it is not relevant on small scales) in the weak field
limit.

By redefining the amplitude hµν one can reach a significant simpification: The
trace referse

h̄µν = hµν −
h
2
ηµν (H.527)

has the properties

h̄ = ηµν hµν −
h
2
ηµνηµν = h − h

2
· 4 = −h (H.528)

as well as
¯̄hµν = h̄µν −

h̄
2
ηµν = hµν −

h
2
ηµν +

h
2
ηµν = hµν (H.529)

such that hµν is given by

hµν = h̄µν +
h
2
ηµν = h̄µν −

h̄
2
ηµν (H.530)

because h̄ = −h. Then, the linearise gravitational field equation becomes
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□ h̄αγ + ηαγ ∂
µ∂ν h̄µν − ∂α∂µ h̄µν − ∂γ∂µ h̄αµ = −16πG

c4 Tαγ (H.531)

After linearising the field equation, introducing a Minkowskian background and
redefining the amplitudes there is still the freedom for picking a particular gauge,
where the choice of the Lorenz-gauge would naturally come to mind. The gauge
choice should be able to simplify the field equation further, discarding all terms apart
from □ h̄αγ.

Now introducing the Lorenz-gauge and replacing h̄ by h̄′

h̄′µν = h′µν −
h′

2
ηµν = hµν − ∂µξν − ∂νξµ −

ηµν

2

(
h − 2ηαβ ∂α ξβ

)
(H.532)

such that one arrives at:

h̄′µν = hµν − ∂µξ − ∂νξµ −
h
2
ηµν + hµν η

αβ ∂αξβ (H.533)

Applying ∂ν to the equation then gives:

∂ν h̄′µν = ∂ν h̄µν − ∂ν∂µξν − ∂ν∂µξν − ∂ν∂νξµ + ηµν ∂
νηαβ ∂αξ

β (H.534)

Using the definitions ∂ν∂ν = □, as well as ηµν∂νηαβ ∂α ξβ = ∂µ∂
β ξβ one arrives finally

at
∂νh̄′µν = ∂νh̄µν −□ ξµ (H.535)

such that, with the gauge choice □ ξµ = ∂ν h̄µν implying ∂νh̄′µν = 0, the linearised
field equation in Lorenz-gauge reads

□ h̄′µν = −16πG
c4 Tµν, (H.536)

which is is perfect agreement with the expectations: Tµν sources perturbations in h̄′µν
in a linear, Lorentz-covariant wave equation with propagation along the light cones:
gravitational waves!

H.5 vacuum solutions of the linearised field equation

Vacuum solutions Tµν = 0 of the linearised field equation □ h̄µν = 0 with the Lorenz
gauge condition ∂ν h̄µν = 0 very naturally call for plane wave solutions, in complete
analogy to the vacuum Maxwell-equation ∂µFµν = 0. By substituting Fµν = ∂µAν −
∂νAµ and assuming Lorenz gauge ∂µAµ = 0 one obtains ∂µ∂µAν = □Aν = 0, which
is likewise solved by planed waves, where the gauge condition makes sure that the
vector potential Aµ is oriented perpendicular to the wave vector kµ, justifying the
expression transverse gauge.

Plane waves of the form h̄µν ∼ exp(±iηαβ kαxβ) have to have a light-like wave
vector→ ηµν k

µkν = 0 such that the propagation in the gravitational field takes place
along the light cone without any dispersion at all. It should be emphasised that in the
limit of linearised gravity that we are dealing with there the light cone is defined by
the background alone, gµνkµkν = 0 which becomes in the preferred coordinate system
ηµνk

µkν = 0 and that there is no effect of the gravitational field of the wave back onto
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the propagation of the wave.

H.6 stationary sources and gravitomagnetism

Stationary sources are peculiar as there is no time dependence is the source and
hence none in the gravitational field. As a consequence, there is no corresponding
retardation in the Green-function and the perturbation to the metric h̄µν can be
computed from the source Tµν:

h̄µν(x) = −4G
c4 ·

∫
d3x′

Tµν(x′)

|x − x′ |
(H.537)

There is a tremendous simplification in the energy momentum tensor if taken in the
non-relativistic limit, where p ≪ ρc2:

Tµν =
(
ρ +

p

c2

)
uµuν − p · gµν ≃ ρ uµuν =

(
ρ c2 ρ cui
ρ cuj ρuiuj

)
(H.538)

Solving for the metric perturbations then suggests a sourcing of Φ through ρc2

Φ(x) = −G ·
∫

d3x′
ρ(x′)
|x − x′ |

(H.539)

suggesting that h̄tt = 4Φ
c2 , as well as of a vectorial contribution Ai

Ai(x) = −4G
c2 ·

∫
d3x′

ρ(x′) · ui(x′)
|x − x′ |

(H.540)

from ρui , appearing as h̄it = h̄ti = Ai
c . In order to construct the metric we need to

revert back to hµν,

hµν = h̄µν −
h̄
2
ηµν (H.541)

and discard contributions to h̄ij , which is valid for small velocities β≪ 1. Then, the
trace is simply given by the Newtonian potential, h̄ = h̄tt → hµν = ±2Φ

c2 and the full
line element reads

ds2 =
(
1 +

2Φ
c2

)
c2 dt2 + 2Ai dtxi −

(
1 − 2Φ

c2

)
dxidx

i . (H.542)

When computing the Christoffel-symbols from this metric, which would be needed
for e.g. the geodesic equation

duα

dτ
+ Γ αµν u

µuν = 0 (H.543)

describing the motion of a test particle, one realises that the scalar, Newtonian poten-
tial Φ appears in Γ itt while the vectorial potential Ai influences Γ itj and Γ ijk terms, i.e.

that one needs a nonzero velocity ui to notice them, and that those terms will be pro-
portional to the velocity at first and second power (and as inertial accelerations those
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would be exactly the Coriolis acceleration and the centrifugal acceleration). Velocity-
dependent accelerations in relativistic motion are very typical, and in analogy to
the Lorentz-force in electrodynamics these accelerations are called gravitomagnetic
accelerations.

H.7 wave equation and Lorenz-gauge condition

Gravitational waves are a typical consequence of the hyperbolic gravitational field
equation. After a suitable linearisation procedure and after writing the amplitudes
with the trace reverse, one obtains the wave equation

□ h̄µν = −16πG
c4 Tµν (H.544)

in the Lorenz gauge, ∂µ h̄µν = 0. The waves necessarily follow null-geodesics which
illustrates why in our consideration about the most general classical theory of gravity
the parameter m was set to zero: Otherwise, the wave equation would have read
□Φ = m2Φ such that for the wave vector ηµνkµkν = m2 > 0 and would therefore lie
inside the light cone. In addition, propagation of wave would not be dispersion-free.

The superposition principle applies to such a linear field equation and one can
introduce plane waves as fundamental Fourier-modes:

hµν(x) =
∫

d3k
(2π)3 Aµν(k) exp

(
± iηαβ k

αxβ
)

(H.545)

with amplitudes Aµν(k), and perhaps it’s worth pointing out that in the context of
a flat Minkowski-background with Cartesian coordinates the tuple xµ is indeed a
vector. While the □-operator generates a perfectly normal retardation,

h̄µν(x) = −4G
c4 ·

∫
d3x′

Tµν(x′ , ct − |x − x′ |)
|x − x′ |

(H.546)

captured by the Green-function, it would be unnecessary to distinguish distances
from different points of the source to the observer, |x − x′ | ∼ r for all x′ , defining the
compact source approximation:

h̄µν(x) = − 4G
c4 · r

·
∫

d3x′ Tµν(x
′ , ct − r) (H.547)

with a common retardation. It should be kept in mind that gravitational waves as
vacuum solutions to the field equation only exhibit Weyl-curvature and that the
Birkhoff-theorem forbids spherically symmetric gravitational waves, as spherically
symmetric vacuum solutions need to be static.

H.8 plane gravitational waves in traceless transverse gauge

The wave equation fixes the wave vector kµ to be lightlike, ηµνkµkν = ω2/c2 − k2 = 0,
so for a propagation along the z-axis of a Cartesian coordinate frame one would write
kµ = (k,0,0,−k)t , so that the Lorenz-gauge condition ∂µ h̄µν = 0 makes sure that
the amplitudes obey Aµνk

µ = 0 so that they are confined to the (x, y)-plane of the
coordinate system. Any further gauge transformation

96

https://en.wikipedia.org/wiki/Retarded_potential
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h̄µν → h̄µν − ∂µ ξν − ∂ν ξµ (H.548)

defined through the gauge function ξµ(x) does not interfere with the Lorenz-gauge if
it obeys □ ξµ = 0, because due to the condition □ ξµ = ∂α h̄αµ the gauging condition
is maintained.

A specific choice for the gauge function would be ξµ = ϵµ exp(ikαxα) with constant
ϵµ, which would obviously fulfil □ ξµ = 0 as a wave, and it would have the effect to
change the gravitational wave amplitude to

A′µν = Aµν − iϵµkν − iϵνkµ + iϵαk
α · ηµν (H.549)

Effectively, the new gauge introduces coordinates that oscillate along with the grav-
itational wave, and the best way to visualise this would be to draw the analogy to
comoving coordinates. Specifically, the amplitudes in this coordinate frame with the
null-vector kµ become

A′tt = Att − ik (ϵt + ϵz) A′tx = Atx − ikϵx (H.550)

A′xx = Axx − ik (ϵt − ϵz) A′ty = Aty − ikϵy (H.551)

A′yy = Ayy − ik (ϵt − ϵz) A′xy = Axy (H.552)

While transversality Aµν k
ν = 0 fixes the relation

Aµν k
ν = k · Aµt − k · Aµz = k (Aµt − Aµz) = 0 (H.553)

to Aµt = Aµz . Then, the particular choice of the constants ϵµ : A′tt = A′tx = A′ty = 0,
A′xx = −A′yy implies

→ Aµν =


0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

 (H.554)

which is referred to as the traceless transverse gauge, because of ηµνAµν = 0 and
kµAµν = 0. The shape of the central section of the matrix pertaining to the (x, y)-plane
suggests the ansatz a(t, z) σ(1) + b(t, z) σ(3) ∼ h̄µν illustrating that there should be two
polarisation modes, with oscillatory functions a(t) and b(t), such that the line element
assumes the form

ds2 = c2 dt2 − dx2 − dy2 − dz2 − a(t, z)
[
dx2 − dy2

]
− 2 b(t, z) dxdy (H.555)

i.e. effectively a Minkowski line element with periodic deformations in the plane
transverse to the propagation direction. In comparison, the FLRW-line element for a
flat Universe is given by

ds2 = c2 dt2 − a2(t) ·
[
dx2 + dy2 + dz2

]
(H.556)

which suggests that the two functions a(t) and b(t) should be thought of as scale
factors, relating the comoving coordinates in the (x, y)-plane (which is actually the
role of the traceless transverse gauge) to physical distances. Of course, the analogy
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does not go further than that as the two solutions could not be more different: FLRW-
universes are systems of pure Ricci curvature and the effects of Λ are important,
while gravitational waves are vacuum solutions with pure Weyl-curvature.

The motion of test particles is given by the geodesic equation duα/dτ+ Γ αµν u
µuν =

0, and if the particle is initially at rest, uµ = (c, 0)t one would obtain:

d
dτ

uα =
d
dt

uα = −Γ αµν uµuν = −c2 Γ αtt = − c
2
ηαβ

[
∂t hβt + ∂t htβ − ∂β htt

]
= 0 (H.557)

confirming that the test particles are indeed at rest in the traceless transverse (co-
moving) coordinate frame. That of course does not mean that the physical distance
between the particles does not change! Physical distances, as measured for instance
at dt = 0 or along the light cone ds = 0 oscillate as given by a(t) and b(t).

H.9 Huygens’ principle and elementary waves

There is a fundamental difference in the propagation of (spherical) waves in space-
times with different dimensionalities. A plane wave obviously obeys the wave equa-
tion, for instance for a scalar field φ one gets

ηµν ∂µ∂ν φ = □ φ =
[
∂2

ct −
n∑
i=1

∂2
i

]
φ = 0 (H.558)

with a light cone condition ηµνkµkν = 0, obtained by substitution of φ ∝ exp(±ikµxµ).
If one now asks whether a spherical wave obeys a light cone condition, too, i.e.
whether the radius r of a spherical wave front is given by r = ct, the answer would
depend on the number of dimensions that spacetime has. This is in contrast to plane
waves, because in fact eqn. H.558 always reduces to a wave equation in one temporal
and one spatial dimension by orienting the coordinate system in the direction of ki .

Spherical symmetry reduces the Laplace-operator to contain only derivatives

along the r-direction, such that δij ∂i∂jψ = ∆n φ =
n∑
i=1

∂2
i φ = 0, with the definition

r2 = δij x
ixj = xix

i =
n∑
i=1

x2
i typical for Euclidean space. A spherically symmetry blast

wave would then increase its radius r as a function of time t, such that the system is
effectively 2-dimensional. But even though it would be reasonable to assume that r
and t fulfil a light cone condition ct − r = 0 we shall see that this is only the case in
1 + 1 and 3 + 1 dimensions!

From the derivatives

∂i r =
xi
r

and ∂2
i r =

1
r
−
x2
i

r3 =
r2 − x2

i

r3 (H.559)

we can derive that∑
i

(∂i r)
2 =

1
r2 ·

∑
i

x2
i = 1 and

∑
i

∂2
i r =

1
r

∑
i

1 − 1
r3

∑
i

x2
i =

n − 1
r

(H.560)

such that the double derivatives ∂2
i in the wave equation can be written as

∂2
i φ = ∂i (∂i r∂r φ) = ∂2

i r · ∂rφ+ (∂i r)
2 · ∂2

rφ (H.561)
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h.9. huygens’ principle and elementary waves

Summing over i gives the Laplace-operator needed for the wave equation, then
reformulated in radial derivatives,

∆φ =
∑
i

∂2
i φ =

∑
i

∂2
i φ =

n − 1
r

∂r φ+ ∂2
rφ (H.562)

so that the wave equation for a spherical wave reads

□ φ = ∂2
ctφ− ∂2

r φ−
n − 1
r

∂r φ = 0 (H.563)

with an additional term ∂rφ/r containing a first derivative. If it was not for that term,
spherical waves in any number of dimensions would behave like plane waves, which
is the case n = 1.

The asymptotic behaviour of the wave can be isolated by setting ψ(r) ≃ rk · φ(r)
with a negative exponent k, as the amplitude is expected to decrease with increasing
distance. Reformulating the wave equation in terms of ψ instead of φ gives

∂rψ = rk ∂r φ+ k · rk−1φ and ∂2
rψ = rk ∂2

rφ+ 2 · k rk−1∂r φ+ k(k−1) · rk−2φ (H.564)

arriving by division with rk at

1
rk

∂2
r ψ = ∂2

r φ+
2k
r
· ∂r φ+

k(k − 1)
r2 φ (H.565)

If the energy flux is proportional to the squared amplitudes φ2 and if it is conserved
when integrated over shells of radius r which in turn have an area ∝ rn−1 in n spatial
dimensions, the amplitudes need to scale as

ψ(r) = r
n−1

2 · φ(r) (H.566)

suggesting that k = (n − 1)/2. Substitution of that particular scaling then

1

r
n−1

2
· ∂2

r ψ = ∂2
rφ+

n − 1
r

∂r φ+
(n − 1)(n − 3)

4r
φ (H.567)

and finally

∂2
ctψ = ∂2

rψ −
(n − 1)(n − 3)

4r2 ψ (H.568)

which is a truly surprising result: One recovers the archetypical wave equation in
1 and 3 spatial dimensions as the last term vanishes, but there will be in general
additional effects from that term in propagation problems. Spherical waves in 3 + 1
dimensions behave in every aspect as plane waves as their radius obeys a light cone
condition ct − r = 0 as as their propagation is therefore dispersionless. In spacetimes
with other dimensionality one would see through numerical computation that there
is no infinitesimally thin wave front, instead the entire bubble with radius r = ct is
filled with nonzero amplitudes, as not all partial waves propagate at the same speed.
Formally, solutions to the spherical wave can be constructed with a power series
ansatz, as eqn. H.567 is a differential equation of the Bessel-type.
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I gravity from a variational principle

I.1 variational principles for particles and fields

Variational principles play a huge role in theoretical physics, and only in the context of
relativity becomes their true nature apparent: The Lagrange-function L is composed
of invariants, and the Euler-Lagrange-equation carrying out the variation injects
coordinates and generates a covariant equation of motion. There are fundamental
properties of the Lagrange-function L, for instance its convexity which makes sure
that a global minimum for the variation exists and that the Legendre transform is well-
defined, ultimately yielding the Hamilton-function H including possible conserved
conjugate momenta.

While Hamilton’s principle δS = 0 is straightforward to interpret for the motion of
a particle as the arc length through spacetime, an analogous interpretation for fields
is a bit more involved: After all, the field equation establishes a relation between
the geometry of the field and the strength of the amplitudes and the source, so the
variation is effectively searching among all field configurations for the single one that
minimises the action. It is a curious property that vacuum solutions provide typically
a lower bound on the action, for instance in electrodynamics: The Maxwell-action S
is defined through the invariant Frobenius norm of Fαβ,

S =
1
4

∫
d4x

√
−detη ηαµ ηβν FαβFµν (I.569)

integrated over spacetime, where we already introduced the covolume
√
−detη to

make d4x invariant under coordinate transforms. For vacuum solutions such as plane
waves ηαµ ηβν FαβFµν ∝ EiEi −BiBi = 0 because for a wave the absolute values of Ei and
Bi are equal. Incidentially, the (only) other quadratic invariant ηαµ ηβν F̃αβFµν ∝ EiBi =
0 as well, as the electric and magnetic fields are always perpendicular. Starting with
squares of first derivatives of the potentials makes sure that one obtains a linear field
equation which fulfils the superposition principle and excluding higher derivatives
makes sure that the Ostrogradsky-theorem is respected and the Hamilton-function
bounded from below.

As Lagrange-functions only ever appear as an integral in the action and as the
Hamilton-principle makes a statement only about the action, any reformulation of
the Lagrange-function by integration is permissible and should yield exactly the same
equations of motion. For instance, a point particle would have an equivalent action if
one writes

S =
∫

dt L =
∫

dt
1
2
δij ẋ

i ẋj − Φ(x) = −
∫

dt
1
2
δij ẍ

i ẋj + Φ(x) (I.570)

if the boundary term arising in the integration by parts is neglected. But of course
this form of the action calls for a generalised Euler-Lagrange equation that is capable
of dealing with second derivatives ẍi of the trajectory xi(t). In fact, the variation for
L(xi , ẋi , ẍi) is given by

δS =
∫

dt
∂L
∂xi

δxi +
∂L
∂ẋi

δẋi +
∂L
∂ẍi

δẍi =
∫

dt
( ∂L
∂xi
− d

dt
∂L
∂ẋi

+
d2

dt2
∂L
∂ẍj

)
δxj = 0 (I.571)

with a single integration for the second and a double integration for the third term.
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In fact, this new Euler-Lagrange equation

∂L
∂xi
− d

dt
∂L
∂ẋi

+
d2

dt2
∂L
∂ẍj

= 0 (I.572)

works perfectly: L = 1
2xẍ + Φ(x) has the derivatives

∂L
∂x

=
ẍ
2

+ ∂Φ,
∂L
∂ẋ

= 0,
∂L
∂ẍ

=
x
2
, and

d2

dt2
∂L
∂ẍ

=
ẍ
2

(I.573)

which get assembled in the Euler-Lagrange equation to ẍi + ∂iΦ = 0.

Almost exactly the same argument holds for a scalar field on a Euclidean back-
ground: The Lagrange-density L = 1/2 δij∂iΦ∂jΦ − V(Φ) can be integrated by parts
to yield the equivalent form,

S =
∫

d3x L =
∫

d3x
1
2
δij ∂iΦ ∂jΦ = −

∫
d3x

1
2
Φδij ∂i∂jΦ· = −

∫
d3x :

1
2
Φ∆Φ

(I.574)

where again a generalised Euler-Lagrange equation is required for the variation
δS = 0,

δS =
∫

d3x
∂L
∂Φ

δΦ +
∂L

∂∂iΦ
δ∂iΦ +

∂L
∂∂i∂jΦ

δ∂i∂jΦ (I.575)

Single and double integration by parts while neglecting the boundary terms, where
the variation is zero, yields

δS =
∫

d3x
(∂L
∂Φ
− ∂i

∂L
∂∂iΦ

+ ∂i∂j
∂L

∂∂i∂jΦ

)
δΦ = 0 (I.576)

from which one can read off the suitable second-order Euler-Lagrange equation.
Going through the example again recovers conventional Poisson-equation ∆Φ =
dV/dΦ = 4πGρ for V(φ) = 4πGρΦ.

Things get a bit more interesting with the Maxwell-field: The variation of the field
can not be, in general, set to zero on the surface of a spacetime volume, because for
instance a plane wave as a perfectly valid solution to the field equation exists for
arbitrarily early and late times. But there is the freedom to pick a gauge, and in fact
the surface terms can be set to zero by demanding the Lorenz-gauge ∂µAµ = 0 to be
valid.

S =
∫

d4x
√−η · ηαµηβν FαβFµν = . . . = −

∫
d4x
√−η · 2 · ηβνAβ□ Aν (I.577)

with the d’Alembert-operator □ = ηαµ∂α∂µ. The generalised Euler-Lagrange equation
needed to deal with the second-order action is

δS =
∫

d4x
√−η ·

( ∂L
∂Aα

δAα +
L

∂∂µAα

δ∂µAα +
∂L

∂∂µ∂νAα

δ∂µ∂νAα

)
(I.578)

with δ∂µAα = ∂µδAα and δ∂µ∂νAα = ∂µ∂νδAα. Then, integration by parts suggests

101



i. gravity from a variational principle

S =
∫

d4x
√−η

( ∂L
∂Aα

− ∂µ
∂L

∂∂µAα

+ ∂µ∂ν
∂L

∂∂µ∂νAα

)
δAα = 0 (I.579)

where again Hamilton’s principle determines the Euler-Lagrange equation. Sub-
stitution yields the perfectly normal vacuum field equation for the potential Aα

∂µ∂ν
∂L

∂∂µ∂νΦ
= □ Aα = ηµν ∂µ∂ν Aα = 0 (I.580)

in Lorenz-gauge. In summary, there are possible reformulations of the Lagrange-
densities involving the product of the fields and its second derivative (please notice
the locality here!), which give exactly the same field equation after variation. Techni-
cally, there are subtleties related to the boundary terms of the integration, which can
be set to zero in certain gauges, for instance by assuming Lorenz-gauge gµν∇µAν = 0
on the boundary for the Maxwell-field Aµ.

I.2 variational principles on manifolds

Would it be possible to formulate a variational principle on a manifold? Clearly yes,
but we would have to use the covariant derivative ∇µ instead of the partial derivative
∂µ as a general metric gµν as a globally Cartesian coordinate choice would not be
possible. Let’s try this with a scalar field first: Clearly, the action should be invariant
under coordinate changes with a volume element d4x

√−g, and the Lagrange-function
should depend on φ, the covariant derivative ∇µφ and the metric gµν that mediates
the geometry of the manifold:

S =
∫
V

d4x
√−g · L

(
φ,∇µ φ, gµν

)
, (I.581)

consisting of generally invariant scalars built from φ and ∇µφ. Hamilton’s principle
δS = would then imply for the variation that

δS =
∫
V

d4x
√−g

( ∂L
∂Ψ

δφ+
∂L

∂∇µφ
δ∇µφ

)
= 0 (I.582)

We would continue with the usual δ∇µφ = ∇µδφ but reach an impasse when it comes
to the integration by parts, as there is the covariant ∇µ instead of the partial ∂µ: We
need a generalisation of the Gauß-theorem for manifolds:∫

V

d4x
√−g · ∇µυµ =

∫
∂V

dAµ

√
|γ| υµ (I.583)

with the induced metric γ on the boundary ∂V,

√−g
∣∣∣
∂V
≡

√
|γ| (I.584)

The covariant divergence can be written as a conventional partial divergence with
the covolume, such that
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∫
V

d4x
√−g 1

√
g
∂µ

(√−g · υµ) =
∫
V

d4x ∂µ
(√−g · υµ) =

∫
∂V

dAµ

√
|γ| · υµ (I.585)

With these tools, one can write:∫
V

d4x
√−g ∇µ

( ∂L
∂∇µφ

· δφ
)

=
∫
∂V

dAµ

√∣∣∣γ∣∣∣ · ( ∂L
∂∇µφ

δφ
)

(I.586)

Considering
∂L

∂∇µφ
· δφ ≡ υµ (I.587)

as the vector field υµ, the product rule suggests that

=
∫
V

d4x
√−g ∇µ

∂L
∂∇µφ

· δφ+
∫

d4x
√−g · ∂L

∂∇µφ
· ∇µ δφ (I.588)

so that finally∫
V

d4x
√−g ∂L

∂∇µφ
· ∇µ δφ = −

∫
V

d4x
√−g ∇µ

∂L
∂∇µφ

· δφ (I.589)

and the Euler-Lagrange equation on a manifold has exactly the same form as the
conventional one, with a ∇µ replacing the ∂µ,

∇µ
∂L

∂∇µφ
=

∂L
∂φ

(I.590)

I.3 gauge transformations on manifolds and source terms

Clearly, coordinate transformations and a nontrivial geometry can be dealt with as
discussed in the previous chapter, but what about gauge transformations? Writing

L → L + ∇µ Qµ(φ) (I.591)

and having the transformation generated by Qµ would imply that S becomes

S→ S +
∫
V

d4x
√−g ∇µ Qµ (I.592)

with the variation δS

δS→ δS +
∫
V

d4x
√−g ∇µ δQµ = δS +

∫
V

d4x
√−g ∇µ

(∂Qµ

∂φ
δφ

)
(I.593)

Clearly, invariance is only given if
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∫
V

d4x
√−g ∇µ

(∂Q
∂φ

δφ
)

=
∫
∂V

dAµ ·
√
|γ| · ∂Qµ

∂φ
δφ = 0 (I.594)

implying that the variation of the fields δφ = 0 is valid on the boundary ∂V.

Let’s look at Maxwell electrodynamics as an intuitive example. Acting on the
Lagrange-density

L =
1
4
gαµgβν FαβFµν + +gαβ Aα ȷβ (I.595)

with a gauge transformation Aα → Aα+∇αχwith a gauge function χ does not change
the field tensor Fαβ: Formally it transitions to

Fαβ = ∇αAβ − ∇βAα → Fαβ +
(
∇α∇β − ∇β∇α

)
χ = Fαβ (I.596)

but the additional term is zero as a consequence of the torsion-free condition Γ µαβ =

Γ
µ

βα , making
(
∇α∇β − ∇β∇α

)
χ =

(
∂α∂β − ∂β∂α

)
χ = 0. That implies that the gauge-

transformed Lagrange-density becomes:

L =
1
4
gαµgβν FαβFµν + gαβAαȷβ + gαβ ∇α χ · ȷβ (I.597)

with gαβ ∇α χ · ȷβ being an additional term. This term, however, is necessarily equiva-
lent to∫

V

d4x
√−g gαβ∇αχ·ȷβ =

∫
V

d4x
√−g gαβ∇α

[
χ·ȷβ

]
−
∫
V

d4x
√−gχ·gαβ∇α ȷβ = 0 (I.598)

where the first term vanishes as a boundary term and the second vanishes if charge
is covariantly conserved, gαβ ∇α ȷβ = 0.

The issue does not arise in the homogeneous Maxwell-equations. There, the
covariant generalisation

gαµ ∇α F̃µν = 0 (I.599)

of the Bianchi identity
∇α Fµν + ∇µ Fνα + ∇ν Fαµ = 0 (I.600)

with the dual tensor F̃αβ is automatically gauge-independent, as Fαβ and F̃αβ do not
change under gauge transformations. The relation between the two are

F̃αβ = −1
2
ϵαβµν Fµν and Fµν = +

1
2
ϵµναβ F̃αβ (I.601)

so that both become auto-dual, ˜̃Fαβ = Fαβ,

˜̃Fαβ = −1
2
ϵαβµν F̃µν = −1

4
ϵαβµν ϵ

µνγδ Fγδ = Fαβ with ϵαβµνϵ
µνγδ = −2!2! ·δγα δδβ (I.602)
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I.4 invariant volume elements

The integration measure for volumes needs to be independent of the coordinate
choice. The transformation changes vectors according to

dxµ =
∂xµ

∂x′µ
dx′ν (I.603)

but clearly that coordinate change implies for the volume element:

dnx = det
( ∂xµ
∂x′ν

)
dnx′ (I.604)

with the functional determinant as a prefactor. At the same time, the metric trans-
forms like a rank-2 tensor,

ds2 = gµν dxµdxν = gµν
∂xµ

∂x′α
∂xν

∂x′β
dx′α dx′β = g ′αβ dx′αdx′β (I.605)

i.e. inverse to the vector and with two powers of the Jacobian for the determinant of
the metric (as the line element is invariant):

det(g ′αβ) = det(gµν) ·
(
det

( ∂xµ
∂x′ν

))2

(I.606)

implying the definition of an invariant volume element as

dnx
√−g → dnx′ · det J ·

√
−g ′√

(det J)2
= dnx′

√
−g ′ (I.607)

with the functional determinant J =
(
∂xµ

∂x′ν

)
.

It is important to realise that
√−g is a density, not a scalar, as dnx

√−g is scalar
and therefore invariant under coordinate transformations. In particular,

∇µ
√−g =

−1
2
√−g

∇µg =
1

2
√−g

∇µ
(

exp tr ln gαβ
)

=

−1
2
√−g

g · tr g−1 · ∇µ g =
1
2
√−g · gαβ ∇µ gαβ = 0 (I.608)

as a consequence of metric compatibility of ∇µ; but it would be wrong to write
∇µ
√−g , ∂µ

√−g because of the missing scalar property of
√−g: The covolume is a

density rather than a scalar, and the reduction of the covariant derivative ∇µφ = ∂µφ
for scalar fields is not applicable for

√−g.

I.5 Einstein-Hilbert: gravity from a variational principle

Up to this point we postulated the gravitational field equation and convinced our-
selves that it had properties desirable in a field equation. A variational principle
would require the construction of an action for the metric
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i. gravity from a variational principle

S =
∫

d4x
√−g L

(
gαβ,∇µ gαβ, ∇µ∇νgαβ

)
(I.609)

composed of invariants such that after variation a covariant field equation is obtained.
The Lagrange-density can in principle depend on the metric gαβ as the dynamical
field itself and its first and second derivatives. There, ∇µ gαβ is impossible to use
as it always vanishes due to metric compatibility, so ∂µ gαβ or Γ µαβ would be better
alternatives, but we have already argued that the gravitational field should rather
be contained in the second than the first derivatives of the metric: According to the
equivalence principle, first derivatives would automatically be zero in a freely falling
frame.

As invariants containing second derivatives, the Ricci-scalar R = gαµgβν Rαβµν
or the Kretschmann-scalar K = gαµgβνgγρgδσ RαβγδRµνρσ would be possible choices,
although we would prefer R from the intuition on the contraction of freely falling
clouds of point particles caused by Ricci-curvature. Perhaps a bit surprisingly, a
straightforward constant Λ would be fine, too.

Postulating the Einstein-Hilbert-Lagrange density as being the simplest, local
invariant second-order action

S =
∫

d4x
√−g

(
R − 2Λ

)
(I.610)

one can in fact derive the gravitational field equation through variation of the metric,
gµν → gµν + δgµν. In the Ricci-scalar R = gµνRµν, however, there is the inverse metric
gµν so actually one needs to vary with respect to that quantity, too. The two variations
are related by

δ
(
δ
µ
ν

)
= δ

(
gµαgαν

)
= δgµα · gαν + gµα · δgαν = 0 (I.611)

where one can isolate δµα by contraction with gνβ,

δgµα gαν · gνβ = δgµβ = −gνβgµα δgαν (I.612)

with an additional minus-sign appearing.
Let’s ignore the cosmological constant for a second, Λ = 0. Then, the variation δS

of S becomes

δS =
∫

d4x
[
δ
√−g · R +

√−g · δgµν · Rµν +
√−g · gµν δRµν

]
(I.613)

which requires a relation between δ
√−g and δgµν as well as between δRµν and δgµν,

while the second term is already in good shape, being directly proportional to δgµν.
The variation of the covolume is done by

δ
√−g =

1
2
√−g

· δg =
1

2
√−g

· g · gµν δgµν = −1
2
√−g · gµν δgµν (I.614)

keeping in mind that ln g = ln det gµν = tr ln gµν, such that g = exp tr ln gµν. δ acts
like a derivative, so that g is reproduced as the derivative of the exponential, the
trace is linear and the derivative of a matrix valued logarithm is given by the matrix
inverse, multiplied with the internal derivative. Switching from δgµν to δgµν then
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i.5. einstein-hilbert: gravity from a variational principle

introduces yet another minus sign. Collecting all results so far gives the intermediate
formula

δS =
∫

d4x
√−g ·

(
Rµν −

R
2
gµν

)
δgµν +

∫
d4x
√−g δRµν g

µν → 0 (I.615)

which is already very reminiscent of the field equation if Hamilton’s principle δS = 0
is assumed, if only the last term was zero.

For continuing one needs the Palatini-identity, which relates the variation of the
Ricci-tensor to covariant derivatives of the varied Christoffel-symbols, which I guess
merits a few words of explanation. The Riemann-curvature Rαβµν is in general a
function of Γ αµν and its derivatives ∂βΓ

α
µν , as suggested by parallel transport. In

locally Cartesian coordinates Γ αµν = 0 as in these coordinates partial derivatives of
the metric vanish, but ∂βΓ αµν are not necessarily zero. That implies that the Riemann-
curvature only depends on the derivatives of the Christoffel-symbols but not on
the squares. Secondly, the variation δΓ αµν of the Christoffel-symbols is a tensor, as
the non-tensorial contributions drop out. And thirdly, ∇µ = δµ in locally Cartesian
coordinates, as Γ αµν = 0.

Putting everything together lets us write for the Riemann-tensor

δRαβµν = ∂µ δΓ
α
βν − ∂ν δΓ

α
βµ = ∇µ δΓ αβν − ∇ δΓ

α
βµ (I.616)

and consequently for the Ricci-tensor

δRβν = ∇µ δΓ
µ

βν − ∇ν δΓ
µ

βµ (I.617)

which is the sought after Palatini-identity. Inspecting the surplus term of the Einstein-
Hilbert action∫

d4x
√−g · δRµν · gµν =

∫
d4x
√−g gβν

[
∇µ δΓ

µ

βν − ∇ν δΓ
µ

βµ

]
(I.618)

shows that both terms arising due to the Palatini-action are in fact covariant diver-
gences, which would vanish when converted into surface integrals.

The cosmological constant Λ requires only the variation of the covolume in
S =

∫
d4x
√−g · (2Λ), such that one gets:

δS =
∫

d4x δ
√−g Λ =

∫
d4x
√−g ·

(
− Λgµν

)
· δgµν (I.619)

Finally, one finds that the variation of the Einstein-Hilbert-Lagrange density

S =
∫

d4x
√−g

(
R − 2Λ) (I.620)

in fact recovers the gravitational field equation (in vacuum)

Rµν −
R
2
gµν + Λgµν = 0 (I.621)

Let’s have a quick look at the non-relativistic limit of the Einstein-Hilbert-Lagrange
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i. gravity from a variational principle

density. Analogous pairs of quantities are Φ and gµν, then ∂i and Γ αµν , as well as
∂i∂jΦ and Rαβµν and finally ∆Φ and Rµν. The weakly perturbed line element on an
otherwise flat Minkowski background

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i (I.622)

can be used to extract the metric and to compute covolume through the determinant,

det(gµν) = −
(
1 +

2Φ
c2

)(
1 − 2Φ

c2

)3
= −

[
1 − 6Φ

c2 +
2Φ
c2 + O

((Φ
c2

)2)]
=≃ −

(
1 − 4Φ

c2

)
(I.623)

such that the covolume becomes
√−g ≃ 1 − 2Φ/c2 at lowest order. This means

effectively, that in the classical, second-order Lagrange density for Newtonian gravity,

S = −
∫

d3x Φ∆Φ =
∫

d3x δij∂
iΦ ∂jΦ (I.624)

the first factor of Φ could be thought of as a remainder of the covolume, while the
second factor ∆Φ appears as the Ricci-curvature. Integration by parts recovers the
conventional form, which immediately poses the question if one could construct a
gravitational action from squares of Christoffel symbols: This will be the Einstein-
Palatini-action.

I.6 Palatini-variation: metric gµν and connection Γ αµν

There is an alternative approach to deriving the field equation from a variational
principle where the metric and the connection are interpreted as independent fields:
Then, the field equation and the Levi-Civita connection are simultaneous results of
the variational principle.

S =
∫

d4x
√−g R =

∫
d4x
√−ggβν Rαβαν =∫

d4x
√−ggβν

[
∂αΓ

α
βα − ∂νΓ

α
βα + Γ αγν Γ

γ

βν − Γ
α
γν Γ

γ

βα

]
(I.625)

where there is no a-priori assumption about the relationship between the metric gµν
and connection Γ αµν . The variation with the metric borrows from the derivation in
the previous section and gives directly the vacuum-field equation

δS =
∫

d4x δ
(√−g gβν

)
Rβν = 0→ Rβν = 0 (I.626)

as the Ricci-tensor Rβν was taken to depend only on Γ αµν and ∂βΓ
α
µν , not on gµν.

Then, the variation with respect to the connection coefficients Γ αµν as the second
independent field can be computed as follows. Firstly, on uses the Palatini-identity to
get

δS =
∫

d4x
√−g gβν δRβν =

∫
d4x
√−g gβν ·

(
∇µ δΓ

µ

βν − ∇ν δΓ
µ

βµ

)
(I.627)
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i.7. coupling to matter and generation of the energy momentum tensor

and rewrites it with the Leibnitz-rule: Please keep in mind that we did not yet make
any assumption about e.g. metric compatibility, so terms of the type ∇µgµν are not
automatically zero.

δS =
∫

d4x
√−g · ∇µ

(
gβν δΓ

µ

βν

)
− ∇ν

(
gβν δΓ

µ

βµ

)
=

−
∫

d4x
√−g · ∇µ gβν · δΓ

µ

βν − ∇ν g
βν · δΓ µβµ (I.628)

The first two terms vanish as covariant divergences, as they can be rewritten as
boundary integrals, leaving

δS = −
∫

d4x
√−g ·

[
∇µ gβν − δ

β
µ ∇α gγα

]
δΓ

µ

βν = 0 (I.629)

Then, we realise that the Christoffel-symbol is symmetric in the lower two indices
Γ αµν = Γ ανµ if the connection was torsion free. The last equation has to be equal to
zero as required by Hamilton’s principle δS = 0, which then implies that the term in
the square brackets, which does not have a perfect antisymmetry pertaining to the
index pair µ, ν, has to vanish identically. From that one can conclude

∇µ gβν =
1
2

[
δ
β
µ ∇α gνα + δβν ∇α gµα

]
= 0 (I.630)

after symmetrisation, and from that metric compatibility ∇µgβν = 0, with the argu-
ment that

∇µ
[
gαβgβγ

]
= ∇µ

(
δαγ

)
= 0 = ∇µgαβ · gβγ + gαβ∇µgβγ (I.631)

implying that metric compatibility of the inverse metric is consistent with metric
compatibility of the metric (please see Appendix X.1 for the detailed derivation).

These relations are sufficient to compute the Christoffel-symbol from the metric,
as ∇µ gβν = ∂µ gβν − Γ αµβ gαν − Γ αµν gβα = 0 and the two cyclic permutations define
already

Γ αµν =
gαβ

2

[
∂µ gβν + ∂ν gµβ − ∂β gµν

]
. (I.632)

I.7 coupling to matter and generation of the energy momentum tensor

The field equation needs to be coupled to energy and momentum in the form of energy
momentum-tensor Tµν, such that curvature is induced into spacetime. A combined
action including geometry and the material fields could be

S =
∫

d4x
(√−g [

R − 2Λ
]

+ κ Lm

)
(I.633)

with an a-priori unknown coupling constant κ put as a prefactor to the Lagrange
density Lm of the non-gravitational fields: Commonly, one calls this the matter-term,
but actually it refers to any field that is defined on the spacetime. Variation would
recover the field equation
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i. gravity from a variational principle

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λ gµν (I.634)

which would work out if

δSm = δ

∫
d4xL =

∫
d4x

δL
δgµν

δgµν =
1
2

∫
d4x
√−gTµνδg

µν = −1
2

∫
d4x
√−gTµνδgµν

(I.635)

by definition, with the energy momentum tensor Tµν and the coupling constant
κ = 8πG/c4. Then, the symmetry of Tµν is implied by gµν, and the variation of S with
respect to the (inverse) metric yields the correct field equation. Vice versa, this can
only be consistent if

δL
δgµν

=
√−g

2
Tµν (I.636)

I.8 dynamics of the energy-momentum tensor

General relativity is the theory for the dynamics of spacetime for energy-momentum
conserving fields, which is formulated in terms of the covariant divergence of the
energy-momentum tensor Tµν,

gαµ ∇α Tµν = 0 (I.637)

The variation in Hamilton’s principle can be generated by an infinitesimal coordi-
nate shift, which can have two important consequences: It should, applied to the
matter-part of the action, reproduce covariant energy momentum conservation, as the
working principle of the fields does not change across the manifold. Alternatively, it
would as well generate a variation in the inverse metric, on which the Einstein-Hilbert-
Lagrange density is built: Varying the gravitational part with respect to the inverse
metric should yield the field equation, and varying the matter part the corresponding
source of the gravitational field.

Infinitesimal coordinate shifts xµ → x′µ = xµ + ζµ(x) induce a change in the metric
gµν → g ′µν following

g ′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (I.638)

based on the Jacobians

∂xα

∂x′µ
=

∂
∂x′µ

(
x′α − ζα

)
=

∂x′α

∂x′µ
− ∂ζα

∂x′µ
= δαµ − ∂µ ζα (I.639)

Therefore, the metric changes according to

g ′µν(x
′) =

(
δαµ−∂µζα

)(
δ
β
ν−∂νζβ

)
·gαβ = δ

β
ν gαβ−δαµ∂νζβ gαβ−δ

β
ν∂µζ

α gαβ+O(ζ2) (I.640)

such that at order ζ2 the changed metric is given by

g ′µν(x
′) = gµν − ∂ν ζβ gµβ − ∂µ ζα · gαν (I.641)
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i.8. dynamics of the energy-momentum tensor

The induced variation in gµν due to the coordinate change is given by

δgµν = g ′µν(x)− gµν(x) + g ′µν(x
′)− g ′µν(x′) =

[
g ′µν(x

′)− gµν(x)
]
−
[
g ′µν(x

′)− g ′µν(x)
]

(I.642)

Subsituting eqn. I.641 and the Taylor expansion g ′µν(x
′) − g ′µν(x) ≃ ∂α g

′
µνζ

α

δgµν = −gµβ · ∂ν ζβ − gαν ∂µ ζα − ∂α gµν · ζα (I.643)

if the approximation ∂α gµν = ∂α g
′
µν is done

Replacing the partial derivatives ∂µ with covariant ones ∇µ according to

∇µ ζα = ∂µζ
α + Γ αµτ ζ

τ (I.644)

as ζα is a vector yields

gµβ∂νζ
β + gαν∂µζ

β + ∂αgµνζ
α =

gµβ∇νζβ − gµβΓ
β
ντ ζ

τ + gαν∇µζα − gανΓ
β
µτ ζ

τ + ∇αgµνζα +
(
Γ ταµ gτν + Γ ταν gµτ

)
ζα

(I.645)

where the metric compatibility condition ∇αgµν = 0 has been substituted. Two pairs
of Christoffel-symbols drop out, leaving

δgµν = −
(
gαν∇µζα + gµβ∇νζβ

)
= −

(
∇µζν + ∇νζµ

)
(I.646)

This result can be substituted into the variation δSm of the part of the action Sm

describing the material fields,

δSm = −1
2

∫
d4x
√−gTµνδgµν = +

1
2

∫
d4x
√−gTµν

(
∇µζν + ∇νζµ

)
(I.647)

and using the Leibnitz-rule to orient the ∇µ-differentiations to Tµν rather than ζµ,

δSm = −1
2

∫
d4x
√−g

(
∇µ Tµν · ζν + ∇ν Tµν · ζµ

)
=

∫
d4x
√−g ∇µ Tµν · ζν (I.648)

by exploiting the symmetry of the expression, and if the variation on the boundary
vanishes, to be assumed when the Gauß-theorem is applied,∫

V

d4x
√−g ∇µ

[
Tµν ζν

]
=

∫
∂V

dAµ

√∣∣∣γ∣∣∣ Tµν ζν = 0 (I.649)

Let’s try out this relation for a straightforward scalar field φwith a self-interaction
or a coupling V(φ), as the easiest example of a non-gravitational field serving as a
model for the matter content of the theory. Variation of the action

Sφ =
∫

d4x
√−g

(1
2
gαβ∇αφ∇βφ− V(φ)

)
(I.650)
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with respect to gµν should recover the energy momentum tensor Tµν. In fact, there are
two dependences on the metric, the covolume

√−g and the contraction gαβ∇αφ∇βφ
in the kinetic term, such that the variation becomes

δSφ =
∫

d4x
√−g

[1
2
δgµν∇µφ∇νφ

]
+ δ
√−g ·

[1
2
gαβ∇αφ∇βφ− V(φ)

]
gµν (I.651)

using the relation

δ (
√−g) = − 1

2
√−g

δg = − 1
2
√−g

g gµν δgµν = −1
2
√−g gµν δg

µν (I.652)

for the variation of the covolume. Rewriting the variation yields

δSφ =
∫

d4x
√−g

[1
2
∇µφ∇νφ−

1
2
gµν

(1
2
gαβ ∇αφ∇βφ− V(φ)

)]
δgµν (I.653)

Naturally, we obtain the energy momentum tensor

Tµν = ∇µφ∇νφ− gµν
(1

2
gαβ ∇αφ∇βφ− V(φ)

)
(I.654)

for a scalar field, by comparing eqn. I.653 with

δSφ =
∫

d4x
√−g 1

2
Tµν δg

µν (I.655)

which is the correct form, that could otherwise be obtained by Legendre-transform
or by taking the Lie-derivative of the Lagrange-function.

I.9 symmetries on manifolds: Lie-derivatives and the Killing equation

Spacetime as a manifold can have symmetries; whether they a particular choice of
coordinates is compatible with them or not. Up to this point we have always relied on
our intuition about choosing coordinates in which the symmetries became apparent
in a very clear way, for instance the Schwarzschild coordinates for a spherically
symmetric, static spacetime. But general covariance of relativity does not require that
we find the best coordinate choice, instead, it should be possible to make a statement
about symmetry without recursing to particular, properly adjusted coordinates;
there should be a perfectly valid Schwarzschild solution for oscillating cylindrical
coordinates, too. As all observables are associated with scalars, the coordinate choice
does not matter for the prediction of measurable physical quantities.

Additionally, there should be conserved quantities along with any symmetry of a
system as predicted by Noether’s theorem. It is worth pointing out that certain state-
ments are impossible or do not contribute substantially to statements on symmetry:
concerning motion through manifolds, gµνuµuν = c2 or gµνk

µkν = 0 are expressing
causality or define the choice of a sensible affine parameter rather than conservation,
and symmetries of the metric are certainly not expressed by ∂αgµν = 0 because of
its unclear transformation properties, nor by ∇αgµν = 0, which is always true for a
Levi-Civita connection.

Instead, we would require a new derivative, the Lie derivative (Lag)µν = 0, which
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i.9. symmetries on manifolds: lie-derivatives and the killing equation

states that there is an isometry present: The metric does not change under shifts in
the direction of a vector aµ, as an expression of a spacetime symmetry. Ideally, we
can link this new derivative to the already defined covariant derivative and possibly
derive a relationship which allows us to find coordinates adopted to a spacetime with
a given symmetry.

Imagine two distinct points P(xµ) and P′(x′µ) with coordinates xµ and x′µ, respec-
tively. Then, the coordinates of the two points are related in general by

x′µ = xµ − ϵaµ and differentially, by
∂x′µ

∂xν
= δ

µ
ν − ϵ ∂ν aµ (I.656)

where ϵ controls the infinitesimal shift into the direction aµ. Any vector field υµ then
transforms according to

υ′µ(x′) =
∂x′µ

∂xν
υν(x) =

(
δ
µ
ν − ϵ∂ν aµ

)
υν(x) = υµ(x) − ϵ∂ν aµυµ(x) (I.657)

Clearly, υ′µ(x′) − υµ(x) is not a vector because the two υ refer to physically different
points on the manifold, so we could apply a Taylor-expansion

υ′µ(x′) = υ′µ(x) + (x′ − x)ν ∂ν υ
′µ(x) + . . . = υ′µ(x) − ϵaν ∂ν υ′µ(x) (I.658)

such that

υµ(x) = υ′µ(x′) + ϵ∂ν a
µυν(x) = υ′µ(x) − ϵaν ∂ν υ′µ + ϵ ∂ν a

µ · υν(x) (I.659)

and we can define the Lie-derivative
(
Laυ

)µ
lim
ϵ→0

υµ(x) − υ′µ(x)
ϵ

= −aν ∂ν υ′µ + ∂ν a
µ · υν ≡

(
Laυ

)µ
(I.660)

of the vector field υµ in the direction aµ with all terms at order ϵ. If defined for linear
forms, the Lie-derivative picks up a different sign in the Jacobian,(

Laυ
)
µ

= +aν ∂ν υµ + ∂µ a
ν · υν (I.661)

and applied to a rank-2 tensor such as the metric one obtains(
Lag

)
µν

= gµλ · ∂ν aλ + gλν ∂µ a
λ + aλ ∂λ gµν (I.662)

It is very important to realise that up to this point we did not use the concept
of parallel transport nor the covariant derivative, but only partial derivatives. In
fact, symmetries of vector or tensor fields on a manifold exist and and quantifiable
with the Lie-derivative even when there is no differential structure and no parallel
transport. But of course, one would like to define the Lie-derivative in a way that it
becomes compatible with the covariant derivative, and that is in fact one motivation
for Levi-Civita connections:

∇ν υµ · aν−∇ν aµ ·υν = ∂ν υ
µ · aν−∂ν aµ ·υν−

(
Γ
µ

κλ
− Γ µ

λk

)
·υκ · aλ = ∂ν υ

µ · aν−∂ν aµ ·υν
(I.663)
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if the connection is torsion free, Γ µkλ = Γ
µ

λk , and the covariant expression falls back
onto the partial one. Applied to the metric this would mean that(

Lag
)
µν

= gµλ ∇λ aλ + gλν ∇µ aλ + aλ · ∇λ gµν = ∇ν aµ + ∇µ aν (I.664)

with the last of the terms being canceled by metric compatibility ∇λ gµν = 0, and
using the index-lowering property of the metric. Again, we should be able to compute
the Lie-derivative of the metric purely with partial derivatives instead of covariant
ones. Indeed, replacing ∇ with ∂ and the Christoffel-symbols yields

(
Lag

)
µν

=

gµλ
[
∂ν a

λ + Γ λνκ a
κ
]

+ gλν
[
∂µa

λ + Γ λµκ a
κ
]

+ aλ
[
∂λ gµν − Γ κλµ gκν − Γ

κ
λν gµκ

]
=

gµλ ∂ν a
λ + gλν ∂µ a

λ + aλ · ∂λ gµν (I.665)

because of the pairwise cancellation in the expression

gµλΓ
λ
νκ a

κ + gλνΓ
λ
µκ a

κ − Γ κλµ gκνa
λ − Γ κλν gµκa

λ = 0 (I.666)

.

If
(
Lag

)
µν

= 0 for a given shift field aµ then the spacetime possesses a certain

symmetry and ∇ν aµ + ∇µ aν = 0. Then, aµ is called a Killing-vector. There is a weird
relationship between Killing vectors and the Riemann-curvature. For any vector we
have the definition of curvature through the non-commutability of second covariant
derivatives, (

∇κ∇λ − ∇λ∇κ
)
aµ = Rτµκλaτ = Rτµκλa

τ (I.667)

from which we can construct

∇κ
[
∇ν aµ − ∇µ aν

]
+ ∇ν

[
∇µ aκ − ∇κ aµ

]
+ ∇µ

[
∇κ aν − ∇ν aκ

]
=(

Rτµνκ + Rτνκµ + Rτκµν
]
aτ = 0 (I.668)

which necessarily vanishes due to the algebraic Bianchi-identity. From the Killing-
condition ∇ν aµ + ∇µ aν = 0 we get ∇µ aν = −∇ν aµ, so we can change the sign in every
second term,

∇κ
(
∇νaµ + ∇νaµ

)
+ ∇ν

(
∇µaκ + ∇µaκ

)
+ ∇µ

(
∇κaν + ∇κaν

)
=

2
[
∇κ∇νaµ + ∇ν∇µaκ + ∇µ∇κaν

]
= 0 (I.669)

Inspecting the result ∇κ∇νaµ + ∇ν∇µaκ + ∇µ∇κaν = 0 in more detail we can carry out
this treatment: Let’s keep the first term unchanged, but switch the indices µ↔ κ in
the second term. Because of the Killing-condition, this can be done as ∇µaκ+∇κaµ = 0,
so one picks up a minus-sign. The analogous index switch can be performed on the
last term. κ↔ µ is possible because ∇κaν +∇νaκ = 0, again introducing a minus sign:

∇κ∇νaµ + ∇ν∇µaκ + ∇µ∇κaν = ∇κ∇νaµ − ∇ν∇κaµ − ∇µ∇νaκ (I.670)
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The first two terms are just double covariant derivatives with interchanged order ap-
plied to the vector aµ which yields the Riemann-curvature: Making this identification
yields the Killing-equation

∇µ∇ν aκ =
(
∇ν∇κ − ∇κ∇ν

)
aµ = Rτµκνaτ (I.671)

The Killing-equation is a tool of determining the Killing-vectors aµ for a spacetime
with a given metric gµν: Think of it as an eigenvalue equation, which yields the shift-
vectors for any spacetime where the covariant derivatives and the Riemann-curvature
are given in an arbitrary coordinate choice, and effectively isolate the spacetime
symmetries in the form of the set of aµ. If the connection is of the Levi-Civita type,
both the covariant derivative ∇ as well as the Riemann-curvature are completely
computable from gµν, so that all ingredients of the Killing equation for a given metric
are present.

Euclidean space, for instance, has two types of symmetries: shifts and rotations.
By using intuition and introducing global Cartesian coordinates one simplifies every-
thing tremendously as gµν = δµν, Γ αµν = 0 such that ∇µ = ∂µ and of course Rτκµν = 0.
Then, the Killing-equation reduces to ∇µ∇ν aκ = 0 = ∂µ∂ν aκ and one can search
for solutions to ∂µ∂ν aκ = 0, which are obviously given by aκ = qνκx

κ + pκ with 6
constants qνκ (due to the antisymmetry qνκ = −qκν, from the Lie-derivative) and 3
constants pκ, corresponding to the rotations and shifts, respectively.

There is a tight connection between Killing-vectors ∇ν aµ +∇µ aν = 0 expressing an
isometry of spacetime and geodesics, which are defined through their autoparallelity
condition uν∇ν uµ = 0. If the scalar product aµuµ is shifted by uλ∇λ into the direction
of uλ, we obtain

uλ∇λ
[
aµ · uµ

]
= uλ

[
∇λaµ · uµ + aµ∇λuµ

]
= ∇λaµ · uµuλ + aµ · uλ∇λuµ = 0 (I.672)

as ∇λaµ · uµuλ = 0 because of the antisymmetry ∇ν aµ = −∇µ aν and uλ∇λuµ = 0
because of geodesic motion. Hence, the projection of the tangent uµ onto the Killing
vector field aµ is conserved along the geodesic.

X mathematical supplement

X.1 metric compatibility of the inverse metric

Metric compatibility ∇αgµν = 0 of the metric gµν itself implies metric compatibility
∇αgµν = 0 of the inverse metric gµν. This can be seen by starting from the definition
of the inverse metric, gµτgτν = δ

µ
ν and have a covariant derivative act on this relation,

keeping in mind that the covariant differentiation ∇α obeys the Leibnitz-rule:

∇αgµτgτν = ∇αgµτ · gτν + gµτ∇αgτν = ∇αδ
µ
ν (X.673)

The covariant derivative of the Kronecker-symbol is determined from the fact that it
is a tensor with a co- and a contravariant index, i.e.

∇αδ
µ
ν = ∂αδ

µ
ν + Γ µαβ δ

β
ν − Γ

β
αν δ

µ

β = ∂αδ
µ
ν + Γ µαν − Γ

µ
αν = ∂αδ

µ
ν (X.674)

renaming the indices in the second step. The Kronecker-δ is peculiar as a tensor,
because it assumes the same values of 0 and 1 in every coordinate choice: One needs
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x. mathematical supplement

a Jacobian for µ and an inverse Jacobian for ν,

δ
µ
ν →

∂x′µ

∂xα
∂xβ

∂x′ν
δαβ =

∂x′µ

∂xα
∂xα

∂x′ν
=

∂x′µ

∂x′ν
= δ

µ
ν (X.675)

so that the transformation does not have any influence on the tensor. Therefore,
∂αδ

µ
ν = 0, and one gets

∇αgµτ · gτν + gµτ∇αgτν = 0 (X.676)

Metric compatibility of the metric sets the second term to zero, so that one is left
with

∇αgµτ · gτν = 0 (X.677)

from where one can isolate the metric compatibility condition for the inverse metric
by contraction with gνβ

∇αgµτ · gτνgνβ = ∇αgµτ · δ
β
τ = ∇αgµβ = 0 (X.678)
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