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large scales small scales

𝑘 ≈ 𝑎𝐻 ≈0.002 h/Mpc
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Outline

1. Newtonian equations
2. Statistical descriptors
3. Linear Galaxy power spectrum
4. Non-linearity: simplified treatment
5. Non-linearity: standard perturbation theory, I
6. Non-linearity: standard perturbation theory, II
7. Non-linearity: standard perturbation theory, III
8. Relativistic corrections
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The Boltzmann equation

collisionless particles in phase space 
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p=mv



The Boltzmann equation

x0x0-dx
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continuity along x

𝑣!𝑑𝑡 = 𝑑𝑥
𝜌(𝑥) = number density
𝑣! 𝑥 = x-comp. of velocity field

flux of particles across A

change in particle number
in the volume



The Boltzmann equation: from 1D to 6D

f = phase-space density
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continuity in 6 phase-space dimensions



The Boltzmann equation: Hamiltonian dynamics

Collisionless
Boltzmann equation
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Phase-space density remains constant

Collisionless
Boltzmann equation
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https://physics.stackexchange.com/


From laboratory to cosmology

Potential for a distribution of matter

Poisson equation

Solving Poisson equation
for the background

Potential due to fluctuations
above background

Cosmological Poisson equation
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The Vlasov-Poisson equation

Boltzmann

Equations of motion
in gravity

Vlasov-Poisson equation
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Definition of moments
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Moments of the VP equation

Moments:

zero-th: density

first: average velocity

second: velocity variance
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normalization: total mass



Moments of the VP equation

zero-th moment: integrate over p

Continuity equation
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Moments of the VP equation

first moment: multiply by p/m and integrate over p
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Exercise
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Moments of the VP equation

…some more manipulation:

Euler equation:
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Stress tensor

shear 
viscosity

bulk 
viscosity

isotropic
pressure

Brutal approximation: 𝜎"# = 0

Less brutal approximation:  𝜎"# = 𝑝𝛿"#

Later on: full picture

(single-stream)

(perfect fluid)
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from 
fluidodynamics…

https://eaglepubs.erau.edu/



Exercise
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𝜎"# = 0

Second Friedmann equation (acceleration)
for a pressureless fluid



Roadmap
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1. Expand to first order
2. introduce comoving coordinates
3. adopt conformal time
4. solve equations



First order in an expanding space: continuity
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expand

zero-th order

first order

simplify

Approximation:  𝜎"# = 𝑝𝛿"#



First order in an expanding space: Euler
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from now on

Euler equation



Comoving coordinates
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comoving coord r

total differential

(almost)
final set of eqs

sound speed



Partial derivatives in comoving coords
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comoving coord r

(                        )

relation between partial der.

start with one coordinate:

in general:



Partial derivatives in comoving coords
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1D

3D

conformal time

(almost)
final set of eqs



Recap
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Collisionless
Boltzmann equation

final set of eqs
in comoving coords
and conf time

Vlasov-Poisson equation

Moments



Conservations equations in real space
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last touches

final set of eqs
in comoving coords
and conf time



Quiz time
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1. Why do we use the collisionless Boltzmann equation?
2. Why do we use the Newtonian approximation?
3. Why do we discard higher order terms?
4. Can we instead do everything in GR?
5. Why do we neglect viscosity?
6. Why is it called sound speed?
7. Why do we use conformal time?
8. We derived the second Friedmann eq.; and the first?
9. What do we do next?



Fourier space
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Fourier space
(comoving wavevector k)

Fourier transformations

final set of eqs
in comoving coords
and conf. time

associated scale



Fourier space
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final set of eqs
in comoving coords
and conf. time

differentiate the first
and insert the other two Jeans equation



Compare with GR equations
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Perturbed scalar metric

GR perturbation equations

Energy of the gravitational field

Newtonian equations



My preferred format
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Order parameter:Rescaled divergence:

today                                                                            so



Growth of fluctuations
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Wave equation in the 
Minkowskian limit (H=0)

Damped oscillations

Jeans scale
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Radiation: Jeans scale is as big as the horizon. Hardly grows at all

Baryons: sound speed is small after decoupling. They grow above 106 solar masses

Dark matter: sound speed is almost zero. They grow freely.

Perturbations only grow if they are bigger then the Jeans scale

Growth of fluctuations
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Above Jeans length

Using log 𝑎 as time variable
and Ω$ = 1

For pressureless matter

Friedmann equation for a single fluid
with 𝑝 = 𝑤𝜌

growing decaying

Growth of fluctuations in Einstein-deSitter
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Growth of fluctuations in 𝚲CDM

Growth rate
approx. solution

Growth index

𝚲CDM

Growth function

Ishak 2019


