Cosmological large-scale structure

Lecture 3

L. Amendola WS2024

The structure of the large scale structure

large scales

small scales

super-horizon scales	linear scales	mildly non-linear	scales	strongly non-linear scales
relativistic corrections	linear pert. theory	non-line pert. the	ear eory	N-body simulations
$k \approx aH \approx 0.002 \text{ h/Mpc}$		$k \approx 0.1 \ h/Mpc$ $k \approx$		3 h/Mpc
$\lambda \approx 3000 \ Mpc/h$		$\lambda \approx 60 \; Mpc/h$	$\lambda \approx 20$	0 Mpc/h

Recap

correlation function

correlation function
$$\xi(r_{ab}) = \frac{dN_{ab}}{\rho_0^2 dV_a dV_b} - 1 = \frac{\langle n_a n_b \rangle}{\rho_0^2 dV_a dV_b} - 1 = \langle (\delta_a + 1)(\delta_b + 1) \rangle - 1 = \langle \delta(r_a)\delta(r_b) \rangle$$
$$\xi = \frac{DD}{DR} - 1$$
practical implementation

Recap

definition
$$P(\mathbf{k}) = \int \xi(r) e^{-i\mathbf{k}\mathbf{r}} dV$$

conversely $\xi(\mathbf{r}) = (2\pi)^{-3} \int P(k) e^{i\mathbf{k}\mathbf{r}} d^3k$
Fourier conjugates

$$V\langle\delta_k\delta_{k'}^*\rangle = \frac{1}{V}\int \xi(r)e^{i(k-k')y+ikr}dV_rdV_y = \frac{(2\pi)^3}{V}P(k)\delta_D(k-k')$$

The correlation function is the variance of $\delta(x)$, the power spectrum is the variance of δ_k

Power spectrum for a finite-size set of particles

$$\begin{split} P(k) &= \frac{V}{N^2} \sum_{ij} w_i w_j \langle e^{ik(x_i - x_j)} \rangle - V W_k^2 \\ \sigma_R^2 &= (2\pi^2)^{-1} \int P(k) W_R^2(k) k^2 dk \end{split}$$

4

Roadmap for today

- The theoretical power spectrum
- Linear bias
- Redshift distortion
- Fingers-of-God effect
- Baryon Acoustic Oscillations
- Alcock-Paczynski effect
- A glimpse of non-linearity

The observed power spectrum

The observed power spectrum

 $P(k)_{initial} = Ak^{n_s}$ Initial (inflationary) Power spectrum n_s=slope

$$P(k)_{today} = Ak^{n_s}T^2(k; cosmology)$$
 T=transfer function

The exact form of T is obtained by solving the coupled linear perturbation equations for all dark matter, baryons, radiation, neutrinos...

10^{4} 10^{4} 10^{4} 10^{2} 10^{2} 10^{2} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1} 10^{2}

A simplified form for LCDM:

$$P(k) = Ak^{n_s}T(k)^2$$

$$T(k) = \left[1 + \left[ak + (bk)^{1.5} + (ck)^2\right]^{\nu}\right]^{-1/\nu}$$

$$(a, b, c) = (6.4, 3.0, 1.7) \Gamma^{-1}Mpc/h, \nu = 1.13$$

$$\Gamma = \Omega_{nr}h$$

Linear bias

In the simplest model of bias, galaxies form only above some threshold

The higher the peak, the more galaxies form

$$\delta_g = b\delta_m \qquad \qquad b \approx 1$$

Linear bias

$$\delta_g = b\delta_m \quad \Longrightarrow \quad P_g = b^2 P_m$$

This deterministic bias is very simplified but seems to work!

In general, the bias:

- Can depend on time and scale
- Can be stochastic
- Can depend on galaxy type, mass, and environment

	Q-model		P-mo	del
bin	b_{lin}	Q	b_{lin}	Р
red 1	1.40 ± 0.02	9.45 ± 0.70	1.35 ± 0.02	512 ± 48
red 2	1.22 ± 0.03	9.24 ± 0.83	1.17 ± 0.03	375 ± 40
red 3	1.17 ± 0.03	9.44 ± 0.94	1.13 ± 0.03	351 ± 42
red 4	1.20 ± 0.04	7.72 ± 0.93	1.16 ± 0.04	277 ± 46
red 5	1.25 ± 0.05	7.26 ± 1.03	1.20 ± 0.05	272 ± 51
red 6	1.44 ± 0.08	8.03 ± 1.45	1.39 ± 0.07	419 ± 80
blue 1	1.09 ± 0.03	13.74 ± 1.29	1.04 ± 0.03	541 ± 48
blue 2	0.96 ± 0.03	9.89 ± 1.34	0.92 ± 0.03	274 ± 40
blue 3	0.94 ± 0.04	7.74 ± 1.43	0.90 ± 0.04	177 ± 43
blue 4	0.89 ± 0.05	7.44 ± 1.74	0.86 ± 0.05	151 ± 46
blue 5	0.91 ± 0.07	4.64 ± 1.78	0.87 ± 0.06	66 ± 51
blue 6	0.92 ± 0.14	2.99 ± 2.97	0.87 ± 0.13	17 ± 80

Bias for galaxy color in SDSS

James G. Cresswell and Will J. Percival, MNRAS 2008

Mapping real space to redshift space

$$r_{obs} = z/H_0 = (z_c + z_p)/H_0$$

Two effects at different scales: squeezing and elongation

Mapping real space to redshift space

$$\mathbf{v}_p = \mathbf{v} \cdot \frac{\mathbf{r}}{r}$$

$$r_{obs} = \frac{v_{cosm} + v_p}{H}$$

$$s = r + u(r) - u(0)$$

3D version: From real space **r** to redshift space **s**

$$\mathbf{s} = \mathbf{r} \left[1 + \frac{u(r) - u(0)}{r} \right]$$

Number of particle must remain the same! $n(r)dV_r = n(s)dV_s$

$$dV_s = s^2 ds d\cos\theta d\phi = r^2 \left(1 + \frac{\Delta u(r)}{r}\right)^2 |J| dr d\cos\theta d\phi = \left(1 + \frac{\Delta u(r)}{r}\right)^2 |J| dV_r$$

$$s = r + u(r) - u(0)$$
 \longrightarrow $|J| = |\frac{\partial s}{\partial r}| = 1 + \frac{du}{dr}$

$$dV_s = s^2 ds d\cos\theta d\phi = r^2 \left(1 + \frac{\Delta u(r)}{r}\right)^2 |J| dr d\cos\theta d\phi = \left(1 + \frac{\Delta u(r)}{r}\right)^2 |J| dV_r$$

Relation between density contrast in real and redshift space

$$\delta_s = \frac{n(s)dV_s}{n_0dV_s} - 1 = \frac{n(r)dV_r}{n_0dV_r\left(1 + \frac{\Delta \mathbf{u}(r)}{r}\right)^2|J|} - 1$$

Simplify to first order

$$\delta_s = \frac{n(r)}{n_0} (1 - 2\frac{\Delta u(r)}{r} - \frac{du}{dr}) - 1$$
$$= \left[\frac{n(r)}{n_0} - 1\right] - \frac{n(r)}{n_0} \left[2\frac{\Delta u(r)}{r} + \frac{du}{dr}\right]$$
$$= \delta_r - 2\frac{\Delta u(r)}{r} - \frac{du}{dr}$$

Valid for any tracer!

$$\delta_s = \delta_r - \frac{du}{dr}$$

Back to linear pert theory:

 $a\frac{d\delta}{dt} = -ik^i v_i \qquad \dot{v}^i = -\mathcal{H}v^i - a^2 ik^i \psi$

Assuming irrotational fluid **v** is parallel to **k**

$$v^i = iHa\delta f \frac{k^i}{k^2}$$

derive this equation!

In real space:

$$\mathbf{v}(x) = i\mathcal{H}f\frac{V}{\left(2\pi\right)^3}\int \delta_k \frac{\mathbf{k}}{k^2} e^{ikr} d^3k$$

In real

I space:
$$\mathbf{v}(x) = i\mathcal{H}f \frac{V}{\left(2\pi\right)^3} \int \delta_k \frac{\mathbf{k}}{k^2} e^{ikr} d^3k$$

Units of 1/H and along the LOS

$$u(r) = \mathcal{H}^{-1} \frac{\mathbf{r}}{r} \cdot \mathbf{v} = if \int \delta_k e^{i\mathbf{k}\cdot\mathbf{r}} \frac{\mathbf{kr}}{k^2 r} d^3 k^*$$

$$\frac{du}{dr} = -f \int \delta_k e^{i\mathbf{k}\cdot\mathbf{r}} \left(\frac{\mathbf{k}\mathbf{r}}{kr}\right)^2 d^3k^* \qquad \text{using} \quad \frac{d}{dr} e^{i\mathbf{k}\cdot\mathbf{r}} = i\frac{\mathbf{k}\cdot\mathbf{r}}{r} e^{i\mathbf{k}\cdot\mathbf{r}}$$

15

And since

$$\delta_s = \delta_r - \frac{du}{dr}$$

we get

$$\begin{split} \delta_s &= \delta_r - \frac{du}{dr} = \delta_r + f \int \delta_k e^{i\mathbf{k}\mathbf{r}} \left(\frac{\mathbf{k}\mathbf{r}}{kr}\right)^2 d^3k^* = \delta_r + f \int \delta_k e^{i\mathbf{k}\mathbf{r}} \mu^2 d^3k^* \\ \mathbf{k}\cdot\mathbf{r}/(kr) &= \mu \end{split}$$

$$\delta_s = \delta_r + f \int \delta_k e^{i \mathbf{k} \mathbf{r}} \mu^2 d^3 k^*$$

Apply to any tracer (eg galaxies)

Obtained from continuity, so apply to the total mass fluctuations

So we can write:
$$\delta_{g,s} = \delta_{g,r} + \frac{f}{b} \int \delta_{k,g} e^{i\mathbf{k}\mathbf{r}} \mu^2 d^3 k = \delta_{g,r} + \beta \int \delta_{k,g} e^{i\mathbf{k}\mathbf{r}} \mu^2 d^3 k$$

Crucial simplification: $\mu = const$

$$\delta_{g,s} = \delta_{g,r} + \beta \mu^2 \int \delta_{k,g} e^{i\mathbf{k}\mathbf{r}} d^3k = \delta_{g,r} (1 + \beta \mu^2)$$

(same in Fourier space!)

$$\delta_{g,s} = \delta_{g,r} + \beta \mu^2 \int \delta_{k,g} e^{ikr} d^3k = \delta_{g,r} (1 + \beta \mu^2)$$

Crucial simplification: $\mu = const$ Flat sky/distant observer approximation RSD Redshift space distortion

 $\mathbf{k}\cdot\mathbf{r}/(kr)=\mu$

almost constant

Linear power spectrum

If we average it over angles we get $P_s(k) = P_r(k)(1 + 2\beta\langle\mu^2\rangle + \beta^2\langle\mu^4\rangle)$

where

Averaging over angles:

RSD measures $\beta = f/b$

$$\begin{array}{ll} \langle \mu^2 \rangle & = & \frac{1}{2} \int_{-1}^1 \cos^2 \theta' d \cos \theta' = 1/3 \\ \langle \mu^4 \rangle & = & \frac{1}{2} \int \cos^4 \theta' d \cos \theta' = 1/5 \end{array}$$

Finally we obtain for the μ -averaged spectrum

 $P_s(k) = P_r(k)(1 + 2\beta/3 + \beta^2/5)$

Linear power spectrum

Final touch
$$P_g(k, \mu, z) = b^2 G^2 P_m(k, z = 0)(1 + \beta \mu^2)^2 e^{-k^2 \mu^2 \sigma_v^2}$$

Fingers-of-God damping

Fingers-of-God

how do we get this?

$$P_g(k,\mu,z) = b^2 G^2 P_m(k,z=0)(1+\beta\mu^2)^2 e^{-k^2\mu^2\sigma_v^2}$$

smoothed corr funct

Two theorems:

The FT of a convolution of two functions is the product of the individual FT of the functions

The FT of a Gaussian is another Gaussian

$$P_{\text{FoG}}(k,\mu) = P(k)e^{-k^2 \mu^2 \sigma_{\nu}^2}$$

Recap

theoretical power spectrum $P(k)_{today} = Ak^{n_s}T^2(k; cosmology)$

bias
$$P_g = b^2 P_m$$

RSD
$$\delta_{g,s} = \delta_{g,r}(1 + \beta \mu^2)$$

(almost) final form
$$P_g(k,\mu,z) = b^2 G^2 P_m(k,z=0)(1+\beta\mu^2)^2 e^{-k^2\mu^2\sigma_v^2}$$

RSD on the correlation function

excess of clustering at separation around 140 Mpc

BOSS collaboration

Power spectrum

Correlation function

perturbations in the coupled baryon-photon plasma from Big Bang to decoupling

$$\theta_A \equiv \frac{r_s(z_{\rm dec})}{d_A^{(c)}(z_{\rm dec})},$$

perturbations in the coupled baryon-photon plasma from Big Bang to decoupling

BAO as standard rod

BAO as standard rod

we measure angles and redshifts, not distances!

when we produce a P(k) or $\xi(r)$ we convert angles/redshifts into wavevectors k (or separations r) with a reference cosmology (i.e. expansion rate H(z))

for any other cosmology...

 $D(z) = \frac{\lambda_{\perp}}{\theta}$ H(z) = $\theta = \frac{\lambda_{\perp}}{D}$ $dz = \lambda_{\parallel} H$ $\frac{\lambda_{\perp}}{D}|_1 = \frac{\lambda_{\perp}}{D}|_2$ $\lambda_{\parallel} H|_1 = \lambda_{\parallel} H|_2$ $Dk_{\perp}|_{1} = Dk_{\perp}|_{2}$

 $\frac{H}{k_{\parallel}}|_1 = \frac{H}{k_{\parallel}}|_2$

from these relations...

...we see that these combinations are the same in every cosmology

...therefore for any two cosmologies

...and therefore

$$egin{aligned} Dk_{ot} \mid_1 &= Dk_{ot} \mid_2 \ &rac{H}{k_{ot}} \mid_1 &= rac{H}{k_{ot}} \mid_2 \end{aligned}$$

$$k_\perp = k_{r\perp} D_r / D \, .$$

"r" is a reference cosmology

$$k_{\parallel} = k_{r\parallel} H/H_r \, . \label{eq:k_lim}$$

We need modulus and direction cosine:

$$\begin{split} k &= (k_{\parallel}^2 + k_{\perp}^2)^{1/2} = \alpha k_r \,, \\ \mu &= \frac{k_{\parallel}}{(k_{\parallel}^2 + k_{\perp}^2)^{1/2}} = \frac{H \mu_r}{H_r \alpha} \,, \end{split}$$

where, putting
$$h = H/H_r$$
 and $d = D/D_r$
$$\alpha = \frac{\sqrt{\mu_r^2(h^2d^2 - 1) + 1)}}{d} \,.$$

$$\begin{split} k &= (k_{\parallel}^2 + k_{\perp}^2)^{1/2} = \alpha k_r ,\\ \mu &= \frac{k_{\parallel}}{(k_{\parallel}^2 + k_{\perp}^2)^{1/2}} = \frac{H\mu_r}{H_r\alpha} ,\\ \text{where, putting } h &= H/H_r \text{ and } d = D/D_r \\ \alpha &= \frac{\sqrt{\mu_r^2(h^2d^2 - 1) + 1)}}{d} . \end{split}$$

Final linear spectrum with bias, growth, RSD, FoG, AP

$$P_g(k,\mu,z) = b^2 G^2 P_m(\alpha k_r) (1+\beta \mu_r^2 \frac{h^2}{\alpha^2})^2 e^{-k^2 \mu^2 \sigma_v^2}$$
 observations theory

Quiz time

- 1. How can we quantify the amount of correlations?
- 2. Can we measure the peculiar velocity?
- 3. In the final expression for P(k), where are the cosmological parameters?
- 4. Is the BAO really a standard rod?
- 5. Is the k-range of the linear regime wider or smaller at high z?

Navarro-Frenk-White profile for DM halos

$$\rho_{NFW} = \frac{\rho_0}{\frac{r}{r_s}(1+\frac{r}{r_s})^2}$$

Navarro-Frenk-White profile

$$\rho_{NFW} = \frac{\rho_0}{\frac{r}{r_s}(1+\frac{r}{r_s})^2}$$

Simple model: NFW halos of DM randomly distributed on top of the linear spectrum

$$\rho_{NFW} = \frac{\rho_0}{\frac{r}{r_s}(1+\frac{r}{r_s})^2}$$

 δ_1

$$= \frac{4\pi}{V} \int_0^R \left(\frac{\rho_{NFW}}{\bar{\rho}} - 1\right) \frac{\sin(kr)}{(kr)} r^2 dr \qquad \qquad \bar{\rho} = \frac{4\pi}{V} \int_0^R \rho_{NFW} r^2 dr$$
$$= \frac{1}{V} \left[\frac{4\pi}{\bar{\rho}} \int_0^R \rho_{NFW} \frac{\sin(kr)}{(kr)} r^2 dr - \frac{4\pi}{\bar{\rho}} \int_0^R \frac{\sin(kr)}{(kr)} r^2 dr\right]$$
$$= \frac{1}{V} (W_{NFW} - W_{TH})$$

Spectrum of N uncorrelated haloes

$$P_h(n, R, r_s) = NV\delta_1^2 = n(W_{NFW} - W_{TH})^2$$

$$P_{NL} = P_{LIN} + P_h$$

 $P_{NL} = P_{LIN} + P_h$

The structure of the large scale structure

large scales

small scales

super-horizon scales	linear scales	mildly non-linear	scales	strongly non-linear scales
relativistic corrections	linear pert. theory	non-line pert. the	ear eory	N-body simulations
$k \approx aH \approx 0.002 \text{ h/Mpc}$		$k \approx 0.1 \ h/Mpc$ $k \approx$		3 h/Mpc
$\lambda \approx 3000 \ Mpc/h$		$\lambda \approx 60 \; Mpc/h$	$\lambda \approx 20$	0 Mpc/h