# Cosmological large-scale structure

# Lecture 4

L. Amendola WS2024

### The structure of the large scale structure

large scales

#### small scales

| super-horizon scales                       | linear scales       | mildly<br>non-linear                            | scales                                        | strongly<br>non-linear scales |
|--------------------------------------------|---------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------|
| relativistic<br>corrections                | linear pert. theory | non-line<br>pert. the                           | ear<br>eory                                   | N-body simulations            |
| $k \approx aH \approx 0.002 \text{ h/Mpc}$ |                     | $k \approx 0.1 \ h/Mpc$ $k \approx 0.3 \ h/Mpc$ |                                               |                               |
| $\lambda \approx 3000 \ Mpc/h$             |                     | $\lambda \approx 60 \; Mpc/h$                   | $\approx 60 Mpc/h$ $\lambda \approx 20 Mpc/h$ |                               |

#### Recap: The observed power spectrum



#### Recap

theoretical power spectrum  $P(k)_{today} = Ak^{n_s}T^2(k; cosmology)$ 

bias 
$$P_g = b^2 P_m$$

RSD 
$$\delta_{g,s} = \delta_{g,r}(1 + \beta \mu^2)$$

(almost) final form 
$$P_g(k,\mu,z) = b^2 G^2 P_m(k,z=0)(1+\beta\mu^2)^2 e^{-k^2\mu^2\sigma_v^2}$$

#### Recap



correlation function across/along LOS

Alcock-Paczynski effect

$$\begin{split} k &= (k_{\parallel}^2 + k_{\perp}^2)^{1/2} = \alpha k_r \,, \\ \mu &= \frac{k_{\parallel}}{(k_{\parallel}^2 + k_{\perp}^2)^{1/2}} = \frac{H \mu_r}{H_r \alpha} \,, \end{split}$$

$$P_g(k,\mu,z) = b^2 G^2 P_m(\alpha k_r) (1 + \beta \mu_r^2 \frac{h^2}{\alpha^2})^2 e^{-k^2 \mu^2 \sigma_v^2}$$

100

100

150

150

0.03

0.02

0.01

-0.01 <sup>E</sup> 50

50

#### Recap

 $P_{NL} = P_{LIN} + P_h$ 



what we expect from non-linear corrections

# Roadmap for today

- Simplified non-linearity
- Zel'dovich approximation
- Spherical collapse
- Abundance of virialized halos





Millennium simulation

Water surface (Photo by <u>Chris Lawton</u> on <u>Unsplash</u>)

caustics form where many trajectories (of light rays or particles) converge



Main idea: follow the trajectories of particles until they develop a singularity (caustic)

 $\mathbf{x}(t) = \mathbf{x}_0 + g(t)\mathbf{s}(\mathbf{x}_0)$ 

conservation of particle number

$$\rho(x,t)d^3x = \rho_0(t)d^3x_0$$

mapping through the Jacobian

$$\rho(x,t) = \rho_0(t) \left| \frac{\partial \mathbf{x}}{\partial \mathbf{x}_0} \right|^{-1}$$

diagonal deformation tensor 
$$d_{ij} \equiv -\frac{\partial s_i}{\partial x_{0,j}}$$
Eigenvalues
$$\left|\frac{\partial \mathbf{x}}{\partial \mathbf{x}_0}\right| = \left|I + g(t)\frac{\partial \mathbf{s}(\mathbf{x}_0)}{\partial \mathbf{x}_0}\right| = |\delta_{ij} - g(t)d_{ij}| = (1 - g\lambda_1)(1 - g\lambda_2)(1 - g\lambda_3)$$

$$\rho(x,t) = \frac{\rho_0(t)}{(1-g\lambda_1)(1-g\lambda_2)(1-g\lambda_3)}$$

expand for small  $g\lambda$ 

$$\rho(x,t) \approx \rho_0(t)(1+g(t)(\lambda_1+\lambda_2+\lambda_3)) = \rho_0(t)(1+g(t)\operatorname{Tr}(d_{ij}))$$

therefore...

$$\delta(t) \equiv \frac{\rho(x,t) - \rho_0(t)}{\rho_0(t)} = -g(t)\frac{\partial s_i}{\partial x_{0,i}} = -g(t)\nabla_{x_0}\mathbf{s}(x_0)$$

...this should reproduce the linear growth:

$$\delta(t) = G(t)\delta_0,$$

$$\delta(t) \equiv \frac{\rho(x,t) - \rho_0(t)}{\rho_0(t)} = -g(t)\frac{\partial s_i}{\partial x_{0,i}} = -g(t)\nabla_{x_0}\mathbf{s}(x_0)$$
$$\delta(t) = G(t)\delta_0,$$

then... 
$$g(t) = G(t)$$

...and 
$$-
abla_{x_0}\mathbf{s}(x_0) = \delta_0$$

Poisson eq.

we find that the initial displacement s is the gradient of the potential

$$\mathbf{s}(x_0) = -\frac{2}{3a^2 H^2 \Omega_m G} \nabla \Psi$$

 $\mathbf{x}(t) = \mathbf{x}_0 + g(t)\mathbf{s}(\mathbf{x}_0) \qquad g(t) = G(t) \qquad \mathbf{s}(x_0) = -\frac{2}{3a^2H^2\Omega_m G}\nabla\Psi$ In this way, one can run a very cheap N-body simulation: first, take the *linear* power spectrum at some early epoch for the model you want to simulate; second, convert the power spectrum for  $\delta$  into a power sectrum for  $\Psi$ using Poisson equation in Fourier space; third, create a real space realization of this spectrum by overimposing sinusoidal oscillations with amplitude given by the spectrum and random phases; fourth, put particles on a regular grid; fifth, evaluate the displacement field by evaluating at every grid point (4.1.12); finally, move the particles out of their initial grid point by using (4.1.1).

until you reach a singularity!

$$\rho(x,t) = \frac{\rho_0(t)}{(1-g\lambda_1)(1-g\lambda_2)(1-g\lambda_3)}$$
 growing!

#### Pancakes and filaments

$$\rho(x,t) = \frac{\rho_0(t)}{(1-g\lambda_1)(1-g\lambda_2)(1-g\lambda_3)}$$

$$d_{ij} \equiv -\frac{\partial s_i}{\partial x_{0,j}} = \begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{pmatrix}$$

take the largest eigenvalue: particles will move preferentially in the direction of the associated eigenvector the caustic will therefore form on a plane orthogonal to this direction (pancakes)

> What happens next? We can expect particle stick to this plane, then move to the edges (filaments) and then to the vertices (clusters)

#### Pancakes and filaments

particles form pancakes, filaments and finally clusters



However pancakes form around z=30 in N-body simulations: so we can use the ZA only until then ZA describes the initial stages (pancakes)

### Spherical collapse the final one (halo formation)



Question: if initially the shell expands, what will happen?

$$\frac{\mathrm{d}^2 R}{\mathrm{d} t^2} = -\frac{GM(R)}{R^2} = -\frac{4}{3}\pi G\rho R\,,$$

Constant mass in every shell

$$M(R) = 4\pi\rho R^3/3$$

Density of a pressureless component

$$\rho_0 = (3M(R_0)/4\pi)(R_0a(t))^{-3}$$

Evolution of density contrast

$$\delta = \frac{\rho}{\rho_0} - 1 = \left(\frac{a(t)R_0}{R}\right)^3 - 1$$

- - -

$$rac{\mathrm{d}^2 R}{\mathrm{d}t^2} = -rac{GM(R)}{R^2} = -rac{4}{3}\pi G
ho R\,, \qquad \delta = rac{
ho}{
ho_0} - 1 = \left(rac{a(t)R_0}{R}
ight)^3 - 1$$

Replace *R* with  $\delta$ : non-linear equation for  $\delta$ 

$$\delta'' + \left(1 + \frac{\mathcal{H}'}{\mathcal{H}}\right)\delta' - \frac{3}{2}\Omega_m\delta = \frac{4}{3}\frac{\delta'^2}{1+\delta} + \frac{3}{2}\Omega_m\delta^2 \,.$$

$$\frac{\mathrm{d}^2 R}{\mathrm{d} t^2} = -\frac{GM(R)}{R^2} = -\frac{4}{3}\pi G\rho R\,,$$

Cycloid equation  $\left(\frac{\mathrm{d}R}{\mathrm{d}t}\right)^2 = \frac{2GM}{R} - C\,,$ 

Multiply by 2dR/dt

$$R = GM(1 - \cos\tau)/C$$

Parametric solution

$$t = GM(\tau - \sin\tau)/C^{3/2}$$



$$R = GM(1 - \cos\tau)/C \qquad t = GM(\tau - \sin\tau)/C^{3/2}$$
$$\delta = \frac{\rho}{\rho_0} - 1 = \left(\frac{a(t)R_0}{R}\right)^3 - 1$$

In EdS (
$$\Omega_m = 1$$
)  $a(t) = a_0 (t/t_0)^{2/3}$ 

We obtain 
$$\delta = \frac{9}{2} \frac{(\tau - \sin \tau)^2}{(1 - \cos \tau)^3} - 1,$$
  
Linear part 
$$\delta_L = \frac{3}{5} \left[ \frac{3}{4} (\tau - \sin \tau) \right]^{2/3},$$



$$\delta_L = \delta_{\text{coll}} = (3/5)(3\pi/2)^{2/3} \approx 1.686$$
,

#### Virialization



However, we assumed exact spherical symmetry and M(R)=const in the shell, valid up to shell crossing

In practice, the collapse will start deviating from spherical symmetry

We can find that at

 $R_V = R_T/2.$ 

The system virializes

$$U_T = U_V + K_V = U_V/2$$

which means all components of velocity should be equal: no longer radial symmetry!

# Quiz time

- 1. Do we really observe pancakes and filaments?
- 2. What happens if the initial distribution is non-Gaussian?
- 3. What is the density contrast at virialization?
- 4. We assumed that the shell mass is constant. Is this realistic?
- 5. How can the spherical collapse model be generalized/improved?

### Spherical collapse: why is it useful?

Because it tells us at which value of the linear evolution  $\delta_L$  objects becomes strongly non-linear, i.e. collapse and form structures

$$\delta_L = \delta_{\rm coll} \approx 1.686 \,,$$

That is, we can use linear theory to predict a non-linear event!





# Spherical collapse: why is it useful?



We can therefore estimate at any given time what fraction of cells of size R (containing mass M) contains a virialized object!

 $\sigma_M^2(z).$ 

#### Spherical collapse: why is it useful?



Fraction of collapsed object of mass M (inside R) at time z

$$p(M,z)|_{\delta > \delta_{\text{coll}}} = \frac{1}{\sigma_M(z)\sqrt{2\pi}} \int_{\delta_{\text{coll}}}^{\infty} \exp\left(-\frac{\delta_M^2}{2\sigma_M^2(z)}\right) \,\mathrm{d}\delta_M = \frac{1}{2} \operatorname{erfc}\left(\frac{\delta_{\text{coll}}}{\sqrt{2}\sigma_M(z)}\right) \,,$$

Finally (see script) we get the number density of virialized halos  $dn = \frac{N}{V} = \frac{dp}{V_M} = \frac{\rho}{M} \left| \frac{\partial p(M,z)|_{\delta > \delta_{coll}}}{\partial M} \right| dM = \sqrt{\frac{2}{\pi}} \frac{\rho}{M^2} \frac{\delta_{coll}}{\sigma_M} \left| \frac{d \ln \sigma_M}{d \ln M} \right| e^{-\delta_{coll}^2/(2\sigma_M^2)} dM$ . in the mass range dM

# Spherical collapse: why is it not SO useful?

number density of virialized halos in the mass range dM

$$\mathrm{d}n = \frac{N}{V} = \frac{\mathrm{d}p}{V_M} = \frac{\rho}{M} \left| \frac{\partial p(M, z)|_{\delta > \delta_{\mathrm{coll}}}}{\partial M} \right| \mathrm{d}M = \sqrt{\frac{2}{\pi}} \frac{\rho}{M^2} \frac{\delta_{\mathrm{coll}}}{\sigma_M} \left| \frac{\mathrm{d}\, \ln\sigma_M}{\mathrm{d}\, \ln M} \right| e^{-\delta_{\mathrm{coll}}^2/(2\sigma_M^2)} \mathrm{d}M \,.$$

Because:

- It assumes isolated radial collapse
- It is analytical only for EdS
- It does not predict the correlation of the halos

#### Next: higher-order perturbation theory