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Chapter 1

Random variables

1.1 Notation
Wherever not otherwise specified, we will use the following notation:

• data (or observations, measurements etc) will be denoted by xi or di (or ni for discrete values), where the
Latin index i goes from 1 to the number of data points

• random variables will be denoted as x, y etc

• parameters will be denoted as θα, where the Greek index runs over the number of parameters (unless of course
we use a more specific name as µ, σ etc)

• estimators of parameters, seen as random variables, will be denoted as θ̂α. If they are obtained as maximum
likelihood estimators we can use a ML superscript. Specific values for the estimators (i.e., sample estimates)
will be denoted as θ̄α or similar notation like for instance the sample mean x̄ (or n̄ if the data are discrete
values). Sometimes however we do not need to distinguish between estimators and estimates and use a bar
for estimators as well.

• expected values will be denoted as E[x] or 〈x〉; we use also V ar[x] ≡ E[(x− E[x])2] .

• we always assume the data can be ordered on a discrete or continuous line or space, i.e. they are numbers,
and not categories. Categorical data are values that have no obvious numerical ordering and therefore can
be arbitrarily ordered. For instance, collecting in a table the US states where people was born gives a list of
states that can be represented by an arbitrary number sequence, eg ordering the states alphabetically or by
size or population etc.

1.2 Some intuitive concepts
Let us consider a group of N = 120 people and let’s record how many of these people were born in a given month.
Suppose we obtain:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
12 12 11 11 7 13 5 9 7 10 8 15

The number of people in every i-th month, ni, is a random variable, i.e. a variable that can assume random
(unpredictable) values in a certain range. The theory of probability describes quantitatively the behavior of random
variables.

The first intuitive concept to quantify the behavior of ni is to define an average:

n̄ ≡
∑s
i ni
s

(1.1)

where s = 12 is the number of months in the year. If we don’t have any reason to suspect that some month is
somehow special (we neglect here the slight difference in month lengths), we expect that every month contains N/s
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people and since N =
∑
ni we can define the average as above. The average itself may or may not be a random

variable. In the present case, n̄ = 10 is not a random variable, since we fixed the total number of persons in our
experiment. In most cases, eg in physical measurements, the average of a sample of measures is itself a random
variable.

We ask now ourselves how to define the deviation from the mean, i.e. how to quantify the fact that generally
ni 6= n̄. Perhaps we are interested in discovering anomalies in the distribution. If we are now not interested in the
sign of the deviation but only on its amplitude we could use something proportional to |ni − n̄|. We could define
then something like ∑

|ni − n̄|
s

(1.2)

However, for reasons that will be clear later one, usually we define a related but different quantity:

σ̄ ≡
√∑s

i (ni − n̄)2

s
(1.3)

where σ is called the root mean square or standard deviation (or more exactly an estimate of the standard deviation
). Note that σ̄2 is itself an average:

σ̄2 ≡
∑s
i (ni − n̄)2

s
(1.4)

In our present example we have then
n̄ = 10 σ̄ = 3.41 (1.5)

We expect then that most data ni will not deviate more than a few σ̄ from average and this is in fact what we
observe. Then n̄ and σ̄ give us important information on the behavior of ni; since this experiment can be repeated
many time, these averages describe fundamental properties of the data distribution. It is intuitively clear that these
averages will be more and more precise when we average over more and more experiments. These ideas will be
more precisely defined in the following.

Every function of ni is itself a random variable (although it could be a trivial random variable with probability
1). For instance, the number of people born in the first M months; the number of months with more than P people
and so on.

1.3 Probability and frequency
Let us now focus on, say, the month of January. In the first experiment we had n1 = 12. Now we repeat the same
experiment many times, always recording how many people are born in January, so that we have a list of values
n1 = 12, n2 = 9, n3 = 11 etc. We build now a histogram of these data, ie. how many times we measure n = 10, how
many times n = 11 etc. For instance, in Figs 1.1,1.2 we have the cases Nexp = 120 and 600. We find experimentally
that the distribution converges to a certain form, with a peak around 10 and a dispersion similar to the value σ̄
defined earlier.

For Nexp →∞ we can assume we have the “true probability” of having ni. We define then

P (ni) ≡ lim
Nexp→∞

number of occurrences of n
Nexp

(1.6)

that is, the frequency of events. Now since
∑

(number of occurrences of n) = Nexp, we have

Ntot∑
i

P (ni) = 1 (1.7)

The sum of all possible probabilities of any given experiments equals 1. Fig. 1.2 becomes then as in Fig. 1.3. The
histogram approximates the probability distribution of ni.

In the limit in which the random variable ni becomes a continuous variable (eg a temperature, a magnitude
etc), we define a probability density or probability distribution function (PDF) f(x)

f(x)dx = P (x) (1.8)
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Figure 1.1: Repeating the experiment 120 times...
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Figure 1.2: ...and 600 times.
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Figure 1.3: Same histogram as the previous one, but normalized to unity.
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Figure 1.4: Histogram for the frequency of months for N = 120...
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Figure 1.5: ...and for N = 1200.

and we have, within the domain of x(i.e. all its possible values)ˆ
f(x)dx = 1 (1.9)

In the same experiment we can identify other random variables and therefore other PDFs. For instance, if we
ask the birth month we will get an answer in the range mi ∈ 1− 12 which itself is a random variable. Then we can
create an histogram as in Fig. 1.4 in which we plot the month frequency ni/Ntot versus the months. If we increase
Ntot to 1200 we obtain Fig. 1.5. Here clearly the distribution tends to a uniform distribution with P (mi) = 1/12.

1.4 Properties of the PDFs
The two most fundamental properties of probability distributions areˆ

f(x)dx = 1 (1.10)

f(x) ≥ 0 (1.11)

We can easily extend the idea to joint events, for instance the probability of obtaining at the same time (non
necessarily in the chronological sense) the measurement x in dx (eg a galaxy magnitude) and y in dy (eg the galaxy
redshift). Then we have

f(x, y)dxdy = P (x, y) (1.12)
f(x, y) ≥ 0 (1.13)ˆ

f(x, y)dxdy = 1 (1.14)
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Immediate consequence of the first law is that if F (< X) =
´X
−∞ f(x)dx is the probability of obtaining a result less

than X , then the probability of obtaining a result greater than or equal to X is F (≥ X) = 1 − F (< X). So in
general if P (A) is the probability of A, the probability of non-A (ie anything but A) is simply 1 − P (A) , to be
denoted as P (Ā).

Other examples of probability:

P (x) = lim
N→∞

number of people voting for party X
number of interviewed

(1.15)

P (x) = lim
N→∞

number of measures (distances, temp., etc) that give X
number of experiments

(1.16)

Clearly if x is a continuous variable we have

f(x)dx = lim
N→∞

number of measures in x, x+ dx

number of experiments
(1.17)

1.5 Joint, disjoint, conditional probability
When we combine several events, we can define three kinds of probabilities according to how we want to combine
the events.

Disjoint P.. If PA and PB are the prob. of events A and B (not necessarily independent) that are mutually
exclusive (i.e. AANDB = A ∩B = 0), the prob. of A or B is PA + PB . Therefore

P (A ∪B) = P (A) + P (B) (1.18)

We have already seen an example of disjoint prob. when we have seen that P (A) = 1− P (A). Since A and A are
mutually exclusive, we can write

P (A ∪A) = 1 = P (A) + P (A) (1.19)

So for instance the prob. of having 1 or 2 in a dice roll is 1/6 + 1/6 = 1/3. Considering continuous variables we
have

p(x ∈ A ∪B) =

ˆ
A

f(x)dx+

ˆ
B

f(x)dx (1.20)

only if the ranges A and B do not overlap. If they overlap, the events are not mutually exclusive (there will be
some event that is both A and B so A ∩B 6= 0), and we have:

p(x ∈ A ∪B) =

ˆ
A

f(x)dx+

ˆ
B

f(x)dx−
ˆ
A∩B

f(x)dx (1.21)

In general therefore
P (A ∪B) = P (A) + P (B)− P (A ∩B) (1.22)

So for instance if A is the prob. of having one “1” in the first die, whatever the second is, and B the prob. of “1”
in the second die, whatever the first is, and we consider the prob. of having at least a “1” in two throws, the event
“11” is both A and B. So we have P (A ∪B) = 1/6 + 1/6− 1/36 = 11/36, as we can verify easily since the winning
combinations are (11,12,13,14,15,16,21,31,41,51,61) are 11 over 36.

Let’s make another example. Suppose we have a number of galaxies and we measure their redshift and their
apparent magnitude. I win a bet if the next galaxy has magnitude higher than (i.e. dimmer than) 24 or if its redshift
is higher than 2. Based on previous data, I know that 10% of galaxies in my survey have that high magnitude and
20% that high redshift. What is the probability I win my bet? If I am sure that no high redshift galaxy in my
sample has that high magnitude, then my chances are 10+15=25%. But if, on the contrary, I discover that all the
galaxies with that high magnitudes are indeed high redshift ones, then of course those 15 high-redshift galaxies out
of 100 already includes the 10 out of 100 that are very dim, so my chances are just 15%, that is 10+15-10=15%.
Note that we did not assume that magnitude and redshift are independent; in fact, in the second case they are
highly correlated.
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Since the probability that y is in separated intervals dyi, dy2 etc is the sum of disjoint elements, the probability
that x is in dx and y is in dy1 or dy2 or dy3 etc, is

p(x)dx = dx
∑
i

f(x, y)dyi = dx

ˆ
f(x, y)dy (1.23)

that is, p(x) =
´
f(x, y)dy. So we identify the probability density of having x in a range dx regardless of y as

p(x) =

ˆ
f(x, y)dy (1.24)

This operation is often called marginalization, and is immediately extended to N variables. If, and only if, x, y are
independent, the marginalization is independent of y in any range.

Joint P . If PA and PB are the probabilities of the independent events A and B, the probability of having both
A and B is PAPB . In fact, “independent” means that in an experiment in which we obtain A, we obtain B the same
number of times (i.e. with the same frequency) regardless of A.

Then (∩=AND; ∪=OR)
P (A ∩B) = P (B ∩A) = P (A)P (B) (1.25)

For instance, the prob. of having 1 in a dice throw and 2 in another one is (1/6)2 = 1/36. If the events are not
independent, we cannot write P (A ∩B) = P (A)P (B) but we can still write

P (A ∩B) = P (B ∩A) (1.26)

Conditional P.. If the events are not independent, we can define the conditional probability (prob. of A given
B):

P (A|B) =
P (A ∩B)

P (B)
=

number of cases that are both A and B
number of cases that are B

(1.27)

Example 1. The probability of the combination 1-2 after obtaining 1 in the first roll equals (1/36)/(1/6) = 1/6.
The same for the probability of 1-1 after obtaining 1 in the first roll. But...

Example 2. You roll two dice with blindfolded eyes. Then the croupier tells you that at least one die has a “1”
. What is the probability that you got two “1”s?

We need P (A = 1 ANDB = 1 |A = 1 ORB = 1). We know already that having at least a “1” has a probability
of P (A = 1 ORB = 1) = 11/36. Then we also know that double “1” has a probability of P (A = 1 ANDB = 1 , A =
1 ORB = 1) = P (A = 1 ANDB = 1) = 1/36. So we see that

P (A = 1 ANDB = 1 |A = 1 ORB = 1) =
P (A = 1 ANDB = 1 , A = 1 ORB = 1)

P (A = 1 ORB = 1)
=

1

11
(1.28)

perhaps a bit surprisingly, since one might have been tempted to answer 1/6. (Since the information that a die
has a 1 occurs after the croupier has seen both dice, their result is no longer independent, and the probability is
different with respect to the one in Example 1, in which the result of the second die is independent of the first one.)

This extends obviously to continuous variables. The prob. of x in the range I = (−1, 1) given that x < 0 is
P (x ∈ I|x < 0). The prob. of having x < 0 is

P (x < 0) =

ˆ
<0

f(x)dx (1.29)

and the prob. of having x ∈ I and at the same time x < 0 is

P (x < 0, x ∈ I) =

ˆ 0

−1

f(x)dx

Now, the fraction of cases (or area) such that P (x ∈ I|x < 0) is clearly the fraction P (x < 0, x ∈ I)/P (x < 0), which
agrees with the rule above. In other words, if in 100 measures there are 50 with x < 0 and 20 with −1 < x < 0 it
is clear that the fraction of measures with x ∈ I among those with x < 0 is 20/50=2/5.

9



Another example. The prob. of obtaining ≥ 9 in two dice rolls is 10/36: there are in fact 10 successful events:
36, 45, 46, 55, 56, 66, 63, 54, 64, 65 in 36 possibilities. Which is the prob. of obtaining a score ≥ 9 given that in the
first roll the result is 6 ? We have

P (x+ y ≥ 9|x = 6) = P (x+ y ≥ 9, x = 6)/P (x = 6) =
4

36

6

1
=

2

3
(1.30)

which indeed is true since if the first die has a 6, then it is sufficient that the second result is 3,4,5,6 to win, i.e. 4
cases out of 6.

Yet another example. Suppose we know that on average one person out of 1000 randomly chosen persons is a
physics student and plays piano; suppose we also know that in general one out of 100 people plays piano; then the
probability that a person, among those that play piano, is also a physics student is (1/1000)/(1/100) = 1/10. In
other words, out of 1000 people, we know that 10 (on average) play piano; we also know that among those 1000
people there is one that both plays piano and study physics and of course this person has to be among the 10 that
play piano. Then this person is indeed 10% of those that play piano.

Consequently, the fraction of people that play piano and study physics , P (A∩B), is equal to the fraction that
play piano, P (B), times the fraction of people that study physics among those that play piano, P (A|B).

1.6 Problem: the birthday “paradox”
We can now use several of these concepts in an exercise. Let us estimate the probability that in N random people
there are at least two with the same birthday.

A person B has the same birthday of person A only once in 365. Then P (coinc., N = 2) = 1/365 and the
probability of non-coincidence is P (non− coinc., N = 2) = 1− 1/365 = 364/365.

Let’s add a third person. His/her birthday will not coincide with the other two 363 times over 365. The joint
probability that the three birthdays do not coincide is then

P (non− coinc., N = 3) =
364

365

363

365
(1.31)

It is clear then that for N persons we have

P (non− coinc., N) =
365

365

364

365

363

365
...

365−N + 1

365
(1.32)

We can now use
e−x ≈ 1− x (1.33)

to write

365−N + 1

365
= 1− N − 1

365
≈ e−(N−1)/365

and therefore
P (non− coinc, N) = e−1/365e−2/365e−3/365...e−(N−1)/365 = e−

N(N−1)
2

1
365 (1.34)

Finally, the probability of having at least one coincidence must be the complement to unity to this, i.e.

P (coinc, N) = 1− e−
N(N−1)

2
1

365 ≈ 1− e−N
2

730 (1.35)

For N = 20 one has, perhaps surprisingly (this is the “paradox”) P (N) = 0.5 i.e. almost 50%.

1.7 Bayes’ Theorem
Now, since, A ∩B = B ∩A we have Bayes’ Theorem

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) (1.36)

10



or
P (A|B) =

P (B|A)P (A)

P (B)
(1.37)

Note that if A and B are independent, ie if

P (A ∩B) = P (A)P (B) (1.38)

it follows that P (A|B) = P (A) and P (B|A) = P (B). For instance, if the fraction of people that study physics is
1/100 and the fraction that play piano is 1/100, if we find out that the fraction of people that both study physics
and play piano is not 1/10000 then we can conclude that playing piano and studying physics are not independent
events. The prob. P (A) in this case is called prior probability ; the prob. P (A|B) is called posterior probability.

The prob. that B ∪B occurs is of course always 1, even in the case of conditional prob. We have therefore

P (B ∪B|A) = 1 =
P (A,B ∪B)

P (A)
(1.39)

or
P (A,B ∪B) = P (A) (1.40)

In terms of PDF this rule says that integrating a PDF of two variables over the whole domain of one of the two:
this is again the marginalization.

Bayes’ theorem applies immediately to PDFs. Considering the probabilities in infinitesimal elements dx, dy we
have

P (x|y)dx =
L(y|x)dyp(x)dx

E(y)dy
(1.41)

that is
P (x|y) =

L(y|x)p(x)

E(y)
(1.42)

(notice again that the conditional probability P (x|y) gives the probability of x being in dx, while P (y|x) gives the
probability of y being in dy). Beside the prior p and the posterior P , we denote the denominator E(y) as evidence,
and the conditional probability L(y|x) as likelihood.

Notice the following relations:

P (A|B) + P (Ā|B) = 1 (1.43)
P (A|B) + P (A|B̄) 6= 1 (1.44)

P (A|B)P (B) + P (A|B̄)P (B̄) = P (A,B) + P (A, B̄) = P (A) (1.45)

Problem.
1% of people has the tropical disease Z. There exists a test that gives positive 80% of the times if the disease

is present (true positive), but also 10% of the times when the disease is absent (false positive). If a person tests
positive, which is the prob. that he/she has the Z disease?

Answer. We have:
prob. of having Z: P (Z) = 1%
cond. prob. of being positive (event labeled p) having Z : P (p|Z) = 80%
cond. prob. of being positive while not having Z: P (p|Z) = 10%.
From the first we deduce that P (Z) = 99%. We need now the prob. of having Z being positive; from Bayes’

theorem we have:
P (Z|p) =

P (p|Z)P (Z)

P (p)
(1.46)

We should then evaluate P (p). The prob. of testing positive and having Z is:

P (p, Z) = P (p|Z)P (Z) = 0.8 · 0.01 = 0.008 (1.47)

The prob. of testing positive being healthy is instead:

P (p, Z) = P (p|Z)P (Z) = 0.1 · 0.99 ≈ 0.1 (1.48)
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Moreover

P (p) = P (p, Z) + P (p, Z) = P (p|Z)P (Z) + P (p|Z)P (Z) = 0.108

It follows finally

P (Z|p) =
P (p|Z)P (Z)

P (p)
=

0.8 · 0.01

0.108
= 0.075 (1.49)

ie there is only a prob. of 7.5% of having Z. The reason of this perhaps surprising result is that P (Z) (the absolute
prob. of being infected with Z ) is much smaller than P (p), the absolute prob. of testing positive.

Exchanging the conditional probabilities is a very common logical error: the probability that one is a great
artist because he/she is "misunderstood" (ie, nobody likes his/her paintings) is not equal to the probability of
being misunderstood being a great artist. In fact, the probability of being great artists is much less than the
probability of making bad paintings.

Exercise: what is the probability of throwing two dice and obtain a score between 1 and 3 in the first roll and
6 in the second? what is the probability of having an overall score less than 8 in the launch of two dice? And if we
had already obtained 5 in the first die?

12



Chapter 2

Probability distributions

In this Chapter we review the main properties of the probability distributions (expected values, moments etc) and
present the most one-dimensional and multi-dimensional important PDFs.

2.1 Expected values
Let’s briefly introduce two examples of PDFs.

Uniform distribution.
f(x) = const. in the range x ∈ (a, b). We have

ˆ b

a

f(x)dx = cost.× (b− a) (2.1)

and the normalization requires const = 1/(b− a).
Gauss distribution.

f(x) = Ae−
(x−x0)2

2σ2 (2.2)

Normalization ˆ
f(x)dx = A

ˆ +∞

−∞
exp(− (x− x0)2

2σ2
)dx = A

√
2πσ2 (2.3)

from which A = (2πσ2)−1/2.
Indeed:

ˆ
e−x

2/2dx =

√
(

ˆ
e−x2/2dx)(

ˆ
e−y2/2dy)

=

√ˆ
e−

(x2+y2)
2 dxdy

=

√ˆ
e−r2/2rdr

ˆ +π

−π
dθ

=

√
2π

ˆ ∞
0

e−zdz =
√

2π(−e−∞ + e0) =
√

2π

Finally since ˆ
e−x

2/2σ2

dx = σ

ˆ
e−z

2/2dz = σ
√

2π
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we obtain the result. The parameters x0 and σ2 are called mean and variance.
PDFs can be synthetically characterized by several quantities.
Quantile α:
value of x such that ˆ x

−∞
f(x′)dx′ = α (2.4)

(0 ≤ α ≤ 1). If α = 0.5 the quantile is called median.
Mode.
The value of x such that P (x) is maximal.
Moments or expected values.
The expected value of a quantity g(x) is defined as

E[g] =< g >≡
ˆ
g(x)f(x)dx (2.5)

The mean is therefore the expectation value of x :

E[x] =

ˆ
xf(x)dx (2.6)

For discrete variables we have

E[n] =

N∑
1

niP (ni) (2.7)

Since P (ni) is defined as the number of events ni divided by the total number of cases, we retrieve the intuitive
definition of mean of a variable as the sum of all the values divided by the number of cases.

The variance (or central moment of second order ) is defined as

E[(x− 〈x〉)2] =

ˆ
(x− 〈x〉)2f(x)dx =

ˆ
x2f(x)dx− x̂2 (2.8)

(sometimes also V ar(x)). For a Gaussian one has

E[x] = x0 (2.9)
E[(x− 〈x〉)2] = σ2 (2.10)

Note that E[x− 〈x〉] = 0 and E[y2] 6= E[y]2. For a uniform variable, one has

E[x] =
b+ a

2
(2.11)

E[(x− 〈x〉)2] =
(b− a)2

12
(2.12)

The variance has great importance in scientific measures. Conventionally in fact the error associated to each
measure is given by the square root of the variance, or standard deviation, and is denoted generally with σ also for
non-Gaussian distributions. Note that E1/2[(x− 〈x〉)2] coincides indeed with the definition (eq. 1.4) in the limit of
an infinite number of observations.

The n-th order moment is

E[xn] =

ˆ
xnf(x)dx (2.13)

E[(x− 〈x〉)n] =

ˆ
(x− 〈x〉)nf(x)dx (2.14)

Exercises:
Evaluate E[x] and E[(x − 〈x〉)2] for a uniform distribution in the range (a − b) and for a Gaussian. Invent a

PDF, normalize it, and evaluate mean and variance.
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Prove that

E[ax] = aE[x] (2.15)
E[x+ a] = E[x] + a (2.16)

that is, the mean is a linear operation.
More in general

〈f(x) + g(x)〉 = 〈f(x)〉+ 〈g(x)〉 (2.17)

2.2 Population and sampling
Suppose in an experiment we find the results x1, x2,...etc. Expected values can be seen as averages over an infinite
number of trials:

E[x] = lim
N→∞

∑
i xi
N

(2.18)

Let us show this for a variable x that can assume a number of discrete values xα = x1,2,3,... with probability
Pα = P1,2,3,... . Notice that here x1,2,3.. represent the possible values of xα, while in Eq. (2.18) they represented the
individual occurrences of the measurements: one can have several times the same outcome xα = 3; to distinguish
these two interpretations of the subscript, I use now Greek letters. In the limit of infinite trials, we should obtain by
definition a fraction Pα of values xα, so a number NPα of them (for instance, NP1 =5 times the value x1, NP2 =10
times the value x2 and so on), and the average will be∑

α xαNPα
N

=
∑
α

xαPα (2.19)

which is exactly Eq. (2.7), i.e. E[x]. So the expected value of a function g(x) is the average of that quantity taken
over an infinite number of trials.

What we normally deal with, however, is a finite number of data, eg measurements. We can construct averages
like

x̂ =

∑
xi
N

(2.20)

s2 =

∑
(x− x̂)2

N
(2.21)

for finite Ns, that will be called sample mean and sample variance. Only in the limit N →∞ will these quantities
become identical with the expected values of x and of (x− E[x])2. So the sample quantities are random variables,
since if I take a new set I will get in general a different value, while the expected values are parameters, not random
variables, that are supposed to measure an intrinsic properties of the underlying “population” (as often called in
sociology) of measurements.

As will soon show, we should think of the sample quantities as estimators of the distribution parameters: for
instance, the sample average of x should be seen as an estimator of the espected value of x. The same parameter
can have several estimators but clearly an estimator, in order to be a good one, should be a good approximation,
that is, obey a number of properties we will discus later on.

2.3 Transformation of variables
Given a random variable x and its PDF f(x), we could be interested to derive a PDF of a variable function of x,
for instance x2 or 1/x or y(x). For instance, if we know the PDF of the absolute magnitude M of a galaxy , we
could be interested in the PDF of its distance r

M = m− 25− 5 log10 r (2.22)
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assuming we know the apparent magnitude m. If dy = y′dx is the infinitesimal interval of the new variable y as a
function of the old one, it is clear that the prob. of having x in x, x + dx must be equal to the one of having y in
y, y + dy (we assume a monotonic relation y(x))

f(x)dx = g(y)dy (2.23)

and therefore the new PDF g(y) is

g(y) = f(x)|dx
dy
| (2.24)

where the absolute value ensures the positivity of the new PDF. So if the PDF of M is a Gaussian, the PDF of
r(M) is

f(r) = A|dM
dr
| exp− (M(r)−M0)2

2σ2
= A(

5 loge 10

r
) exp− (m− 25− 5 log r −M0)2

2σ2

=
A′

r
exp− (m− 25− 5 log r −M0)2

2σ2

and defining r0 such that M0 = m− 25− 5 log r0 one can write

f(r) =
A′

r
exp− (5 log r/r0)2

2σ2
(2.25)

called a log-normal distribution. Notice that in general

E[g(x)] 6= g(E[x]) (2.26)

We can also consider the transformation of variables in the case of many random variables. The transformation
from x1, x2, ... to y1, y2, .. can be performed introducing the Jacobian of the transformation

f(xi)d
nx = g(yi)d

ny (2.27)

from which
g(yi) = f(xi)|J | (2.28)

where Jij = ∂xi/∂yj and || denotes the determinant.
Exercise.
If the variable x is distributed in a uniform manner in (a, b) (both > 0), which is the distribution of y = x2?

2.4 Error propagation
We can now use these formulae to find the error (standard deviation) associated to a function of a random variable
x in the limit of small deviations from the mean.

Suppose we have a variable x, eg the side of a square, distributed as f(x) with mean µ and variance σ2
x and we

are interested in the PDF of the area y = x2 or of any other function y(x). We can expand y around µ:

y(x) = y(µ) +
dy

dx
|µ(x− µ) (2.29)

We can then evaluate the mean and variance in the limit of small deviations from µ:

E[y] =

ˆ
y(µ)f(x)dx+

ˆ
dy

dx
|µ(x− µ)f(x)dx =

ˆ
y(µ)f(x)dx+

dy

dx
|µ
ˆ

(x− µ)f(x)dx = y(µ)

ˆ
f(x)dx = y(µ)

(2.30)
(because

´
(x− µ)f(x)dx =

´
xf(x)x− µ

´
f(x)dx = µ− µ = 0) and

E[y2] =

ˆ
[y2(µ) + y′(µ)2(x− µ)2 + 2y(µ)y′(µ)(x− µ)]f(x)dx (2.31)

= y2(µ) + y′2σ2
x (2.32)
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(where y′ ≡ dy
dx |µ). It follows that the variance of y for small deviations of x from µ is

σ2
y = E[(y − y(µ))2] = E[y2]− y(µ)2 = y′2σ2

x (2.33)

In the case of area y = x2 we have then σ2
y = 4µ2σ2

x. This is the fundamental rule of error propagation.
We can easily extend this rule to several variables. Suppose for instance that y(x1, x2) depends on two variables,

for instance y is the sum of the sides of two squares measured independently. Because of independence f(x1, x2) =
f1(x1)f2(x2). Then we have

y(x1, x2) = y(µ1, µ2) +
∑
i

∂y

∂x
|µ(xi − µi) (2.34)

from which

E[y2] =

ˆ
[y2(µ1, µ2) + (

∑
i

y′i(µ)(xi − µ))2 + 2y(µ1, µ2)
∑
i

y′i(µ)(xi − µ)]f1(x1)f2(x2)dx1dx2

= y2(µ1, µ2) +
∑
i

y,2σ2
xi

(the first step depends on the assumption of independency) and finally

σ2
y = E[(y − y(µ1, µ2))2] =

∑
i

y′i
2σ2
xi (2.35)

This rules extends obviously to any number of independent variables.

2.5 Sum and products of variables. Variance of the sample mean.
In the case y = x1 + x2 + ..+ xn the above rule gives

σ2
y =

∑
i

σ2
xi (2.36)

i.e., the variance of a sum of random variables is the sum of the variances. The error in y is therefore

σy =

√∑
i

σ2
xi (2.37)

i.e. the errors add in quadrature.
In the important case of the sample mean, i.e. assuming a number of data xi from the same distribution with

variance σ2,

x̄ =

∑
i xi
N

(2.38)

we see immediately that

σ2
x̄ =

1

N2

∑
σ2 =

σ2

N
(2.39)

This is the very important result that states that the variance of the mean is smaller by a factor of 1/N than the
variance of each individual data point.

Exercise: generalize to y = a1x1 + a2x2 + ...+ anxn (not necessarily with the same variance).
In the case of a product, y = x1x2...xn we have instead

σ2
y

µ2
y

=
∑
i

σ2
xi

µ2
x,i

(2.40)

where µy = µ1µ2...µn e µx,i ≡ µi. The quantity
σx
µx

(2.41)

is the relative error. For a product of variables, then, the square of the relative error is the sum of the squares of
the individual relative errors. That is, for a product of variables the relative errors add in quadrature.

Exercise: generalize to y = xm1
1 xm2

2 ...xmnn .
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2.6 The main PDFs

2.6.1 Binomial PDF
Let us consider N independent events, eg the scores 1 − 3 − 2 − 6 etc in a series of dice rolls, or the sequence
TTHHTH of heads/tails in coin tosses. We want to evaluate the probability that a joint event, eg 8 heads out of
10 tosses, or three times a 1 out of 4 dice rolls, regardless of the order in the sequence, i.e. considering the events
as indistinguishable. This is exactly the same kind of statistics we need in eg the statistics of a gas, which depends
on the probability for indistinguishable particles to be in a given region of phase space.

We need first of all to evaluate the number of possible sequences. If we have N different elements, eg a, b, c,
we can permute the N elements N ! times. For instance, N = 3 elements can be combined 3! = 6 times:
abc, acb, cab, cba, bac, bca. Then N ! is the number of permutations of distinguishable elements.

Suppose now we have only two elements, eg head or tail, or event A and any other event Ā. Then many
permutations are identical, for instance HHTTT remains the same by exchanging the two Hs and the three T s.
Suppose we have n times one of the two elements and, therefore, N − n the number of the other. Then, among the
total N ! permutations, a fraction n! is identical because we permute the same identical n element, and a fraction
(N − n)! will also be identical for the same reason. How many indistinguishable combinations will we obtain?
Clearly

total permutations
(permutations among n)(permutations among N − n)

=
N !

n!(N − n)!
≡
(
N
n

)
(2.42)

For instance, ifN = 4 and n = 2 (as in TTHH) I will have 4!/2!/2! = 6 equivalent combinations (HHTT,HTHT,
TTHH,THTH, THHT,HTTH). Notice that for n = 0 we define n! = 1.

The binomial PDF generalizes this calculation to the case in which I have a series of n independent events A
each with the same probability p (eg for “head” the prob. is 1/2, for a 2 in a dice roll is 1/6 etc). In this case, the
occurrence of n events A or prob. p out of N implies the occurrence of N − n events Ā with prob. 1− p. All this
implies a joint prob. of

pn(1− p)N−n (2.43)

But clearly we have
(
N
n

)
of such combinations and therefore the binomial prob. will be

P (n;N, p) =
N !

n!(N − n)!
pn(1− p)N−n (2.44)

where n is the discrete random variable 0 ≤ n ≤ N (number of events A) while N, p are the distribution parameters.
Notice that by employing the rules of the binomial we have, as indeed we should have expected:

N∑
n=0

P (n;N, p) = (p+ (1− p))N = 1 (2.45)

It is also intuitive that the mean of events A of prob. (frequency) p out of N events should be the fraction p of N
and indeed

E[n] = Np (2.46)
σ2 = E[(n−Np)2] = Np(1− p) (2.47)

Let’s demonstrate the first one:

E[n] =
∑
n

nP (n;N, p) =

N∑
n=0

nN !

n!(N − n)!
pn(1− p)N−n (2.48)

=

N∑
n=1

N(N − 1)!

(n− 1)!(N − n)!
ppn−1(1− p)N−n (2.49)

= Np

N ′∑
n′=0

(N ′)!

(n′)!(N ′ − n′)!
pn
′
(1− p)N

′−n′ = Np (2.50)
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Figure 2.1: Binomial for N = 120 and p = 1/12 (red dots) e p = 1/24 (blu dots).

(where we defined n′ = n−1 and N ′ = N −1). The binomial distribution for N = 1 is called Bernoulli distribution:

P (n; 1) = pn(1− p)1−n (2.51)

for n = 0, 1. It applies for instance to a single toss of a coin and gives the probability that an event, e.g. tail,
happens (n = 1) with probability p or does not happen (n = 0), with probability 1− p.

Exercises:
1) Which is the probability of obtaining two heads out of 4 throws ?
The prob. of having exactly n = 2 two heads, each with prob. p = 0.5 , out of N = 4 events is

P (2; 4, 0.5) = 3/8 (2.52)

2) In the birthday experiment we have obtained 15 persons in December. Which is the prob. of obtaining 15 or
more in a given month?

The prob. that the birthday of a person is in December is p =1/12. The total number of events is N =120 and
n = 15 is the number of events A =December . The statistics is then a Binomial P (15; 120, 1/12). The prob. of
having more than 15 events A is therefore

F (> 15) =

120∑
n>15

N !

n!(N − n)!
pn(1− p)N−n = 0.074 (2.53)

that is, only 7.4%.

2.6.2 Poisson PDF
Let us consider now the limit of the Binomial for N →∞ and p→ 0 (rare events), but keeping Np = ν finite. We
can approximate N !/(N−n)! ≈ Nn and (since limn→∞(1+ a

n )n = ea)) (1−p)N−n = (1− ν
N )N−n ≈ (1− ν

N )N ≈ e−ν
so that

P (n; ν) =
Nn

n!
pne−ν =

νn

n!
e−ν (2.54)

and we obtain the Poisson PDF, or Poissonian.
The moments are

E[n] = e−ν
∞∑
0

n
νn

n!
= νe−ν

∞∑
1

νn−1

n− 1!
= νe−ν

∞∑
0

νn
′

n′!
= ν (2.55)

E[(n− ν)2] = ν (2.56)
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Figure 2.2: Gamma function (from Wikipedia, by Alessio Damato - CC BY-SA 3.0, com-
mons.wikimedia.org/w/index.php?curid=365942)

For large n, we can assume that n is a continuous variable. In this case we generalize to

P (x; ν) =
νx

Γ(x+ 1)
e−ν (2.57)

where Γ(x) (equal to (x− 1)! for x integer) is the gamma function

Γ(x) =

ˆ ∞
0

e−ttx−1dt (2.58)

However, in the continuous case, the Poissonian has to be normalized since
´∞

0
P (x; ν)dx equals unity only for

ν � 1.

2.6.3 Gaussian PDF
For large ν, the Poissonian is well approximated by the Gaussian with mean and variance ν. The Gaussian is
defined as:

G(µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.59)

and has mean µ and variance σ2. Defining the new variable z = (x − µ)/σ the Gaussian becomes the Normal
distribution:

N(x) = G(0, 1) =
1√
2π
e−

x2

2 (2.60)

We can define the error function

erf(x) =
2√
π

ˆ x

0

e−t
2

dt (2.61)

so that the so-called cumulative function F (x) =
´ x
−∞G(x; 0, 1)dx, which increases monotonically from 0 to 1,

becomes
F (x) =

1

2
[1 + erf(

x√
2

)] (2.62)

The prob. that the gaussian variable x distributed as G(x;µ, σ) is in the range (µ− a, µ+ a) is

P (x ∈ (−a, a)) = erf(
a

σ
√

2
) (2.63)

20



0 5 10 15 20

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2
Poisson

Figure 2.3: Poissonian for ν = 10 (red) and ν = 5 (blue). Note the similarity to the Binomial.
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Figure 2.4: Comparing Poissonian and Gaussian PDFs for ν = 2 (blue) and ν = 10 (red).

The Gaussian PDF is of such great importance not only because is the large-ν limit of the Poissonian but also
because of the Central Limit Theorem (to be discussed later on):

Every random variable X sum (or linear combination ) of many independent variables xi (i.e. X =
∑
i xi) is

distributed approximately as a Gaussian of mean
∑
i µi and variance σ2

X =
∑
i σ

2
i in the limit n→∞ independently

of the individual PDFs .
In practice, the CLT can be applied in many experimental situations in which the error is the sum of many

independent causes: reading errors, instrumental noise, contaminations etc. In these cases, the measure can be
assumed to be gaussian distributed.

Three important values of the cumulative function are

F (µ+ jσ)− F (µ− jσ) = erf(
j√
2

) = 0.68, 0.95, 0.997 (2.64)

for j = 1, 2, 3: these give the prob. of finding x at j = 1, 2, 3σ from the mean µ. Conventionally, errors are quoted
at 1σ even for non-Gaussian distributions.
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2.6.4 χ2 distribution.
Let us now consider the Normal PDF and let’s transform the variable x through the function y = x2. Then we have

(2π)−1/2 exp(−x
2

2
)dx = f(y)dy (2.65)

from which, since dx/dy = y−1/2/2, we obtain

f(y) = 2e−y/22−3/2(πy)−1/2 (2.66)

the factor of 2 must be inserted in order to normalize the resulting function f(y) . In this case in fact there are
two x’s for every y. The probability to obtain y in dy equals the sum of the two disjoint probabilities of having x
in x, x+ dx and x in −x,−x− dx. This means effectively that f(y) has to be multiplied by 2.

If we have instead n independent Gaussian variables, we can define

z =
∑
i

(xi − µi)2

σ2
i

(2.67)

In order to find the PDF of z we need to transform from x1, x2, x3.. to n variables analog to spherical coordinates
in n dimensions: a radius r2 = z and n− 1 angles θi. In 3D, this would mean replacing dxdydz with r2 sin θdθdφ.
In general we find

ˆ
fx(x1, x2, ...)dx1dx2dx3... =

ˆ
fr(r)r

n−1dr|J |dθ1dθ2dθ3... =

ˆ
fz(z)z

(n−1)/2|dr
dz
|dz|J |dΩ (2.68)

=
1

2

ˆ
fz(z)z

n/2−1dz|J |dΩ (2.69)

where |J | is a Jacobian factor that depends only on angles. For instance, in 3D, it amounts to sin θ. The integrals
over the angles dΩ produces a normalization factor N and therefore the z PDF assumes the form Ne−z/2zn/2−1.
Then we define the χ2distribution (Fig. 2.5)

f(z ≡ χ2;n) =
1

2n/2Γ(n/2)
zn/2−1e−z/2 (2.70)

where n is denoted the “number of degrees of freedom” and the Gamma function is defined as

Γ(x) =

ˆ ∞
0

e−ttx−1dt (2.71)

For integer numbers we have Γ(n) = (n − 1)! (and also Γ(1/2) =
√
π). The normalization is obviously such that´

f(z;n)dz = 1 for every n. For the χ2 PDF we have

E(z) = n (2.72)
Var(z) = 2n (2.73)

2.7 Moment generating function
The moments are the most important descriptors of a PdF. It is therefore useful to be able to calculate them easily.
To this scope, one introduces the moment generating function (MGF), defined for a single variable as

mx(t) ≡ 〈etx〉 =

ˆ
etxf(x)dx (2.74)

By expanding etx =
∑∞

0
(tx)n

n! , it it easy to show that

drmx(t)

dtr
|t=0 = 〈xr〉 (2.75)
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Figure 2.5: χ2
k distribution for various values of degrees-of-freedom k. (By Geek3 - Own work, CC BY 3.0,

commons.wikimedia.org/w/index.php?curid=9884213)

One has in fact

drmx(t)

dtr
|t=0 =

dr〈etx〉
dtr

|t=0 = 〈d
retx

dtr
|t=0〉 (2.76)

= 〈xretx〉t=0 = 〈xr〉 (2.77)

Analogously, one can define the MGF for central moments:

mx−µ(t) ≡ 〈et(x−µ)〉 =

ˆ
et(x−µ)f(x)dx (2.78)

Suppose now we have two independent variables x, y distributed as f(x), g(y). Let us find the MGF of the sum
s = x+ y. We can write directly

ms =

ˆ
et(x+y)f(x)g(y)dxdy =

ˆ
etxf(x)dx

ˆ
etyg(y)dy = mxmy (2.79)

i.e. the MGF of the sum of two independent variables is the product of the two MGFs. This extends obviously to
the sum of any number of independent variables.

If the MGF exists, then two PFDs with the same MGF are identical; in other words, the MGF characterizes
completely the PDF.

Exercise.
Show that the PDF of s can be written as the convolution of the individual PDFs.
Exercise.
Show that for a Gaussian with parameters µ, σ,

mx(t) = e
1
2 t

2σ2+µt (2.80)

2.8 Central limit theorem
The MGF helps us to demonstrate the Central Limit Theorem, according to which the Gaussian is the asymptotic
distribution of the sum of n independent identically distributed (IID) random variables in the limit of n→∞.
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Let xi with i = 1, .., n be n IID random variables with mean µ and variance σ2, with an unknown PDF. The
CLT states that the variable

Y ≡ x̂− µ
σ/
√
n

(2.81)

where x̂ =
∑
i xi/n tends to a Gaussian variable for n→∞. Notice that σ/

√
n is the variance of x̂. Let us define

the normal variables
zi =

xi − µ
σ

(2.82)

with 〈zi〉 = 0 and 〈z2
i 〉 = 1. Clearly

Y =
1√
n

∑
i

zi (2.83)

Let us find the MGF of Y . By the property of additive variables we have

mY (t) = 〈eY t〉 = 〈ezit/
√
n〉n (2.84)

Now

〈ezit/
√
n〉n = 〈1 +

zit√
n

+
z2
i t

2

2!n
+

z3
i t

3

3!n3/2
+ ...〉n (2.85)

= (1 +
〈zi〉t√
n

+
〈z2
i 〉t2

2!n
+
〈z3
i 〉t3

3!n3/2
+ ...)n (2.86)

Since 〈zi〉 = 0 and 〈z2
i 〉 = 1 we obtain for n� 1

〈ezit/
√
n〉n = (1 +

t2

2!n
+
〈z3
i 〉t3

3!n3/2
+ ...)n (2.87)

≈ (1 +
t2

2n
)n ≈ 1 +

t2

2
≈ e 1

2 t
2

(2.88)

where in the last step we assume t � 1, i.e. we approximate only near the origin, which is where the moments
obtained from the MGF are evaluated. We obtain then the MGF of a Normal Gaussian variable, QED.

The importance of this theorem is that it guarantees that if the errors in a measure are the results of many
independent errors due to various parts of the experiment, then they are expected to be distributed in a Gaussian
way. It can be extended to the case of independent variables with different mean and variances but in this case the
condition n� 1 is not a sufficient condition for normality.

Exercise. Find the MGF for a uniform distribution P between in the range −1, 1. Find the MGF for the sum
of n IID variables distributed as P

z =
1√
n

n∑
i=1

xi
σ

(2.89)

where σ2 is the variance of the xi’s. Notice that xi/σ are normalized variable, E[xi] = 0, V [xi] = 1, and also z is.
Plot the MGF of z for increasing values of n and confirm that it tends to the MGF of the Normal distribution et

2/2

for n� 1, as in Fig. 2.6.

2.9 Multivariate distributions
So far we have seen mostly distributions of single variables. We have however already defined the joint probability

f(x, y)dxdy (2.90)

of having x, y in the area dxdy. The definition of probability requires now that
ˆ
f(x, y)dxdy = 1 (2.91)
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Figure 2.6: MGF for a Normal Gaussian distribution (blue thick line) and for a normalized sum of independent
uniform variables (red thin lines) for n = 1, 3, 5, from bottom up.

It is clear that we can extend this definition to many variables xi in the volume dnx. For independent variables we
know that f(x, y) = f1(x)f2(y).

Analogously to the 1D case, we define the means

E[x] =

ˆ
xf(x, y)dxdy = µx (2.92)

E[y] =

ˆ
yf(x, y)dxdy = µy (2.93)

and the covariance matrix

Cij = E[(xi − µi)(xj − µj)] (2.94)

=

ˆ
(xi − µi)(xj − µj)f(x1, x2)dx1dx2 (2.95)

where xi is the vector of random variables and µi the mean vector. In case of more than two variables, the covariance
integral is assumed to have been already marginalized over all the variables except i, j . The elements along the
diagonal are the variances σ2

i of the individual random variables . If x1, x2 are independent then

C12 =

ˆ
(x1 − µx)(x2 − µy)f1(x1)f2(x2)dx1dx2 (2.96)

separates out and by definition of mean C12 = 0: then the covariance matrix of independent variables is diagonal
(however in general C12 = 0 does not imply independent variables, but only uncorrelated variables). The covariance
matrix is of course symmetric and also positive-definite, since

qiCijqj =

ˆ
[qi(xi − µi)][qj(xj − µj)]f(x1, x2)dx1dx2 (2.97)

=

ˆ
[qi(xi − µi)]2f(x1, x2)dx1dx2 > 0 (2.98)

(sum over repeated indexes) for any vector qi. The eigenvalues of Cij are then real and positive.
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The degree of correlation is indicated by the weight of the off-diagonal elements. For any two variables we define

ρxy ≡
Cxy
σxσy

(2.99)

and to maintain positive-definiteness |ρxy| < 1.
If we have the multivariate PDF f(x, y) we can obtain the PDF of the individual variables by integrating out

the other one:
g(x) =

ˆ
f(x, y)dy (2.100)

This new PDF (marginalized over y) gives the probability of having x in dx whatever is y. We realize immediately
that

E[x] =

ˆ
xg(x)dx (2.101)

and similarly for all the other moments of x . All these definitions extend immediately to n dimensions, e.g.

Cij = E[(xi − µi)(xj − µj)] (2.102)

=

ˆ
(xi − µi)(xj − µj)f(x1, x2, x3,...)d

nx (2.103)

2.9.1 Multinomial distribution
The binomial distribution can be generalized to the case in which there are not just two possible outcomes with
probability p and 1 − p but k possible outcomes each with probability pi, i = 1, .., k, with the constraint that
the outcomes exhaust all the possibilities, so

∑
i pi = 1. Now the probability of having a particular sequence of

independent outcomes formed by x1 outcomes of type 1, x2 of type 2, etc will be

px1
1 px2

2 px3
3 ...pxxk (2.104)

Just as for the binomial distribution, accounting for all the possible internal permutations leads to the multinomial
distribution, i.e. the probability that in a sequence of N trial one finds x1 items of type 1, x2 of type 2 etc . This
is given by

P (x1, x2, ..xk) =
N !

x1!x2!...xk!
px1

1 px2
2 px3

3 ...pxkk (2.105)

(provided
∑
i pi = 1 and

∑
i xi = N). The expected values and variances are

E[xi] = Npi (2.106)
V ar[xi] = Npi(1− pi) (2.107)

Here we have however also a non-zero covariance

Cov[xixj ] = −npipj (2.108)

The negative value reflects the fact that if xi is large (i.e. several items of type i are extracted), then is more likely
to have fewer items j, since the total number of outcomes is fixed to N .

2.9.2 Multivariate gaussian
The most interesting case of multivariate PDF is the multivariate Gaussian. Let us consider the most general
Gaussian of two variables x1, x2 (with zero mean for simplicity)

G(x1, x2) = N exp[− 1

2(1− ρ2)
(
x2

1

σ2
1

+
x2

2

σ2
2

− 2
ρx1x2

σ1σ2
)] (2.109)
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where N = 1/(2πσ1σ2

√
1− ρ2). The covariance matrix is

Cij =

ˆ
xixjf(x1, x2)dx1dx2 =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
(2.110)

and so ρ = Cxy/σxσy is indeed the correlation coefficient. For ρ = 1 the distribution is degenerate, i.e. detC = 0.
This PDF can be written as

G(x1, x2) = N exp−1

2
(XiC

−1
ij Xj) (2.111)

where we defined the vector Xi ≡ (xi − µi) (we put back non-zero means µi) and N = 1/2π
√

detC. This can be
immediately generalized to n variables:

G(xi, i = 1...n) =
1

(2π)n/2
√

detC
exp−1

2
(XiC

−1
ij Xj) (2.112)

The contours of equiprobability P = const are ellipsoids with principal axes oriented along the eigenvectors and
semiaxes proportional to the square root of the eigenvalues of C.

Exercise:
Show that ˆ

x2
1G(x1, x2)dx1dx2 = σ2

1 (2.113)

where G(x1, x2) is given in (2.109).
We have

N

ˆ
x2

1 exp[− 1

2(1− ρ2)
(
x2

1

σ2
1

)]dx1

ˆ
exp[− 1

2(1− ρ2)
(
x2

2

σ2
2

− 2
ρx1x2

σ1σ2
)]dx2

where
N = [2πσ1σ2

√
1− ρ2]−1 (2.114)

Adding and subtracting − 1
2

x2
1ρ

2

σ2
1(1−ρ2)

within the exponent we obtain

N

ˆ
x2

1 exp[− 1

2(1− ρ2)
(
x2

1

σ2
1

− x2
1ρ

2

σ2
1

)]dx1

ˆ
exp[− 1

2(1− ρ2)
(
x2

σ2
− ρx1

σ1
)2]dx2

and the second integral becomes

exp[− 1

2(1− ρ2)
(
x2

σ2
− ρx1

σ1
)2] = exp−1

2

(x2 − x0)2

σ̂2
2

where x0 = ρx1σ2/σ1 and σ̂2
2 = σ2

2(1 − ρ2). The second integral gives then the norm of the Gaussian,
√

2πσ̂2 =√
2πσ2

2(1− ρ2). The first integral becomes then
ˆ
x2

1 exp[− 1

2(1− ρ2)
(
x2

1

σ2
1

− x2
1ρ

2

σ2
1

)]dx1 =

ˆ
x2

1 exp[−1

2

x2
1

σ2
1

]dx1 = σ2
1

√
2πσ2

1

Multiplying the various factors we obtain

σ2
1

√
2πσ2

1

√
2πσ2

2(1− ρ2)

2πσ1σ2

√
1− ρ2

= σ2
1 (2.115)

2.10 Gaussian integrals
Useful Gaussian integrals (integration always from −∞ to +∞):

ˆ
e−

1
2
x2

σ2 dx = σ
√

2π (2.116)
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1√
2πσ2

ˆ
x2ne−

1
2
x2

σ2 dx = (2n− 1)!!σ2n (2.117)

(where n!! = n(n− 2)(n− 4)...). Notice that all odd moments of x vanish identically. These and the next integrals
remain unchanged if we replace x with x− µ.

For n variables we have (sum over repeated indexes)ˆ
exp[−1

2
xiC

−1
ij xj ]d

nx = (2π)n/2(detC)1/2 (2.118)
ˆ

exp[−1

2
xiC

−1
ij xj + Jixi]d

nx = (2π)n/2(detC)1/2 exp[
1

2
JiCijJj ] (2.119)

Higher order moments of a multivariate Gaussian integrals can be evaluated as

E[x1x2...x2n] =
∑∏

E[xixj ] (2.120)

where the sum and productory means summing over all possible distinct ways of partitioning x1x2...x2ninto pairs
xixj where each term in the sum is the product of n pairs. All odd moments vanish. Here, in the product x1x2...x2n,
one can also repeat the variables, for instance if one has three variables x, y, z, moments like E[x2y2] = E[xxyy] or
E[x2y4z2] = E[xxyyyyzz] are also included. For instance if n = 2 one has

E[x1x2x3x4] = E[x1x2]E[x3x4] + E[x1x3]E[x2x4] + E[x1x4]E[x2x3] (2.121)

and

E[x2
1x

2
2] = E[x1x1x2x2] = E[x1x1]E[x2x2] + E[x1x2]E[x1x2] + E[x1x2]E[x1x2] = E[x2

1]E[x2
2] + 2E2[x1x2] (2.122)

and
E[x4

1] = E[x1x1x1x1] = 3E[x1x1]E[x1x1] = 3E2[x2
1] = 3σ4

1 (2.123)
which agrees with (2.117). This result is variously known as Wick’s theorem, Isserlis’ theorem, etc.

Problem. As an application of Gaussian integral, find the PDF of the sum z = x+ y of two Gaussian random
variables x, y with zero mean and the same variance σ2. Also, confirm that the variance of z is 2σ2.

We have seen in Sect. (2.4) that the variance of the sum of random variables is simply
∑
i σ

2
i , so one would get

indeed z = 2σ2. However the error propagation formula is supposed to be an approximation, while here the result
is exact because the function z = z(x, y) is a linear function.

To find the distribution of z we need to transform variables from x, y to a new pair of variables, z and, say,
X = x (we could have used any other linearly independent combination of x, y). Calculating the Jacobian of the
transformation we see that |J | = 1. Then we have

f(z,X) = G(x, y;σ2)|J | = G(x, y;σ2) |y=z−X;x=X (2.124)

and
f(z)dz =

ˆ
G(x, y;σ2) |y=z−X;x=X dX (2.125)

Now we write

G(x, y;σ2) |y=z−X;x=X = N exp−1

2

x2 + y2

σ2
|y=z−X;x=X= N exp− 1

2σ2
(z2 − 2xy) |y=z−X;x=X (2.126)

= N exp− 1

2σ2
[z2 − 2X(z −X)] = N exp− 1

2σ2
[z2 + 2X2 − 2Xz] (2.127)

= N exp[−1

2

z2

σ2
+

1

4

z2

σ2
] exp− 1

2σ2
[2X2 − 2Xz +

z2

2
] (2.128)

Then we have

f(z)dz =

ˆ
G(x, y;σ2) |y=z−X;x=X dX (2.129)

= N exp[−1

2

z2

σ2
+

1

4

z2

σ2
]

ˆ
exp− 1

2σ2
[2X2 − 2Xz +

z2

2
]dX (2.130)

= N
√
π(σ2) exp[−1

4

z2

σ2
] = N ′ exp[−1

2

z2

(2σ2)
] (2.131)
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which shows that indeed z has variance 2σ2 and that z is itself a Gaussian variable. This result can be easily
generalized to N Gaussian variables with variances σi.

2.11 Parameter estimation: Statistic, sample, bias
So far we have analyzed the theoretical properties of the distributions. However, what we really normally have is
a number of measurements x1, x2, x3...xn. If the measures are independent, we can assume that the joint PDF of
the full set xi is

fsample(xi) = f(x1)f(x2)f(x3)...f(xn) (2.132)

Our problem now is to derive from the nmeasures the estimates of the population parameters, that is, the parameters
that characterize f(x), for instance the mean µ and the variance σ2 . We need to find then functions θ(xi) of the
data xi (and only of the data, not of unknown parameters), generally called statistic, such that they approximate
the parameters of the f(x). Since xi are random variables, θ̂(xi) is also a random variable. The central problem of
statistics, called inference, is to obtain estimates of unknown parameters from a collection of data, assuming that
we know the type of distribution each single datapoint has, eg whether Gaussian or Binomial etc, but not the value
of some of their parameters, e.g the mean or the variance.

We have already seen an example of estimator: the mean

x̂ =

∑
i xi
n

(2.133)

(now we use a hat to denote the estimator as a random variable, rather than any specific estimate) is in fact an
estimator of µ = E[x]. We can certainly have several estimators for any given parameter; here we see now which
are the main properties that “good” estimator should possess.

Let θ be the parameter of f(x) to be estimated and θ̂ the estimator, function of the n measures xi. If θ̂
approximates θ in the limit of large n, the estimator is said to be consistent :

lim
n→∞

P (|θ̂ − θ| > ε) = 0 (2.134)

for every ε > 0.
The expected value of θ̂ = θ̂(x1, x2, ...) is by definition

E[θ̂] =

ˆ
θ̂f(x1, x2, ...xn; θ)dx1...dxn (2.135)

If the bias
b = E[θ̂]− θ (2.136)

is zero for every n, the estimator θ̂ is unbiased. If b→ 0 only for large n, the estimator is said to be asymptotically
unbiased. The bias is a systematic error because it does not depend on how good the measures are but on our
choice of the estimator. At least in principle, one can always choose a better estimator or a unbiased one.

We define also the variance of the estimator:

V [θ̂] = E[(θ̂ − E[θ̂])2] =

ˆ
(θ̂ − E[θ̂])2f(x1, x2, ...xn; θ)...dx1...dxn (2.137)

The variance of θ̂ is a statistical error because is unavoidable (although it can be minimized), since it depends
ultimately on the fact that θ̂ is a random variable.

We define also the mean square error

MSE = E[(θ̂ − θ)2] = E[(θ̂ − E(θ̂) + E(θ̂)− θ)2] = V [θ̂] + b2 (2.138)

which can be indeed interpreted as the sum of the statistical and systematic errors. An estimator can be chosen
that minimizes the bias (the estimator is said to be accurate), the variance (the estimator is said to be precise), or
the MSE. Normally, you can’t have all of them.

Please notice: θ is a parameter, not a random variable; θ̂ is a function of the data and therefore a random
variable; E(θ̂) is no longer a function of the data since the data have been integrated over using the PDF (as if we
really had performed an infinity of experiments) and therefore is not a random variable.
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2.12 Estimators of mean, variance, and correlation.
In this section we assume independent and identically distributed variables. The usual case is repeated measurment
of the same physical quantity, eg temperature of a gas. The sample mean

x̂ ≡
∑
i xi
n

(2.139)

is an unbiased estimator of µ = E[x] . In fact

E[x̂] =
1

n

∑
i

ˆ
xif(x)dx =

∑
µ

n
= µ (2.140)

Notice also that even a single measure, eg x1, is an unbiased estimator of the mean: E[x1] = µ. A good choice
should then be the estimator of minimal variance. As we have seen already and check again below, the variance of
the mean goes like 1/n; the mean is therefore a better estimator than a single measure, or any mean of a subset of
measures.

The sample variance

s2 =
1

n− 1

∑
i

(xi − x̂)2 (2.141)

is an unbiased estimator of σ2 = E[(x−µ)2]. Notice that both xi and x̂ are random variables; if the mean is known
in advance, the denominator of the unbiased estimator would be n instead of n− 1.

Analogously, the unbiased estimator of the covariance is

V̂ij =
1

n− 1

∑
k

(xi,k − x̂i)(xj,k − x̂j) (2.142)

For two variables (the variables now can be correlated, but each “measurement” xi is uncorrelated with the other
x’s and the same for the y’s) this is

V̂xy =
n

n− 1
(x̂y − x̂ŷ) (2.143)

where in this specific instance we use theˆto denote the sample average, for instance

x̂y =
1

n

∑
i

xiyi (2.144)

Finally, an estimator of the correlation coefficient is

r =
V̂xy
sxsy

=
x̂y − x̂ŷ√

(x̂2 − x̂2)(ŷ2 − ŷ2)

(2.145)

(note x̂2 6= x̂2). This is only asymptotically unbiased, even if V̂xy, sx, sy are unbiased quantities; however is often
used because of its simplicity.

We can now estimate the variance of the mean:

Var[x̂] = E[x̂2]− (E[x̂])2 = E[(
1

n

∑
xi)(

1

n

∑
xj)]− µ2 (2.146)

=
1

n2

∑
i,j

E[xixj ]− µ2 (2.147)

=
1

n2
[(n2 − n)µ2 + n(µ2 + σ2)]− µ2 =

σ2

n
(2.148)

where in the last step we have employed E[xixj ] = µ2 for i 6= j and E[x2
i ] = µ2 + σ2 (and that there are n2 − n

combinations i 6= j and n of i = j). The same result can be readily obtained by the law of error propagation, which
in this case is exact since the mean is a linear combination of random variables. This is a very important result:
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the standard deviation of the mean is a factor 1/
√
n smaller wrt the standard deviation of a single measure. So if

I perform another measurement, I expect it to deviate by ∼ σ wrt the mean; but if I take another mean of a set of
n similar measurements, then I expect the new mean to deviate from the old one only by ∼ σ/

√
n.

Exercise.
Show that for IID variables (see eq. 2.141)

E[
1

n− 1

∑
i

(xi − x̂)2] = σ2 (2.149)

One has

E[
1

n− 1

∑
i

(xi − x̂)2] =
1

n− 1

∑
i

ˆ
(xi −

∑
xj
n

)2f(x1, x2, ..)d
nx (2.150)

=
1

n− 1

∑
i

ˆ
(x2
i +

1

n2

∑
jk

xkxj −
2

n
xi
∑
j

xj)f(x1, x2, ..)d
nx (2.151)

=
1

n− 1

∑
i

[σ2 + µ2 +
n2 − n
n2

µ2 + n
(σ2 + µ2)

n2
− 2

n
(σ2 + µ2 + (n− 1)µ2)] (2.152)

where we employed the relation
ˆ ∑

jk

xjxkf(x)dnx = (n2 − n)

ˆ
xjxkf(x1, x2, ..)d

nx+ n

ˆ
x2f(x1, x2, ..)d

nx = (n2 − n)µ2 + n(σ2 + µ2) (2.153)

Finally we obtain

E[
1

n− 1

∑
i

(xi − x̂)2] =
1

n− 1

∑
i

[(σ2 + µ2)(
n− 1

n
) + µ2(

1− n
n

))] (2.154)

= σ2 (2.155)

QED
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Chapter 3

The likelihood function and the Fisher
matrix

The general problem of parameter estimation is solved using Bayes’ theorem. This allows to obtain the estimators
for any parameter and their region of confidence. In this Chapter we introduce several Bayesian tools, from the
Fisher matrix to model comparison. Some application to real cases are also presented.

3.1 From prior to posterior
Let us suppose we know, or have good reasons to suspect, that a random variable x, e.g., the apparent magnitude
of a supernova, has a probability distribution function (PDF) f(x; θ) that depends on an unknown parameter θ,
e.g., the absolute magnitude. The “;” is meant to distinguish the random variables x from the parameter θ. Such
a probability is called a conditional probability of having the data x given the theoretical parameter θ. We may for
instance suppose that the apparent magnitude m is distributed as a Gaussian variable with a given variance σ2 (the
observational error on m), but we do not know one of the cosmological parameters that enter the expected value
mth = 5 log10 dL(z; Ω

(0)
m ,Ω

(0)
Λ ) + constant, where dL is the luminosity distance.

If we repeat the measure and we obtain x1, x2, x3..., then the law of joint probability tells us that the probability
of obtaining x1 in the interval dx1 around x1, x2 in the interval dx2 around x2 and so forth is

f(xi; θ)d
nxi ≡

∏
i

fi(xi; θ)dxi = f1(x1; θ)f2(x2; θ)f3(x3; θ)...dx1dx2dx3... , (3.1)

if the measures are independent of each other. Clearly, for every θ this multivariate PDF will assume a different
value. It is logical to define the best θ as the value for which

∏
i f(xi; θ) is maximal. Indeed, if we generate random

variables distributed as f(x; θ), the most likely outcome for x is that value maximizing f(x; θ). Conversely, if we
have a particular outcome x, then our best bet is to assume that θ is such as to maximize the occurrence of that x.
We used as an example independent data and a single parameter but this is by no means necessary. We define the
best θα as those parameters that maximizes the joint function f(x1, x2, ..xn; θ1, θ2, ...θm). Since in general we have
many parameters to estimate, we write the function simply f(xi; θα), meaning all the xi’s and all the θα’s.

The maximum likelihood method of parameter estimation consists therefore in finding the parameters that
maximize the likelihood function f(xi; θα) by solving the system

∂f(xi; θα)

∂θα
= 0 , α = 1, ..,m . (3.2)

Let us denote the solutions of these equations as θ̂α. They are functions of the data xi and therefore are random
variables, just as the data are. So the classical frequentist approach would try to determine the distribution of the
θ̂αs knowing the distribution of the xis and assuming that the estimated θ̂i are indeed the “true” values. Then
one can assign probabilities to θ̂α’s ranges, for instance determine the interval of θ̂α that contains 95% probability
that a particular set of data has been drawn from the theoretical distribution (we will se this in later chapters).
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One problem with this approach is that it is often too difficult to derive the θ̂j ’s distribution analytically and very
demanding to derive them numerically through simulated datasets. But the main problem is that this approach
does not take into account what we already know concerning the theoretical parameters, for instance the result of
previous experiments. To handle this information properly we need to switch to the Bayesian approach. Instead
of looking for the probability f(xi; θα) of having the data given the model, we estimate the probability L(θα;xi) of
having the model given the data (see Fig. 3.2).

This problem is solved by the fundamental theorem of conditional probabilities, the so-called Bayes’ theorem1:

P (T ;D) =
P (D;T )P (T )

P (D)
, (3.3)

where we denote the known data xi with D and the unknown theory (that is, the theoretical parameters θα) with
T . On the r.h.s., P (D;T ) is the conditional probability of having the data given the theory; P (T ) and P (D) are
the probability of having the theory and the data, respectively; finally, on the l.h.s., P (T ;D) is the conditional
probability of having the theory given the data. Bayes’ theorem is a consequence of the definition of conditional
probability P (A;B) ≡ P (A,B)/P (B) and of the symmetry of the joint probability P (A,B) (the probability of
having both A and B) under the exchange of A,B.

It follows that
P (θα;xi) =

L(xi; θα)p(θα)

E(xi)
, (3.4)

where p(θα) is called the prior probability for the parameters θα, while E(xi) is the PDF of the data xi. The final
function P (θα;xi) (or simply P (θα) for shortness) is called posterior although sometimes it is also loosely called
likelihood when the prior is assumed uniform. In fact, for the rest of this chapter, we will assume the prior to
be uniform, except where explicitly indicated, so the likelihood and the posterior coincide up to the normalization
(accordingly, we sometimes use L instead of P , and emply the term likelihood and posterior interchangeably when
no confusion arises). The prior might also simply be flat and broad enough that when multiplied by a peaked
likelihood does not make any difference: this case is often called a weak, or uninformative prior.

The posterior contains the information we are looking for: the probability distribution of the parameters given
that we observed the data xi and that we have some prior knowledge about the parameters themselves. Of course,
the frequentist and the Bayesian estimator coincide if the prior is uniform; however, the PDF of the parameter
would still be different (see an example later on).

Once we use Bayes’ theorem to convert the parameters into random variables, the data themselves are no longer
regarded as random variables, but just as given data, fixed by the experiment once and for all. There is no need to
think in terms of frequencies of occurrence anymore, and therefore no need to define probability in terms of an infinite
sequence of experiments. Of course, we still have to assume that the data are distributed according to some class
of functions, e.g. that they are Gaussian distributed, in order to form a likelihood. In principle, however, we could
define a probability distribution with many free parameters that represents practically all possible distributions,
or even a distribution that is parametrized by its value in many small intervals. Whatever our choice is, it is an
assumption, not the result of an hypothetical infinite number of previous experiments. The Bayesian methods are
then said to express our degree of belief in our assumptions concerning the data and the priors.

Since P (θα;xi) is a probability distribution function for θα, it has to be normalized to unity:
ˆ
P (θα;xi)d

nθα = 1 =

´
L(xi; θα)p(θα)dnθα

E(xi)
, (3.5)

and therefore ˆ
L(xi; θα)p(θα)dnθα = E(xi) . (3.6)

As we will see in the next section the integral on the l.h.s. is called evidence . The function E(xi) does not depend
on the parameters θα and therefore it is of no help in estimating the parameters. From the point of view of P (θα)
it is just a normalization factor. The prior p(θα) is also often unknown. Normally we do not know the probability
distribution of theories, that is, whether the ΛCDM model is more probable, from an absolute point of view, than a
modified gravity model or whether Ω

(0)
Λ = 0 is more probable than Ω

(0)
Λ = 0.7. However, we often do know something

1Reverend Thomas Bayes (1702–1761) studied what in modern terminology is the binomial distribution and introduced the concept
of conditional probability. His work was published posthumously in 1763.
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which, while not quite absolute in any sense, still represents some form of information independent of the data at
hand. Namely, we know the results of previous experiments. If an experiment convincingly excluded, say, Ω

(0)
m < 0.1,

then we could use this information, putting p(Ω(0)
m < 0.1) = 0. If instead we believe that h = 0.72± 0.08, then we

could use as p(h) a Gaussian with mean 0.78 and standard deviation 0.08. These are typical prior distributions.
Priors can be of many kinds. Beside including other experiments, we could simply exclude unphysical values,

e.g., Ω
(0)
m < 0 or weigh down some regions of parameter space that we, perhaps subjectively, consider less likely.

What matters is not so much what we decide to include as prior but rather that we make this decision explicit to
the reader and to the potential user of our results. Every posterior, sooner or later, will become a prior for us or for
somebody else, and it is our responsibility to make it explicit which prior information we adopted, no less to avoid
that a future user includes twice the same information. The easiness of including prior information of all kinds is
one of the major advantage of the Bayesian approach.

There are two important facts to note about priors. First, priors matter. Clearly the final result depends on
the prior, just as our bet on the result of a football match depends on what we know about the teams based on
previous games (and on our personal interpretation of those results). One can say that priors quantify our physical
intuition. Second, priors are unavoidable. Even if we are not consciously choosing a prior, the way we manage the
statistical problem at hand always implies some form of prior. No prior on a parameter means in fact p(θ) = 1 in
the domain where θ is defined and p(θ) = 0 outside. Even when θ is defined in the whole real range we are still
choosing a “flat” prior, p(θ) = 1, over other possible choices. One could push this argument as far as saying that
our choice of theory and its parameters θ already constitute a strong prior. So, again, the important issue is to
specify exactly what prior is employed. An improper prior, i.e. one which is not normalized to unity, can also be
employed. For instance, one can assume a uniform prior in the entire range from −∞ to +∞.

Once we have P (θα) we need to search the maximum to obtain the estimators (MLE) θ̂i, called Maximum a
Posteriori (MAP). Of course, if the prior is weak we can replace P with L and the estimator is called maximum
likelihood estimator (MLE). We often use MLE because we have in mind uninformative priors, unless otherwise
specified. Equation (3.2) is then replaced by

∂P (θα)

∂θα
= 0 , α = 1, .., n . (3.7)

If, as usually the case, we discard the denominator E(xi) in Eq. (3.4), the posterior P is not normalized and its
normalization has to be recalculated. The overall normalization N is the integral over the parameter space:

N =

ˆ
P (θα) dnθα , (3.8)

where the integral extends to the whole parameter domain. From the normalized posterior [i.e. P (θα)/N which
we keep calling P (θα)], we can derive the regions of confidence (or belief ) for the parameters. These are defined as
regions R(α) of constant P (θα) for which ˆ

R(α)

P (θα) dnθ = α . (3.9)

The region R(α) is the region for which the integral above evaluates to 0 < α < 1 (remember that now P is
normalized and therefore its integral over the whole domain is 1). To find R one evaluates

ˆ
P̂ (Pi) dnθ = αi , (3.10)

where P̂ (Pi) = P if P > Pi and 0 elsewhere (i.e. the volume lying within the curve of height Pi, smaller than
the peak of P ). By trial and error (or by interpolating over a grid of Pi) one finds the preferred αi. The typical
choices are α = 0.683, 0.954, 0.997 (also denoted as 1, 2, 3σ, respectively, but sometimes other reference values are
also employed). The value Pi that corresponds to αi is the level at which we have to cut P to find the region R(αi).

3.2 Marginalization
Often, we are interested in some subset of parameters and consider the others as “nuisance” of which we would
gladly get rid of. For instance, if we are analyzing a set of supernovae apparent magnitudes mi and comparing
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them to the theoretical predictions mth = 5 log10 dL(z; Ω
(0)
m ,Ω

(0)
Λ ) +C, we may be interested in Ω

(0)
m ,Ω

(0)
Λ but not in

the constant C. This constant depends on the K correction and on the standard absolute magnitude M , to which
we can add also the constant log10H

−1
0 . Our general posterior is therefore a function of C,Ω(0)

m ,Ω
(0)
Λ but we can

transform it into a function of Ω
(0)
m ,Ω

(0)
Λ alone by integrating out C:

P (Ω(0)
m ,Ω

(0)
Λ ) ≡

ˆ
L(C,Ω(0)

m ,Ω
(0)
Λ ) dC , (3.11)

where the integration extends over the domain of definition of C, which in absence of better information could as
well be from −∞ to +∞ [there should be no confusion by denoting both the “old” and the “new” posterior by the
same symbol in Eq. (3.11)]. This very common procedure is called marginalization.

Often one wants to marginalize a multidimensional problem down to a more manageable and plottable 2-
dimensional function. Also, one could quote final confidence regions by marginalizing in turn to single parameters,
e.g.,

P (Ω
(0)
Λ ) =

ˆ ∞
0

P (Ω(0)
m ,Ω

(0)
Λ ) dΩ(0)

m . (3.12)

For instance, if the estimate of Ω
(0)
m is 0.3 and

ˆ
R

P (Ω(0)
m )dΩ(0)

m = 0.683 , (3.13)

when R is the interval Ω
(0)
m = [0.1, 0.4], we will write as our final result Ω

(0)
m = 0.3+0.1

−0.2 at 68.3% confidence level (or,
less precisely, at 1σ: notice that this will absolutely not imply that at 2σ one should expect −0.1 as lower limit of
Ω

(0)
m !).
In the common case in which we want to marginalize over a constant offset or over a multiplicative factor one can

often obtain an analytical result. Here we work out the first case. Taking again the example of supernovae, suppose
that we have N standard candle sources at redshifts zi with apparent magnitudes mi and that our preferred
cosmological model predicts magnitudes mth,i = M + 5 log10 dL(zi; θα) + 25, where dL(zi; θα) is the luminosity
distance measured in Megaparsecs. The luminosity distance is proportional to 1/H0. We can therefore take this
factor out of the logarithm and write mth,i = α+µi, where µi = 5 log10 d̂L(zi; θα) and α = M + 25− 5 log10H0 and
d̂L is dLH0. We have very little information on α, so we decide to marginalize it over:

P (θα) = N

ˆ
dα exp

[
−1

2

∑
i

(mi − µi − α)2

σ2
i

]
, (3.14)

where N is an unimportant normalization factor. Then we have

P (θα) = N

ˆ
dα exp

[
−1

2

∑
i

(mi − µi)2 + α2 − 2α(mi − µi)
σ2
i

]

= N exp(−S2/2)

ˆ
dα exp(αS1 − α2S0/2)

= N exp

[
−1

2

(
S2 −

S2
1

S0

)]ˆ
dα exp

[
−1

2

(
α− S1

S0

)2

S0

]
, (3.15)

where S0 =
∑

(1/σ2
i ), S1 =

∑
yi/σ

2
i , S2 =

∑
y2
i /σ

2
i , and yi = mi − µi. The integration in the region (−∞,+∞)

gives a constant independent of µi and therefore independent of the theoretical parameters that we absorb in N :

P (θα) = N exp

[
−1

2

(
S2 −

S2
1

S0

)]
. (3.16)

This is then the new posterior marginalized over the nuisance additive parameter α. Notice that the parameters θα
ended up inside µi which are inside S1, S2. A similar analytic integration can get rid of multiplicative parameters.
If the analytical integration is impossible, then one has to marginalize numerically.
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Sometimes one prefers to fix a parameter, rather than marginalizing over it, perhaps because one wants to see
what happens for particularly interesting values of that parameter. So for instance one may fix Ω

(0)
Λ to be Ω

(0)
Λ = 0

and evaluate P (Ω
(0)
m ,Ω

(0)
Λ = 0). Then the result will obviously depend on the fixed value. When that value is the

maximum likelihood estimator, the posterior is said to be maximized (as opposed to marginalized) with respect to
that parameter.

3.3 Some examples
If this is your first encounter with maximum likelihood method, warm up by proving that if we have the Gaussian
likelihood P (xi;µ, σ

2)

P (xi;µ, σ
2) = (2πσ2)−n/2 exp

[
−1

2

n∑
i

(xi − µ)2

σ2

]
, (3.17)

then the MLE of µ is given by

µ̂ =
1

n

n∑
i

xi . (3.18)

Analogously, you can prove that the variance MLE is

σ̂2 =
1

n

n∑
i

(xi − µ̂)2 . (3.19)

You may notice that this falls short of the standard result according to which the estimate of the sample variance
has (n− 1) instead of n at the denominator. In this case in fact the maximum likelihood estimator is biased, which
means that its expectation value does not equal the “true” or “population” value. Indeed, maximum likelihood
estimators are not necessarily unbiased although under some general conditions they are asymptotically (i.e. for
n→∞) unbiased.

The MLE for correlated Gaussian variables can also be easily obtained. Assuming a common mean µ for all
variables, the likelihood is

P (xi) = (2π)−n/2|C|−1/2 exp

[
−1

2
(xi − µui)C−1

ij (xj − µuj)
]
, (3.20)

where ui = (1, 1, 1...). Then we obtain from d log f/dµ the MLE estimator

µ̂ =
uiC

−1
ij xj

uiC
−1
ij uj

(3.21)

Let’s define F = uiC
−1
ij uj , i.e. the sum of all elements of the inverse covariance. We have 〈xixj〉 = Cij + µuiuj .

Therefore the variance of µ̂ is

〈(µ̂− µ)2〉 =
1

F 2
(〈uiC−1

ij xjumC
−1
m`x`〉 − F

2µ2) (3.22)

=
1

F 2
(uiC

−1
ij umC

−1
m`〈xjx`〉 − F

2µ2) (3.23)

=
1

F 2
(uiC

−1
ij umC

−1
m`Cj` + µ2uiC

−1
ij umC

−1
m`uju` − F

2µ2) (3.24)

=
1

F 2
uiC

−1
ij uj =

1

F
(3.25)

So the variance of the MLE mean of correlated Gaussian variables is 1/F .
If the correlation matrix is diagonal, Eq. (3.21) becomes

µ̂ =

∑
xjσ

−2
j∑

σ−2
j

(3.26)
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ie. a weighted sum, where each variable is weighted by the inverse of its variance. This estimator is the minimum
variance estimator. Using the error propagation formula, which is exact for Gaussian independent variables, we see
that the variance of the mean estimator µ̂ is then

σ2
µ̂ =

1∑
σ−2
j

(3.27)

So both in µ̂ and in σ2
µ̂, data points with large error weigh less than those with small errors.

Notice that if we follow the frequentist approach (and therefore don’t use Bayes’ theorem) we could still derive
a PDF for the variance (here we need to distinguish between the particular ML value of the estimator, σ2

ML, and
its generic value as random variable, which I denote with σ̂2). Let us take the simplest case of constant variance
(which now, according to frequentist practice, is to be replaced by the estimator value σ2

ML), and let us normalize
σ̂2 by defining the new variable z:

z ≡ nσ̂2

σ2
ML

=
n2

S2
σ̂2 (3.28)

where we defined S2 =
∑

(xi − µ)2 and σ2
ML = S2/n. Since σ̂2 is a quadratic function of Gaussian variables,

the normalized variable z follows a χ2 distribution with n degrees of freedom (we assume here that µ is known in
advance, i.e. is not estimated from the data)

P (z = σ̂2n2/S2) =
1

2n/2Γ(n/2)
zn/2−1e−z/2 (3.29)

Since dz/dσ̂2 = n2/S2, the distribution of σ̂2is finally

P (σ̂2) = P (z =
σ̂2n2

S2
)
n2

S2
=

n2

S22n/2Γ(n/2)
(
σ̂2n2

S2
)n/2−1e−

σ̂2n2

2S2 (3.30)

However using the Bayesian approach, (with uniform prior, so that the maximum likelihood estimator is the same
for frequentists and Bayesians) we would obtain that σ̂2 is distributed as

P (σ̂2) =
N

(2πσ̂2)n/2
exp

[
−1

2

n∑
i

(xi − µ)2

σ̂2

]
(3.31)

where the normalization N (normalized in σ̂2, not in xi!) is

N−1 =

ˆ ∞
0

dσ̂2(2πσ̂2)−n/2 exp

[
−1

2

n∑
i

(xi − µ)2

σ̂2

]
=

1

2
π−n/2S

1−n/2
2 Γ(

n

2
− 1) (3.32)

By construction, the Bayesian PDFs has the peak (or mode) at the ML estimator, while, again by construction,
the frequentist distribution has the mean at the ML estimator (since 〈σ̂2〉 = σ2 for fixed µ) and the mode at
(n − 2)σ2

ML/n. The two distributions are clearly different (see Fig. 3.1). It is only in the n → ∞ limit that they
become identical Gaussian distributions. On the other hand, the frequentist and Bayesian distributions for the
mean parameter µ̂ of Gaussian variables are identical (if the prior is uniform).

Let us conclude on a philosophical tone. One could say that the use of priors constitutes the main difference
between the Bayesian approach and the so-called frequentist one. The frequentist approach prefers not to deal with
priors at all and therefore refuses to use Bayes’ theorem to convert theoretical parameters into random variables.
Once a frequentist finds a maximum likelihood estimator (which as any other estimator is a function of data and
therefore is a random variable), they try to determine its distribution as a function of the assumed distribution of
the data. In most cases, this is done by generating numerically many mock datasets from a distribution around
the MLE (i.e., assuming that the ML estimator represents the true theory), and calculating for each dataset the
estimator, deriving then its approximate distribution. This Monte Carlo approach is the hallmark of the frequentist
approach. It is powerful, objective, and general but by rejecting priors fails to take into account previous knowledge.
It is therefore suitable only when one can afford not to fully consider previous knowledge. This applies for instance
when new experiments are much better than previous ones so that priors do not really matter and when each
experiment measures only one parameter, say the mass of a particle, so that the outcome does not depend on other
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Figure 3.1: Frequentist distribution of σ̂2 (in blue) compared with the Bayesian distribution (in red) for n = 50
(thick lines) and n = 10 (dotted lines), for S2 = n.

Bayesian Frequentist

Figure 3.2: In the Bayesian view (left), the data are held fixed while the theoretical prediction, the red line, is
distributed randomly according to the posterior; in the frequentist view (right), the data are random variables
distributed according to the likelihood, while the theoretical line is held fixed.

poorly measured parameters. Both features characterize most particle physics experiments and this explains why
most particle physicists are frequentist. Astrophysics and cosmology live in another experimental world: data are
hard to come by, observations cannot be twisted and repeated as easily as in a laboratory, models are characterized
by many correlated parameters and every drop of previous information, even loosely related to a given parameter,
has to be taken into account. Most of the evidence for dark energy comes from combining CMB and supernovae
priors, each of them measuring many correlated parameters at once. It is no surprise that Bayesian methods are so
popular in astrophysics and cosmology.

3.4 Sampling the posterior
The posterior P is in general a surface in a N -dimensional parameter space. In order to evaluate its maximum
and its general shape, one needs to estimate its value at many points in a high-dimensional space: this is called
sampling. If N is large, its computation can be very lenghty. That is why maximum likelihood estimators have
become popular only after the availablilty of fast computers in the last decades.

In general, there are two methods to evaluate the posterior: grids or random sampling. In a grid approach,
one samples P in a regular or irregular grid of points, and then interpolates between the points. The grid can be
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equally spaced in each dimension, can have different spacings in different dimensions, can be irregular if one has
reason to suspect that certain regions of the parameter space are more interesting than others, or can be adaptive,
that is, automatically adjust so as to better sample the interesting regions near the peaks or in fast-varying zones.
The problem with the grid approach is that if one needs e.g. 10 values per dimension, with say N = 10 dimensions,
one has 1010 computations to perform. The complexity grows exponentially with the number of dimensions. On
the other hand, the implementation is very simple, the geometry is under control, and the algorithm is very well
parallelizable.

The random-based methods are generally called Monte Carlo methods. The idea here is that a grid wastes
lots of time sampling uninteresting regions of the posterior, e.g. the tails far from the peak. A method that
automatically samples better the peak regions and more sporadically the tail regions, might improve the speed by
orders of magnitude. Most such models are based on Markov chains, which simply means that the i-th sampling
point depends only on the i− 1-th point. So we speak of Monte Carlo Markov chains, i.e. MCMC methods.

A typical and widely employed sampling scheme is called Metropolis-Hastings. The basic idea is very simple.
Let us choose a random point x0 in the parameter space, i.e. a vector. The next point x1 = {x1i} will be chosen
by drawing (typically) from a multidimensional Gaussian distribution

exp−1

2

∑
i

(x1i − x0i)
2

σ2
(3.33)

with some σ2 that has to be chosen according to some criteria, as we discuss later. This distribution is called
proposal distribution. In practice, a generator of random Gaussian numbers will give me the next point x1, given
x0 and σ2. Now we evaluate the posterior ratio

a =
P (x1)

P (x0)
(3.34)

A very good property of this ratio is that is independent of the normalization of L, which is a computationally
demanding operation. If this ratio is larger than 1, it means x1 is higher up than x0, so we are moving towards the
peak. This is good, and we move to x1. If a < 1, we move to x1 only a% of the times, and stay in x0 the remaining
cases. That is, we generate a uniform random variable r between 0 and unity and move to x1 only if r < a, which
of course happens a% of the time. If we stay in x0 we start over again by generating a new candidate point x1,
until we move to x1 for good. This procedure tends to move towards the peak but does not discard completely the
tail regions. The expectation is that the peak regions are well sampled, while the tail regions are only sporadically
sampled, which is what we want.

Now, the number of sample points in any given region x is proportional to the average P (x) in that region.
That is, the density of points is proportional to P . So, isodensity regions correspond to isoprobable values of the
posterior, and the fraction of point inside these regions give the probability of finding the parameters in that contour
(confidence regions or credible regions). The absolute normalization of the posterior never enters the algorithm.
The marginalized probabilities are obtained simply by discarding from every sampling point the dimensions to be
marginalized over; that is, if I have the collection of points (x1, y1, z1), (x2, y2, z2)..., the chain marginalized over z
is simply (x1, y1), (x2, y2)...

All this is straightforward. However, there are several caveats. First, the initial point x0 can be really far from
the peak, so it might take quite some time before the sampling starts climbing up, and there will be many points
near x0even if this point is far into the tail. To avoid this, the first n sampling points are discarded (burn-in). This
value of n is arbitrary and typically of the order of thousands. Second, the value of σ in the proposal distribution is
also arbitrary. One should aim at a value such that 30−50% of the candidate xi+1 are accepted. This can be tested
in a first phase of the chain and then tuned. Third, the chain should be stopped when finally the distribution does
not change any longer (stationary distribution): criteria for this might vary and depend a bit on visual inspection.
Fourth, sometimes the chain gets trapped near secondary peaks; the chain must then be restarted from a different
point or σ2 increased. Also, in some codes not every sampling point is accepted but only, say, every 10th or 100th,
in order to reduce the correlation among points. All in all, there is a considerable amount of black magic in every
MCMC code.

A variant of the Metropolis-Hastings is the Gibbs sampling. The idea behind the Gibbs sampling is that it is
sometime easier to move (that means, faster to evaluate) with the Markov chain along fixed dimensions than in the
full N -dimensional space. This also allows to choose a different σ2 in the proposal distribution for each direction.
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Figure 3.3: Distribution of points in a Metropolis-Hastings Markov chain. The initial burn-in phase is clearly visible
on the right. The peak of the posterior is illuminated (from Wikipedia Commons, by Vasileios Zografos CC BY-SA
3.0.)

The algorithm works as follows. When proposing a candidate xi+1 from a previous xi, we should come up with
the N components of the xi+1 vector. Gibbs sampling chooses the first component of xi+1 the same way as in the
Metropolis-Hastings method, as if the problem were unidimensional. Then we choose the second component, again
with the Metropolis-Hastings method, but possibly with a different σ2, keeping the first that we already obtained
and all the subsequent ones fixed. That is, the components that come before the k-th component are updated,
while those that come after and therefore still to be generated, remain the previous ones. Then we repeat until
we have a full new vector. In other words, at every step, we choose the j-th component of the i + 1 vector as a
Metropolis-Hastings algorithm with the conditional posterior

P (xi+1,j |xi+1,1, xi+1,2, ..., xi,j+1, xi,j+2, ...) (3.35)

All this is equivalent to performing the rejection-acceptance test in many unidimensional steps rather than all at
once with the new point. Beside the advantage of tuning the σ2 according to the dimension (the tuning might be
achieved separately in each dimension adjusting σ2 after a number of steps), the Gibbs sampling is particularly
useful if along some parameter dimension the posterior is particularly simple, for instance analytical.

Many other algorithms have been proposed. The goal is always the same: sample the posterior fast and
accurately. The choice of the method depends a lot on what we know about, or reasonably expect from, the true
posterior.

3.5 Fisher matrix
As straightforward and versatile as the posterior method is, it is still often too complicated or computing-expensive
to implement, especially when there are more than a few parameters involved. In fact there are some cases in which
several tens or hundreds of parameters are present.

One could think that a model with more than 3 or 4 free parameters does not deserve the name of model and
even less that one of “theory”. However every theory begins by representing a vast dataset with a smaller set of
numbers. And since cosmological experiments may easily collect terabytes of data, reducing them to 10, 100, or
1000 numbers should be seen already as a great progress towards a unified description (if there is one!).

Anyway, the problem with the posterior is that we need to evaluate L(θα) for every θα, or at least for many θα,
e.g., for a grid of, say, ten values for each dimension in parameters space. If there are 10 parameters, this means
1010 different evaluations. If each evaluation takes a second (say, a run of a CMB code), we are in for a waiting
time of a 300 years...

One way out is to use a Monte Carlo approach, as we have already seen. Instead of building a full grid, one
explores the landscape with random jumps. The size of the jumps in turn may be related to the steepness of the
function (smaller jumps over rough terrain, larger ones over flatlands). This technique will grow with the number
D of dimensions (parameters) as D, instead of exponentially as in full grid method. But this might still be a lot: a
typical Markov chain exploration can take hundred of thousands of computations.
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It is time to think of something faster: the Fisher matrix. The idea is straightforward: to approximate the full
posterior with a (multivariate) Gaussian distribution,

L ≈ N exp

[
−1

2
(θα − θ̂α)Fαβ(θβ − θ̂β)

]
, (3.36)

where the values θ̂β , the maximum likelihood estimators, are function of the data, and Fαβ , the Fisher (or infor-
mation) matrix, is the inverse of the correlation matrix among the parameters evaluated at θ̂. It is crucial to pay
attention to the fact that the posterior is now supposed to be a Gaussian function of the parameters, not (or not
necessarily) of the data. We often assumed in the previous sections the data to be Gaussian but now we require
the same for the parameters. The form (3.36) is of course a crude approximation. One could hope however that
it is a reasonable approximation at least near the peak of the distribution, given that around a local maximum
every smooth function (in this case lnL) can be approximated as a quadratic function. Therefore we expect this
approximation to work better for θα close to their estimators θ̂α.

If both the estimators and the data are Gaussian, then the estimators must be linear combinations of the data
(as e.g. the mean is) and the frequentist distribution of the estimators is exactly Eq. (3.36). In this case, the
estimators θ̂ have the same frequentist distribution as the Bayesian distribution of the theoretical parameters θ (if
the prior is uniform) and the distinction between the two approaches becomes blurred.

Expanding the exponent of a generic posterior up to second order near its peak (i.e. near the maximum likelihood
(ML) value θ̂α of the parameters) as

lnL(x; θα) ≈ lnL(θ̂α) +
1

2

∂2 lnL(θα)

∂θα∂θβ

∣∣∣∣∣
ML

(θα − θ̂α)(θβ − θ̂β) , (3.37)

(naturally the first derivatives are absent because they vanish at the peak) we find, comparing with Eq. (3.36), that
the normalization N = L(θ̂i) depends only on the data and that the Fisher matrix (FM) is defined as

Fαβ ≡ −
∂2 lnL(x0;θ)

∂θα∂θβ

∣∣∣∣∣
ML

. (3.38)

where x0 are the particular set of observed data. If the prior is also Gaussian, the Fisher matrix for the posterior
will be obtained by simply adding to Fαβ the Fisher matrix for the prior, see below.

For Gaussian data we can write down the Fisher-approximated posterior more explicitly. In this case in fact the
peak of L(θ̂α) coincides with the smallest χ2, so we can write

L(x; θα) ≈ 1

(2π)N/2|C|1/2
e−

1
2χ

2
mine−

1
2 (θα−θ̂α)Fαβ(θβ−θ̂β) (3.39)

This expression will be repeatedly used in the following.
You may say now that in order to find the ML estimator we still have to build the full likelihood: does this again

require the 1010 evaluations of L(θα) that we mentioned above? Not really, there are fast numerical methods to
search for maxima in a multi-dimensional function without spanning the whole parameter space. For instance, in
one dimension, if we can guess that the parameter is near θ(0) then we can expand the derivative of the log-likelihood
L = − lnL as follows

L,θ(θ) ≈ L,θ(θ(0)) + L,θθ(θ − θ(0)) , (3.40)

and estimate the minimum of L (i.e. the maximum of L) by putting L,θ(θ) = 0. Then we find the approximation

θ(1) = θ(0) − L,θ
L,θθ

∣∣∣∣
θ(0)

, (3.41)

which could be iterated by assuming as new guess θ(1) instead of θ(0). This method, called Newton-Raphson or
Levenbury-Marquardt, is extremely fast for well-behaved functions and can be directly generalized to the multi-
dimensional case. However perhaps the most useful application of the Fisher formalism is to the cases in which we
do not need to search for the likelihood peak because we already know from the start the ML estimator: when we
are simulating an experiment.
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In this case we want to produce an estimate of the covariance matrix of the parameters averaging over several
possible future datasets. We need then the expected value of the FM over the data, i.e.

Fαβ ≡ −
〈
∂2 lnL(x;θ)

∂θα∂θβ

〉
ML

=

[
−
ˆ
∂2 lnL(x;θ)

∂θα∂θβ
L(x;θ)dx

]
ML

. (3.42)

Of course if the FM is constant, i.e. if the parameters appear linearly in the likelihood exponent, the result of the
average is the same FM. We can also write

Fαβ ≡ −
〈
∂2 lnL(x;θ)

∂θα∂θβ

〉
ML

= −
〈

∂2L(x;θ)

L(x;θ)∂θα∂θβ

〉
ML

+

〈
∂ lnL(x;θ)

∂θα

∂ lnL(x;θ)

∂θβ

〉
ML

=

〈
∂ lnL(x;θ)

∂θα

∂ lnL(x;θ)

∂θβ

〉
ML

(3.43)

since 〈L,αβL 〉 =
´
L,αβd

nx = (
´
Ldnx),αβ = 0.

Suppose we want to forecast how well a future supernovae experiment, which is supposed to collect n = 10, 000
supernovae light curves and to derive their peak magnitude mi with errors σi, is capable of constraining the
cosmological parameters Ω

(0)
m ,Ω

(0)
Λ . Let us start by assuming that the n random variables mi(zi) follow a PDF

with known variance σi and mean mth(zi; Ω
(0)
m ,Ω

(0)
Λ ) = 5 log10 dL(zi; Ω

(0)
m ,Ω

(0)
Λ ) + C. Here we take the PDF to be

Gaussian but we could also assume any other PDF that we have any reason to describe the data. Since the data
PDF is assumed to be Gaussian we can immediately form the likelihood (neglecting the normalization constant):

Lm ≈ exp

[
−1

2

∑
i

(mi −mth(zi))
2

σ2
i

]
= exp

(
−1

2
µiC

−1
ij µj

)
. (3.44)

Here we have expressed the argument of the exponential in a slightly more general way: we have introduced the
vector µi ≡ mi −mth(zi) and the correlation matrix Cij , that in this particular case is rather trivial

C = diag(σ2
1 , σ

2
2 , σ

2
3 ...) . (3.45)

We wish now to produce a function of Ω
(0)
m ,Ω

(0)
Λ , something in the form of Eq. (3.36) like

L(Ω(0)
m ,Ω

(0)
Λ ) = exp

[
−1

2
(Ω(0)

α − Ω̂(0)
α )Fαβ(Ω

(0)
β − Ω̂

(0)
β )

]
, (3.46)

where Fαβ is of course our Fisher matrix and α, β run over the subscripts m,Λ. Since real data are not yet
present, we do not have the ML estimators Ω̂

(0)
α .However we are simulating the future experiment, so we may take

for estimators the values mth(zi; Ω
(0)F
m ,Ω

(0)F
Λ ) obtained using some fiducial cosmology Ω

(0)F
m ,Ω

(0)F
Λ , for instance

Ω
(0)F
m = 0.3,Ω

(0)F
Λ = 0.7. This means that we will find the confidence regions only around this particular parameter

set. If we decide to change fiducial values, we have to redo our calculations and all our results will change in some
way.

The Fisher matrix of (3.44) is then, using (3.43):

Fαβ = − ∂2 lnLm

∂Ω
(0)
α ∂Ω

(0)
β

∣∣∣∣
F

=
∑
i

1

σ2
i

∂mth(zn; Ω
(0)
m ,Ω

(0)
Λ )

∂Ω
(0)
α

∂mth(zn; Ω
(0)
m ,Ω

(0)
Λ )

∂Ω
(0)
β

∣∣∣∣∣
F

. (3.47)

Notice that Fαβ is not diagonal even if the original correlation matrix Cij was. Since the same Ω
(0)
m ,Ω

(0)
Λ appear

in all mth(zn), we vary the likelihood of obtaining all mi by varying Ω
(0)
m,Λ. We can now use Eq. (3.46) to derive

the confidence errors for Ω
(0)
m ,Ω

(0)
Λ . In practice, what we have developed so far is a formalism to propagate the

errors from the observational errors σi to the cosmological parameters. The errors σi, in turn, must be based on the
expected performance of the experiment and often their derivation is the most complicated step, involving many
fine details of the observations. Calculating numerically the second order partial derivatives in the Fisher matrix
requires only a few estimations of the likelihood for each of the parameters; if we have 10 parameters this makes
few tens of calculations instead of the 1010 we mentioned at the beginning of this section.

Once we have reduced our likelihood into a Gaussian form, the Fisher matrix is all we need to derive all the
properties. We will derive the Fisher matrix for a general multivariate Gaussian in a later section. The next section
is concerned with various ways to manipulate the Fisher matrix to achieve several results.
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3.6 Manipulating the Fisher matrix

Suppose we decide to switch from a set of parameters pβ to another one qα(pβ), for instance from Ω
(0)
m ,Ω

(0)
Λ to the

spatial curvature Ω
(0)
K = 1−Ω

(0)
m −Ω

(0)
Λ and their ratio RmΛ = Ω

(0)
m /Ω

(0)
Λ . If we know the Fisher matrix for pi, the

approximated likelihood is

L = exp

(
−1

2
p̃αF

(x)
αβ p̃β

)
, (3.48)

where p̃α = xα − xML
α . Approximating qα near qML

α as

qα ≈ qML
α +

∂qα
∂pβ

∣∣∣∣
ML

(pβ − pML
β ) , (3.49)

where qML
α ≡ qα(pML), we can write

q̃α ≡ qα − qML
α = J−1

αβ p̃β . (3.50)

Here Jαβ ≡ (∂pα/∂qβ)ML is the transformation Jacobian evaluated on the ML estimators. Then we have

p̃α = Jαβ q̃β , (3.51)

and we can find the new Fisher matrix by substituting into Eq. (3.48) simply as

F
(y)
αβ = JαγF

(x)
γσ Jσβ , (3.52)

which is summed over indices. We can say that the Fisher matrix transforms as a tensor. Notice that the Jacobian
matrix does not need to be a square matrix. The old parameters pβ can be projected in fact onto a smaller number
of new parameters qα.

One may wonder why the Jacobian does not enter also in the transformation from the volume element dpidp2...
to the new element dqidq2..., so that L(qα) = |J |L[pβ(qα)]. This would imply an additional logarithmic term ln |J |
in the transformed probability function, spoiling the Gaussian approximation altogether. However near the ML
values we can approximate |J | with |JML| and include this constant factor in the overall normalization. That is,
forget about it.

What if we want to maximize the likelihood with respect to some parameter? This means, if you remember, to
fix one of the parameters to its maximum likelihood estimator. With the Fisher matrix this is really trivial, since
fixing a parameter to its maximum likelihood estimator means putting the difference θα − θ̂i = 0 and therefore to
discard all entries in the Fisher matrix related to the i-th parameter. In practice, this means that one removes from
the Fisher matrix the rows and columns of the maximized parameters.

What about marginalization then? Take a general 2-dimensional Gaussian PDF

G(x1, x2) = N exp

[
− 1

2(1− ρ2)

(
x2

1

σ2
1

+
x2

2

σ2
2

− 2
ρx1x2

σ1σ2

)]
, (3.53)

where ρ is the correlation factor. This PDF can be written as

G(Xi) = N exp

[
−1

2
(XiC

−1
ij Xj)

]
, (3.54)

where Xi ≡ xi − µi (generalizing to non-zero µ’s), and

C =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (3.55)

Let us now evaluate the integral
´
G(x1, x2) dx2 over the whole real domain. The result is given by

G(x1) = Ñ exp[−x2
1/(2σ

2
1)] , (3.56)

where Ñ is a new normalization constant. The new correlation “matrix” is now simply C11 = σ2
1 .
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In terms of the Fisher matrix F = C−1 we see that the outcome of the marginalization has been the removal
from F−1 = C of the rows and columns related to the second parameter. This trick remains true for any number
of dimensions: to marginalize over the j-th parameter, one simply needs to remove from the inverse of the Fisher
matrix F−1 the j-th row and column; to marginalize at once over several parameters, one removes all the rows
and columns related to those parameters. As a consequence, the diagonal of the inverse Fisher matrix contains the
fully-marginalized 1σ errors of the corresponding parameters (i.e. the errors one gets on the α-th parameter after
marginalizing over all the others)

σ2
α = (F−1)αα . (3.57)

This latter property is probably the most useful and time-saving feature of the whole Fisher method. Be warned
however that the procedure of inverting and striking out rows and columns is in general numerically unstable if the
matrix contains small eigenvalues. There are more stable algorithms that perform this operation.

Often we want to reduce the Fisher matrix to a 2 × 2 matrix F2 for two parameters, say θ1, θ2, because then
it is easy to plot the resulting 2-dimensional confidence regions, defined as the regions of constant likelihood that
contains a predetermined fraction of the total likelihood volume. Since the problem has been reduced from the
start to gaussianity, we will necessarily have ellipsoidal confidence regions on the plane θ1, θ2. Looking at the form
of the 2-dimensional Gaussian PDF (2.109), you will realize that the semiaxes of the ellipses are oriented along the
eigenvectors of F−1

2 , that is, they form an angle

tan 2α =
2ρσ1σ2

σ2
1 − σ2

2

, (3.58)

with the coordinate axes. Moreover, the semiaxes are proportional to the square root of the eigenvalues of F−1.
The length of the semiaxes depends clearly on the level of confidence. If we take the semiaxes length along the
i-th eigenvector equal to

√
λi, where λi is the i-th eigenvalue, we are finding the 1σ region, but because we are in

two dimensions, this level does not contain 68.3% of the probability but rather less than 40%. Instead, we find by
integrating a 2-dimensional Gaussian that the one-dimensional “1σ” region corresponding to 68.3% of probability
content is found for semiaxes which are roughly 1.51 times the square root of the eigenvalues. Regions at 95.4%
and 99.7% correspond to semiaxes 2.49 and 3.44 times the the square root of the eigenvalues, respectively. The
area of the 68.3% ellipses is πab, if a and b are the semiaxes length, that is 1.51 times the the square root of the
eigenvalues. The area is therefore equal to (1.51)2π(detF2)−1/2. Since an experiment is more constraining when
the confidence region is smaller, one can define a simple but useful figure of merit (FOM) as

FOM =
√

detF2 . (3.59)

Notice however that the FOM is often defined to be the area at 95%, or some other similar but not equivalent
choice.

The FOM naturally depends on how many parameters have been marginalized. Every parameter marginalization
increases (or more exactly, does not reduce) the amount of uncertainty with respect to a maximized likelihood and
therefore decreases the available information and the FOM of the final set of parameters.

All these simple rules are really good news for practical work. The bad news comes when they do not work.
The major problem, in practice, is when the Fisher matrix itself is singular. Then there is no inverse and no
marginalization. But the Fisher matrix can be singular only when rows or columns are not linearly independent.
It is easy to see when this happens. If L(θ1, θ2) depends on the two parameters through a constant combination,
e.g., aθ1 + bθ2, then the Fisher matrix will be singular.

Let us turn this bug into a feature. If the Fisher matrix is singular, then it means that there is a linear
combination of two or more parameters hidden somewhere in the likelihood. Therefore, we can substitute a new
parameter θ̂ in place of that combination, e.g., θ̂ = aθ1 + bθ2 and remove the singularity by restricting ourselves
to θ̂ instead of the original pair. Actually we should have done this from the start, since if the physics depends
only on the combination aθ1 + bθ2 there is no way we can distinguish between θ1, θ2. It is only this combination
that matters and we should replace it by θ̂. We say in this case that there is a degeneracy between θ1 and θ2.
Sometimes, however, it is not obvious at all that this was the case and the singularity of the Fisher matrix is a
warning for us to look better or to find a prior (e.g., other experiments) that give separate information on one of
the quasi-degenerate parameters and break the degeneracy.

This brings us to another advantage of the Fisher matrix approach. How do we add priors to a Fisher matrix
Fij? If the prior is the outcome of another experiment and we have the Fisher matrix F (p)

αβ of that experiment,
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then the problem reduces to multiplying a Gaussian likelihood by another Gaussian likelihood, obtaining a new
Gaussian likelihood. If the experiments have the same ML estimators or the same fiducial model, as in the case in
which we simulate them, the new Fisher matrix is given by

F
(tot)
αβ = Fαβ + F

(p)
αβ . (3.60)

As simple as this: combining the information from two forecasts (with the same fiducial model) means summing
their Fisher matrices. In so doing one has to ensure that the parameters and their order is exactly the same for both
matrices: trivial, but a most likely source of practical confusion. If one of the experiments constrains only a subset
of the total parameters (for instance, supernovae experiments do not constrain the primordial perturbation slope
ns), it means that it contains no information on that subset, and therefore the corresponding rows and columns are
to be put to zero. This means that the two Fisher matrices are rendered of the same rank by filling the one with
less parameters (say F (p)) with zeros in the correct position. For instance if we only want to add the information
that the single m-th parameter comes with an error σm then we add the Fisher matrix (no sum on m)

F
(p)
αβ =

δmα δ
m
β

σ2
m

. (3.61)

So you see that in this case F (p) would be utterly singular but the total F (tot) is not (unless of course F was
singular as well for the same parameter, bad luck really).

Let us mention the final point about the Fisher matrix. A statistical theorem known as Cramer-Rao inequality
states that the variance of an unbiased estimator cannot be less than (F−1)αα (which means first to take the inverse
and then take the α-th term on the diagonal, i.e. our fully marginalized variances). In this sense the Fisher matrix
gives the minimal error one can hope to achieve. If you are very optimist then the Fisher matrix is your tool.
Notice, however, that the maximum likelihood estimators need not be unbiased estimators at all, although they are
unbiased for large samples (asymptotically unbiased) otherwise they would be of little utility. So we could end up
in producing the best possible error estimate for some unbiased estimators which we do not know how to determine!

Once we accept the Gaussian approximation, the Fisher matrix embodies all the information we have on the
problem. The manipulation of the Fisher matrix therefore is all we need. To recapitulate, there are five golden
rules of fisherology :

1. To transform variables, multiply the Fisher matrix on the right and on the left by the transformation Jacobian.

2. To maximize over some parameters, remove from the matrix the rows and the columns related to those
parameters.

3. To marginalize over some parameters, remove from the inverse matrix the rows and the columns related to
those parameters (being careful about the numerical instability pointed out above).

4. To combine Fisher matrices from independent experiments with the same fiducial, sum the corresponding
Fisher matrices, ensuring the same order of parameters, and, if necessary, inserting rows and columns of zeros
for unconstrained parameters.

5. The ellipsoidal confidence regions have semiaxes lengths equal to the square root of the eigenvalues of the
inverse Fisher matrix, while the semiaxes are oriented along the corresponding eigenvectors. The area of
the ellipse (or volume of ellipsoid) is proportional to the square root of the determinant of the inverse Fisher
matrix. The determinant of the Fisher matrix is an indicator of performance or a figure of merit.

If one wishes, one could define a new set of parameters by diagonalizing the Fisher matrix, obtaining circular (or
spherical) confidence regions. In some cases this is useful because it reveals hidden properties (see Sec. 4.5). There
are other cases in which the new parameters are so remote from any physical direct meaning that the exercise is
futile. Notice that the confidence region volume (and therefore the FOM) does not change under the diagonalization.

3.7 An application to cosmological data
Let us apply the transformation technique to an interesting problem. In cosmology one uses extensively the
parametrization around a0 = 1 of the equation of state wDE(a) = w0 + w1(1 − a) . We could however have
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expanded wDE(a) around any other point ap and write instead wDE(a) = wp + w1(ap − a), where

wp = w0 + w1(1− ap) . (3.62)

We can now ask the question whether the constraint we obtain on wp (i.e. σ2
wp) is tighter than the one on w0, that

is whether we can better rule out say wDE = −1 at ap than at a0. The problem consists therefore in finding the
value ap (called pivot point) that minimizes the variance of wDE(a). Denoting the maximum likelihood estimators
(or fiducial values) with ŵ0, ŵ1, this occurs for the value of a which is the solution of the following equation,

d

da

[
〈[(w0 − ŵ0) + (1− a)(w1 − ŵ1)]2〉

]
=

d

da

[
σ2
w0

+ (1− a)2σ2
w1

+ 2(1− a)ρσw0
σw1

]
= −2(1− a)σ2

w1
− 2ρσw0σw1 = 0 . (3.63)

Here σ2
wi ≡ 〈(wi − ŵi)

2〉 for i = 0, 1 and ρ ≡ 〈(w0 − ŵ0)(w1 − ŵ1)〉/(σw0
σw1

) is the correlation coefficient. Then we
obtain

ap = 1 +
ρσw0

σw1

. (3.64)

In terms of the two-dimensional Fisher matrix Fij for w0, w1, we can write

σ2
w0

= (F−1)11 , σ2
w1

= (F−1)22 , ρσw0
σw1

= (F−1)12 . (3.65)

The transformation from p = (w0, w1) to q = (wp, w1) is achieved by using Eq. (3.52) with the transformation
matrix

J =
∂p

∂q
=

(
1 ap − 1
0 1

)
. (3.66)

It is straightforward to verify that with this transformation the new matrix F p = J tFJ is diagonal (the superscript
t denotes transpose) and its inverse is:

F−1
p =

(
σ2
w0

(1− ρ2) 0
0 σ2

w1

)
. (3.67)

The parameters wp, w1 are therefore uncorrelated and their confidence regions are circular. Moreover, as expected,
the error on wp, σ2

wp ≡ σ
2
w0

(1− ρ2) , is always smaller than σ2
w0

.

3.8 The Fisher matrix for the power spectrum
Now we have all the tools to derive a very useful result, the Fisher matrix for an experiment that measures the
galaxy power spectrum.

Suppose a future experiment will provide us with the Fourier coefficients δk of a galaxy distribution and their
power spectrum calculated for a set of m wavenumbers ki in some redshift bin z, z + ∆z. Our theory predicts the
spectrum P (k, z; pα) as function of, say, pα ≡ Ω

(0)
m ,Ω

(0)
b , h, ns etc. In any real survey with a galaxy density n(z),

however, the power spectrum will include the Poisson noise part :

∆2
k ≡ 〈δkδ∗k〉 = 〈δkδ−k〉 = P (k, z) +

1

n
. (3.68)

Since the average galaxy density is estimated from the survey itself we have by construction 〈δ(x)〉 = 0 and therefore
〈δki〉 = 0 for any ki. The coefficients δki are complex variables in which the real and imaginary parts obey the
same Gaussian statistics. So now we calculate the Fisher matrix for only, say, the real parts of δki and the Fisher
matrix for the whole δki is simply the sum of two identical Fisher matrices, i.e. twice the result for the real parts.
However when we count the total number of independent modes we have to remember that only half of them are
statistically independent since δ∗k = δ−k so in fact we should finally divide by two the final result. That is, we can
forget both factors.

If we assume the galaxy distribution to be well approximated by a Gaussian we can write the likelihood:

L =
1

(2π)m/2Πi∆i
exp

[
−1

2

m∑
i

δ2
i

∆2
i

]
, (3.69)
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(where to simplify notation we write ∆i = ∆ki , δi = Re δki) assuming that the measures at every ki are statistically
independent. When we simulate a future experiment, P (k, z) is taken to be the theoretical spectrum of our fiducial
model described by the parameters p(F )

α . Then we have

L = − lnL =
m

2
ln(2π) +

∑
i

ln ∆i +
∑
i

δ2
i

2∆2
i

. (3.70)

We further simplify the notation by suppressing the index i running over the k bins from ∆i, δi and denote the
differentiation with respect to the α-th parameter as ∆,α. Now from Eq. (3.38) the Fisher matrix for a particular
z bin is

Fαβ =

〈
∂2L

∂pα∂pβ

〉
=
∑
i

[
∆,αβ

∆
− ∆,α∆,β

∆2
− 〈δ2〉

(
∆,αβ

∆3
− 3

∆,α∆,β

∆4

)]

=
1

2

∑
i

∂ lnPi
∂pα

∂ lnPi
∂pβ

(
nPi

1 + nPi

)2

, (3.71)

[where we used 〈δ2〉 = ∆2 from Eq. (3.68)] calculated on the fiducial model.
For a more compact expression we can now approximate the sum with an integral over k. To do this we need to

count how many modes lie in the bin defined by the modulus interval k, k + dk and cosine interval dµ,, i.e. in the
Fourier volume 2πk2dkdµ. The number of modes we can really use is limited by two factors: the size of the volume
and the shot noise. Modes larger than the survey volume cannot be measured. Short modes sampled by only a few
galaxies cannot be reliably measured either.

To take into account these limitations we discretize the Fourier space into cells of volume Vcell = (2π)3/Vsurvey,
so that we have 2πk2dkdµ/Vcell = (2π)−2Vsurveyk

2dkdµ modes in the survey volume. The integral form of the
Fisher matrix is therefore given by

Fαβ =
1

8π2

ˆ +1

−1

dµ

ˆ kmax

kmin

k2dk
∂ lnP (k, µ)

∂pα

∂ lnP (k, µ)

∂pβ

[
nP (k, µ)

nP (k, µ) + 1

]2

Vsurvey . (3.72)

The factor

Veff =

[
nP (k, µ)

nP (k, µ) + 1

]2

Vsurvey , (3.73)

can be seen as an effective survey volume. When nP � 1 the sampling is good enough to derive all the cosmological
information that can be extracted from the survey and there is no need of more sources. For nP � 1 the effective
volume is severely reduced. If we subdivide the data into several z independent bins, we can simply sum the Fisher
matrices for every bin.

3.9 The Fisher matrix for general Gaussian data
It is straightforward to extend the Fisher matrix calculation to a more general Gaussian likelihood with full cor-
relation. Consider a set of n Gaussian data x with mean µ and covariance matrix C distributed according to the
likelihood

L =
1

(2π)n/2
√

detC
exp

[
−1

2
(x− µ)tC−1(x− µ)

]
, (3.74)

where t denotes the transpose. We define the data matrix D = (x − µ)(x − µ)t. Then the covariance matrix is
defined in all generality as the expected value of D:

〈D〉 = C . (3.75)

We can write, up to a constant

L = − lnL =
1

2
[ln detC + TrC−1D] =

1

2
Tr [lnC +C−1D] , (3.76)
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where we used the matrix identity: ln detC = Tr lnC. We suppose now that the theoretical parameters θ are both
in µ and in C. The Fisher matrix is then the expected value

Fαβ =

〈
∂2L

∂θα∂θβ

〉
≡ 〈L,αβ〉 , (3.77)

To calculate 〈L,αβ〉 we use the fact that for Gaussian data 〈x〉 = µ , and consequently

〈D,α〉 = 0 , 〈D,αβ〉 = µ,αµ
t
,β + µ,βµ

t
,α. (3.78)

Notice that 〈D,α〉 6= 〈D〉,α . Then we have (since (C−1),α = −C−1C,αC
−1) and (logC),α = C−1C,α,

2L,α = Tr [C−1C,α(I −C−1D) +C−1D,α] , (3.79)

(I is the identity matrix) which averages to zero,

〈L,α〉 = 0 . (3.80)

This result is actually true for any distribution, not just Gaussian, since it corresponds to the derivative with
respect to the parameters of the norm of the distribution. Notice that the average only acts on D since the random
variables, the data, are only there, while of course derivatives act only on C and µ since parameters are only there.
To evaluate 〈L,αβ〉 we notice that all first derivatives 〈D,α〉 vanish and that 〈I −C−1D〉 = 0. Then we are finally
left with

Fαβ ≡ 〈L,αβ〉 =
1

2
Tr
[
C−1C,αC

−1C,β +C−1〈D,αβ〉
]

=
1

2
C−1
`m

∂Cmn
∂θα

C−1
np

∂Cp`
∂θβ

+ C−1
`m

∂µ`
∂θα

∂µm
∂θβ

, (3.81)

(sum over repeated indices) where in the last equality we have written down the full index expression to be more
explicit. Equation (3.71) is recovered when µ = 0 and C`m = ∆2

mδ`m. This expression is extremely useful and
allows for an impressive range of applications.

3.10 Model selection
So far we have been working within a given model. When we choose a model to test, we also select some free
functions that define the model and that we parametrize in some convenient way. If we decide to change a model,
e.g., from the uncoupled dark energy model with wDE = constant to a different cosmological model, we have to start
a new process so that the likelihood will give us a new set of best fit parameters. But how do we decide whether
the alternative model is better than the dark energy model with wDE = constant?

This is a problem of model selection, rather than model optimization. One possibility (the frequentist approach)
is to simply evaluate the “goodness of fit”: once we have the best fit parameters for models A and B, we calculate
the χ2 statistics of the model prediction with respect to data and choose the one with better χ2 statistics (which is
not necessarily the one with lowest χ2 because the χ2 statistics depends also on the number of degrees of freedom,
namely on the number of independent data minus the number of free parameters). Beside the intrinsic problem of
any frequentist approach (e.g., lack of priors), this is often too rough a guide to selection, mostly because if the
model B includes a parameter that is poorly constrained by the data it would not help in the fit but it would still
be counted as an extra degree of freedom and this would unfairly penalize it. Imagine for instance two very similar
dark energy models, A and B, with two parameters each. Suppose that the model B predicts some peculiar feature
at the redshift z = 3, e.g., cluster abundance, and that feature depends on a third parameter. The model B is
interesting also because of this unique prediction but it would be unfairly penalized by current constraints, since we
have very limited knowledge of high-redshift clusters so far. A χ2 test would presumably conclude that the model
A fits existing data as well as the model B but with one parameter less and therefore it would win.

To overcome this problem we can instead use another model selection procedure, called evidence or marginal
likelihood. Let us consider again Bayes theorem for the parameters (θ) and data (D), and let us add now the
specification that the probabilities are taken given a model M

P (θ;D,M) =
L(D; θ,M)p(θ;M)

E(D;M)
(3.82)
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This form can be obtained by combining the probabilities of obtaining the data and the parameters given a model

P (D, θ;M) = P (D; θ,M)P (θ;M) (3.83)
P (θ,D;M) = P (θ;D,M)P (D;M), (3.84)

and equaling the two since “data and parameters” equals “parameters and data”.
By integration of eq. (3.82) over the parameters we obtain the normalization unity on the rhs, from which the

evidence
E(x;M) =

ˆ
f(x; θMα )p(θMα ) dnθMα , (3.85)

where as before x = (x1, x2, ...) are random data, θMα are n theoretical parameters that describe the model M , f is
the likelihood function, and p is the prior probability of the parameter θMα . Note that we have added a superscript
M to remember that the parameters refer to some model M . One can see that the evidence is then the likelihood
averaged over the entire parameter space.

Now if we have any reason to weigh the models in some way, we can assign a model prior p(Mj) and use Bayes’
theorem again to write

L(M ;x) = E(x;M)
p(M)

p(x)
, (3.86)

i.e. the probability of having modelM given the data. We can finally use this probability to compare quantitatively
two models taking the ratio of probabilities (so that p(x) cancels out):

L(M1;x)

L(M2;x)
= B12

p(M1)

p(M2)
. (3.87)

where we introduced the Bayes ratio or odds

B12 =

´
f(x; θM1

α )p(θM1
α )dnθM1

α´
f(x; θM2

α )p(θM2
α )dnθM2

α

. (3.88)

Often, however, one assumes that p(M1) = p(M2). A Bayes ratio B12 > 1 (< 1) says that current data favors the
model M1 (M2).

Suppose now that a certain parameter θn is very poorly constrained by the data xi. This implies that the
likelihood f(xi; θα) is practically independent of θn, that is, f remains almost constant when varying θn. Then
if the prior is factorizable (which is often the case) so that p(θα) = Παpα(θα), we see that the integral over θn
decouples. Since the priors are just standard probability distribution functions we have

´
pn(θn)dθn = 1, so that

as expected θn does not enter the evidence integral. The evidence therefore correctly discards poorly constrained
parameters and does not penalize models for introducing them. The blame is where it belongs: poor data.

If the likelihood and the prior can both be approximated by Gaussian distributions in the parameters, we can
evaluate the evidence analytically. Let us assume then an uncorrelated Gaussian likelihood with best fit parameters
θ

(B)
α and variances σB,i and an uncorrelated Gaussian prior with means θ(P )

α and variances σP,i. The posterior can
be written as

L(θα) =
∏
α

f(x; θα)p(θα)

= Lmax
∏
α

(2πσ2
P,α)−1/2 exp

[
− (θα − θ(B)

α )2

2σ2
B,α

− (θα − θ(P )
α )2

2σ2
P,α

]

= Lmax
∏
α

(2πσ2
P,α)−1/2 exp

[
−1

2

(θα − θ∗α)2

σ2
α∗

]
exp

[
−1

2

(θ
(B)
α − θ(P )

α )2

σ2
B,α + σ2

P,α

]
, (3.89)

where Lmax is the likelihood maximum and where the posterior mean and variance for each i are

θ∗α =
σ2
B,αθ

(P )
α + σ2

P,αθ
(B)
α

σ2
B,α + σ2

P,α

, (3.90)

σ2
α∗ =

σ2
P,ασ

2
B,α

σ2
B,α + σ2

P,α

. (3.91)
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Notice that θ∗α → θ
(B)
α in the limit of weak prior, i.e. for σP → ∞. In this case, of course, the prior does not

influence the best fit at all. The evidence is finally

E =

ˆ ∏
α

f(x; θα)p(θα)dθα

= Lmax
∏
α

σα∗
σP,α

exp

−1

2

( θ
(B)
α

σB,α

)2

+

(
θ

(P )
α

σP,α

)2

−
(
θ∗α
σα∗

)2
 . (3.92)

Notice that the expression in curly brackets vanishes if θ(B)
α = θ

(P )
α , i.e. if likelihood and prior are consistent with

respect to the θα parameter, that is, have the same mean. If the data xi are Gaussian with mean x̂i and correlation
matrix Cij then (see Eq. 3.39)

Lmax = NLe
−χ

2
min
2 (3.93)

where NL is the likelihood normalization (independent of the model) and χ2
min is the minimum of (xi− x̂i)C−1

ij (xj−
x̂j), i.e. the usual χ2 minimum.

We see that the evidence is determined by three factors. They embody three requirements on what a good
model should do:

1. it should give a good fit to the data,

2. it should do so with a small number of parameters with respect to the data to be fitted,

3. it should not be too discordant with the prior.

Indeed, the first factor in Eq. (3.92), Lmax, is the likelihood maximum and expresses how well the model fits
the data. In forming the Bayes ratio one would get the likelihood ratio, which is the basis of the frequentist
approach to model selection (i.e. for Gaussian distributed variables −2 log(Lmax/NL) = χ2 ). The second factor
is a ratio of parameter volumes: if we take the variance as a measure of the available parameter space for the
i-th parameter, this factor expresses how the parameter volume changes from the prior to the posterior. Every
factor σα∗/σP,α = σB,α/(σ

2
B,α + σ2

P,α)1/2 is smaller than unity, so adding more parameters penalizes the evidence,
quantifying Occam’s razor argument. If however the data do not constrain the i-th parameter, i.e. if σB,α � σP,α,
then the α-th factor σα∗/σP,α is close to unity and there is no penalization. Finally the third factor (the exponential)
penalizes the evidence if the best-fit α-th parameter or the prior mean differs appreciably from the posterior mean
θ∗α: although the new data might justify that parameter, the overall agreement including the prior does not seem to
require it. The model is then penalized because of its inconsistency with the prior. Here again, if data constraints
are very weak (large σB,α) then there is no strong penalization.

It is a matter of straightforward algebra to extend the expression to correlated Gaussian parameters. If the
evidence integral is

E =

ˆ
f(x; θα)p(θα)dθα

≈ NLe
−χ

2
min
2

ˆ
exp

[
−1

2
(θα − θ(B)

α )Lαβ(θβ − θ(B)
β )− 1

2
(θα − θ(P )

α )Pαβ(θβ − θ(P )
β )

]
dθα , (3.94)

where θ(B)
α are the best fit estimates, θ(P )

α are the prior means, Lαβ in the exponential factor is the inverse of the
covariance matrix of the likelihood (i.e. the Fisher matrix) and Pαβ is the inverse of the covariance matrix of the
prior, we obtain

E = NLe
−χ

2
min
2
|P |1/2

|F |1/2
exp

[
−1

2
(θ(B)
α Lαβθ

(B)
β + θ(P )

α Pαβθ
(P )
β − θ̃αFαβ θ̃β)

]
, (3.95)

where F = P + L and θ̃α = (F−1)αβ [Lβγθ
(B)
γ + Pβγθ

(P )
γ ]. If the prior is very weak the final exponential term

reduces to unity and for Gaussian data we can write the Bayes ratio as

BAB = e−
1
2 (χ2

A−χ
2
B) |PAFB |1/2

|FAPB |1/2
(3.96)
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where χ2
A,B are the minimum χ2.

Notice that the Bayes ratio depends on the prior volumes |PA,B |. Even in the limit of flat, uninformative priors,
this dependence remains. For instance, if model B has the same parameters of model A plus one new parameter
X with prior variance σX , and the parameters are independent (i.e. diagonal matrix PA,B), the prior ratio in Eq.
(3.96) becomes proportional to σX , and BAB becomes then very large if the uncertainty σX →∞. That is, model
B is strongly disfavoured just because of the new parameter’s large prior uncertainty. This feature of Bayes ratio
can only be mitigated if one has good physical grounds to choose the prior.

Example 1. We want to find the Bayes ratio for two models: model A predicting that a quantity θ = 0
with no free parameters, and model B which assigns θ a Gaussian prior distribution with zero mean and variance
Σ2. Therefore the prior of model A is a Dirac δD function centered on θ = 0, whereas the prior of model B is
e−θ

2/2Σ2

/
√

2πΣ2. Notice that here the models differ in their prior, rather than in the parameters. We assume that
we performed a measurement of θ described by a normal likelihood of standard deviation σ, and with the maximum
likelihood value lying λ standard deviations away from 0, i.e. |θML/σ| = λ. The data are described by a Gaussian
e−(θ−θML)2/2σ2

with θML = λσ. We calculate Bayes’ ratio as

BAB =

´
f(x; θM1

α )p(θM1
α )dθM1

α´
f(x; θM2

α )p(θM2
α )dθM2

α

=

´
e−(θ−θmax)2/2σ2

δ(θ)dθ

(2πΣ2)1/2
´
e−(θ−θmax)2/2σ2e−θ2/2Σ2dθ

=
√

1 + r−2 e
− λ2

2(1+r2) , (3.97)

where r = σ/Σ. We can identify the limiting cases:

• If the best-fit parameter θmax is many σ away from the predicted θ = 0 (i.e. λ � 1), then it follows that
BAB � 1, favoring model B that allows for the extra freedom Σ.

• If λ is not too large and r � 1, i.e. the data is much more peaked than the B prior and close to the predicted
value, then we have BAB ≈ 1/r � 1 so that the extra parameter introduced by model B is not needed and A
is favored. This is in touch with Occam’s razor argument.

• If r � 1, then BAB ≈ 1 and hence there is not enough information to decide between A and B. Although B
has more parameters, the fact that the data have a large error and are too poor to constrain θ implies that
no preference must be given to either A or B.

The evidence is often not easy to evaluate because it requires a multidimensional integration over the whole param-
eter space. Several approximation or alternative model selection techniques have been proposed (see for instance
the excellent review by Trotta [1]). They are however only justified in specific cases and may give conflicting results,
sometimes leading to controversies. Whenever possible, the evidence integral should be used instead.

Let us now come back to the Bayes factors, i.e. the ratio of the evidences. Once we have calculated this ratio we
are still to decide how to gauge it in favor of the model A or B. There is no absolute way to achieve this: large or
small factors should incline us towards one of the two models over the other one, but there is no absolute “statistics”
to associate to any specific level. The scale most used in literature is called Jeffreys’ scale. If | ln B12| < 1 there
is no evidence in favor of any of the models (“inconclusive evidence”); if | ln B12| > 1 there is a “weak evidence”;
| ln B12| > 2.5 means “moderate evidence”; | ln B12| > 5 means “strong evidence”. Of course this terminology is
purely suggestive and not to be taken literally. We can consider it as a practical bookkeeping device. When the
data promote a model from weakly to moderately to strongly “evident”, it is time to take it seriously and challenge
aggressively.

Example 2.
A set of n data is distributed as Gaussian variables with zero mean and unknown variance σ2, with uniform prior

up to some arbitrary large value of σ2 (model A). Estimating the variance with the maximum likelihood method,
one obtains

σ̂2 =
S2

n
(3.98)

where S2 =
∑
x2
i . The standard frequentist measure of goodness of fit (see next Chapter) is then χ2/n = S2/σ̂

2n =
1, and therefore the test fails completely, in the sense that one obtains χ2/n always unity by construction. Compare
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now a second theoretical models in which there are two variances, σ2
1 for the first half of the data and σ2

2 for
the second half, both of them taken as free parameters, and same priors as before (model B). Clearly one has
S2 = S2(1) + S2(2), where S2(i) are the respective partial sums, and σ̂2 = (σ̂2

1 + σ̂2
2)/2, where σ̂2

i = S2(i)n/2. The
frequentist χ2/n is still unity in both cases, so we cannot say which model is a better fit. Since the priors are
uniform up to a very large σ = ∆, we assume the integral over σ2 can be extended up to infinity, and the prior for
every parameter is just an overall constant ∆−2. The Bayesian evidences are then

EA =
1

∆2

ˆ ∞
0

(2πσ2)−n/2 exp(−1

2

S2

σ2
)dσ2 =

1

2π∆2
(πnσ̂2)1−n/2Γ(

n

2
− 1) (3.99)

and

EB =
1

∆4

ˆ
(2πσ2

1)−n/4 exp(−1

2

S2(1)

σ2
1

)dσ2
1

ˆ
(2πσ2

2)−n/4 exp(−1

2

S2(2)

σ2
2

)dσ2
2 =

1

(2π)2∆4
(π2n

2

4
σ̂2

1 σ̂
2
2)1−n/4Γ(

n

4
− 1)2

(3.100)
and the ratio is

BBA =
EB
EA

=
(σ̂2

1 σ̂
2
2)1−n/4

∆2(σ̂2
1 + σ̂2

2)1−n/2
nΓ(−1 + n

4 )2

4Γ(−1 + n
2 )

(3.101)

For large n this becomes

logBBA → − log ∆2 + (1− n

4
) log(σ̂2

1 σ̂
2
2)− (1− n

2
) log(σ̂2

1 + σ̂2
2) + log

n

4
+
n

2
log

1

2
(3.102)

≈ log(
σ̂2

1 σ̂
2
2

∆2(σ̂2
1 + σ̂2

2)
) +

n

2
log(

σ̂2
1 + σ̂2

2

2σ̂1σ̂2
) (3.103)

The Bayesian ratio has a minimum for large n at σ̂2
1 = σ̂2

2 for which

B
(min)
BA ≈ 4

√
π

n

σ̂2
1

∆2
(3.104)

which is only weakly dependent of n and smaller than unity (so A is favoured) since we assumed ∆� σ̂1 and large
n. As expected, near the minimum, where the best fit variances are similar, BBA is minimal, and therefore A is
preferred; if the variances are very different, then B is preferred. However the exact region where BBA is actually
larger or smaller than unity depends on the value of the prior range ∆, as is the absolute value of BBA, as shown
in Fig. (3.4). One can also see that increasing the number of data, and fixing all the rest, the region where A is
favoured narrows down.

3.11 A simplified measure of evidence
Evaluating the full multidimensional evidence integral can be cumbersome, so many proposals have been advanced
to approximate the evidence with simpler expressions (see full discussion in [1]). No one of these is general enough to
be applied indiscriminately but often they give a quick useful estimate. The simplest one is the so-called Bayesian
Information Criterion (BIC), proposed by Schwarz in 1978. If the unnormalized (i.e., without the denominator
p(D)) posterior P (T ) = L(D;T )p(T ) can be approximated with the Fisher matrix, then

P (θ) = Pmax exp−1

2
(θ − θ̂)αFαβ(θ − θ̂)β (3.105)

and the evidence can be written as

E =

ˆ
P (θ)dkθ = Pmax(2π)k/2|F|−1/2 (3.106)

where k is the number of parameters. Then we have

logE = logPmax +
k

2
log(2π)− 1

2
log |F| (3.107)
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Figure 3.4: Bayesian ratio for Example 2, plotted versus σ̂2
1 , for two values of the prior range, ∆ = 10 (upper blue

line) and ∆ = 100 (lower red line), fixing n = 100, σ̂2
2 = 0.1. Near the minimum at σ̂2

1 = σ̂2
2 model A is favoured,

otherwise model B is favoured.

For a large number N → ∞ of data points, the maximum θmax of the posterior tends to the maximum of the
likelihood, since in this limit the prior is not important. Then Pmax ≈ Lmax and

logE = logLmax +
k

2
log(2π)− 1

2
log |F| (3.108)

Let us further assume that the data have been binned in nb bins, each containing N/nb points, for a total of N data.
We also assume that the binning is large enough that the binned data become independent. Then the variance in
each bin scales as σ2/N and we can write

Lmax =
1

(2π)nb/2(σ2/N)1/2
exp−1

2
χ2
min (3.109)

The first term in Eq. (3.108) is then

logLmax = −nb
2

log(2π)− nb log σ +
nb
2

logN − 1

2
χ2

min (3.110)

and therefore depends on N , since 〈χ2〉 = N . Let us now take the expression (3.81) for the Fisher matrix, and
assume the parameters are only in µ

Fαβ = C−1
`m

∂µ`
∂θα

∂µm
∂θβ

(3.111)

Then we have |F | = |C|−1| ∂µ`∂θα

∂µm
∂θβ
|. The entries on the diagonal of C`m are the variances, and according to our

assumptions they scale with N so that Cii ∼ σ2/N . On the other hand, the matrix F is a k × k matrix, so if F is
approximately diagonal, its determinant will be composed of k factors, each of which scaling as ∼ N , so |F | ∼ Nk.
This allows us to approximate

log |F | ≈ const + k logN (3.112)

So we have
logE = logLmax −

k

2
logN + const (3.113)

where the first two terms increase with N , while the last one collects all the terms that are independent of N . The
definition of the BIC is finally −2 logE i.e.

BIC = −2 logLmax + k logN (3.114)
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and minimizing the BIC is equivalent to maximizing the evidence.
Other approximate criteria have been introduced in the literature. For some of them and for a general discussion

and cautionary remarks, see Trotta [1].

3.12 Robustness
The entire likelihood approach to parameter fitting and confidence regions have a clear problem: they are insensitive
to the possibility that the data are inconsistent with each other. If we have two datasets d1 and d2 that comes from
two different experiments, we combine them into a likelihood without asking ourself whether they agree with each
other. It could be that one of the two datasets is actually biased by some unknown systematic effect, for instance if
the supernovae Ia employed to measure the dark energy equation of state are heavily contaminated by some other
class of sources. Let’s us discuss here a possible way to address this problem within the context of the Fisher matrix
approximation [2].

Suppose we have two datasets Di with i = 1, 2, both described by Gaussian likelihoods that can be approximated
by a Gaussian function of the theoretical parameters

Li = Lioe
− 1

2 (µi−θ)tLi(µi−θ) (3.115)

where Li is the Fisher matrix and θ the vector of theoretical parameters centered around the ML estimators µi.
Notice that in this section latin indices run over the number of datasets, not over the individual data points. If we
have also a Gaussian prior centered on the origin and with correlation inverse P then the posterior for each dataset
is another Gaussian with Fisher matrix

Fi = Li + P (3.116)

and mean
µ̄i = F−1

i Liµi (3.117)

Finally, the combined posterior will be a Gaussian with Fisher matrix and mean

F = L1 + L2 + P (3.118)

µ = F−1
∑
i

Liµi (3.119)

(notice that when we combine the two datasets there is only one prior, not two). We see that F does not depend on µ,
i.e. the Fisher matrix (and consequently the FOM) does not depend on the distance between the two experiments
confidence regions (although it depends on their orientation): the datasets could be very much different, and
therefore very likely incompatible, but the FOM would be exactly the same.

The evidence for such a combined posterior is (see eq. 3.95)

Ecomb = Lmax
|P |1/2

|F |1/2
exp

[
−1

2
(
∑
i

µ̄tiLµ̄i − µtFµ)

]
, (3.120)

where L = L1 + L2 (notice that the prior is supposed to be centered on the origin).
However, if the data are actually coming from completely different distributions, and therefore independent,

their evidence should be written as the product of the separate evidences

Eind = Ed1Ed2 (3.121)

In other words, we are assuming here that one of the datasets, say d2 actually depends on a totally different sets
of parameters (eg the properties of the SN Ia progenitors or galaxy environment) and therefore we are testing two
models, one with the cosmological parameters only, the other with added systematics. However we erroneously
interpret the new hidden parameters as the real ones and therefore we employ the same parameter names and the
same prior.
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We can then form the Bayes ratio

R =
Ecomb
Eind

=
p(D)

p(d1)p(d2)
=

p(d1, d2)

p(d1)p(d2)
(3.122)

=
p(d2; d1)p(d1)

p(d1)p(d2)
=
p(d2; d1)

p(d2)
(3.123)

We can write
p(d2; d1) =

ˆ
p(d2; θ)p(θ; d1)dθ (3.124)

where the first term in the integral is the likelihood of the second probe and the second term is the posterior of the
first probe. Their ratio can be evaluated analytically and we obtain

R =

(
|F1F2|
|FP |

)1/2

exp

[
−1

2
(µ̄t1F1µ̄1 + µ̄t2F2µ̄2 − µtFµ)

]
(3.125)

The first factor, formed out of the determinants, express the Occam’s razor factor of parameter volumes, while the
second penalizes R if the two probes are very different from each other (so the hypothesis that they come from
different models, or equivalently that systematics are important, is favored). We denote R as robustness. From its
definition, we expect the robustness to be a measure of how much the probes overlap: the more they do, the more
consistent the two datasets are. This is exactly orthogonal to the statistical FOM, which is maximized when the
probes have little overlap!

To make progress we have now to assume some systematic bias among the two probes. For simplicity we assume
now that experiment 1 represents our current knowledge and is unbiased wrt the prior, i.e. we set µ1 = 0. We wish
to design experiment 2 so that it gives a high Bayes factor R when some hypothetical bias is present:

µ2 = b (3.126)

The bias itself is typically the result of some physical effect, either in the detectors or in the sources, which can be
parametrized by some systematic parameters sk. The resulting bias vector δµ2 on the parameter space of interest
(i.e. the cosmological parameter space) is given in explicit component form by the general projection formula (see
Appendix)

δµ2α = −F−1
αβ F

∗
βγδsγ (3.127)

where

F ∗βγ =
∂2 logL

∂µβ∂sγ
(3.128)

is a sort of systematic Fisher matrix (which in general is not a square matrix).
Once we have the projected bias µ2 we define

µ̄2 = F−1
2 L2b (3.129)

µ = F−1L2b (3.130)

The last relation quantifies how much the best estimates µ of the combined posterior moves when there is a
systematic bias b in one of the probes. This gives

lnR = −1

2
btF ∗b− 1

2
ln
|FP |
|F1F2|

(3.131)

where
F ∗ = L2(F−1

2 − F−1)L2 (3.132)

For simplicity, we now redefine the robustness in such a way that R = 1 is achieved when experiment 2 is identical
to 1 and unbiassed, i.e. b = 0:

RN =
R

R∗
(3.133)
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where
R∗ =

|F1|
(|2L1 + P ||P |)1/2

(3.134)

This can be seen as the reference experiment: a trivial repetition of the experiment 1. With this arbitrary normal-
ization, RN can be used to design models that maximize or minimize the robustness. If it is maximized, it means
that the datasets are more likely to come from the same distribution and that therefore there is no need of suspect
a systematic bias. If it is minimized, on the other hand, we have good reason to investigate systematic biases in
one of the experiments. In other words, given an expected bias vector, we could design an experiment to reduce
the impact of bias on the parameter estimation (high robustness) or to increase the sensitivity to the bias in order
to detect it. Finally, we have

ln
R

R∗
= −1

2
btF ∗b− 1

2
ln
|F1||L1 + L2 + P |
|F2||2L1 + P |

(3.135)

which tends to
ln

R

R∗
= −1

2
btF ∗b− 1

2
ln
|L1 + L2|
2Np |L2|

(3.136)

where Np is the number of parameters. In this limit there is no dependence on the prior. If we consider two
experiments with no bias, b = 0, and with Fisher matrices orthogonal to each other and diagonal (i.e. with
semiaxes aligned with the axes) with two entries L1 = diag(s, `) and L2 = diag(`, s) with s � ` , this gives
ln(R/R∗) ≈ −0.5 ln(`/s)� 1. Statistically, two orthogonal probes maximise the constraints, but are not robust to
systematics.

The problem can be further simplified by assuming that the axes in the 2D parameter space are rotated so that
they lie along the direction of the bias vector. Then the product btF ∗b becomes simply |b|2D11, where D11 is the
x−component of the matrix F ∗ in the basis that diagonalizes it. Moreover, we can evaluate an average RN along
the bias direction with a Gaussian weight function W (x) = (

√
2π|b|)−1 exp− 1

2
x2

|b|2 ,

〈RN 〉 =

ˆ
W (x)RNdx =

(|F2||2L1 + P |)1/2

|FF1|1/2
(|b|2D11 + 1)−1/2 (3.137)

A very manageable expression is obtained if the two probes are aligned along the minor or major axis and if they
are identical up to a roto-translation (so |F1| = |F2|). This is not an uncommon situation since experiments with
widely different statistical power do not need to be combined. Then we have

〈RN 〉 ≈
2σ2,xσ2,y

(σ2
1,y + σ2

2,y)1/2(b2 + σ2
1,x + σ2

2,x)1/2
(3.138)

where σ1,x means the error on the x-axis of the probe 1, and similarly for the other cases. This expression contains
many possible cases. Assume now for a further simplification the ellipses to be relatively orthogonal or parallel. In
the first case, σ2,y = σ1,x and σ2,x = σ1,y and we have

R⊥ =
2r

1 + r2
(1 +

b2r2

σ2
2,x(1 + r2)

)−1/2 (3.139)

where r = σ2,x/σ2,y while in the second case

R‖ = (1 +
b2

2σ2
2,x

)−1/2 (3.140)

In both cases, the maximal value is 1, ie. the reference unbiased experiment identical to 1. If B = b/σ2,x is small,
parallel probes are more robust than the orthogonal ones; ortho probes can be more robust than parallel ones only
if √

1

1 +B2
< r < 1 (3.141)

i.e. only if σ2,y > σ2,x, that is when probe 2 is elongated perpendicularly to the bias vector. This is indeed what
one expects from a measure of overlapness.
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Figure 3.5: From MNRAS 415, 143 (2011).
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Appendix
Eq. (3.127) can be proved as follows.
The maximum likelihood estimator θ̄α, given a likelihood function L(θα) for the parameters θα, is obtained by

solving the system of equations
L,α = 0 (3.142)

where L = − logL. In the Fisher matrix approximation one has L = 1
2DiDjPij − 1

2P where P = C−1 is the
precision matrix (the inverse of the data correlation matrix) and Di = di − ti is the vector of data minus theory
points.

Suppose now L depends also on a parameter s (that we refer to as a systematic parameter) that has been
assigned a particular value, and we want to estimate how θ̄α changes when s is shifted to another value s + δs,
where δs is assumed very small. Then we have

L(s+ δs) = L(s) + L,sδs (3.143)

and the equations that give the new maximum likelihood estimator vector θ̂ = θ̄ + δθ become to first order in δs
and δθ

L(s+ δs),α = L,α |θ̂ +(L,αs |θ̄)δs (3.144)
= L,α |θ̄ +(L,αβ |θ̄)δθβ + (L,αs |θ̄)δs (3.145)
= (L,αβ |θ̄)δθβ + (L,αs |θ̄)δs = 0 (3.146)

where we employed Eq. (3.142). Finally we obtain

δθα = −L−1
,αβL,βsδs (3.147)

(sum over β). If there are several systematic parameters, then a sum over the s parameters is understood. Now,
once we average over many data realization, 〈L,αβ〉 = Fαβ is the Fisher matrix, and 〈L,βs〉 = Fβs is a sort of
systematic Fisher matrix. In practice, this means that one includes the systematic parameters si in a general Fisher
matrix that contains also the parameters θα, and then selects the αβ and the βsi submatrices and produces the
sum over β and si, namely

δθα = −F−1
αβ Fβsiδsi (3.148)

Exercise. Suppose xi are Gaussian variables with mean x0 and variances σ2
i . Due to some systematic, the variances

might be affected by a constant offset, not well accounted for, σ2
i → σ2

i + δ. How would the estimate of the mean
x0 be affected by an offset δ � σ2

i (neglect the presence of δ in the normalizing determinant)?
In absence of systematic error δ, the variables are distributed as

L ∼ exp−1

2

∑
i

(xi − x0)2

σ2
i

= exp−1

2
(S22 − 2x0S12 + x2

0S02) (3.149)

where
Snm =

∑
i

xni
σmi

(3.150)

The maximum likelihood estimator of x0 is then

x0 =
S22

S02
(3.151)

When we switch on δ, we have the new likelihood

L ∼ exp−1

2

∑
i

(xi − x0)2

σ2
i + δ

≈ exp−1

2

∑
i

(xi − x0)2

σ2
i

(1− δ

σ2
i

) (3.152)

and the new estimator equation d(logL)/dx0 = 0, from which, at first order in δ,

δx0 ≡ x(new)
0 − x0 = − δ

S02
(S14 −

S12S04

S02
) (3.153)

This can be seen to coincide with Eq. (3.127). If σi = σ, constant for all i, the bias vanishes: the estimation of the
mean is then independent of the variance.

58



Chapter 4

Fitting with linear models

An important class of cases in which maximum likelihood estimators and confidence regions take a particularly
simple form is the case in which the data are Gaussian and the model parameters appear linearly in the mean. Let
us assume we have N data di , one for each value of the independent variable xi (which are not random variables)
and that

di = fi + ei (4.1)

where ei are errors (random variables) which are assumed to be distributed as Gaussian variables. Here fi are
theoretical functions that depend linearly on a number of parameters Aα

fi =
∑
α

Aαgiα (4.2)

where giα(xi) are functions of the variable xi. Eg the data could be galaxy magnitudes (di = mi) as a function of
redshifts (xi = zi), temperatures (di = Ti) at different times (xi = ti), etc. The expression for f could be then

f(x) = A0 +A1x+A2x
2 +A3x

3... (4.3)

but could also include any other function, e.g. f(x) = A0 + A1e
x + A2 sinx etc. For instance, for a quadratic fit

f(x) = A0 +A1x+A2x
2 with four data points, the matrix giα will have the form

g =


1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

 (4.4)

Since f is not a random variable, if ei are gaussian variables (not necessarily independent) then also di are. Goal
of this section is to find the maximum likelihood estimators for Aα and their confidence regions.

We will consider for simplicity only cases in which x represent repeated observations of the same physical
quantity. But one could instead consider f(x, y, z...) as a function of several variables, eg. the galaxy magnitude as
a function of redshift, mass, metallicity etc., so that e.g.

f(x, y) = A0 +A1x+A2y +A3yx... (4.5)

In this case, the matrix giα would have the form

g =


1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

 (4.6)

With this matrix, the method to be discussed below remains exactly the same.
In Fig. (4.1) you can see an example of a simple linear fit with a straight line (notice that “linear fit” does

not necessarily mean “straight line”!). In Fig. (4.2) a far more interesting example of a non-linear fit. In the case
of parameters that are non-linear, e.g. f(x) = ax exp(ax), the likelihood and the best fit is normally obtained
numerically with the methods seen in the previous Section.
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Figure 4.1: Example of a linear fit with a straight line (By Sewaqu - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=11967659)

Figure 4.2: A Nobel-prize example of non-linear fit. The fit of the supernovae data of the Supernovae Cosmology
Project (Perlmutter et al, 1999 ApJ, 517, 565P) depends in a complicate, non-linear way on the cosmological
parameters Ωm,ΩΛ. The best fit (upper continuous black curve) revealed the cosmic acceleration.
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4.1 The simplest case: Fitting with a straight line.
Let us start with the simplest example, fitting the N data di with a straight line

f(x) = ax+ b (4.7)

where x will take the values xi corresponding to the N data, i.e. we assume that each data point di is distributed
as an indepedent Gaussian variables with error σi (assumed known) and mean given by our model fi = axi+ b. We
assume the variables xi have negligible error (for instance, they correspond to the epoch at which the measurements
are done). The problem is to find the best estimator of a, b and their covariance matrix. Since ei = di − fi is
supposed to be a Gaussian variable, we need to maximize the likelihood

P (D; a, b) =
1

(2π)N/2σN
exp−1

2

∑
i

(di − (axi + b))2

σ2
i

(4.8)

=
1

(2π)N/2σN
exp−1

2

∑
i

d2
i + (axi + b)2 − 2di(axi + b)

σ2
i

(4.9)

=
1

(2π)N/2σN
exp−1

2

∑
i d

2
i +

∑
i(axi + b)2 − 2

∑
i di(axi + b)

σ2
i

(4.10)

with respect to a, b. We can rewrite −2 logP (up to irrelevant constants that do not depend on a, b) as

−2 logP = const+
∑
i

(a2x2
i + b2 + 2abxi − 2adixi − 2dib)

σ2
i

(4.11)

= const+ a2S2 + b2S0 + 2abS1 − 2aSdx − 2bSd (4.12)

where

S0 =
∑
i

1

σ2
i

(4.13)

S1 =
∑
i

xi
σ2
i

(4.14)

S2 =
∑
i

x2
i

σ2
i

(4.15)

Sdx =
∑
i

xidi
σ2
i

(4.16)

Sd =
∑
i

di
σ2
i

(4.17)

To maximize P, or equivalently to minimize −2 logP , we have to solve the system of equations ∂P/∂a = 0 and
∂P/∂b = 0, that is

bS0 + aS1 = Sd (4.18)
bS1 + aS2 = Sdx (4.19)

which is solved by
Ā = G−1D (4.20)

if we denote with Ā = (b̄, ā)T the vector of the maximum likelihood estimators of b, a, with D = (Sd, Sdx)T the
vector of the data points and with

G =

(
S0 S1

S1 S2

)
(4.21)

the design matrix, that depends entirely on our choice of the fitting function and on the errors σi. This solves the
problem of the maximum likelihood estimators. For the variances, one has to note that a, b are linear functions of
the data contained in D, and since the data di are Gaussian variables, so are a, b. Instead of performing this step,
now we generalize the whole procedure in the next Section.
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4.2 Normal equations for linear fitting
If the data are independent and they all have variance σ then the joint likelihood is

P (D;Aα, I) =
1

σN (2π)N/2
exp− Q

2σ2
(4.22)

where

Q =

N∑
i

(di − fi)2 (4.23)

= didi +
∑
α 6,β

AαAβgαigβi − 2
∑
α

Aαdigαi (4.24)

sum over Latin indexes implied. The priors for the M parameters Aα can be taken to be uniform

P (Aα; I) =
∏
α

1

∆Aα
(4.25)

where ∆Aα is the theoretically expected range of variation of the parameter Aα. From Bayes’ theorem we obtain

P (Aα;D, I) = Ce−Q/2σ
2

(4.26)

where C does not depend on A’s:

C =

(ˆ
dMAαe

−Q/2σ2

)−1

(4.27)

The best estimate for A’s is obtained then when the posterior P (Aα) is maximized:

∂Q

∂Aα
= 2

∑
β

Aβgβigαi − 2digαi = 0 (4.28)

These equations are called normal equations. If we define the matrix and vector

Gαβ ≡ gβigαi (4.29)
Dα ≡ digαi (4.30)

(remember that we always sum over repeated Latin indexes) then we can write the normal equation in matrix form
as

GA = D (4.31)

(where A = {A0, A1, ...}) and solve as
Ā = G−1D (4.32)

For instance, if we fit with a straight line we have g1 = 1, g2 = x and for instance G11 =
∑
i g1ig1i =

∑
i 1 = N etc:

G =

(
N

∑
i xi∑

i xi
∑
i x

2
i

)
(4.33)

D =

( ∑
i di∑
i dixi

)
(4.34)

and finally we obtain the solution

Ā =

(
G22D1 −G12D2

G11D2 −G12D1

)
1

G11G22 −G2
12

(4.35)
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In more explicit terms, we finally can write the best fit f(x) = āx+ b̄ for a straight line as

ā =
〈xd〉 − 〈x〉〈d〉
〈x2〉 − 〈x〉2

=
sxd
s2
x

(4.36)

b̄ =
〈x2〉〈d〉 − 〈x〉〈xd〉
〈x2〉 − 〈x〉2

= 〈d〉 − ā〈x〉 (4.37)

where as usual 〈x〉 =
∑
xi/N etc, and sxd =

∑
(x− 〈x〉)(d− 〈d〉), s2

x =
∑

(x− 〈x〉)2 are the sample covariance and
variance, respectively. Since we also have by definition of correlation coefficient that

sxd = rxdsdsx (4.38)

then we see that
ā = rxd

sd
sx

(4.39)

Consider now standardized points on the best fit line, i.e.

d(s)i =
f(xi)− 〈d〉

sd
, x(s)i =

xi − 〈x〉
sx

(4.40)

From Eq. (4.37) we see that they lie on the standardized best fit with slope rxd,

ds = rxdxs (4.41)

This was obtained for uncorrelated data with constant variance σ2. The generalization to correlated data with
arbitrary variances is then straightforward. In this case we have in fact

Q =

N∑
i,j

(di − fi)C−1
ij (dj − fj) (4.42)

= diC
−1
ij dj +

∑
α 6,β

AαAβgαiC
−1
ij gβj − 2

∑
α

AαdiC
−1
ij gαj (4.43)

and we simply have to redefine

Gαβ ≡ gβiC
−1
ij gαj (4.44)

Dα ≡ diC
−1
ij gαj (4.45)

to obtain again formally the same equations (4.31) and the same solution Ā = G−1D. Notice again that Ā is
linear in the data di; therefore the maximum likelihood estimator Â for a linear problem is a linear functions of the
random variables and is distributed as a multivariate Gaussian.

4.3 Confidence regions
If the prior is uniform in an infinite range (improper prior), the parameters in the linear problem have a Gaussian
posterior with mean Ā and correlation matrix given by the inverse of the Fisher matrix that we already calculated
in Sec. 3.9. Since in the linear model the correlation matrix does not depend on the parameters, we have

Fαβ ≡ C−1
ij

∂µi
∂θα

∂µj
∂θβ

, (4.46)

In the present context the means are µi =
∑
αAαgiα and θα = Aα, so we obtain

Fαβ ≡ C−1
ij gαigβj = Gαβ , (4.47)

This is a very nice result: the design matrix is also the Fisher matrix. The marginalized errors on the parameters
are therefore

σ2
α = (G−1)αα (4.48)
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This reduces to the case of the straight line and of uncorrelated points with variances σ2
i (the same case already

seen in Sec. 4.1) as follows. First, we have Cij = σ2
i δij (no sum over i here) and therefore C−1

ij = σ−2
i δij and we

find G11 =
∑
i σ
−2
i g1ig1i =

∑
i σ
−2
i , G12 = G21 =

∑
i σ
−2
i g1ig2i =

∑
i σ
−2
i xi, and G22 =

∑
i σ
−2
i x2

i . Then, If we
define

Sn =
∑ xni

σ2
i

(4.49)

we obtain
F = G =

(
S0 S1

S1 S2

)
(4.50)

and det F = S0S2 − S2
1 so that

F−1 =
1

det F

(
S2 −S1

−S1 S0

)
(4.51)

Finally, if the σ2
i are all equal to σ2 we obtain det F = S0S2 − S2

1 = σ−4(N
∑
x2
i − (

∑
xi)

2) = σ−4N2s2
x where

s2
x =

∑
(xi − x̄)2

N
(4.52)

is the x sample variance and x̄ =
∑
xi/N the sample mean. Then we have

F−1 =
σ2

N2s2
x

( ∑
x2
i −

∑
xi

−
∑
xi N

)
=

σ2

Ns2
x

(
x̄2 −x̄
−x̄ 1

)
(4.53)

(where we used the notation ¯f(x) =
∑
i f(xi)

N ). This shows that for a straight line fit A0 +A1x the variances are

(F−1)11 = Var[A0] =
σ2

Ns2
x

x̄2 (4.54)

(F−1)22 = Var[A1] =
σ2

Ns2
x

(4.55)

(F−1)12 = Cov[A0A1] = − σ2

Ns2
x

x̄ (4.56)

As is intuitive, the errors are smaller when the data have small variance σ2 and large dispersion along the x-axis,
s2
x or large number of points N . Notice again that the parameters are generally correlated even if the data points
were not.

In this special case (linear model, Gaussian data, uniform prior), the distribution of the estimators and their
posterior are the same. The frequentist and the Bayesian approach therefore coincide.

4.4 Errors in both variables
So far we assumed xi not to be a random variable. But what happens if both di and xi have errors? Now the
expected values of xi, let’s call them x∗i , are unknown, and we need to consider them as an extra set of parameters
to be found by maximizing the likelihood. However now the problem becomes rapidly very complicated, unless xi
enter linearly in the likelihood, so we only consider a straight line fit. Now the likelihood (4.8) becomes

P (D; a, b, x∗i ) = A exp−1

2

∑
i

[
(di − (ax∗i + b))2

σ2
y,i

+
(xi − x∗i )2

σ2
x,i

]
(4.57)

where A is a irrelevant normalization constant. Since now there is a non-linear combination of parameters, namely
ax∗i , this case is not strictly speaking part of the linear fitting problem. However, we can still find an analytical
solution. The derivative of the log-likelihood wrt x∗i is

a2x∗i − adi + ab

σ2
y,i

+
x∗i − xi
σ2
x,i

= 0 (4.58)
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and we obtain
x∗i =

adi − ab+ λixi
a2 + λi

= xi +
a

a2 + λi
(di − b− axi) (4.59)

where λi = σ2
y,i/σ

2
x,i. If λi →∞, we are back to the standard case. If λi = 1, the distance that is minimized is the

orthogonal distance to the straight line.
The derivatives wrt a, b are now formally as earlier, so we get

bS0 + aS∗1 = Sd (4.60)
bS∗1 + aS∗2 = Sdx (4.61)

with now, however, x∗ instead of x in the sums, so

S0 =
∑
i

1

σ2
y,i

(4.62)

S∗1 =
∑
i

x∗i
σ2
y,i

=
∑
i

1

σ2
y,i

λixi + a(di − b)
a2 + λi

(4.63)

S∗2 =
∑
i

x∗2i
σ2
y,i

=
∑
i

1

σ2
y,i

[
λixi + a(di − b)

a2 + λi
]2 (4.64)

S∗dx =
∑
i

x∗i di
σ2
y,i

=
∑
i

di
σ2
y,i

λixi + a(di − b)
a2 + λi

(4.65)

Sd =
∑
i

di
σ2
y,i

(4.66)

Let us now assume that λi = λ is a constant (the individual σi can still vary). Then S∗1 , S∗2 , S∗dx can be written in
terms of the old S1, S2, Sdx, and of Sdd =

∑
i
d2i
σ2
y,i

, and we obtain the system

bS0(a2 + λ) + a
∑
i

1

σ2
y,i

(λxi + a(di − b)) = Sd
(
a2 + λ

)
(4.67)

b(a2 + λ)
∑
i

1

σ2
y,i

(λxi + a(di − b)) + a
∑
i

1

σ2
y,i

[λxi + adi − ab]2 = (a2 + λ)
∑
i

di
σ2
y,i

(λxi + a(di − b)) (4.68)

The first equation simplifies to the same equation as in (4.18)

bS0 + aS1 = Sd (4.69)

The second one becomes

(a2 + λ)
[
bλS1 + abSd − ab2S0

]
+ aλ2S2 + a3Sdd + a3b2S0 + 2λa2Sdx − 2λba2S1 − 2a3bSd = (a2 + λ) [λSdx + aSdd − abSd]

(4.70)

Then, replacing b = (Sd − aS1)/S0, we obtain a quadratic equation in a, which is solved by

a± =
±
√

(λSxx − Syy)
2

+ 4λS2
xy − λSxx + Syy

2Sxy
≈ Syy
Sxy

+
1

λ
(
Sxy
Syy
− Sxx
Sxy

) (4.71)

(the last step is for 1/λ� 1) where

Sxx = S2
1 − S0S2 (4.72)

Sxy = S1Sd − S0Sdx (4.73)

Syy = S2
d − S0Sdd (4.74)
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The solution for b is of course just

b =
Sd − aS1

S0
(4.75)

with a in Eq. (4.71). The sign of a has to be chosen positive if we assume Sxy > 0.
The errors on the parameters are however very complicated. We can simplify the problem by first fixing x∗i to

(4.59) in the likelihood, obtaining

P (D; a, b) = A exp−1

2

∑
i

[
λ(di − (axi + b))2

(a2 + λ)σ2
y,i

]
= A exp−1

2

∑
i

[
(di − (axi + b))2

a2σ2
x,i + σ2

y,i

]
(4.76)

Notice then that now the effective variance of di is Σ2
i = a2σ2

x,i + σ2
y,i . Then we can use the Fisher matrix

approximation for the parameters b, a (in this order) to get

Fαβ =
λ

a2 + λ

(
S0 S1

S1
a4(Sxx+S0S2)+2a3Sxy+a2(2λS0S2+5λSxx−3Syy)−6aλSxy+λ(λS0S2+Syy)

S0(a2+λ)2

)
(4.77)

where we replaced b with its estimator (4.75), while a should be taken from Eq. (4.71). The inverse of Fαβ provides
the errors on b, a. For λ → ∞ we recover Eq. (4.50). For small 1/λ (i.e. σx,i � σy,i) one has the parameter
covariance matrix

F−1 = (F−1)(0) +
1

λS2
xx

(
−αS0 αS1

αS1
a2(−5S2

1Sxx−S0S2S
2
1+S2

0S
2
2)+6aS2

1Sxy−S2
1Syy

S0

)
(4.78)

= (F−1)(0) +
1

λS2
xx

(
−αS0 αS1

αS1
a2S2

xx−αS
2
1

S0

)
(4.79)

where (F−1)(0) is in Eq. (4.51) and
α = 6a2Sxx − 6aSxy + Syy (4.80)

At this order of 1/λ, one has simply a = Syy/Sxy. From this matrix, the marginalized errors on b, a can be directly
read off.

4.5 Principal component analysis
So far we have assumed very specific models, for instance a linear model, and have proceeded to get constraints on
the parameters. The likelihood method will certainly find some constraints, no matter how wrong is our modeling.
For instance, take the expansion f(z) = a0 + a1z + a2z

2 + ... and suppose that we stop at a1. Given a dataset, we
could end up with very good constraints on a0 but very loose on a1. We may content ourselves with that and blame
the experimenters for their poor data. However, how can we be sure that the data do not contain good constraints
on, say, a2 or some other higher-order parameters? If the data do not extend very far we do not expect this, but
still it would be nice to quantify which parameters (and how many) we can reasonably constrain for a given dataset.
In other words we would like to find the best parametrization, rather than to assume one.

One way of doing this is to approximate the function f(z) in the range za, zb with many stepwise constant values:

f(z) =

N∑
i=1

θi(z)wi , (4.81)

where θi = 1 for z inside the bin (zi, zi + ∆z) and 0 outside. Here we make an exception to our rule of using Greek
indices for parameters in order to stress that in this case we can have as many parameters as binned data. So now
we have N(� 1) parameters wi instead of two or three. Technically, this is just a bigger Fisher matrix problem
and we could proceed as before. In this case, however, it would be really nice to have uncorrelated errors on the
parameters, since they all measure the same quantity, f(z), and it will be difficult to compare different experiments
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if the errors are correlated (and compactifying to a single FOM would discard too much information). What we
would like is in fact an expansion

f(z) =

N∑
i=1

αiei(z) , (4.82)

where the coefficients αi are uncorrelated. Since uncorrelated parameters mean a diagonal Fisher matrix, the
problem is solved by diagonalizing the Fisher matrix for the original N parameters wi, thus obtaining a diagonal
FDij . This is always possible since Fij is a real symmetric non-degenerate matrix. The orthogonal basis functions
ei(z) will be then the eigenvectors, with N eigenvalues λi (which are all positive since Fij is positive definite). The
new parameters αi will have the variance σ2

i = 1/λi = [(FD)−1]ii (i.e. the elements on the diagonal of the inverse
Fisher matrix).

Now, a parameter with a large error is a badly measured parameter. It means that the data are not able to
measure that parameter very well. On the contrary, a parameter with small error is well measured. Therefore we
can rank the parameters αi according to their errors, that is, according to the magnitude of the eigenvalues of Fij .
The highest eigenvalues (smallest errors) are called “principal components” and the whole method is called principal
component analysis (PCA). This method is based on the fact that every well-behaved function can be expanded in
piecewise constant fragments and that every non-singular Fisher matrix can be diagonalized. That is, the PCA can
always be used when we need to reconstruct an unknown function.

So we have now a few well-measured components plus many others with large errors. The eigenvectors ei(z)
associated with the principal components are functions of z, built up by linear combinations of the θα(zi). They
tell us the range of z which is best measured by the data. We can plot them and have at once a view of the range
of z most sensitive to that particular dataset. This is perhaps the best feature of the PCA since it allows us to
optimize an experiment towards any range we are interested in.

The coefficient αi themselves are rarely interesting. They can be evaluated by employing the property that the
eigenvectors are orthogonal. Let us also normalize them by

ˆ
e2
i (z) dz = 1 , (4.83)

where the integration is taken in the whole za, zb region. Multiplying Eq. (4.82) by ei(z) and then integrating, we
obtain

αi =

ˆ
f(z)ei(z)dz . (4.84)

In comparing different experiments the PCA might help, but care has to be taken when interpreting the results.
In general the distribution of eigenvalues can be very different among different experiments and it is not obvious
whether it is preferable to have few well-measured components in a small range or many not-so-well measured
components in a large range. Reducing everything to a single FOM would kill the whole spirit of the PCA method
and at the end of the day a sensible theoretical expectation is the principal component of any analysis.
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Chapter 5

Frequentist approach: parameter
estimation, confidence regions and
hypothesis testing

In this section we leave for a moment the Bayesian approach and explore a few results in the frequentist context.
There are two reasons for doing this. One is that many researchers and papers adopt a frequentist methodology
and one should know what techniques they use in order to understand their results. The second is that in some case
one might be completely unable to choose a prior or to agree on one with collaborators. In these cases a frequentist
approach could be useful because it does not rely on subjective choices.

Any function of data only (and not of unknown parameters) is called a statistics. The sample mean, sample
variance etc, are all statistics. In this section we will find the PDF of some statistics (the mean, the variance, and
some of their combination, i.e. the normalized variable and the variance ratio) always assuming that the data are
independent Gaussian variates. More general cases will be discussed in the next Section. These PDFs will in general
depend on one or more unknown parameters. Once we have the PDF of a statistics, we can answer two questions:

1. Which is the confidence region of the unknown parameters?

2. How likely is to find the particular value of the statistics we got?

5.1 Distribution of the sample mean
If we have N data xi assumed to be independent Gaussian variates G(µ, σ), any linear combination of xi is a
Gaussian variable. Therefore the sample mean statistics

x̂ =
1

N

∑
i

xi (5.1)

is a Gaussian variable G(µ, σ/
√
N) .

5.2 Distribution of the sample variance
We have already seen that the combination

Y =
∑
i

(xi − µ)2

σ2
=
∑
i

Z2
i (5.2)

where xi ∼ G(µ, σ) is a χ2 variable with N dof. Therefore the random variable combination

(N − 1)
S2

σ2
(5.3)
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where S2 is the sample variance, defined as,

S2 =
∑
i

(xi − x̂)2

N − 1
, (5.4)

is a χ2
N−1 variable. In fact we have

(N − 1)S2 =
∑

[(xi − µ)− (x̂− µ)]2 (5.5)

=
∑

(xi − µ)2 −N(x̂− µ)2 (5.6)

from which

(N − 1)
S2

σ2
=

∑ (xi − µ)2

σ2
− (x̂− µ)2

(σ2/N)
(5.7)

Now the first term on the rhs is χ2
N while the last term is χ2

1; a general theorem says that the sum/difference of
two χ2 variables with dof ν1, ν2 is a χ2 variable with νtot = ν1 ± ν2 (if νtot > 0). Therefore

(N − 1)
S2

σ2
∼ χ2

N−1 (5.8)

It follows

〈(N − 1)
S2

σ2
〉 = N − 1 (5.9)

i.e. 〈S2〉 = σ2. This last statement is actually true for xi belonging to any distribution.
Notice that if we knew µ, so that S2 =

∑
i

(xi−µ)2

N , then NS2/σ2 ∼ χ2
N . Notice also that S2 is a statistics

(depends only on measured data) while (N − 1)S2/σ2 is a statistics only if σ2 is known.

5.3 Distribution of normalized variable (t-Student distribution).
If Z ∼ N(0, 1) and X ∼ χ2

ν then one can show that the variable

T =
Z√
X/ν

(5.10)

is distributed as the t−Student distribution (see Fig. 5.1)

f(t; ν) =
Γ(ν+1

2 )
√
πνΓ(ν2 )

[
1 +

(
t2

ν

)]− ν+1
2

(5.11)

with −∞ < t <∞ and ν > 0. One has

〈T 〉 = 0 (5.12)

Var(T ) =
ν

ν − 2
(5.13)

if ν > 2.
Now a statistics T can be constructed if we have N data xi ∼ N(µ, σ) and we form the variables

Z =
x̂− µ
σ/
√
N

(5.14)

which is N(0, 1) and

X = (N − 1)
S2

σ2
(5.15)
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Figure 5.1: PDF of the t-Student variable (By Skbkekas - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=9546828)

which is χ2
N−1. Then

T =
Z√

X/(N − 1)
=

x̂− µ
S/
√
N

(5.16)

is a t-Student variable with ν = N − 1 (and is a statistics if µ is known).
If we have two datasets, we can form a new variable that is approximately a t-Student variable:

T =
x̂1 − x̂2 − (µ1 − µ2)

SD
(5.17)

where

SD =

√
S2

1

n1
+
S2

2

n2
(5.18)

and the distribution has a number of d.o.f. equal to

ν =

(
S2
1

n1
+

S2
2

n2

)2

(S2
1/n1)2

n1−1 +
(S2

2/n2)2

n2−1

(5.19)

If µ1 − µ2 is known (eg, the two populations are supposed to have the same mean), then T is a statistics.

5.4 Distribution of the ratio of two variances (F-distribution).
Let us state the following theorem: If X,Y are two independent χ2 variables with ν1, ν2 dof, then

F =
X/ν1

Y/ν2
(5.20)

is distributed as

P (F ; ν1, ν2) =
Γ[(ν1 + ν2)/2]

Γ(ν1/2)Γ(ν2/2)

(
ν1

ν2

) ν1
2 F

ν1−2
2

(1 + Fν1/ν2)(ν1+ν2)/2
(5.21)
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Figure 5.2: PDF of the F variable (By IkamusumeFan - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=34777108)

Statistics (sample quantities) PDF
mean G(µ, σ/

√
N)

variance χ2
N−1

mean/variance1/2 t-Student
variance1/variance2 F -distribution

Figure 5.3: Schematic list of PDF statistics

if F > 0 and 0 elsewhere (see Fig. 5.2). One has

〈F 〉 =
ν2

ν2 − 2
(5.22)

Var(F ) =
ν2

2(2ν1 + 2ν2 − 4)

ν1(ν2 − 1)2(ν2 − 4)
(5.23)

for ν2 > 2 and> 4, respectively.
Now, if we have two sample variances

X ≡ (n1 − 1)
S2

1

σ2
1

(5.24)

Y ≡ (n2 − 1)
S2

2

σ2
2

(5.25)

then the ratio

F12 =
X/ν1

Y/ν2
=
S2

1/σ
2
1

S2
2/σ

2
2

(5.26)

is a F (ν1, ν2) variable (and is a statistics if σ1/σ2 is known, eg. the variances of the two populations are the same).
In Table 5.3 we list schematically the four statistics we have introduced, with their PDF.

5.5 Confidence regions
The PDF of the statistics θ will in general depend on some unknown parameter: for instance x̂ is distributed as
G(µ, σ/

√
N), and in general we do not know µ, σ. Once we know the PDF of a statistics θ, we can answer two

questions: 1) how likely is to find the unknown parameters (e.g. µ, σ) in a given region (inference); and 2) how
likely is to obtain the particular value θ̄ that we find in a given experiment, assuming that the unknown parameter
is fixed to some hypothetical value (hypothesis testing).
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The second question is a well-posed one. The first one however is problematic: how can we determine if θ̄ is
likely or not if we don’t know the full PDF? The frequentist trick is to replace the unknown parameter, e.g. µ, by
its estimate x̂. We see how this works in this section, leaving hypothesis testing to the next section.

Let us evaluate θ1−α/2 and θα/2 defined in this way:
ˆ ∞
θ1−α/2

f(θ)dθ =
α

2
(5.27)

ˆ θα/2

−∞
f(θ)dθ =

α

2
(5.28)

i.e. as the value of θ that delimits an area equal to α/2 or 1− α/2 when the PDF is integrated from −∞ (or from
the lowest value of the domain) to θ. One has therefore

P (θα/2 < θ < θ1−α/2) = 1− α (5.29)

The region within θα/2, θ1−α/2 is the confidence region for θ at level of confidence 1− α (see Fig. 5.4).
For instance, suppose we have measured N data and obtained the particular value sample mean x̄. If the data

are G(µ, σ) the sample mean x̂ is G(µ, σ/
√
n). We suppose we know σ and need to find the confidence region for

µ. We have then
P (µ− σ√

n
< x̂ < µ+

σ√
n

) = 0.68 (5.30)

and therefore
P (x̂− σ√

n
< µ < x̂+

σ√
n

) = 0.68 (5.31)

However, x̂ is a random variable, while we only know the particular value x̄ and we cannot in principle trade one
for the other. This is a fundamental problem with the frequentist approach, and one of the main reason to use the
Bayesian approach, which gives directly the distribution of the theoretical parameters. Nevertheless, we define the
confidence region for µ to be

x̄− σ√
n
< µ < x̄+

σ√
n

(5.32)

and this will be the frequentist answer one obtains about the confidence region of µ (which, in this particular case,
coincides with the Bayesian answer).

Another example. If we have measured the variance S̄2 we can find the confidence region for σ2 by exploiting
the fact that (n− 1)S2/σ2 is distributed as a χ2 variable. Therefore we obtain

χ2
α/2 < (n− 1)

S2

σ2
< χ2

1−α/2 (5.33)

from which we obtain the confidence region

(n− 1)
S̄2

χ2
1−α/2

< σ2 < (n− 1)
S̄2

χ2
α/2

(5.34)

where again we replaced S2 with S̄2.

5.6 Hypothesis testing
The basic idea of hypothesis testing is to employ the same techniques of this Chapter to answer a related question.
Instead of finding the confidence region for a parameter, we try to answer the question of whether the particular
value of a given statistics is likely or not when we assume a specific hypothesis on the value of a parameter. The
workflow is like this:

• enunciate an hypothesis H0 concerning one or more parameters of the distribution of the random variables:
eg, the mean is zero, the variance is smaller than something etc. We want to test H0, that is, to see whether
it is consistent with the data
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Figure 5.4: Region of confidence: the two yellow regions contain a probability fraction α/2 each (By User:HiTe -
Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2084849)

• enunciate the alternative hypothesis H1; normally H1 is simply: H0 is false

• define a statistics and measure its particular value in an experiment

• assuming the hypothesis to be true, evaluate the p-value (see below) of the statistics, i.e. the probability that
H0 is true

• if p is smaller than a pre-defined threshold α (or α/2 for two-tail tests), the hypothesis is rejected (to 1−p-level
of confidence); if not, we cannot rule it out (which is not the same as saying “H0 is true”!)

Let us start with an example (see Gregory 7.2.1). Suppose we have the flux from a radiogalaxy as a function of
time. We make the hypothesis

• H0 : the galaxy flux is constant in time

• H1 : the galaxy flux is not constant in time

We suppose the random variable (the flux) is distributed as a Gaussian with known variance σ (perhaps because
we have some extra information, previous experiments etc). We evaluate for our dataset the statistics

χ̄2 =

N∑
i

(xi − x̄)2

σ2
= 26.76 (5.35)

where N = 18. A high χ2 supports H1, a low one supports H0.
In order to perform the test of H0 we need to choose between 1-tail (measuring p using only one side of the

distribution, the upper one or the lower one) and 2-tail tests (using both sides). The decision depends entirely on
the nature of H1. If H1 is supported by high (low) values of the statistics, then we need to employ a upper (lower)
1-tail test to reject H0. If it is supported by both high and low values we need to adopt a 2-tail test.

Since in our present case H1 is supported by the high values of χ2, we employ a upper 1-tail test to estimate
the p-value. We know that if H0 is true, and therefore 〈x〉 = x̂, this statistics is distributed as χ2

N−1 and we find
the 1-tail p-value, ie. the probability that χ2 > 26.76 as

P (χ2
N−1 > 26.76) = 0.02 (5.36)

Therefore we reject the hypothesis H0 that the flux is constant to 98% confidence level. This means that if we
repeat the experiment 50 times and H0 is true, we will obtain only once a χ2 larger than this; therefore, we risk
making the error of rejecting H0, while in fact it is true, only 2% of the times. This error is called of Type I.

If we want to minimize this error, we should select a lower threshold to decide if we want to accept H0 or not,
say p̂ = 0.01: in this case, we would not have rejected H0. In so doing, however, we risk committing an error of
Type II, i.e. failing to reject H0 while in fact the hypothesis is false. The p-value expresses then the possibility of
making errors of two kinds, as we see in Fig. 5.5. Normally one considers an error Type I more serious that Type
II, so the value of p should be rather small, e.g. 5% or less.

On the other hand, if the hypothesis to test was H0 : the flux is variable, then we should have used a lower 1-tail
test and obtain as p-value P (χ2

N−1 < 26.76) = 0.98 and conclude that we cannot rule out H0.
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Decision Reality error type
Reject H0 actually H0 is true Type I (conviction)
Reject H0 indeed H0is false -

Fail to reject H0 indeed H0 is true -
Fail to reject H0 actually H0 is false Type II (acquittal)

Figure 5.5: Table of Errors (adapted from P. Gregory )

In other cases we could need a 2-tailed test. For instance if we want to compare the mean µ1 of a data sample
with the mean µ2 of another data sample then we can build a t−Student test by forming the combination given in
Eq. (5.17)

T =
x̂1 − x̂2 − (µ1 − µ2)√

S2
1/N1 + S2

2/N2

(5.37)

Suppose now the hypothesis to test is H0 : the means are equal, i.e. µ1 = µ2. Then T becomes a statistics (i.e
depends on data alone) and we can estimate its value from the datasets. Hypothesis H0 is clearly supported by a
T close to 〈T 〉 = 0, while a deviation on either side supports H1. We need to use then a 2-tail test. This means
that if the assigned threshold for rejection of H0 is α, the null hypothesis is rejected if the value of the statistics
lies either in the α/2 upper tail (i.e. in the region T < Tα/2 such that the integral of the PDF from Tp/2 to infinity
is α/2) or in α/2 lower tail. In practice, the only difference between a 1-tail and a 2-tail test, is that in the second
case the threshold should be set at α/2 in order to claim a (1− α)-confidence level for rejection.

Finally, let us note that the important value to provide out of your data analysis is the p-value. The decision
on rejection or otherwise depends on a pre-set level α that normally is purely conventional and depends on the
consensus in a particular discipline.

5.7 Testing a linear fit
One of the most useful example of hypothesis testing occurs when we obtain the best fit of a linear model (see Sect.
4.2). We could ask in fact how likely is the hypothesis that the data come from a population described by the best
fit parameters.

Suppose that analyzing N Gaussian data Yi we obtained M best fit parameters Āα. Defining Ti = Āαgαi (sum
over α) the best fit function evaluated at the location of the N data points, we can form the statistics

Z = (Yi − Ti)C−1
ij (Yj − Tj) (5.38)

As we have seen in Sec. (4.2) the best fit parameters are linear functions of the data Yi and therefore Z is a
quadratic function of the data. By diagonalizing the matrix C−1

ij one can rewrite Z as a sum of N−M uncorrelated
squared normalized Gaussian data, which shows that Z is indeed a χ2 variable with N −M degrees of freedom.
Since we know the distribution of Z we can now proceed to hypothesis testing. The hypothesis is H0: the data Yi
are extracted from a multivariate Gaussian distribution with covariance matrix Cij and mean Ti. If the hypothesis
is true then Z should be close to its expected value 〈Z〉 = N −M , otherwise we should reject H0. Notice that a
perfect fit, Z = 0 or very small, is in contrast with our hypothesis because if the data have some variance then they
are not expected to be perfectly aligned on the best fit curve. So we should adopt a two tail test and if Z̄ is the
particular value we obtain in an experiment, evaluate

P (χ2 > Z̄) =

ˆ ∞
Z̄

PN−M (χ2)dχ2 = p (5.39)

when Z̄ > 〈Z〉 and the same integral but in the region (0, Z̄) in the opposite case. If the p-value we obtain is smaller
than the threshold α/2 we have chosen, we should reject H0. Since a χ2

ν distribution approximates a Gaussian with
mean ν and variance 2ν, a quick indication that the data are not likely to have been extracted from the underlying
distribution is obtained if Z/(N−M) deviates from unity in either directions by more than a few times 1/

√
N −M .

The function Z is employed also in a slightly different manner, i.e. as a goodness-of-fit indicator. If Z is
very small the fit is clearly good. Then we can use its value as a quick estimate of how good a fit is, regardless
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of any hypothesis testing. As we have seen in Sect. 3.10, this is just one of the three factors that enter the
Bayesian evidence, since indeed Z = χ2

min. It is often the dominant one, which explains why it can be used as an
approximation to the full evidence.

5.8 Analysis of variance
A particular case of hypothesis testing is called analysis of variance or ANOVA. Suppose we have p samples from
Gaussian distributions with the same variance σ2 but supposedly different unknown means µα, α = 1, .., p. Each
sample has a different size nα, so we have N =

∑
α nα data, that we denote as

• xαi, i-th data from α-th sample

We would like to test H0 : the means are equal, against H1 : H0 is false. Let us define the sample means

x̄α =
1

nα

∑
i

xαi (5.40)

and the sample variances

σ̄2
α =

1

nα

∑
i

(xαi − x̄α)2 (5.41)

(notice we use the maximum likelihood estimator here). Then we define the overall mean and variance

x̄tot =
1

N

∑
α,i

xαi (5.42)

σ̄2
tot =

Q2
tot

N
(5.43)

where
Q2
tot =

∑
α,i

(xαi − x̄tot)2

Now after some algebra we find that we can partition the sum of squares in this way

Q2
tot =

∑
α,i

(xαi − x̄α)2 +
∑
α

nα(x̄α − x̄tot)2 ≡ Q2
res +Q2

set (5.44)

i.e. as the sum of the squared residuals inside each set Q2
res plus the sum of squared residuals from set to set, Q2

set.
Now Q2

res/σ
2 is a χ2

N−p variable. If H0 is true, moreover, it can be shown that Q2
set/σ

2 is a χ2
p−1 variable. We have

then that the statistics

F =
Q2
set/(p− 1)

Q2
res/(N − p)

(5.45)

is a F (p− 1, N − p) variable. Then the particular value F that we obtain in a given experiment can be employed
to test hypothesis H0. In fact, if the means x̄α are equal, x̄α = x̄tot so that Qset → 0 and F → 0. A low F supports
therefore the hypothesis that the samples come from the same distribution. Since H1 is supported by high values
of F we need to employ a upper 1-tail test.

5.9 Numerical methods
The distributions we have seen in this Chapter are all analytical, due to the simple assumption of Gaussian data.
In general, the PDF of a function of the data can be impossible to derive analytically. In this case, one can obtain
the numerical PDF of a function of the data θ̂ = f(di) by generating many random sets of data di extracted from
their PDF, evaluating each time θ̂. The histogram of the values of θ̂ gives the approximate numerical PDF of the
estimator. Of course one needs to know the data PDF. If one does not have this information then one can still use
the non-parametric methods of the next Chapter.

75



Chapter 6

Frequentist approach: Non-parametric tests

In this section we continue with the frequentist approach to parameter estimation but here we do not assume
Gaussian data. We still however assume that the data are independent and identically distributed (IID). This case
generally applies to data sampling, i.e. a series of independent measurement of some random variable that obeys
some unknown distribution. Once we have the statistics distribution, the same method of confidence regions and
hypothesis testing we have seen in the previous section applies.

6.1 Pearson χ2 test for binned data
We start by asking whether the data come from a given distribution. Take a sample of N data di, divided into
k mutually exclusive bins, with ni data each. Suppose we know from previous tests or from some theory that a
fraction pk of data should go in bin k. Let us then take as hypothesis

• H0: for every i, the probability that di falls in bin k is pk.

Under this hypothesis, the number of data expected in bin i is 〈ni〉 = Npi and of course N =
∑
ni. Let us start

with k = 2 for simplicity. Then we have a single parameter since the probability that x is in bin 1 is p1 and in bin 2
is 1− p1. The probability of finding a number n1 of data in bin 1 given that we expect p1 is given by the binomial

P (n1;N, p) =
N !

(N − n1)!n1!
pn1

1 (1− p1)N−n1 (6.1)

From this we know that the variance of x is σ2 = Np1(1 − p1) and that 〈n1〉 = Np1. Then we can form the
standardized variable

Y =
n1 −Np1√
Np1(1− p1)

(6.2)

and claim that Y approximates a Gaussian variable with N(0, 1). Therefore Y 2 approximates a χ2
1. After some

algebra we find that one can write

Y 2 =

2∑
i=1

(ni −Npi)2

Npi
(6.3)

This helps to generalize the procedure to k > 2. In fact we find simply that for any k

χ2 =

k∑
i=1

(ni −Npi)2

Npi
(6.4)

is a χ2
k−1 variable. The alternative H1 is supported by high values of χ2 so we employ a upper 1-tail test. Therefore,

the hypothesis H0 that the data come from the distribution pk is rejected to 1−α confidence level if χ2
k−1 is found

to lie in the upper α% of the distribution.
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Figure 6.1: Sample cumulative function (by Bscan, commons.wikimedia.org/wiki/File:Empirical_CDF.png).

6.2 Kolmogorov-Smirnov test
In this section, like in the previous one, we do not assume any given distribution for the random variables (the data).
Contrary to the previous case, we do not require any binning. Suppose we have n samples xi from a given unknown
distribution whose cumulative function is F (x). Let us define the sample (or empirical) cumulative function as

Fn(x) = k/n (6.5)

where k is the number of data points xi ≤ x. For instance if xi = 0.1, 0.3, 0.35, 0.7, 0.8, 0.9, then Fn(0.4) = 1/2 since
there are 3 values less than 0.4 out of 6 in total. Of course Fn(x) is a highly discontinuous function, i.e. a step-wise
constant function (see e.g. Fig. 6.1). For any x less than the lowest observed value, Fn(x) = 0 and for any x higher
than any observed value Fn(x) = 1. If we had the entire set of possible observations, Fn(x) would coincide with
the cumulative distribution function. Let us now define the largest deviation of Fn from the true F as

Dn = sup |Fn(x)− F (x)| (6.6)

in the entire allowed range of x. An important theorem due to Kolmogorov and Smirnov says that

lim
n→∞

P (n1/2Dn ≤ t) = 1− 2

∞∑
i=1

(−1)i−1e−2i2t2 ≡ H(t) (6.7)

regardless of F (x). Under a specific hypothesis on F (x), the quantity Dn is a statistics, i.e. can be evaluated using
only the observed data. Clearly the hypothesis H0 : the distribution is F (x), is supported by a small Dn, while the
alternative H1 by a high Dn, so we use a upper 1-tail test. For instance, if we find that n1/2Dn = 1.36 for a given
dataset (and a given hypothesis on F (x)), we can estimate that H(1.36) = 0.95, i.e. the hypothesis H0 would be
rejected at 95% confidence level for any value of n1/2Dn larger than 1.36.

6.3 Kolmogorov-Smirnov test for two samples
One can use the same Kolmogorov-Smirnov statistics also to test if two samples come from identical distributions,
without specifying which. In this case the hypotheses will be
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• H0: F (x) = G(x)

• H1: the hypothesis H0 is not true.

The sample distribution we reconstruct from two given samples of, respectively, m,n data are Fm(x) and Gn(x).
It can be shown that the statistics

(
nm

n+m
)1/2Dnm (6.8)

where
Dmn = sup |Fm(x)−Gn(x)| (6.9)

has a cumulative function H(t) defined as in Eq. (6.7), i.e.

lim
n→∞

P ((
nm

n+m
)1/2Dnm ≤ t) = 1− 2

∞∑
i=1

(−1)i−1e−2i2t2 = H(t) (6.10)

A test using Dmn is called a Kolmogorov-Smirnov two-sample test. Here again, one should use a upper 1-tail test.

6.4 Wilcoxon rank-sum test
Another way to test that two samples come from the same distribution, i.e. to test the same hypothesis H0 of the
previous section, is the Wilcoxon rank-sum test, or Wilcoxon-Mann-Whitney test. Suppose we have m data from
a sample Xi and n from a second sample Yj (as usual all the data are assumed independent). Let’s order all of
them in a single list from the smallest to the largest one. To each observations we assign a rank ri from 1 to m+ n
according to the order in the list. The average of the ranks will of course be (m + n + 1)/2. If the hypothesis H0

is true, then the ranks of the m observations Xi should occur randomly and not being concentrated anywhere in
particular, and the same for the n values Yj . More exactly, ri should be a uniform random variable in the range
1,m+ n. This implies that the sum S of the ranks of Xi should be close to E[S] = m(m+ n+ 1)/2, i.e. m times
the average. Similarly, employing the property of uniform variates Eq. (2.12), one can show that under H0

Var[S] =
mn(m+ n+ 1)

12
(6.11)

Now for the central limit theorem, the distribution of S should tend, for large m,n , to a Gaussian with mean E[S]
and variance Var[S], more or less regardless of the true distribution of the data. So H0 is rejected if

Z ≡ |S −m(m+ n+ 1)/2|
[mn(m+n+1)

12 ]1/2
≥ c (6.12)

where if the level of significance is chosen to be α, the constant c is chosen so that

c = Φ−1(1− α/2) (6.13)

where Φ(x) is the cumulative function of the Normal. Notice that since H1 is supported by both a large and a small
value of Z, we need to use a 2-tail test.

6.5 Bootstrap
We have seen so far several distributions for parameter estimators. Now we consider an estimator of the distribution
itself, that was actually already introduced in the Kolmogorov-Smirnov test. Suppose we have n datapoints xi from
a given unknown distribution whose cumulative function is F (x). Let us define the sample (or empirical) cumulative
function as

Fn(x) = k/n (6.14)

where k is the number of data points xi ≤ x. The sample PDF corresponding to this cumulative function is

fn(xi) =
1

n∆xi
(6.15)
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for xi ∈ (xi, xi+1) and where ∆xi = xi+1 − xi. In fact,
´ xk
x1
fn(x)dx =

∑k
i=1 fn(xi)∆xi = k/n i.e. the cumulative

function. In the limit of large n we can expect the sample PDF to approximate the true PDF. Then, we can estimate
the distribution of any statistics θ̂ function of a sample of size m by simply drawing many m-sized samples from
the sample PDF fn. That is, if we have a statistics that is a function of m ≤ n data (normally howevere m = n),
for instance the sample mean

x̂ =
1

m

m∑
i=1

xi (6.16)

we generate numerically a large number N of samples of the same size m drawing from the distribution fn (obtained
from the real measurements) and obtain therefore a number N of values of x̂ (let us denote them as x̄α, α = 1, N).
The distribution of the x̄α approximates the distribution of x̂. This can be done for any function of the data, i.e.
any statistics.

In fact, the method can be further simplified. The samples to be generated only have to obey the sample PDF,
with no restriction on how they are generated. In fact, any value of x within the interval (xi, xi+1) is as good as
any other. So we can restrict ourselves to sampling only among the original n data points. This is called resampling
with replacement. That is, we can take the n data points, put them in a box, and extract randomly a new set of
n values from the box, always “replacing” in the box the values that are extracted. This means that the new set
of n points will contain some duplicates of the original dataset and will correspondingly lack some of the original
points. We can generate thousands of resampled set in this way, evaluate the statistics for each of them and obtain
the PDF of the statistics.

The advantage of this method, called bootstrap (from the idiomatic expression “pull yourself up by your boot-
straps”), are manifold. First, it applies to any random data without any hypothesis on their distribution (but we
still need to assume that the data are independent and identically distributed). Second, it applies to any statistics,
i.e. any function of the data. Third, is very easy, requiring no more than a modest computational capacity. The
main disadvantage however is that it is only asymptotically unbiased (in the sense that it requires both the sample
size m and the number of resamplings N to be very large) and there are no general criteria for deciding how close
to the asymptotic distribution we are.

6.6 Sufficient statistics
A statistics T (di) such that the joint data probability distribution, characterized by a parameter θ, can be written
as

P (di; θ) = h(di)g(θ, T (dj)) (6.17)

is called a sufficient statistics for θ for that particular data PDF. Intuitively, this means that the parameter is
fully characterized by T (dj); including more data in the statistics (among the same dataset di!) will not improve
or change the estimation of θ. Notice, incidentally, that in the Bayesian context this is obvious since h(di) does
not depend on the parameter and therefore can be absorbed into the posterior normalization. For instance, the
maximum likelihood estimator will depend only on maximizing g and therefore only on T (dj). The sample mean
and variance are sufficient statistics for Gaussian data. If (weirdly enough!) we use only N − 1 data to evaluate the
mean instead of the full set of N data, the sample mean will not be sufficient.
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Chapter 7

Random fields: Correlation function and
power spectrum

In this Chapter we will present various methods to quantify the degree of correlation of random fields, i.e. random
data distributed over a manifold. Typical random fields are the spatial distribution of particles or galaxies in three
dimensions or telecommunication signals distributed over a time axis.

7.1 Definition of the correlation functions
Common statistical descriptors for spatially distributed data are the n−point correlation functions. TakeN particles
in a volume V . Let ρ0dV be the average number of particles in an infinitesimal volume dV , being ρ0 = N/V the
average number density. Let na be the number of particles in a small volume dVa. Then by definition 〈na〉 = ρ0dVa.
If dNab = 〈nanb〉 is the average number of pairs in the volumes dVa and dVb(i.e., the product of the number of
particles in one volume with the number in the other volume), separated by rab, then the 2-point correlation function
ξ(rab) is defined as

dNab = 〈nanb〉 = ρ2
0dVadVb(1 + ξ(rab)) (7.1)

If the points are uncorrelated, then the average number of pairs is exactly equal to the product of the average
number of particles in the two volumes, and the correlation ξ vanishes; if there is correlation among the volumes,
on the other hand, then the correlation is different from zero. The correlation function is also defined, equivalently,
as the spatial average of the product of the density contrast δ(ra) = na/(ρ0dV )− 1 at two different points

ξ(rab) =
dNab

ρ2
0dVadVb

− 1 = 〈δ(ra)δ(rb)〉 (7.2)

In practice it is easier to derive the correlation function as the average density of particles at a distance r from
another particle. This is a conditional density, that is the density of particles at distance r given that there is a
particle at r = 0. The number of pairs is then the number of particles in both volumes divided by the number of
particles na = ρ0dVa in the volume dVa at r = 0 :

dnb|na = dNab/na = ρ2
0dVadVb(1 + ξ(rab))/na = ρ0dVb(1 + ξ(rb)) (7.3)

Identifying dnb|na with the conditional number dNc, the correlation function can then be defined as

ξ(r) =
dNc(r)

ρ0dV
− 1 =

〈ρc〉
ρ0
− 1 (7.4)

i.e. as the average number of particles at distance r from any given particle (or number of neighbors), divided by the
expected number of particles at the same distance in a uniform distribution, minus 1, or conditional density contrast.
If the correlation is positive, there are then more particles than in a uniform distribution: the distribution is then
said to be positively clustered. This definition is purely radial, and does not distinguish between isotropic and
anisotropic distributions. One could generalize this definition by introducing the anisotropic correlation function
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as the number of pairs in volumes at distance r and a given longitude and latitude. This is useful whenever there
is some reason to suspect that the distribution is indeed anisotropic, as when there is a significant distortion along
the line-of-sight due to the redshift.

If the average density of particles is estimated from the sample itself, i.e. ρ0 = N/V , it is clear that the integral
of dNc(r) must converge to the number of particles in the sample :

ˆ R

0

dNc(r) =

ˆ
ρ(r)dV = N (7.5)

In this case the correlation function is a sample quantity, and it is subject to the integral constraint (Peebles 1980)
ˆ R

0

ξs(r)dV = N/ρ0 − V = 0 (7.6)

Assuming spatial isotropy this is

4π

ˆ R

0

ξs(r)r
2dr = 0 (7.7)

If the sample density is different from the true density of the whole distribution, we must expect that the ξs(r)
estimated in the sample differs from the true correlation function. From Eq. (7.4), we see that g(r) = 1 + ξ(r)
scales as ρ−1

0 . Only if we can identify the sample density ρ0 with the true density the estimate of ξ(r) is correct. In
general, the density is estimated in a survey centered on ourselves, so that what we obtain is in reality a conditional
density.

The conditional density at distance r from a particle, averaged over the particles in the survey, is often denoted
in the statistical literature as Γ(r); we have therefore from Eq. (7.4)

Γ(r) ≡ 〈ρc〉 = ρ0(1 + ξ) (7.8)

The average in spherical cells of radius R and volume V of this quantity is denoted as

Γ∗(R) ≡ 〈ρc〉sph = ρ0(1 + ξ̂) (7.9)

where
ξ̂ = V −1

ˆ
ξdV (7.10)

To evaluate Γ∗(R) one finds the average of the number of neighbors inside a distance R from any particle contained
in the sample.

7.2 Measuring the correlation function in real catalog
Consider now the estimator (7.4). It requires the estimation of the density ρc inside a shell of thickness dr at
distance r from every particle. In other words, it requires the estimation of the volume of every shell. In practice,
a direct estimation of the shell volume is difficult because of the complicate boundary that a real survey often has.
Moreover, if we are working on a magnitude-limited sample, the expected density ρ0 must take into account the
selection function. The simplest way to measure ξ is to compare the real catalog to a MonteCarlo (i.e. random,
or more exactly Poissonian) catalog with exactly the same number of particles, the same boundaries and the same
selection function. Then, the estimator can be written as

ξ =
DD

DR
− 1 (7.11)

where DD means we center on a real galaxy (data D), count the number DD of galaxies at distance r, and divide
by the number of galaxies DR at the same distance but in the MonteCarlo catalog (label R). In other words,
instead of calculating the volume of the shell, which is a difficult task in realistic cases, we estimate it by counting
the galaxies in the Poissonian MonteCarlo realization. In this way, all possible boundaries and selection function
can be easily mimicked in the Poisson catalog, and will affect DD and DR in the same way (statistically). To
reduce the effect of the Poisson noise in the MC catalog, we can in fact use a higher number of artificial particles,
say α times the real data, and then multiply DD/DR by α.
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7.3 Correlation function of a planar distribution
Let us estimate now the CF of a planar distribution. Consider two large spherical volumes of radius Rs. Let us
distribute in one N particles uniformly on a plane passing through the center, and in the other the same N particles
but now uniformly in the whole volume. The latter is our MonteCarlo artificial catalog. We have to estimate DD
in a spherical shell at distance r from the planar distribution, and DR in the artificial one. In the planar world,
the spherical shell cuts a circular ring of radius r � Rs and thickness dr, so we have, on average

DD = superf. density× 2πrdr =
N

πR2
s

2πrdr (7.12)

In the uniform world we have
DR = density× 4πr2dr =

3N

4πR3
s

4πr2dr (7.13)

Then we get

ξ =
2Rs

3
r−1 − 1 (7.14)

This is the CF of a planar distribution. As we can see, 1 + ξ goes as r−1, and its amplitude depends on the size
of the ”universe” Rs. It is clear that, in this case, the amplitude of the correlation function is not a measure of the
amount of inhomogeneity of the content, but rather a measure of the geometry of the container.

Notice that the constraint 7.7 is satisfied:
ˆ Rs

0

ξr2dr =
2Rs

3

ˆ Rs

rdr −
ˆ Rs

r2dr =
R3
s

3
− R3

s

3
= 0

7.4 Correlation function of random clusters
Consider now the following model: there are m clumps of N particles each, uniformly distributed inside cubes of
side Rc, and the cubes themselves are distributed uniformly in the universe. The total number of particles is mN
. The total volume is mD3, if D � Rc is the mean intercluster distance. For r � Rc, each particle sees around
itself a uniform distribution with density ρc = N/R3

c , while the global mean density is ρ = mN/(mD3) = N/D3. It
follows

ξ(r � Rc) =
N

R3
c

D3

N
− 1 =

(
D

Rc

)3

− 1 (7.15)

On the other hand, for r � D, the distribution of particles is essentially random, and

ξ(r � D) = 0 (7.16)

There are therefore three regimes: at very small scales, the CF is constant and positive; at large scales, the model is
homogeneous, and at intermediate scales it decreases from one plateau to the other. Notice however that, in order
to verify the integral constraint, the CF must become negative at some intermediate scale. This corresponds to the
fact that outside the clusters there are less particles that in a uniform distribution. Notice also that now the CF
amplitude does not depend on the universe volume, but only on the fixed parameters D and Rc.

7.5 The angular correlation function
Sometimes we need to project the 3D correlation function onto a 2D plane. For instance, because the angular
position of the galaxies is so much easier to determine than their distance, the angular correlation function has been
often employed in astronomy. Here we write down the relation between the two correlations, that is the Limber
equation, in order to show some properties.

Let Φ(r;mlim) denote the radial selection function,

Φ(r;mlim) =

ˆ M(r,mlim)

−∞
φ(M)dM (7.17)
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that is the density of galaxies at distance r in a magnitude-limited, such that
´

ΦdV = N is the total number of
sources selected. Since the density at distance r is Φ(r), instead of the constant ρ0, the number of pairs in volumes
dV1, dV2 at positions r1, r2 is now modified as follows

dN12 = dV1dV2(1 + ξ(r12))Φ(r1)Φ(r2) (7.18)

where
r12 = |r1 − r2| =

(
r2
1 + r2

2 − 2r1r2 cos θ
)1/2

Now, the number of pairs dNθ which appear to be separated by an angle θ in the sky is clearly the integral of dN12

over all positions r1, r2 provided that their angular separation θ is constant. Then we have

dNθ =

ˆ
dN12 =

ˆ
dV1dV2(1 + ξ(r12))Φ(r1)Φ(r2) (7.19)

The angular correlation function is defined, in analogy to the spatial correlation

w(θ) =
dNθ

ρ2
sdA1dA2

− 1 (7.20)

where ρs is the surface density, and ρsdA1 =
(´

V1
ΦdV

)
is the expected number of particles in the area dA that

subtends the volume V1 (e.g., dA1 is a circular patch of angular radius α and V1 is the line-of-sight cone of beam
size α). Then we obtain the relation between spatial and angular correlation functions:

w(θ) =

´
dV1dV2ξ(r12)Φ(r1)Φ(r2)(´

ΦdV
)2 (7.21)

In the limit of small separations, this equation can be simplified. If ξ(r12) declines rapidly for large separations, we
might assume that the integral is important only if r1 ' r2 ' r ; if we also take a small θ we have

r2
12 = (r1 − r2)

2
+ r2θ2 = u2 + r2θ2 (7.22)

where u = r1 − r2. Passing from r1, r2 to u, r in the integral, and integrating out the angular variables, we get the
Limber equation

w(θ) =

´∞
0
r4Φ(r)2dr

´∞
−∞ duξ(x)(´

r2Φdr
)2 (7.23)

where x2 = u2 + r2θ2. A simple use of this equation is when a power law approximation holds, ξ = Ar−γ . Then we
can define a variable z such that u = θrz, and we obtain

w(θ) =

´∞
0
r4Φ(r)2dr

´∞
−∞ θrdz

[
(θrz)

2
+ (rθ)

2
]−γ/2

(´
r2Φdr

)2
=

´∞
0
r4Φ(r)2dr

´∞
−∞ θ1−γr1−γdz

[
z2 + 1

]−γ/2(´
r2Φdr

)2 = Bθ1−γ (7.24)

where the coefficient B is just some number that depends on mlim and γ

B =

´∞
0
r5−γΦ(r)2dr

´∞
−∞ dz

[
z2 + 1

]−γ/2(´
r2Φdr

)2 (7.25)

Eq. (7.24) reveals that, in the limit of small angular scales and negligible correlations at large distances, the angular
power law is 1− γ. This is in fact roughly confirmed in several angular catalogues, although in a limited range of
angular scales.
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7.6 The n-point correlation function and the scaling hierarchy
The correlation function can be generalized to more than two points. The 3-point function for instance is defined
as

ς(ra, rb, rc) = 〈δ(ra)δ(rb)δ(rc)〉 (7.26)

In terms of the counts in infinitesimal cells we can write

ς(ra, rb, rc) = 〈
(

na
ρ0dVa

− 1

)(
nb

ρ0dVb
− 1

)(
nc

ρ0dVc
− 1

)
〉

=
〈nanbnc〉

ρ3
0dVadVbdVc

− ξab − ξbc − ξac − 1 (7.27)

so that we obtain the useful relation

〈nanbnc〉 = ρ3
0dVadVbdVc(1 + ξab + ξbc + ξac + ςabc) (7.28)

7.7 The power spectrum
One of the most employed statistical estimator for density fields is the power spectrum. In recent years it has been
used to quantify the clustering properties in many galaxy surveys. The main reason is that almost all theories of
structure formation predict a specific shape of the spectrum, because the plane waves evolve independently in the
linear approximation of the gravitational equations.

Unless otherwise specified, the conventions for the 3D Fourier transforms is

f(x) =
V

(2π)
3

ˆ
fke

ikxd3k

fk =
1

V

ˆ
f(x)eikxd3x (7.29)

and it is always understood that ikx = ik · x. With this conventions, f(x) and fk have the same dimensions.
However, the Dirac delta will be defined as customary as

δD(x) =
1

(2π)
3

ˆ
eikxd3k

δD(k) =
1

(2π)
3

ˆ
eikxd3x

ˆ
δD(k)d3k =

ˆ
δD(x)d3x = 1 (7.30)

Let δ(x) be the density contrast of a density field and

δk =
1

V

ˆ
δ(x)eikxdV (7.31)

its Fourier transform.
Notice that δk is a complex quantity but that δ∗k = δ−k. If δ(x) is sampled in cells of size Vc that form a grid of

size V (e.g. the output of a N -body simulation), then the k grid will be defined as cells of size (2π)3/V that form a
grid of size (2π)3/Vc. The total number of random variables δk is the same as the total number of random variables
δ(x): although δk is a complex quantity, the fact that δ∗k = δ−k means half of the coefficients are redundant.

The sample power spectrum is defined as
P (k) = V δkδ

∗
k (7.32)

Notice that the power spectrum has the dimension of a volume. It follows

P (k) =
1

V

ˆ
δ(x)δ(y)eik(x−y)dVxdVy (7.33)
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Now, we put r = x− y, and we identify the average 〈...〉 with a spatial average, i.e. we assume that the sample is
so large that distant regions are completely uncorrelated and act therefore as indepedent realizations. Then

ξ(r) = 〈δ(y + r)δ(y)〉 =
1

V

ˆ
δ(y + r)δ(y)dVy (7.34)

then,

P (k) =

ˆ
ξ(r)eikrdV (7.35)

Therefore, the power spectrum is the Fourier transform of the correlation function (Wiener-Khintchin theorem).
The inverse property is

ξ(r) = (2π)
−3
ˆ
P (k)eikrd3k (7.36)

(notice that here, following most literature, the Fourier volume factor is not included). Finally, assuming spatial
isotropy, i.e. that the correlation function depends only on the modulus |r|, we obtain

P (k) = 4π

ˆ
ξ(r)

sin kr

kr
r2dr (7.37)

A more general definition of power spectrum can also be given, but this time we have to think in terms of ensemble
averages, rather than volume averages. Consider in fact the ensemble average of V δkδ∗k′ :

V 〈δkδ∗k′〉 =
1

V

ˆ
〈δ(y)δ(y + r)〉ei(k−k

′)y+ikrdVrdVy (7.38)

Performing ensemble averages, one has to think of fixing a positions and making the average over the ensemble of
realizations. Then the average can enter the integration, and average only over the random variables δ. Then we
obtain

V 〈δkδ∗k′〉 =
1

V

ˆ
ξ(r)ei(k−k

′)y+ikrdVrdVy =
(2π)3

V
P (k)δD(k − k′) (7.39)

The definition (7.39) states simply that modes at different wavelengths are uncorrelated if the field is statistically
homogeneous (that is, if ξ does not depend on the position in which is calculated but only on the distance r). This
will often be useful later.

These definitions refer to infinite samples and to a continuous field. In reality,we always have a finite sample
and a discrete realization of the field, i.e.. a finite number of particles. Therefore, we have to take into account the
effects of both finiteness and discreteness.

Consider now a discrete distribution of N particles, each at a position xi; then we can use Dirac’s delta and
write

ρ(x) =
∑
i

δD(x− xi) (7.40)

so that
´
ρ(x)dV = N , as it should. The Fourier transform of the density contrast δ = ρ(x)/ρ0 − 1 is now

δk =
1

V

ˆ
V

N

∑
i

δD(x− xi)eikxdV − (2π)3δD(k) =
1

N

∑
i

eikxi (7.41)

whete the last equality is only valid for k 6=0. Now, the expected value of the power spectrum is

P (k) = V 〈δkδ∗k〉 (7.42)

that is
P (k) =

V

N2

∑
ij

eik(xi−xj) (7.43)

Finally, if the positions xi and xj are uncorrelated, we can pick up only the terms with i = j, so that we obtain the
pure noise spectrum

Pn(k) =
V

N2

∑
i

1 =
V

N
(7.44)
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We now redo the same calculation including the effect of the window function W (x), a function that expresses
the way in which the particles are selected. A typical selection procedure is to take all particles within a given
region, and no particles elsewhere. In this case, the function will be a constant inside the survey, and zero outside.
We will always consider such a kind of window function in the following, and normalize it so that

ˆ
W (x)dV = 1 (7.45)

With this normalization, W (x) = 1/V inside the survey. The density contrast field we have in a specific sample
is therefore the universal field times the window function (times the sample volume V because of the way we
normalized W )

δs = δ(x)VW (x) (7.46)

Let us now again express the field as a sum of Dirac functions

δ(x) =

(
ρ(x)

ρ0
− 1

)
VW (x) =

V

N

∑
i

wiδD(x− xi)− VW (x) (7.47)

where wi = VW (xi). The Fourier transform is

δk =
1

V

ˆ (
V

N

∑
i

wiδD(x− xi)− VW (x)

)
eikxdV =

1

N

∑
i

wie
ikxi −Wk (7.48)

where we introduced the k−space window function

Wk =

ˆ
W (x)eikxdV (7.49)

normalized so that W0 = 1. The most commonly used window function is the so-called top-hat function, which is
the FT of the simple selection rule

W (x) = 1/V inside a spherical volume V of radius R
W (x) = 0 outside (7.50)

We have then

Wk =

ˆ
W (x)eikxdV = V −1

ˆ
eikxdV

=
3

4π
R−3

ˆ R

r2dr

ˆ π

−π
eikr cos θd cos θdφ

=
3

2
R−3

ˆ R (
eikr − e−ikr

) r2

ikr
dr

= 3R−3

ˆ R r sin kr

k
dr = 3

sin kR− kR cos kR

(kR)3

Notice that W0 = 1, and that the WF declines rapidly as k → π/R (see Fig. 7.1). Now, the expected value of the
power spectrum is

P (k) = V 〈δkδ∗k〉 (7.51)

that is
P (k) =

V

N2

∑
ij

wiwje
ik(xi−xj) − VW 2

k (7.52)

We used the relation
〈 1

N

∑
i

wie
ikxi〉 =

1

N

∑
i

ˆ
W (x)eikxdV = Wk (7.53)
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Figure 7.1: Top-hat spherical window function.

Finally, if the positions xi and xj are uncorrelated, we can pick up only the terms with i = j, so that, neglecting
the window function, which is important only for k → 0 , we obtain the pure noise spectrum

Pn(k) =
V

N2

∑
i

w2
i = V/N (7.54)

where the last equality holds only if wi = 1 for all particles. The noise spectrum is negligible only for large densities,
ρ0 = N/V → ∞. In general, the noise is not always negligible and has to be subtracted from the estimate. For
the power spectrum applies the same consideration expressed for the moments: the power spectrum does not
characterize completely a distribution, unless we know the distribution has some specific property, e.g. is Gaussian,
or Poisson, etc.

7.8 From the power spectrum to the moments
The power spectrum is often the basic outcome of the structure formation theories, and it is convenient to express
all the other quantities in terms of it. Here we find the relation between the power spectrum and the moments of
the counts in random cells.

Consider a finite cell. Divide it into infinitesimal cells with counts ni either zero or unity. We have by definition
of ξ

〈ninj〉 = ρ2
0dVidVj [1 + ξij ] (7.55)

The count in the cell is N =
∑
ni . The variance is then M2 = (〈N2〉 −N2

0 )/N2
0 where

〈N2〉 = 〈
∑

ni
∑

nj〉 =
∑
〈n2
i 〉+

∑
〈ninj〉 =

N0 +N2
0

ˆ
dVidVjWiWj [1 + ξij ] (7.56)

where N0 = ρ0V is the count average, and ξij ≡ ξ(|ri − rj |). Let us simplify the notation by putting

WidVi = dV ∗i

We define the integral ( by definition
´
WdV =

´
dV ∗ = 1 for any window function)

σ2 =

ˆ
dV ∗1 dV

∗
2 ξ12 (7.57)

Inserting the power spectrum we have

σ2 = (2π)−3

ˆ
P (k)eik(r1−r2)W1W2d

3kd3r1d
3r2 (7.58)
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This becomes, for spherical cells,

σ2 = (2π2)−1

ˆ
P (k)W 2(k)k2dk (7.59)

Finally we obtain the relation between the power spectrum (or the correlation function) and the second-order
moment of the counts:

M2 = N−2
0 〈(∆N)2〉 = N−2

0 (〈N2
i 〉 −N2

0 ) = N−1
0 + σ2 (7.60)

where ∆N = N −N0. The first term is the noise, the second term is the count variance in the continuous limit.
For the third order moment we proceed in a similar fashion:

〈N3〉 = 〈
∑

ni
∑

nj
∑

nk〉 =
∑
〈n2
i 〉+ 3

∑
〈n2
i 〉
∑

ni +
∑
〈ninjnk〉 = (7.61)

N0 + 3N2
0 +N3

0

ˆ
dV ∗i dV

∗
j dV

∗
k [1 + ξij + ξik + ξjk + ςijk] (7.62)

where in the last equality we used the definition of the three point correlation given in Eq. (7.28)

〈ninjnk〉 = ρ3
0dVidVjdVk[1 + ξij + ξik + ξjk + ςijk] (7.63)

The third order moment is then

M3 = N−3
0 〈(∆N)3〉 = N−2

0 +

ˆ
dV ∗i dV

∗
j dV

∗
k ςijk (7.64)

If we can assume the scaling relation ςijk = Q[ξijξjk + ξijξik + ξikξjk] then we can express M3 in terms of P (k) and
of the new parameter Q. In the limit of large N0, a Gaussian field (M3 = 0) has Q = 0.

7.9 Bias in a Gaussian field
Consider a Gaussian density field with correlation ξ(r). By definition, we have that the fluctuation density contrast
field δ = δρ/ρ obey the rules

〈δ1δ2〉 = ξ(r) (7.65)
〈δ2

1〉 = ξ(0) = σ2 (7.66)

The density δ at each point is distributed then as

P (δ) =
1

(2πσ2)
1/2

exp

[
− δ2

2σ2

]
where by definition σ2 =

´
δ2
1P (δ)dδ. The probability that the fluctuation field is above a certain threshold νσ,

where σ is the field variance, is

P1 =
1

(2πσ2)
1/2

ˆ
νσ

exp

[
− δ2

2σ2

]
dδ (7.67)

Now, the joint probability that the density at one point is δ1 and the density at another is δ2,

P (δ1, δ2) =
[
(2π)

2
detM

]−1/2

exp

[
−1

2
δiδjMij

]
(7.68)

where δi = {δ1, δ2} and where r is the distance between the two points. The covariance matrix is

M−1 =

(
σ2 ξ(r)
ξ(r) σ2

)
(7.69)
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We can write then the probability that the x field is above the threshold ν at both location as

P2 =
[
(2π)

2
detM

]−1/2
ˆ
νσ

ˆ
νσ

exp

[
−1

2
δiδjMij

]
dδidδ2

=
[
(2π)

2
(σ4 − ξ2)

]−1/2
ˆ
νσ

ˆ
νσ

exp

[
−σ

2δ2
1 + σ2δ2

2 − 2ξδ1δ2
2 [σ4 − ξ2]

]
dδ1dδ2 (7.70)

Now, suppose there are N particles in the field; the number of particles in regions above threshold is N1 = P1N ,
while the number of pairs in regions above threshold is N2 = P2N

2. The correlation function of the regions above
threshold is, by definition of correlation function

1 + ξν =
N2

N2
1

=
P2

P 2
1

(7.71)

The integral can be done easily numerically, but an interesting approximation is to take the limit for ξ(r)� 1 and
ν � 1, i.e. at large scales and for high peaks. Using the large ν approximation (Abramovitz-Stegun 7.1.23)

P1 =
1

(2πσ2)
1/2

ˆ
νσ

exp

[
− δ2

2σ2

]
dδ ' 1

(2πν2)
1/2

e−ν
2/2 (7.72)

and expanding

exp

[
−σ

2δ2
1 + σ2δ2

2 − 2ξδ1δ2
2 [σ4 − ξ2]

]
' exp

[
−δ

2
1 + δ2

2

2σ2

]
exp

[
ξδ1δ2
σ4

]
' exp

[
−δ

2
1 + δ2

2

2σ2

](
1 +

ξδ1δ2
σ4

)
(7.73)

we get
P2

P 2
1

' 1 +
ν2

σ2
ξe−ν

2

ˆ
νσ

e−
δ21+δ22
2σ2 δ1δ2

dδ1dδ2
σ4

and finally (Kaiser 1984)

ξν '
ν2

σ2
ξ (7.74)

This shows that peaks are more correlated than the background density field. This is the same effects one observes
on mountain ranges: near a peak there is very likely another peak. Eq. (7.74) gives some credibility to the
approximation usually made that the galaxy density field is a scale-independent-biased version of the mass density
field, but it should be noticed that this is expected only for large ν and at large scales, and that the whole mechanism
relies on the assumption that there is only one object per threshold region.

Eq. (7.74) can be applied to galaxy clusters. Suppose first we smooth the field on scales of, say, 5 Mpc/h, so
that the variance σ on such scales is of order unity. It is found observationally that the cluster correlation function
is roughly ten times larger than the galaxy correlation. This would imply a ν ' 3, which is not unreasonable.
Notice that some level of biasing is necessary: collapsed object form only where δ > 1.

7.10 Poissonian noise
Among infinite possible ways to characterize a distributions of particles, the n-point correlation functions, or their
integral average, the moments, are often selected because of their straightforward definition, and because of their
easy numerical computation. It is often necessary to think of a distribution of particles as a finite and discrete
sample drawn from an underlying field. We need then to distinguish between the properties of the underlying field,
that we sometimes refer to as the ”universe”, and the properties of the sample under investigation: the sample gives
only an estimate of the universe. If we want to infer the properties of the universe from those of the sample, we
need to take into account both the finiteness and the discreteness. In particular, we need to assume a model for the
behavior of the field beyond the sample, and ”beneath ” the particles that sample the field. Two typical assumptions
are that the field outside the sample looks like the field inside (fair sample hypothesis), and that the particles are a
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Poisson sampling of the continuous field (Poisson sampling hypothesis). Both assumptions can be tested only when
is possible to obtain a larger and denser sample. Lacking this possibility, which is often the case in cosmology, the
assumptions need to be treated with great caution.

Let us begin with the moments. Suppose we partition a distribution of particles into m cells, for instance
spherical cells of radius r, randomly located, and count the number of particles inside each cell. This gives the
counts Ni, with i = 1, ..,m. Then we can form the number density contrasts

δi = (Ni −N0)/N0 (7.75)

where N0 is the average count
N0 =

∑
Ni/m (7.76)

and we can form the p-th order central moment

Mp = 〈δip〉 = m−1
∑
i

δi
p (7.77)

By definition, M0 = 1,M1 = 0. Suppose now that the probability to have a density contrast between δ and δ + dδ
is P (δ)dδ, where P (δ) is the probability density function (PDF) of the counts. The moments Mp of the particle
distribution are an estimate of the moments of the PDF: in fact, in the limit in which we sample the full distribution,
the moments Mp coincide with the moment of the PDF. For instance, the second order moment, M2 is an estimate
of the variance of the number density contrasts. The third order moment is called skewness, while the combination

K ≡M4 − 3M2
2 (7.78)

is the kurtosis. If the PDF is a gaussian

P (δ) = (2πσ2)−1/2 exp

(
− δ2

2σ2

)
(7.79)

then all its moments depend on σ and both the skewness and the kurtosis vanish. These moments are therefore the
simplest estimator of deviation from gaussianity.

In practice we estimate the moments from a finite distribution of particles, i.e. a discrete random sampling of
a continuous underlying field, for instance the dark matter field. The number of particles at any given point is
then a function of the continuous field. In cosmology, this function is established by the physical processes that led
to the formation of the discrete particles, the galaxies, and can be in general extremely complicated. As already
mentioned, the simplest assumption we can make is that the galaxies are a Poisson sampling of the mass field, that
is, the galaxies trace the mass. In this case, the average density of galaxies in any given region is proportional to the
average density of the underlying field. A slightly more complicated assumption can be that galaxies are a Poisson
sampling not everywhere, but only when the underlying field is above a certain threshold. This is what is often
referred to as biased formation . It is clear that the true physical process can be much more complicated than this,
for instance the threshold may vary in space, or the sampling function can be non-local, etc.. In most of what we
will say here, the simplest Poisson assumption is always understood.

Assuming Poisson sampling, we immediately encounter the problem of Poisson noise. That is, the number of
particles N at a point in which the density field is ν, is a random variable distributed as a Poisson variable with
mean proportional to ν, say equal to η = βν, that is

P (N ; η) =
e−ηηN

N !
(7.80)

If η is distributed as f(η), then the PDF of N is

P (N) =

ˆ
f(η)P (N ; η)dη

The moments of N are then a function of the moments of f(η) and of P (N ; η). If we are interested in the properties
of the underlying field, we need to estimate the moments of η, and of the density contrast δη/η0, from the moments
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of N . This can be done easily exploiting the properties of the generating functions, defined above. We have in fact
that ˆ

ηN

N !
dN = eη (7.81)

so that the GF of P (N) is

G(φ) =

ˆ
eφNf(η)

e−ηηN

N !
dηdN =

ˆ
e−ηf(η)dη

ˆ (
eφη
)N

N !
dN

=

ˆ
e−ηf(η)dηee

φη =

ˆ
eψηf(η)dη (7.82)

where
ψ = eφ − 1 (7.83)

Then, we have obtained the useful result that the GF of a PDF convolved with the Poisson distribution is the GF
of the PDF with the change of variable φ→ eφ − 1. Then we get

M2(N) =
d2G(ψ(φ))

dφ2
|φ=0 =

dψ

dφ

d

dψ

(
dψ

dφ

dG(ψ)

dψ

)
|φ=0 = M∗2 +M∗1 (7.84)

where the moments refer to the PDF of N , and the starred moments refer to the underlying field. . Since the first
moment of the PDF of N is the mean N0, we get finally that the variance including the Poisson sampling is

M2(N) = M∗2 (N) +N0 (7.85)

and that, consequently, the variance of the underlying field is obtained as

M∗2 (N) = M2(N)−N0 (7.86)

The moments of the density contrast of the continuous field (labelled with an asterisk) in terms of the moments
of the discrete realization of N0 particles can be obtained further dividing by Np

0 :

M∗2 = M2 −N−1
0 , (7.87)

M∗3 = M3 − 3M2N
−1
0 + 2N−2

0 , (7.88)
M∗4 = M4 − 3M2

2 − 6M3N
−1
0 + 11M2N

−2
0 − 6N−3

0 , (7.89)

where the terms in N0 are the Poisson terms.
In conclusion, a simple way to describe a distribution of particles is to estimate the lowest moments in cells

of varying radius, that is to evaluate M2(r),M3(r),K(r) and so on. However, no finite amount of moments do
characterize completely the distribution, unless of course we know already that the distribution depends on a finite
amount of parameters, e.g. is Gaussian or Poisson, etc.
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Chapter 8

Collection of useful formulas

8.1 Random variables
Sample mean, sample variance

x̄ =

∑
xi
N

σ̄2 ≡
∑

(xi − x̄)2

N
(8.1)

Joint, disjoint, conditional probability

P (A ∩B) = P (B ∩A) = P (A)P (B) (indep.events) (8.2)

P (A ∪B) = P (A ∪B) = P (A) + P (B)− P (A ∩B) (A , or ,B) (8.3)

P (A|B) =
P (A ∩B)

P (B)
=

number of cases that are both A and B
number of cases that are B

(conditional ,prob.) (8.4)

P (A|B) =
P (B|A)P (A)

P (B)
(Bayes′ , theorem) (8.5)

8.2 Probability distributions
Moments

E[xn] =

ˆ
xnf(x)dx (8.6)

E[(x− 〈x〉)n] =

ˆ
(x− 〈x〉)nf(x)dx (8.7)

Error propagation y = y(x)

σ2
y = E[(y − y(µ1, µ2))2] =

∑
i

y′i
2σ2
xi (8.8)

Sum of random variables y = a1x1 + a2x2 + ..+ anxn

σ2
y =

∑
i

a2
iσ

2
xi (8.9)

Product of random variables y = x1x2...xn
σ2
y

µ2
y

=
∑
i

σ2
xi

µ2
x,i

(8.10)

where µy = µ1µ2...µn e µx,i ≡ µi
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Binomial
P (n;N, p) =

N !

n!(N − n)!
pn(1− p)N−n (8.11)

E[n] = Np (8.12)
Var[n] = Np(1− p) (8.13)

Poisson
P (n; ν) =

Nn

n!
pne−ν =

νn

n!
e−ν (8.14)

E[n] = ν (8.15)
Var[n] = ν (8.16)

Gaussian
f(x) = (2πσ2)−1/2e−

(x−µ)2

2σ2 (8.17)

E[x] = µ (8.18)
Var[x] = σ2 (8.19)

χ2 distribution

f(z ≡ χ2;n) =
1

2n/2Γ(n/2)
zn/2−1e−z/2 (8.20)

E(x) = n (8.21)
Var(x) = 2n (8.22)

Moment generating function

mx(t) ≡ 〈etx〉 =

ˆ
etxf(x)dx (8.23)

Covariance matrix

Cij = E[(xi − µi)(xj − µj)] (8.24)

=

ˆ
(xi − µi)(xj − µj)f(x1, x2, x3,...)d

nx (8.25)

Multinomial
P (x1, x2, ..xk) =

N !

x1!x2!...xk!
px1

1 px2
2 px3

3 ...pxkk (8.26)

(provided
∑
i pi = 1 and

∑
i xi = N).

E[xi] = Npi (8.27)
Var[xi] = Npi(1− pi) (8.28)

Cov[xixj ] = −npipj (8.29)

Multivariate Gaussian
G(xi, i = 1...n) =

1

(2π)n/2
√

detC
exp−1

2
(XiC

−1
ij Xj) (8.30)

General Gaussian integral
ˆ

exp[−1

2
xiC

−1
ij xj + Jixi]d

nx = (2π)n/2(detC)1/2 exp[
1

2
JiCijJj ] (8.31)
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8.3 Likelihood function and Fisher matrix
MLE for the mean of Gaussian variables (generalized weigthed mean)

µ̂ =
uiC

−1
ij xj

uiC
−1
ij uj

(8.32)

µ̂ =

∑
xjσ

−2
j∑

σ−2
j

for uncorrelated variables (8.33)

Variance of µ̂ for uncorrelated variables

σ2
µ̂ =

1∑
σ−2
j

(8.34)

Fisher matrix
Fαβ =

〈
∂ lnL(x;θ)

∂θα

∂ lnL(x;θ)

∂θβ

〉
ML

FM for Gaussian data
Fαβ ≡

1

2
C−1
`m

∂Cmn
∂θα

C−1
np

∂Cp`
∂θβ

+ C−1
`m

∂µ`
∂θα

∂µm
∂θβ

, (8.35)

BIC measure of evidence
BIC = −2 logLmax + k logN (8.36)

8.4 Fitting with linear models
Straight line with constant variance

ā =
〈xd〉 − 〈x〉〈d〉
〈x2〉 − 〈x〉2

=
sxd
s2
x

(8.37)

b̄ =
〈x2〉〈d〉 − 〈x〉〈xd〉
〈x2〉 − 〈x〉2

= 〈d〉 − ā〈x〉 (8.38)

The general solution for the linear-model fit
fi =

∑
α

Aαgiα (8.39)

is
Ā = G−1D (8.40)

with

Gαβ ≡ gβiC
−1
ij gαj (8.41)

Dα ≡ diC
−1
ij gαj (8.42)

FM for a linear-model fit
Fαβ ≡ C−1

ij gαigβj = Gαβ , (8.43)

8.5 Frequentist results
If the random variable x ∼ G(µ, σ) then:

Distribution of sample mean. If

x̂ =
1

N

∑
i

xi (8.44)

then
x̂ ∼ G(µ, σ/

√
N)
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Distribution of variance. If

Y =
∑
i

(xi − µ)2

σ2
=
∑
i

Z2
i (8.45)

(µ, σ2 are known) then
Y ∼ χ2

N

and if (only σ2 is known)

S2 =
∑
i

(xi − x̂)2

N − 1
, (8.46)

then

(N − 1)
S2

σ2
∼ χ2

N−1 (8.47)

Distribution of normalized variable. If Z ∼ N(0, 1) and X ∼ χ2
ν then

T =
Z√
X/ν

(8.48)

is distributed as the t−Student distribution

f(t; ν) =
Γ(ν+1

2 )
√
πνΓ(ν2 )

[
1 +

(
t2

ν

)]− ν+1
2

(8.49)

Ratio of two variances. If X,Y are two independent χ2 variables with ν1, ν2 dof, then

F =
X/ν1

Y/ν2
(8.50)

is distributed as

P (F ; ν1, ν2) =
Γ[(ν1 + ν2)/2]

Γ(ν1/2)Γ(ν2/2)

(
ν1

ν2

) ν1
2 F

ν1−2
2

(1 + Fν1/ν2)(ν1+ν2)/2
(8.51)
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