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These notes summarize my course on General Relativity at the University of Heidelberg. The content and
the notation follow quite closely B. Schutz, A First Course on General Relativity, (Cambridge
UP) which is the textbook recommended for this course. Another useful text is S. Carroll, Introduction
to Space-Time. For gravitational waves, see also M. Maggiore, Gravitational Waves, Vol I. For Cosmology,
see my lecture notes or the book L. Amendola and S. Tsujikawa, Dark Energy, Theory and Observations. For
other topics like Penrose diagrams and more details on Kerr and other black hole solutions, see R. D’Inverno,
Introducing Einsten’s Relativity.

Not much backgound is needed beyond the standard bachelor courses on Classical Mechanics, Linear Algebra,
Calculus, Electromagnetism.

Thanks to Clemens Vittmann and Jakob Ullmann and to several other students for sending me corrections
and suggestions. Contact me for comments or typos.



Chapter 1

Special Relativity

1.1 General concepts
1. Special Relativity (SR) is based on two postulates: a) no experiment can measure the absolute velocity

of an observer, but only its relative velocity with respect to another observer (Galilean invariance); b) the
speed of light relative to any unaccelerated observer is constant, c = 3 · 105 km/sec.

2. The meaning of a) is that if we have an observer moving with velocity v(t) (bold face symbols denote
vectors) with respect to another one, and we add the constant velocity V, then the Newtonian dynamics
remains unchanged. That is, if we replace v(t) with v′(t) = v(t) + V, then all three Newtonian laws
remain unchanged. In particular the second law

F = ma (1.1)

does not change since a = dv(t)/dt remains the same. Notice that this assumes also that F,m do not
change as well. The first law also remains the same since if v(t) is constant then also v(t) +V is constant;
the third law remains the same because it refers to forces and they by assumption are unchanged.

3. That is, every experiment gives the same result if the entire laboratory moves with constant velocity V

4. On the contrary, we can define an “absolute acceleration” in SR, since we can always measure acceleration
by detecting a force. For instance, we feel the acceleration on a train as an extra force acting on us.

5. We define an “inertial observer” as an observer that does not detect any external force; for instance if
one has a glass of water, an inertial observer will see the level parallel to ground, while a “non-inertial
observer” will see a tilt.

6. The proper definition of inertial observer that will be used in the following is a system (or frame) that
extends to infinity in a Euclidean space, with a rigid frame of coordinates (the distance between any two
points, measured by sending and receiving light signals, is fixed), and with a synchronized clock at any
position.

7. Gravity has to be excluded from this world. Whenever there is gravity, as we will see, this rigid system
cannot exist over a finite amount of space. When gravity is introduced, we need to move to General
Relativity. Other forces can instead be present and we can take them into account.

8. In the inertial observer frame, an event is a location (x, y, z) and an instant of time at which that event
takes place (time measured by the clock located at (x, y, z)). An event is then characterized by four
numbers, (t, x, y, z).

9. We use this index notation
xα = {t, x, y, z} (1.2)

where α = 0, 1, 2, 3. We also use Latin indexes to define purely spatial coordinates, xi = {x, y, z},
i = 1, 2, 3.

4
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10. Let us now consider an observer O and draw its time axis as a vertical line. What this observer will see
as the locus of events at t = 0, i.e. events all simultaneous with its t = 0 instant?

11. If it sends a light signal at t = −a to a point located at x0 = c|t| = ac (we now fix y = z = const) where
a mirror is located, and receives the signal back at time t = a, it will evidently calculate that the mirror
reflected the signal at time t = 0 (i.e., when the clock located there had the same time as its own clock at
x = 0). The event of mirroring is therefore simultaneous with t = 0. (Figure 1.1)

12. Sending signals at various times, the observer O can identify a full line of events simultaneous with t = 0.
This will define the axis of simultaneity x relative to O.

13. From now on, we will measure velocities in units of c. This means that e.g. v = 0.01 means v = 3, 000
km/sec, v = 1 means speed of light, etc. Then, time will be measured in meters: a meter of time means
the time it takes for light to run over one meter.

14. On the frame of O, the trajectory of a light ray can then be represented by a line on which x = x0 + t, i.e.
a straight line with an angle of 450. So for instance a light ray emitted by O at the origin is a bisector
line. The two bisector lines originating from O define two light cones, the future one and the past one (see
Fig. 1.3).

15. Postulate b) of SR says that light lines are always tilted at 450 with respect to any inertial observer, not
just O.

16. A particle moving with velocity v will be represented instead by a line with angle θ = arctan v, where θ
is counted clockwise from the t axis.

17. The lines that join subsequent events are called world lines. A world line can be described mathematically
by a time dependent vector xα(t).

18. All particles moving with velocity less than c will stay inside the light cone of O with respect of any point
on its world line. That is, their tilt will always be less than 450 (see Fig. 1.3).

19. Accelerated particles will have curved world lines. If they move always with speed less than c, as it happens
for all the particle we know, the tangent dx(t)/dt of their world lines must always be less than 1.

1.2 Relativity of simultaneity
1. Let us now represent another inertial observer frame, O′, moving with velocity v, on the frame O. Let us

assume for simplicity that O and O′ were both at the origin of O at time t = 0. That is, the origins of
their frames coincides. The coordinates as seen by O′ will be denoted as x′α = {t′, x′, y′, z′}.

2. The new observer is then following a world line that is a straight line passing through t = x = 0 and tilted
at angle tan θ = v.

3. Of course O′ might as well assume it is standing still and O moves with velocity −v. The frame of O′ has
indeed a representation identical to what we have already seen for O. But now we want to represent the
frame of O′ as seen by O.

4. The time axis t′ at x′ = 0 for O′ seen by O is then the world line itself. What is the axis of simultaneity
at t′ = 0 of O′?

5. If O′ performs the same experiment that O employed to define its axis of simultaneity, namely sending
light signals to mirrors, it will produce an axis as in Figure 1.2

6. The point is again that light signals travel at 450 degrees for any observer, so the light signals sent by O′
will be seen by O as 450 lines.

7. The x′ axis of O′, i.e. the axis of simultaneity t′ = 0, will be tilted wrt to the x-axis of O by the same
angle tan θ = v. Simultaneity is a concept that depends on the observer!
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Figure 1.1: Axis of simultaneity.

8. The equation of the t′-axis on the O plane is then t = x/v, while the equation of the x′-axis is t = vx.
For v = 1 they clearly coincide with the light-ray line.

9. The axes y, z are not changed by all this, so we have y = y′ and z = z′. The simultaneity of events at the
same x but at different y, z is not affected by a velocity v directed along x, i.e. perpendicularly to y, z.

1.3 Space-time interval
1. We see that SR can have a direct geometric meaning on the t, x plane. To study geometry we need

distances. We define now the important concept of a space-time interval between two events xα and
xα + ∆xα :

∆s2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2 (1.3)

(here and in the following, ∆x ≡ x2 − x1 is an interval in the coordinate x: this is normally the quantity
of observational interest). Notice we could have defined this quantity with opposite signs; all what follows
would have been formally identical. The space-time interval defines a Minkowskian space, also called
pseudo-Euclidean.

2. The first thing to notice is that, contrary to the usual definition of “distance”, ∆s2 is not positive-definite!

3. For a light signal, (∆t)2 = (∆x)2 + (∆y)2 + (∆z)2, and therefore ∆s = 0. Any two points on a 450 line
have then zero space-time interval. Light lines are then also called null lines.

4. Since postulate b) says that the velocity of light is the same for every inertial observer, if ∆s = 0 for one
observer, it remains zero for every observer, i.e. for both O and O′. We now will show that a natural
consequence of postulates a) and b) is that ∆s turns out to be equal for every observer even when is not
zero. That is, the space-time interval is an invariant quantity in SR.

5. To do so, we must show that ∆s does not change under a coordinate transformation that brings us from
O to Ō. (From now on, we use a overbar to define a new observer.) Since observers can only have a
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Figure 1.2: Change of frame.

constant relative velocity, we assume a linear general transformation. So, in full generality, for Ō we write

−∆s̄2 =
∑
α,β

Mαβ(∆xα)(∆xβ) (1.4)

(the minus sign is only for later convenience) where Mαβ are the entries of some symmetric matrix
(symmetric because if I interchange α, β the result must be the same). This relation must be valid for any
space-time interval, so also for light rays.

6. We know that for a light ray, ∆s = ∆s̄ = 0. Also, ∆t = ∆r = [(∆x)2 + (∆y)2 + (∆z)2]1/2. Then we can
write

−∆s̄2 = M00(∆r)2 + 2(ΣiM0i∆xi)∆r + ΣiΣjMij(∆xi)(∆xj) (1.5)
As we said above, for a light ray ∆s̄ = 0 for every two points. So consider now two points with some given
∆xi and two with −∆xi. Then

∆s̄2(∆xi)−∆s̄2(−∆xi) = 2∆r[ΣiM0i(∆xi + ∆xi)] = 0 (1.6)

from which we conclude that M0i = 0.

7. Now we consider intervals such that ∆x = 1 and ∆y = ∆z = 0, i.e. ∆r = 1. Then we have

−∆s̄2 = M00 +M11 = 0 (1.7)

i.e. M00 = −M11. Using in turn ∆y = 1 and ∆z = 1 instead of ∆x = 1, we find also M22 = M33 = −M00.

8. Finally, putting ∆x = ∆y = 1 and ∆z = 0, (so ∆r2 = 2 ) we see that

−∆s̄2 = 2M00 − 2M00 + 2M12 = 0 (1.8)

and therefore M12 = 0; similarly, one finds M23 = M13 = 0. That is, Mij is a diagonal matrix.

9. We find finally
Mij = −M00δij (1.9)

where δij represents the identity matrix.
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Figure 1.3: World lines.

10. So we obtain
∆s̄2 = M00[−(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2] (1.10)

11. We still need to find M00. Let us now assume that M00 depends on the only variable at hand, namely the
relative speed of the observers, M00 = φ(|v|), and not on direction.

12. Consider now a transformation from O to Ō:

∆s̄2 = φ(|v|)∆s2 (1.11)

and now from Ō back to O:
∆s2 = φ(|v|)∆s̄2 = φ2(|v|)∆s2 (1.12)

then we see that φ(|v|) = ±1. We choose from now on +1 to maintain continuity (i.e., if we had chosen
-1, one would have that even for arbitrarily small velocities v the space-time interval jumps from positive
to negative values).

13. This demonstrates that ∆s = ∆s̄ for any inertial observer. That is, the space-time interval is an invariant
of SR transformations.

14. The following definitions are therefore also invariant properties:

∆s2 = 0, null trajectory (1.13)
∆s2 > 0, space− like trajectory (1.14)
∆s2 < 0, time− like trajectory (1.15)

So in Figure 1.3, for instance, events B and C are separated by a time-like interval from the origin (or
simply, B,C are time-like events), while A is space-like. To see if, e.g., BA is time- or space-like, one has
to construct a light-cone centered on B or A.
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Figure 1.4: Invariant hyperbolae.

1.4 Light-cones and invariant hyperbolae
1. In the space t, x, y, the null lines define a light-cone at every point. With respect to that point, points

inside the light cone are said to be separated by time-like intervals (future or past), points outside by
space-like intervals, points on the cone by null- or light-intervals.

2. Invariant hyperbolae are defined by the equations of the type

− t2 + x2 = ±a2 (1.16)

with the plus sign for space-like points, negative sign for time-like ones. Since such an equation is a
space-time interval, it is invariant, i.e. the same for every inertial observer. (Figure 1.4).

3. Points on the invariant hyperbolae have all the same space-time interval wrt the origin. They are then
analogous to circles in Euclidean space.

4. Invariant hyperbolae can be used to calibrate distances. If observer O has defined a certain time interval
as unity, it can draw the hyperbola

− t2 + x2 = −1 (1.17)
such that, indeed, for x = 0 the interval wrt the origin is t = 1. This hyperbola will intersect the time
axis of Ō at some point t′. The interval from the origin to t′ will then be again 1. In this way, O and Ō
can define a common time unit. So two clocks, one carried by O and one carried by Ō, will tick a unity
of time in correspondence of two events connected by the hyperbola.

5. The hyperbola has another important property. The tangent to it at the point t̄0 of intersection of the
time line of observer Ō gives the direction of the x̄ axis of Ō, i.e. its axis of simultaneity with t̄0.

1.5 Time dilation and space contraction
1. By drawing the invariant hyperbola, we immediately realize that observer O will see the time interval 1

of Ō as occurring at a time t = 1 + ∆t on its clock.
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Figure 1.5: Invariance of space-time interval.

2. Simple geometry (see Fig. 1.6) shows that

t = 1√
1− v2

(1.18)

More in general, if ∆t̄ is a time interval between two events as measured by Ō, the time interval between
the same two events as measured by O will be dilated:

∆t = ∆t̄√
1− v2

(1.19)

3. We define the proper time-interval between two time-like events (or simply proper time for short) as the
time measured by a clock that moves with constant velocity through both events. This is evidently a
directly measurable quantity since we can always set up an observer whose worldline connects the two
events.

4. For a clock at rest at the origin, ∆x̄ = ∆ȳ = ∆z̄ = 0 at all times, and one has that the proper time τ
coincides with the space-time interval

∆s̄2 = −∆t̄2 = −∆τ̄2 (1.20)

This is then an invariant, and observer O will measure the same space-time interval

∆τ2 = −∆s̄2 = ∆t2 −∆x2 (1.21)

from which we derive again the relation between proper time and time measured by an observer moving
with velocity v, namely

∆τ = ∆t
√

1− v2 (1.22)

5. In an analogous manner, we can demonstrate the Lorentz contraction of distances (Fig. 1.7). Let us
assume that observer Ō carries a rigid body of length ¯̀ = OC ′ (the length has to be measured in the
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Figure 1.6: Time dilation.

observer’s axis of simultaneity). The coordinates of C’ can be found from the system

−t2 + x2 = ¯̀2 (1.23)
t = xv (1.24)

from which
C ′ = ( v ¯̀

√
1− v2

,
¯̀

√
1− v2

) (1.25)

From Figure 1.7 we see the rigid object of length ¯̀ for Ō will appear to O (in its axis of simultaneity) of
size

` = xB − xO = xC′ − vtC′ =
¯̀

√
1− v2

− v( v ¯̀
√

1− v2
) = ¯̀

√
1− v2 (1.26)

That is, the object will appear shorter for O than it is for Ō. This is called Lorentz contraction. Of course,
the same contraction will be measured by Ō for an object at rest with O.

1.6 Lorentz transformations
1. We mentioned before a transformation of coordinates from O to Ō. We will now derive the full set of

transformations.

2. We begin by assuming a linear transformation between xα and x̄α. The assumption of linearity is a crucial
step and cannot be justified in a a priori manner, but just by simplicity. It is of course well supported by
all the available observations.

3. We assume then that the relation between the O coordinates and the Ō coordinates is of this type:

t̄ = αt+ βx (1.27)
x̄ = γt+ σx (1.28)
ȳ = y (1.29)
z̄ = z (1.30)



CHAPTER 1. SPECIAL RELATIVITY 12

Figure 1.7: Space contraction.

and that α, β, γ, δ are constants that only depend on a constant velocity v and that we are going now to
determine.

4. We know already that the t̄ axis (x̄ = 0) is given by the equation vt − x = 0 and that the x̄ (t̄ = 0) axis
is given by t− vx = 0. Then from the first one we have the relation

γt+ σx = 0 (1.31)

from which
− γ

σ
= x

t
= v (1.32)

and from the second one
β

α
= −v (1.33)

so that

t̄ = α(t− vx) (1.34)
x̄ = σ(−vt+ x) (1.35)

5. Now, referring to Figure 1.5, consider two points A,B connected by a light signal. In the Ō frame, point
A has coordinates (t̄, x̄) equal to (a, 0)Ō, point B has coordinates (0, a)Ō. In the O frame, they have
coordinates

AO = ( a

α(1− v2) ,
va

α(1− v2) ) (1.36)

BO = ( va

σ(1− v2) ,
a

σ(1− v2) ) (1.37)

In fact, let’s consider for instance point B and apply the transformations 1.34-1.35:

0 = α(t− vx) (1.38)
a = σ(−vt+ x) (1.39)
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from which indeed the x-coordinate of BO is

x = a

σ(1− v2) (1.40)

while the t-coordinate is v times the x-coordinate. Similarly, one obtains the coordinates of AO.

6. Now since A,B are separated by ∆s2 = ∆s̄2 = 0, we can also write

∆s2 = −( a

1− v2 )2( 1
α
− v

σ
)2 + ( a

1− v2 )2( v
α
− 1
σ

)2 = 0 (1.41)

Since this has to be valid for any v, we obtain

α = σ (1.42)

The transformations take then the form

t̄ = α(t− vx) (1.43)
x̄ = α(−vt+ x) (1.44)

7. One last step is needed now. Since ∆s2 = ∆s̄2, we have

−∆t̄2 + ∆x̄2 = −∆t2 + ∆x2 (1.45)

from which
α = ± 1√

1− v2
≡ ±γ (1.46)

where γ is often called “relativistic factor”: for v → 0, γ → 1, while for a relativistic velocity v → 1,
γ → ∞. As before, we choose now the positive sign so that for v = 0 the Lorentz transformation is an
identity.

8. The Lorentz transformation (LT) in one direction (boost with positive velocity v) is then

t̄ = γ(t− vx) (1.47)
x̄ = γ(−vt+ x) (1.48)
ȳ = y (1.49)
z̄ = z (1.50)

Putting back c, the transformations remain the same, except the first one that becomes t̄ = γ(t− vx
c2 ).

9. Since O is moving with velocity −v wrt Ō, the inverse transformation will be

t = γ(t̄+ vx̄) (1.51)
x = γ(vt̄+ x̄) (1.52)
y = ȳ (1.53)
x = z̄ (1.54)

10. The postulate of an absolute speed of light means that velocity cannot simply be added. The Lorentz
transformation define then a new velocity composition law.

11. Imagine an observer Ō moving with velocity v wrt O; moreover, in the frame of Ō, a particle is moving
with constant velocity w̄ as measured by Ō (Figure 1.8). Which velocity will O measure for the particle?

12. We have w = ∆x̄
∆t̄ and we need to evaluate wO = ∆x

∆t . From the inverse LT we have

∆x = γ(v∆t̄+ ∆x̄) (1.55)
∆t = γ(∆t̄+ v∆x̄) (1.56)

from which the composition law becomes

wO = ∆x
∆t = γ(v∆t̄+ ∆x̄)

γ(∆t̄+ v∆x̄)
= w + v

1 + wv
(1.57)
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Figure 1.8: Composition of velocities (notice this is not the usual t, x space-time plane, it is a x, y plane).

13. If w = 1, then wO = 1 as well, as it should, and viceversa (if wO = 1, one could also have v = 1). In other
words, if an observer moves with the speed of light, no velocity can be added. If v, w � 1, one goes back
to the usual addition law, wO ≈ v + w.

14. The LT can be seen as a rotation in a pseudo-Euclidean plane. defining

v = tanh u (1.58)

we can write

t̄ = t cosh u− x sinh u (1.59)
x̄ = −t sinh u+ x cosh u (1.60)

This is then formally similar to a rotation in Euclidean space, if the hyperbolic functions are replaced by
the trigonometric ones (up to a sign).

1.7 Vectors in SR
1. We begin now to put the previous results in a form suitable for the mathematical developments of GR.

2. We define the prototypical coordinate vector between two points (events) in the frame O as

(∆~x)O → (∆t,∆x,∆y,∆z) ≡ {∆xα} (1.61)

In another frame Ō this will be denoted as

(∆~x)Ō → (∆t̄,∆x̄,∆ȳ,∆z̄) ≡ {∆xᾱ} (1.62)

Note that from now one, we put a bar over the indexes rather than over the variables!
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3. An expression like
∆t̄ = γ(∆t− v∆x) (1.63)

can now be written as

∆x0̄ = γ(∆x0 − v∆x1 + 0∆x2 + 0∆x3) (1.64)

=
3∑

β=0
Λ0̄
β∆xβ (1.65)

where
Λ0̄
β = (γ,−vγ, 0, 0) (1.66)

4. More in general, we write the LT as a matrix Λ such that

∆xᾱ =
3∑

β=0
Λᾱβ∆xβ (1.67)

= Λᾱβ∆xβ (1.68)

In the second line, the symbol of sum is understood whenever there are two identical indexes up and down.
This is called Einstein’s convention. It’s a powerful trick to simplify many expressions. Notice that in
order to preserve the matching of free indexes, the LT matrix has to be written with indexes up and down
(mixed indexes).

5. The transformation can also be interpreted as the partial derivative of the new coordinates wrt the old
ones:

Λᾱβ = ∂xᾱ

∂xβ
(1.69)

Since
∂xᾱ

∂xβ
∂xβ

∂xβ̄
= δᾱ

β̄
(1.70)

(please notice that one is not allowed to “simplify” ∂xβ !), we see that Λβᾱ is the inverse of Λᾱβ .

6. The order of indexes is in general important, so one must make clear whether an index is the first or the
second, e.g. leaving a space as in Λᾱβ or putting a dot as in Λᾱ.β . The first index denotes the rows of the
matrix, the second denotes the columns. The matrix product

C = A ·B (1.71)

means sum (rows of the first matrix)×(columns of the second matrix), i.e. Cαγ = AαβB
β
γ . This can be

written in any order, e.g. Cαγ = BβγA
α
β . But if I write AβγBαβ , I am summing the columns of the first

matrix times the rows of the second, that is, I am doing

C′ = B ·A (1.72)

which of course is in general a different matrix. For a symmetric matrix, the order of the indexes is not
important.

7. The LT (x-boost) is then represented by the symmetric matrix

Λx =


γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1

 (1.73)
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8. The general form of the LT for a boost of speed v along the direction given by the unit vector (nx, ny, nz)
is instead the symmetric matrix

Λ(v,n) =


γ −γvnx −γvny −γvnz

−γvnx 1 + (γ − 1)n2
x (γ − 1)nxny (γ − 1)nxnz

−γvny (γ − 1)nynx 1 + (γ − 1)n2
y (γ − 1)nynz

−γvnz (γ − 1)nxnz (γ − 1)nynz 1 + (γ − 1)n2
z

 (1.74)

The inverse of Λ is simply
Λ−1 = Λ(−v,n) (1.75)

For (nx, ny, nz) = (1, 0, 0) we are of course back to the x-boost.

9. LT are more general than this. One can still add space and time translations and a spatial rotation. The
combination of boosts, translations and rotations form a general LT group, the Poincaré group. It is a
group because two general LT are another general LT and because there is an identity and an inverse
operation. The only LT of interest in SR are however the boosts.

10. Note that in an expression like Λᾱβ∆xβ , the symbol that is summed over, β, is a “dummy” index (while
ᾱ is called a free index, ie. is not paired with another ᾱ in the same term): we could have used any other
symbol and still the expression would have had the same meaning. However, we should not have used ᾱ
or any other symbol already taken in the same term.

11. So the equations

∆xᾱ = Λᾱβ∆xβ (1.76)

∆xβ̄ = Λβ̄γ∆xγ (1.77)
∆xᾱ = Λᾱτ∆xτ (1.78)

have exactly the same meaning.

12. A simple rule will emerge more clearly later on but is useful to note already now: the free indexes must
match on either side of every equation. An equation like ∆xβ̄ = Λᾱτ∆xτ does not make sense and should
never appear.

13. We will use often also the 4D identity matrix or Kronecker symbol

δαβ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.79)

By convention, the identity vector is always written with indexes up and down (mixed indexes). In this
way we can write well-formed equations like

xβ = xαδβα (1.80)

which, although trivial, are often very useful to manipulate indexes. For the Kronecker symbol, like for
all symmetric matrices, the order of index is not important.

14. Now we call vector (under a Lorentz transformation) any quadruplet

~AO → (A0, A1, A2, A3) = {Aα} (1.81)

that has the same transformation properties of xα, i.e. such that

Aβ̄ = Λβ̄αAα (1.82)

Obviously linear combinations of vectors are other vectors, e.g.

Aα = bxα + yα (1.83)

where b is a constant.



CHAPTER 1. SPECIAL RELATIVITY 17

15. We define now the basis vectors. In the frame O we have four special unitary (i.e., the norm is unity)
vectors

~e0 → (1, 0, 0, 0) (1.84)
~e1 → (0, 1, 0, 0) (1.85)
~e2 → (0, 0, 1, 0) (1.86)
~e3 → (0, 0, 0, 1) (1.87)

i.e.
(~eα)β = δβα (1.88)

Notice the position of the index of ~eα as a subscript, not superscript. This set of basis vector is in the O
frame. In the Ō frame we will have four different basis vectors ~e0̄ → (1, 0, 0, 0), ~e1̄ → (0, 1, 0, 0) etc. Their
components are the same, but the vectors are different! That is, they live in different spaces, one in O,
one in Ō. In other words, they form different vector spaces.

16. Every vector can be expressed in terms of the basis vector (all wrt a given frame). In fact, using the
elementary rules for summing vectors, we can write

~A→ (A0, A1, A2, A3) = A0~e0 +A1~e1 +A2~e2 +A3~e3 = Aα~eα (1.89)

Notice that the components of the vectors ~eα can be indicated as e βα . The equation above can then be
written in explicit component form as

Aβ = Aαe βα (1.90)

which mathematically is totally trivial since e βα = δβα.

17. Now comes an important concept. A vector, for instance the position of an event in space-time, is an
object that is independent of the frame. Then, we can write it equivalently with respect to different frames
as

~A = Aα~eα = Aᾱ~eᾱ (1.91)

But now we can also transform the frame Ō into O as follows

~A = Aβ~eβ = Aᾱ~eᾱ = ΛᾱβAβ~eᾱ (1.92)

By comparing the second and the last expression (notice that we deliberately chose the dummy index in
the second expression to be β so to ease the comparison with the last expression), we deduce that

~eβ = Λᾱβ~eᾱ (1.93)

This gives the law of transformation of the basis vectors (Figure 1.9).

18. As an example of LT of a vector, if we put ~AO → (5, 0, 0, 2), the transformation induced by a x-boost
gives, for the first component in the Ō frame

A0̄ = Λ0̄
0A

0 + Λ0̄
1A

1 + Λ0̄
2A

2 + Λ0̄
3A

3 = 5γ (1.94)

while the same transformation changes the first basis vectors as

~e0̄ = Λα0̄~eα = γ~e0 + γv~e1 (1.95)

All the other components and basis vectors can be derived in the same way.

19. The LT matrix Λᾱβ(v) is a transformation that depends on v, i.e. on the relative velocity between the
“upper index frame” Ō and the “lower index frame” O. Conversely, Λα

β̄
(−v) is the transformation between

the “upper index frame” O and the “lower index frame” Ō.
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Figure 1.9: Basis vectors.

20. If we apply successively a transformation with velocity v and a transformation with velocity −v, we are
back to the original frame. That is, from

~eα = Λβ̄α(v)~eβ̄ , ~eβ̄ = Λν
β̄
(−v)~eν (1.96)

we see that
~eα = Λβ̄α(v)~eβ̄ = Λβ̄α(v)Λν

β̄
(−v)~eν (1.97)

from which
Λβ̄α(v)Λν

β̄
(−v) = δνα (1.98)

i.e., as already mentioned, Λ(−v) is the inverse of Λ.

21. Using this property, one can easily obtain the inverse of the vector transformation (1.82) is

Aα = Λα
β̄
Aβ̄ (1.99)

22. Basis vectors must remain unitary when transformed. This implies that the LT matrix Λ must also be
unitary, i.e. its determinant is unity.

1.8 Four-velocity
1. As already said, every linear combination of vectors (in the same frame) is another vector in that frame,

so for instance
∆zα = c∆xα + b∆yα (1.100)

is a vector.

2. Let us the define the particle frame (or rest-frame, RF) in a point P. This is the frame Ō that is at rest
with a particle in a point (event) P. If the particle has constant velocity, the particle frame is always the
same. If the particle velocity changes in time, at every point one should associate a different particle
frame. This is called momentarily comoving rest-frame (MCRF).



CHAPTER 1. SPECIAL RELATIVITY 19

3. A very important vector is the four-velocity

Uα ≡ dxα

dτ
(1.101)

where τ is the proper time in the particle frame, dτ2 = −ds2. This vector is the tangent to a world line
in the particle frame and has length equal to one unity of time in that frame. In fact, in that frame at
rest with the particle, dx1 = dx2 = dx3 = 0 so that dxα → (dt, 0, 0, 0) and ds2 = −dt2, so

Uα → (1, 0, 0, 0) (1.102)

Therefore, in the particle frame,
~U = ~e0 (1.103)

4. The four-momentum is defined simply as
~p = m~U (1.104)

5. In the RF, then, ~p = m~e0̄ → (m, 0, 0, 0). In the O frame, we have

Uα = Λα
β̄
(~e0̄)β̄ (1.105)

where

Λα
β̄
→


γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1

 (1.106)

This gives 
γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1




1
0
0
0

 = γ


1
v
0
0

 (1.107)

6. For small velocities, obviously, we have for the space part, U→ (v, 0, 0) and p→ (mv, 0, 0).

7. In general, for small v,
p0 = mγ = m√

1− v2
≈ m+ 1

2mv
2 (1.108)

so we see that for a generic observer moving with small velocity −v with respect to the particle, the
0-component of the 4-momentum is a constant plus the kinetic energy. The constant is called rest energy
E0. If we put back the constant c, we get E0 = mc2.

8. The general expression for the 4-momentum is then

~p→ (E, p1, p2, p3) = (mγ,mvxγ,mvyγ,mvzγ) (1.109)

9. The frame in which the space part of the momentum vanishes, is the particle rest frame. If we have several
particles, we can define a center of mass (CM) rest frame, defined as that frame in which∑

~pi → (Etotal, 0, 0, 0) (1.110)

1.9 Operations with vectors
1. We need now to learn how to operate with vectors. In analogy with the standard scalar product, we define

the scalar product of 4-vectors as

~A2 = −(A0)2 + (A1)2 + (A2)2 + (A3)2 (1.111)

We call the result of such an operation a scalar.
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2. Since ~A is defined to be a quantity that transforms as ∆~x, and since the scalar product

∆s2 = (∆~x)2 (1.112)

is invariant, it follows that ( ~A)2 is invariant as well under a LT. A scalar is a quantity that is invariant
under a group of transformations.

3. We can immediately see that the 4-velocity of a time-like world line (i.e. world line such that all its time
interval are time-like)

~U · ~U = −1 (1.113)

From now on, all 4-velocities will always refer to particles moving along time-like trajectories.

4. Just as for ∆s2, we say that ( ~A)2 is null, space-like or timelike if it is 0, positive or negative.

5. We can form a scalar product also with two different vectors

~A · ~B = −A0B0 +A1B1 +A2B2 +A3B3 (1.114)

That this is also invariant, can be demonstrated in this way. Let us form the scalar product

( ~A+ ~B) · ( ~A+ ~B) = ( ~A)2 + ( ~B)2 + 2 ~A · ~B (1.115)

Now, the term on the lhs is invariant because is the scalar product of ~C = ~A+ ~B; the first two terms on
the rhs are also obviously invariant; therefore, the last term must be be invariant as well.

6. Two 4-vectors are called orthogonal if
~A · ~B = 0 (1.116)

Notice that in a pseudo-Euclidean space, orthogonality has nothing to do with angles of 900! Two vectors
along null lines are always orthogonal, even if they appear “parallel” on the t, x plane. In fact, a null
vector is orthogonal to itself.

7. We now introduce one of the most fundamental concept in SR and, even more, in GR. Let us write down
all the scalar products among the basis vectors

~e0 · ~e0 = −1 (1.117)
~e1 · ~e1 = ~e2 · ~e2 = ~e3 · ~e3 = 1 (1.118)

~e1 · ~e2 = 0 (1.119)

etc. That is

~eα · ~eβ = ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.120)

The matrix ηαβ is called Minkowski metric.

8. Using the Minkowski metric the space-time interval can be written as

∆s2 = (∆~x)2 = ηαβ∆xα∆xβ (1.121)

1.10 Four-acceleration
1. The vector d~x is clearly tangent to a world line. As we already mentioned, therefore the 4-velocity vector

~U is also tangent to the world line, with magnitude −1.
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2. Similarly, we can define the 4-acceleration

~a = d~U

dτ
(1.122)

Since ~U · ~U = −1, we have
d

dτ
(~U · ~U) = 2~U · d

~U

dτ
= 0 (1.123)

This shows that ~a is always orthogonal to ~U . In the MCRF, one has therefore

~a→ (0, a1, a2, a3) (1.124)

1.11 Energy and momentum
1. The scalar product of the momentum with itself is

~p · ~p = m2~U · ~U = −m2 (1.125)

so
− E2 + (p1)2 + (p2)2 + (p3)2 = −m2 (1.126)

and therefore
E2 = m2 + p2 (1.127)

Restoring c, this relation would be
E2 = m2c4 + p2c2 (1.128)

2. Consider now an observer Ō in arbitrary motion with respect to a particle. In the Ō frame, its own
velocity vector is ~Uobs = ~e0̄. Therefore, since ~pŌ → (Ē, p̄), we have

~p · ~Uobs = −Ē (1.129)

This expression gives therefore the energy of a particle with momentum ~p as seen by an observer with
4-velocity ~Uobs. This is an example of invariant expression: if we move to another frame ¯̄O, all elements
of ~p and ~U will change, but their scalar product will remain −Ē.

3. Notice that the energy an observer measures is not an invariant: even in classical physics, the kinetic
energy of a particle is zero in the particle’s rest frame, and positive in any other frame. What is invariant
is the product ~p · ~U . Every inertial observer will agree that the energy measured by an observer with
velocity v wrt to a particle with momentum ~p as seen by that observer, is −~p · ~U .

4. On null lines the proper time dτ vanishes so we cannot define a 4-velocity. Therefore we cannot define a
rest frame for a photon. We can of course still define vectors that are tangent to the null line (any vector
proportional to an interval ∆~x taken on the null line).

5. Therefore, we can define a momentum as a null vector tangent to the null line. In fact, using the definition

~p · ~p = −E2 + (p)2 = 0 (1.130)

we see that the 4-momentum of a photon is a vector with elements (E,p) such that

E2 = p2 (1.131)

This shows that null lines are the trajectories of particles of zero mass.
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1.12 Doppler shift
1. We know that the energy of a photon depends on its frequency as

E = hν (1.132)

where h is Planck’s constant.

2. Imagine now an observer Ō moving with velocity v along x emits a photon with energy Ē = hν̄. How will
this photon be seen by O?

3. We need to transform the photon momentum. In particular, its component 0 will transform as

Ē = Λ0̄
0E

0 + Λ0̄
1p

1 = γE0 − γvE0 (1.133)

since E = p1 (photon momentum is a null vector).

4. Then since E0 = hν and Ē = hν̄, we have

ν̄

ν
=
√

1− v
1 + v

(1.134)

i.e. ν̄ < ν: the frequency decreases, so the wavelength increases. This is then called redshift.

5. For small v, we obtain the classical Doppler shift

ν̄

ν
≈ 1− v (1.135)

1.13 Rindler coordinates
1. The time-like invariant hyperbola −t2+x2 = X2, with parameter X, represents a possible physical motion.

Obviously, since it is not a straight line, it is not a constant speed motion. One see that it is the motion
of a particle coming from x = +∞, initially with the speed of light, then reaching the closest point x = X
to the origin at t = 0, standing still for a moment, and then moving back to infinity, reaching again
asymptotically c.

2. This is actually the motion of a uniformly accelerated particle, with acceleration 1/X. One can build a
family of such hyperbolae with different X, all lying in the quadrant I, defined by x > 0, |t| < |x|. These
hyperbolae define a transformation of the Minkowski space called Rindler coordinates extending to this
quadrant, called Rindler wedge (see Fig. 1.10).

3. The proper distance is the spatial distance measured on the axis of simultaneity of the observers that
are instantaneously at rest with the hyperbolic motion, i.e. along the straight tilted lines in Fig. 1.10.
An important property of the Rindler hyperbolae is that the proper distance between any two Rindler
observers remains constant.

4. This means that if one wants to build a laboratory that remains rigid under acceleration, i.e. such that all
distances measured within the laboratory are constant, one must realize a (sector of) Rindler wedge, i.e.
different parts of the laboratory must move with different acceleration in order for the proper distances
not to change. For a 1-dimensional laboratory extended along x and moving towards +∞, this means the
trailing part must be more accelerated than the leading part.

5. The transformation from x, t in Minkowski coordinates to X,T in Rindler coordinates is

x = X cosh gT (1.136)
t = X sinh gT (1.137)

(y, z are unaffected) where g is a constant that we will identify later on as the acceleration. Then one
sees that lines of constant X correspond to Rindler hyperbolae −t2 + x2 = X2. Lines of constant T are
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straight tilted lines in the Rindler wedge. The transformation covers only the Rindler wedge, not the entire
Cartesian plane as the original coordinates. The Rindler wedge is an example of a geodesically incomplete
manifold (geodesics will be discussed later; for now, they are just time-like straight lines in Minkowski
space).

6. The 4-velocity Uµ is by definition a vector of norm −1 tangent to the hyperbola. Therefore dx/dt =
U1/U0 = x−1√x2 −X2 and −(U0)2 + (U1)2 = −1. From these two conditions, we see that

Uµ → { x
X
,

√
x2 −X2

X
, 0, 0} (1.138)

In order to obtain the acceleration, we need to differentiate Uµ wrt τ , but the expression above gives the
velocity as a function of x, not τ . However, we know that U1 = dx/dτ , so we have

τ =
ˆ

X√
x2 −X2

dx = XArcCoth x√
x2 −X2

(1.139)

and x = X cosh(τ/X) (putting τ = 0 when x = X), so we can replace x with τ and obtain

Uµ → {cosh(τ/X), sinh(τ/X), 0, 0} (1.140)

This is the 4-velocity of the MCRF. Notice that, replacing in τ the Rindler coordinates, we see that
τ = XgT . On a given hyperbola, in which X = const , we can choose g = 1/X so that τ = T . The
proper time of a particular Rindler observer, the one with with X = 1/g, is then made to coincide with
the coordinate time T for all Rindler observers.

7. The four-acceleration as measured in an inertial frame is then

aµ = dUµ

dτ
→ { 1

X
sinh τ

X
,

1
X

cosh τ

X
, 0, 0} (1.141)

and therefore
aµa

µ = 1
X2 (1.142)

so that the four-acceleration has norm 1/X. The points such that X = 0 (i.e. the null-lines t = ±x )
cannot be reached because they require an infinite acceleration.

8. Since Uµ → {γ, γv}, acceleration as measured by an IF can be written in general as

aµ = dUµ

dτ
= {γγ̇, γ2a + γγ̇v} (1.143)

= γ4{a · v,a + v× (v× a)} (1.144)

where a = dv/dt and a dot stands for d/dt. (We used the relations γ̇ = γ3v · a and the triple vector
product rule A× (B × C) = (A · C)B − (A ·B)C).

9. Since in an instantaneously comoving frame v = 0, it follows aµ = {0,a} (proper acceleration), and from
(1.142) we see then that the 3D proper acceleration is 1/X. So Rindler particles with X = const are
indeed particles of constant proper acceleration.

10. Rindler observers cannot detect any signal coming from the upper quadrant II, i.e. t > 0, |t| > |x|: this
is an example of a horizon. Similarly, observers in the bottom quadrant IV, i.e. t < 0, |t| > |x| will not
detect any signal from Rindler particles.

11. In Rindler coordinates, the Minkowski metric becomes

ds2 = −(gX)2dT 2 + dX2 + dY 2 + dZ2 (1.145)
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Figure 1.10: Rindler hyperbolae.



Chapter 2

Tensors

2.1 Metric tensor
1. We have seen that

~eα · ~eβ = ηαβ (2.1)

The quantity ηαβ we call metric tensor.

2. Decomposing two vectors into their components, we have

~A = Aα~eα, ~B = Bα~eα (2.2)

and therefore
~A · ~B = (AαBβ)(~eα · ~eβ) = AαBβηαβ (2.3)

(notice that we changed the second index to β to distinguish from the first α). Therefore the metric
performs the scalar product. One can see it as a quantity such that, given two vectors, produces a scalar.

3. More exactly, we say that ηαβ is a (0, 2) tensor.

2.2 General definition of tensors

1. A tensor of type
(

0
N

)
or (0, N), is a function of N vectors into the real numbers (i.e. it takes N vectors

and produces a real number), linear in each of its arguments.

2. An ordinary function f(t, x, y, z) is then a (0, 0) tensor.

3. Linearity means that if we have a tensor g( ~A, ~B) = ~A · ~B, then

(α ~A) · ~B = α( ~A · ~B) (2.4)
( ~A+ ~B) · ~C = ~A · ~C + ~B · ~C (2.5)

4. We will use the notation f( ~A, ~B) to express the action of the tensor on the vectors ~A, ~B. Eg, for the
metric, we have

g( ~A, ~B) := ~A · ~B (2.6)

5. Notice that we made no reference to components. This is then a frame-independent definition.

6. The components of a tensor in a given frame can be obtained by inserting the basis vectors of that frame.
For instance, for the metric,

g(~eα, ~eβ) = ~eα · ~eβ = ηαβ (2.7)

This extends to all tensors.

25
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7. Now we introduce the (0, 1) tensors. They are also called one-forms, or covariant vectors (the usual vectors
we introduced earlier are also called contravariant tensors or (1, 0) tensors).

8. A one-form is denoted as p̃( ~A): it takes a vector and gives a scalar (a real number).

9. Because of linearity,

s̃ = p̃+ q̃ (2.8)
r̃ = αp̃ (2.9)

are also one-forms. Therefore, one-forms form a vector space, called dual vector space. This vector space
is completely separated from the standard vector space. An operation like ~A+ p̃ makes no sense.

10. The components of a one-form in a given frame is given as usual through the basis vectors

pα := p̃(~eα) (2.10)

Components written with a lower index are components of a one-form; components with an upper index
are components of a vector.

11. Because of linearity, we can write

p̃( ~A) = p̃(Aα~eα) = Aαp̃(~eα) = Aαpα (2.11)

which is a scalar; this is called a contraction of ~A with p̃.

12. The contraction is just a ordinary sum

Aαpα = A0p0 +A1p1 +A2p2 +A3p3 (2.12)

Notice that there is no minus sign; that is, no need of a metric. The contraction is an entity that comes
before the introduction of a metric.

13. Let us see now how one-forms transform. We have

pβ̄ = p̃(~eβ̄) = p̃(Λα
β̄
~eα) = Λα

β̄
p̃(~eα) = Λα

β̄
pα (2.13)

i.e. a similar transformation as for the basis vectors, ~eβ̄ = Λα
β̄
~eα. So, one-forms transform like basis

vectors, i.e. in the opposite way (notice the position of barred and unbarred indexes) of vectors.

14. We have seen that Λα
β̄
is the LT from Ō to O, inverse of a transformation from O to Ō. This shows that

any contraction like
Aαpα = Aᾱpᾱ (2.14)

is automatically invariant under LT.

15. To recap: something that transforms like the basis vectors, is said to be co-variant (lower indexes);
something that transforms opposite, is called contra-variant (upper indexes).

16. Just like for vectors, we can now introduce the basis 1-forms, i.e. the basis of the dual vector space. Let
us denote them as ω̃α. We can then decompose a 1-form into components along the basis one-forms:

p̃ = pαω̃
α (2.15)

where ω̃α are four different 1-forms.

17. We can now write
p̃( ~A) = pαω̃

α( ~A) = pαω̃
α(Aβ~eβ) = pαA

βω̃α(~eβ) (2.16)

On the other hand, we know that
p̃( ~A) = pαA

α (2.17)
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and therefore
Aα = Aβω̃α(~eβ) (2.18)

from which we see that
δαβ = ω̃α(~eβ) (2.19)

This relation, finally, defines the components of the dual basis vectors in terms of the basis vectors. Then
one has finally in the same frame O of the basis vectors the components

ω̃0 →O (1, 0, 0, 0) (2.20)
ω̃1 →O (0, 1, 0, 0) (2.21)

etc.

18. The 1-form basis vectors transform as the vector components, i.e.

ω̃ᾱ = Λᾱβω̃β (2.22)

19. Now we show that the gradient of a function is the prototypical 1-form, just like ∆xα is the prototypical
vector. Let us consider a scalar field, ie. a function φ(t, x, y, z) defined in the entire space-time. Let us
also consider a particular world-line parametrized by its proper time τ , with tangent vector

~U → ( dt
dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ
) (2.23)

20. Consider now the variation of φ

dφ

dτ
= ∂φ

∂t

dt

dτ
+ ∂φ

∂x

dx

dτ
+ ∂φ

∂y

dy

dτ
+ ∂φ

∂z

dz

dτ
(2.24)

= ∂φ

∂xα
Uα ≡ (d̃φ)αUα (2.25)

We see then that dφ/dτ , ie the derivative of φ along a worldline, is a scalar that can be written as
the contraction between the gradient of φ, denoted as d̃φ, and the vector ~U . Therefore (d̃φ)α are the
components of a 1-form:

d̃φ→ (∂φ
∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) (2.26)

and
dφ

dτ
= d̃φ(~U) (2.27)

21. One can also directly check that d̃φ transforms as a 1-form. In fact,

∂φ

∂xᾱ
= ∂φ

∂xβ
∂xβ

∂xᾱ
= Λβᾱ

∂φ

∂xβ
(2.28)

(see eq. 1.69) so
(d̃φ)ᾱ = Λβᾱ(d̃φ)β (2.29)

22. For the derivatives, we introduce now a handy notation:

∂φ

∂x
:= φ,x (2.30)

∂φ

∂xα
:= φ,α (2.31)

Also,
xα,β = ∂xα

∂xβ
= δαβ (2.32)
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Notice that xα,β are the components of the 1-form d̃xα. This shows that

d̃xα = ω̃α (2.33)

For any function, we write the differential as

d̃f = ∂f

∂xα
d̃xα (2.34)

23. Metric is then a (0, 2) tensor. The component of the metric can be obtained by multiplication of two
vectors

ηαβ = ~eα · ~eβ (2.35)

Now however we define the metric as a (0, 2) tensor by introducing a new operation, called outer product
⊗, between other tensors, in particular the basis (0, 1) forms (i.e. 1-forms). Calling g the metric we can
write

g = gαβω̃
α ⊗ ω̃β = gαβ d̃x

α ⊗ d̃xβ (2.36)

The result of this operation is clearly a scalar: ds2. This last expression is indeed the space-time interval
ds2 written in a different way: as the linear combination of the basis d̃xα ⊗ d̃xβ of the (0, 2) tensor space,
with coefficients given by the components gαβ .

24. Again, the important point is that this definition does not refer to components: it’s valid for every frame.
In general, a new tensor can always be obtained as a similar product

f = p̃⊗ q̃ (2.37)

This expression means: the result of the operation f( ~A, ~B) is a number given by

p̃( ~A) · q̃( ~B) (2.38)

where here the · is an ordinary multiplication. In components, this is

pαA
αqβB

β (2.39)

25. The order is important: this is different from

p̃( ~B) · q̃( ~A) (2.40)

That is, the operation ⊗ is not commutative. Indeed, pαAαqβBβ 6= pαB
αqβA

β .

26. Although given p̃, q̃ we can always construct a (0, 2) tensor, not every (0, 2) tensor can be written as a
product of two 1-forms, just as not every matrix can be written as the product of two vectors. However,
as we show soon, every (0, 2) tensor can be written as the sum of outer products.

27. The outer product can be extended to any number of 1-forms

f = p̃⊗ q̃ ⊗ t̃ (2.41)

gives
f( ~A, ~B, ~C) = p̃( ~A) · q̃( ~B) · t̃(~C) (2.42)

28. The components of a general (0, 2) tensor in a particular frame are as usual obtained by inserting the basis
vectors:

fαβ = f(~eα, ~eβ) (2.43)

so that in general, again using the linearity of the tensor in its arguments, and the fact that ~A = Aα~eα,
one has

f( ~A, ~B) = AαBβfαβ (2.44)
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29. To find the basis for (0, 2) tensors, we proceed as follows. We want to find the (0, 2) tensors ω̃αβ such that
every tensor can be decomposed as

f = fαβω̃
αβ (2.45)

Then we have
fµν = f(~eµ, ~eν) = fαβω̃

αβ(~eµ, ~eν) (2.46)

So, comparing with the expression
fµν = δαµδ

β
ν fαβ (2.47)

we obtain
ω̃αβ(~eµ, ~eν) = δαµδ

β
ν (2.48)

Finally, since δαµ = ω̃α(~eµ), we have the set of basis (0, 2) tensor:

ω̃αβ = ω̃α ⊗ ω̃β (2.49)

Every (0, 2) tensor can then be explicitly decomposed as

f = fαβω̃
α ⊗ ω̃β (2.50)

30. We say that a tensor is symmetric if
f( ~A, ~B) = f( ~B, ~A) (2.51)

from which it derives that the components are also symmetric, fαβ = fβα. That is, the matrices of the
components are equal to their transpose.

31. Given any (0, 2) tensor we can define a new symmetric tensor as

h(S)( ~A, ~B) = 1
2 [h( ~A, ~B) + h( ~B, ~A)] (2.52)

or, componentwise,
h(S)αβ = 1

2(hαβ + hβα) ≡ h(αβ) (2.53)

32. Conversely, we say a tensor is antisymmetric if

f( ~A, ~B) = −f( ~B, ~A) (2.54)

i.e. fαβ = −fβα, and we can obtain an antisymmetrization as follows,

h(A)( ~A, ~B) = 1
2 [h( ~A, ~B)− h( ~B, ~A)] (2.55)

or, componentwise,
h(A)αβ = 1

2(hαβ − hβα) ≡ h[αβ] (2.56)

33. Every tensor can be decomposed into a symmetric and an antisymmetric part

hαβ = h(αβ) + h[αβ] (2.57)

The metric tensor is symmetric since

ηαβ = ~eα · ~eβ = ~eβ · ~eα (2.58)
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2.3 Relation between vectors and 1-forms
1. We have seen that

~A · ~B = ηαβA
αBβ (2.59)

Now we can define an entity with components

Vβ = ηαβA
α (2.60)

that acts just like a 1-form: it takes a vector and produces a scalar which is obviously linear in the vector.
In fact, we have just defined a 1-form, which we denote as

g( ~A, ) ≡ Ṽ ( ) (2.61)

where the empty slot reminds us that this 1-form has an argument given by a vector.

2. So we can write
Ṽ ( ~B) = g( ~A, ~B) = ~A · ~B (2.62)

Because of symmetry, we could have also defined the 1-form as g( , ~B).

3. We know already that ηαβAα are the components of g( ~A, ). We could have obtained the same result as
follows:

Vβ = Ṽ (~eβ) = g( ~A,~eβ) = g(Aα~eα, ~eβ) = Aαg(~eα, ~eβ) (2.63)
= ηαβA

α (2.64)

The expression
Aβ = ηαβA

α (2.65)
in which we use the same symbol for the components of the 1-form Aβ and of the vector Aα, is often
described as “the metric lowers the indexes”.

4. This shows the importance of the metric: it is that tensor (0, 2) that uniquely maps vectors into 1-forms.
In fact, one could have skipped the entire definition of 1-forms and immediately introduce just vectors
and the metric. This is indeed the approach of many textbooks to GR, especially the old ones. However,
it is important from a mathematical point of view to realize that vectors and 1-forms are independent of
frames and of the existence of a special tensor, the metric, that arises when we define distances over a
manifold.

5. So we have
V0 = −V 0, V1 = V 1, V2 = V 2, V3 = V 3 (2.66)

If ~V → (a, b, c, d) in a frame, then Ṽ → (−a, b, c, d) in the same frame.

6. One could have started instead by defining first 1-forms and then vectors. Then one would have written

V α = ηαβVβ (2.67)

where the (2, 0) tensor ηαβ is just the inverse of ηαβ (and has identical components in a Cartesian system
of coordinates). So we have

ηαβη
βµ = δµα (2.68)

7. In an Euclidian space, the metric is δij , so the components of 1-forms and vectors are identical. Because
of this, normally the definition of 1-forms etc are less important.

8. Using the metric we can now easily transform 1-forms into vectors and viceversa. For instance the 1-form
gradient

d̃φ→ (∂φ
∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) (2.69)

is mapped into a vector gradient
~dφ→ (−∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) (2.70)
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9. Just like vectors, we define the scalar product of 1-forms. The definition is such the scalar product of
1-forms is the same as the scalar product of the corresponding vector:

p̃2 = ~p2 = ηαβp
αpβ (2.71)

This can be written as

p̃2 = ηαβ(ηαµpµ)(ηβνpν) = ηαµpµpα (2.72)
= −(p0)2 + (p1)2 + (p2)2 + (p3)2 (2.73)

which is then invariant. Similarly, we say that 1-forms are null, time-like or space-like.

10. Obviously we have also scalar product among different 1-forms

p̃ · q̃ (2.74)

which is also an invariant under LT.

11. Vectors can be understood now as (1, 0) tensors, that take 1-forms and generate scalars via a contraction.

12. One introduces then the general (M,N) tensor, a linear function of M 1-forms and N vectors into the
real numbers.

13. The components, as usual, are given when the M 1-forms and the N vectors are the respective basis
vectors.

14. E.g., if R is a (1, 1) tensor, its components are

R(ω̃α, ~eβ) = Rαβ (2.75)

A LT gives the new components
Rᾱ
β̄

= R(ω̃ᾱ, ~eβ̄) = ΛᾱµΛν
β̄
Rµν (2.76)

15. We have seen that the metric raises and lowers the indexes. This is true for every tensor:

Tαβγ = ηβµT
αµ
γ (2.77)

etc. That is, in this case, the metric transformed a (1, 2) tensor into a (2, 1) tensor. The order of the index
is in general important; Tαβγ 6= Tαβγ .

16. The transformation rules are a direct generalization of what we have already seen. For instance,

T ᾱ
β̄γ̄

= ΛᾱµΛν
β̄
Λτγ̄Tµντ (2.78)

17. The basis are obtained, as for the (0, 2) tensor, as outer products of N basis vectors and M basis 1-forms:

T = Tαβγ~eα ⊗ ω̃β ⊗ ω̃γ (2.79)

2.4 Differentiation of tensors
1. We have seen that if f is a function, or (0, 0) tensor (i.e. a scalar), its gradient d̃f is a (0, 1) tensor

(1-form). That is, differentiation produces a tensor of higher (covariant) order. We now apply this rule to
other tensors.

2. Imagine we have a (1, 1) tensor
T = Tαβ~eα ⊗ ω̃β (2.80)

If we differentiate it we obtain another (1, 1) tensor

dT

dτ
=
dTαβ
dτ

~eα ⊗ ω̃β (2.81)

Notice that we used the crucial information that in SR the basis do not depend on position! This will
change in GR.
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3. Now we write
dTαβ
dτ

= Tαβ,γU
γ (2.82)

and so

dT

dτ
=

dTαβ
dτ

~eα ⊗ ω̃β (2.83)

= (Tαβ,γUγ)~eα ⊗ ω̃β (2.84)

Now we can define a (1, 2) tensor of components Tαβ,γ , called gradient of T

∇T = Tαβ,γ~eα ⊗ ω̃β ⊗ ω̃γ (2.85)

This is indeed a (1, 2) tensor since when it takes as last argument a vector ~U produces a (1, 1) tensor:

dT

dτ
= ∇T (~U) (2.86)

since

∇T (~U) = Tαβ,γ~eα ⊗ ω̃β ⊗ ω̃γ(~U) = Tαβ,γ~eα ⊗ ω̃β ⊗ ω̃γ(Uτ~eτ ) (2.87)
= Tαβ,γU

τδγτ~eα ⊗ ω̃β = Tαβ,γU
γ~eα ⊗ ω̃β (2.88)

This tensor, obtained by contracting the gradient ∇T (a (1, 2) tensor) with the vector ~U , equals indeed
the (1, 1) tensor (2.84). In components, all this simply shows that the derivative of Tαβ can be written in
terms of the component of higher-rank tensor,

dTαβ
dτ

= Tαβ,γU
γ (2.89)

4. As a shorthand, we write
∇γTαβ = Tαβ,γ (2.90)



Chapter 3

The energy-momentum tensor

3.1 Density
1. A field is a quantity that is continuously defined in every point of the space. For instance, the density of

a substance can be defined as a function ρ(x, y, z). If it varies in time, then we write ρ(t, x, y, z).

2. A substance is composed of molecules, atoms or particles. We can approximate it as a field if we average
over a small element of volume.

3. A fluid is a substance that has small anti-slipping forces: that is, the little volume elements are free to
move with respect to one another. A rock therefore is not a fluid. A perfect fluid has zero anti-slipping
forces.

4. We call dust a collection of particles all at rest in some Lorentz frame (a MCRF).

5. We denote with n the number density (number of particle inside an element of volume divided by the
volume). For dust, n can depend on space but, for the MCRF, not on time.

6. How does the density change in another frame? If in O an element has volume

VO = ∆x∆y∆z (3.1)

in Ō (a frame x-boosted with velocity v), the volume will be contracted along x

VŌ = ∆x
γ

∆y∆z = VO
γ

(3.2)

so that, since the number of particles in the volume element remains evidently the same, the density will
be

nŌ = N

VŌ
= nγ (3.3)

3.2 Flux across a surface
1. The flux across a surface is the number of particles crossing a unit area in a unit time.

2. In the rest frame there is zero velocity, so zero flux.

3. In a frame moving with velocity −v, or if the fluid is moving with velocity v with respect to a frame Ō,
the total number of particles crossing an area ∆A in ∆t̄ is (see Fig. 3.1)

∆N = nγv∆t̄∆A (3.4)

so the flux fx along x is
fx = ∆N

∆A∆t̄
= nγv (3.5)

33
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That is, the flux is the density times the velocity. Notice that even if the fluid is moving with a velocity ~v
not directed along x, only the x component vx counts for as concerns the flux along x. So the expression
above can be written as

f = nγv (3.6)

4. We define now a number-flux 4-vector as
~N = n~U (3.7)

where as we know ~U →Ō (γ, γv). So we see that

~N →Ō (nγ, nγv) (3.8)

This vector unifies number density and flux: these two quantities were a scalar and a 3D vector in
Newtonian mechanics, but are now components of the same 4-vector. We can think of the number density
as the flux of particles through a space-like surface, i.e. through a surface orthogonal to the time direction.
So just like the flux is the number of particles in the ’volume’ ∆A∆t, the number density is the number
of particle in the volume ∆x∆y∆z.

5. Then we have
~N · ~N = −n2 (3.9)

as one can explicitly confirm by taking Eq. (3.8). Since this is an invariant equation, this defines the rest
density n in the fluid rest frame as an invariant quantity (i.e., a scalar).

6. We can now generalize this. A 3D surface is defined as

φ(t, x, y, z) = const (3.10)

The normal to the surface is the gradient 1-form

d̃φ (3.11)

(let us remember that its dual vector, ~dφ, is orthogonal to the surface). The unit normal is then

ñ = d̃φ

|d̃φ|
(3.12)

where |d̃φ| = |ηαβφ,αφ,β |1/2. So for instance the unit normal across x is

d̃x→Ō (0, 1, 0, 0) (3.13)

if Ō is the observer at rest with the fluid. Now (all in the Ō frame)

d̃x( ~N) = 〈d̃x, ~N〉 = N ᾱ(d̃x)ᾱ = Nx (3.14)

(where we introduce the alternative notation 〈 , 〉 for the scalar product) i.e. the flux across a x-surface
(we call a x-surface, a surface orthogonal to x). So in general we see that the flux across any surface
φ = const with normal ñ is given by

〈ñ, ~N〉 = nαNα (3.15)

3.3 Dust energy-momentum tensor
1. In order to describe fully a system of particles, we should consider also energy and momentum, not just

density and velocity.

2. For dust, the particles are supposed not to interact with each other, so their energy is just the sum of the
rest energy of each particle. Therefore the energy density is

ρ = nm (3.16)
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Figure 3.1: Flux across a surface A. Particles inside the box (for instance, particles 1,2,3) will cross the surface
in ∆t, particles outside (e.g., 4) will not.

3. In a frame with velocity v wrt the MCRF, we have for each particle a number density nγ and an energy
mγ. Therefore the energy density in this frame will be

ρŌ = (nγ)(mγ) = nmγ2 (3.17)

The fact that there are two factors of γ, and therefore two factors of ΛŌO, makes us think that this quantity
is not part of a vector but of a tensor, which transforms as

T ᾱβ̄ = ΛᾱµΛβ̄νTµν (3.18)

4. We proceed now then to identify and construct such a energy (or stress)-momentum tensor T with com-
ponents Tαβ . We define

Tαβ = flux of α−momentum across a surface of constant xβ (3.19)

(α-momentum means the component α of momentum, i.e. pα, while sometimes we refer to a xβ-surface
or β-surface to mean a surface orthogonal to the xβ direction).

5. So for instance T 00 is the flux of the 0-component of momentum across a surface at t = const. That is,
it’s the energy density.

6. Similarly, T 0i is the flux of p0 (energy) across a xi-surface. T i0 is the flux of pi across t = const, that is,
the density of momentum (momentum divided volume).

7. Finally, T ij is the flux of i-momentum across a xj-surface.

8. Let’s evaluate T in the dust MCRF. As we have seen already, (T 00)MCRF = ρ, the number density. In
the MCRF frame, there is no flux of particles in any direction, so

T ij = T i0 = T 0i = 0 (3.20)

(this equation is badly formed: it just means that all components vanish).
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9. Now one can easily verify that the tensor
T = ~p⊗ ~N (3.21)

has exactly the same component as the dust energy-momentum tensor, since

~p → (E, 0, 0, 0) (3.22)
~N = n~U → (n, 0, 0, 0) (3.23)

Componentwise, we can write
Tαβ = pαNβ (3.24)

Since this is a well formed covariant equation (that is, with tensors of the same type on both sides), if it is
valid in one frame, it remains valid in all frames. But we have shown that it is indeed valid in the MCRF
frame so we have found a general, covariant expression for the energy-momentum tensor.

10. We can also write
T = ~p⊗ ~N = mn~U ⊗ ~U = ρ~U ⊗ ~U (3.25)

or
Tαβ = ρUαUβ (3.26)

11. So in a frame Ō moving with velocity v one has

T 0̄0̄ = ργ2, T ī0̄ = ρviγ2 (3.27)
T 0̄ī = ρviγ2, T īj̄ = ρvivjγ2 (3.28)

Notice that Tαβ = T βα, i.e. it is a symmetric tensor. Although we have shown this only in a particular
case, this result is actually true for every energy-momentum tensor.

12. We have already seen in Eq. (3.9) that n is a scalar, and therefore also ρ = nm is. This can be seen now
in another way by simply forming the scalar

TαβUαUβ = ρ (3.29)

This is then the invariant general expression for the energy density in a frame with 4-velocity Uα.

3.4 General fluids
1. To describe a general fluid, we need to 1) include the random motion of particles, i.e their kinetic energy,

and b) include their interaction, i.e. their potential energy.

2. Since now the fluid is now in arbitrary motion, there is no single MCRF such that the fluid is at rest.
However, we can still define a MCRF at rest with every single infinitesimal element of fluid. So from
now on we assume that all the scalar quantities associated with a fluid element (number density, energy
density, temperature etc), are defined in the associated MCRF.

3. Focusing now on a single element, we can say again that T 00 is the energy density, except now this ρ is
meant to be also time-dependent quantity (it was in general space-dependent also for dust). Also, again
T 0i and T i0 vanish, since by definition the element is at rest with the MCRF, so there is no net momentum
(each particle has momentum, but the total one must be zero) and no net change of energy. This however
is only true if particles do not exchange energy, e.g. through heat conduction, i.e. without the particle
themselves moving on average.

4. The remaining part, T ij , is also called the stress tensor. As we have seen, it is defined as

flux = ∆momentum
∆A∆t = F

∆A (3.30)

or more in general, T ij is given by
F i

∆Aj = force along i
Area ⊥ to j (3.31)

so T ij gives the forces acting on adjacent fluid elements.
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5. Now T ij for i 6= j represent forces directed parallel to the side of the element. If T ij were different from
T ji,every fluid element would be subject to a torque and would start rotating on itself. Since this certainly
does not happen, fluids must have T ij = T ji. In fact one can show in very general terms that Tαβ must be
a symmetric tensor. The full demonstration is however very complex. All the energy-momentum tensor
(EMT) that are ever encountered in physical applications are symmetric.

6. We call the forces directed parallel to the sides of fluid elements, viscosity. In a perfect fluid, one assumes
no heat conduction nor viscosity. Then the general EMT for a perfect fluid has T 0i = T i0 = 0 (in the
MCRF) and, moreover, T ij is a diagonal matrix (in all frames).

7. We know from thermodynamics that the pressure in a fluid is isotropic, that is, in a small fluid element,

F

∆A = p (3.32)

however one chooses the small area ∆A. Therefore the stress tensor is

T ij = pδij (3.33)

8. Finally, we can say that Tαβ for an element of perfect fluid in the MCRF is

Tαβ =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (3.34)

This can be written in components as

Tαβ = (ρ+ p)UαUβ + pηαβ (3.35)

and in a component-free way as
T = (ρ+ p)~U ⊗ ~U + pg−1 (3.36)

Dust is obtained for p = 0, therefore dust is called also pressureless perfect fluid. Notice that once again

TαβUαUβ = ρ (3.37)

while
Tαβηαβ = −ρ+ 3p (3.38)

so
p = 1

3
(
Tαβηαβ + TαβUαUβ

)
= 1

3T
αβ(ηαβ + UαUβ) (3.39)

This shows that ρ, p are scalar quantities.

3.5 Conservation laws
1. The flux vector ~N is a conserved quantity. This means that

Nα
,α = (nUα),α = 0 (3.40)

2. In fact, let us consider particles moving only along x in or out of a volume element R across an area A as
in Fig. (3.2). One sees that

A(Nx(0)−Nx(x))∆t = −A∆t∆Nx (3.41)

is the number of particles flowing in R, minus those flowing out, in the time interval ∆t = t2 − t1. But
this number is also equal to the change in density in the same time interval, so

V (N0(t2)−N0(t1)) = V∆N0 (3.42)



CHAPTER 3. THE ENERGY-MOMENTUM TENSOR 38

Therefore
∆N0 = −A

V
∆t∆Nx (3.43)

from which
∆N0

∆t = −∆Nx

∆x (3.44)

If we apply this to all three directions, we obtain

∆N0

∆t = −∆Nx

∆x −
∆Ny

∆y −
∆Nz

∆z (3.45)

which in the limit of small interval, is exactly Eq. (3.40).

3. Now we show that also Tµν is a conserved quantity when we consider its SR limit. Let us assume the
perfect fluid form

Tαβ = (ρ+ p)UαUβ + pηαβ (3.46)
Then we have

Tαβ,β = [(ρ+ p)UαUβ ],β + p,βη
αβ (3.47)

= [(ρ+ p)
n

UαnUβ ],β + p,βη
αβ (3.48)

= (ρ+ p)
n

Uα(nUβ),β + [(ρ+ p)
n

Uα],βnUβ + p,βη
αβ (3.49)

= [(ρ+ p)
n

Uα],βnUβ + p,βη
αβ (3.50)

(where we used nUβ,β = 0). Then we have, for α = i

T iβ,β = [ (ρ+p)
n ],βnU iUβ+ (ρ+ p)U i,βUβ + p,βη

iβ (3.51)

The first term on the rhs vanishes because in the RF, U i = 0 (but U i,β 6=0 since the RF is defined assuming
the velocity is the same as the volume element, but not the acceleration) and finally we obtain the SR
version of the Euler equation

(ρ+ p)ai + p,i = 0 (3.52)
where

ai ≡ U i,βUβ (3.53)

4. The acceleration for small velocities (dτ ≈ dt) can be written as

ai = U i,0U
0 + U i,jU

j = v̇i + (vi,j)vj (3.54)

or in vector form as
a = v̇ + (v ·∇)v ≡ dv

dt
(3.55)

where clearly
∇ = ( ∂

∂x
,
∂

∂y
,
∂

∂z
) (3.56)

and
dv

dt
= ∂v

∂t
+ ∂v

∂x

dx

dt
+ ∂v

∂y

dy

dt
+ ∂v

∂z

dz

dt
(3.57)

5. We have got then a SR version of the Euler equation: the acceleration acting on an element of fluid is
equal to minus the gradient of the pressure

(ρ+ p)a = −∇p (3.58)

The term p on the lhs is due to SR effects and in fact it is negligible for non-relativistic particles, for which
the kinetic energy, and therefore the pressure, is much smaller than the rest energy. In some cases, e.g.
stars with high-density and high-pressure cores, as neutron stars, the p terms is very important.
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Figure 3.2: Conservation of flux: the number of particles inside the box changes when particles enter or leave
it.

6. Multiplying by Uα and summing over α we obtain instead

UαT
αβ
,β = Uα[(ρ+ p)UαUβ ],β + p,βU

β (3.59)

= Uα[ (ρ+ p)
n

UαnUβ ],β + p,βU
β (3.60)

= − (ρ+ p)
n

(nUβ),β + Uα[ (ρ+ p)
n

Uα],βnUβ + p,βU
β (3.61)

= Uα[ (ρ+ p)
n

Uα],βnUβ + p,βU
β (3.62)

= −[ (ρ+ p)
n

],βnUβ + Uα(ρ+ p)Uα,βUβ + p,βU
β (3.63)

= −(ρ,0 + p,0)U0 + [(ρ+ p)n,0
n2 ]nU0 + p,0U

0 (3.64)

= [−ρ,0 + (ρ+ p)n,0
n

]U0 (3.65)

(we used (UαUα),β = 0, from which UαUα,β = 0) which gives the energy conservation equation

dρ

dτ
= (ρ+ p)

n

dn

dτ
(3.66)

which embodies the conservation of energy for perfect fluids: the increase of ρ is proportional to the
increase of particle density dn/dτ . For small velocities dτ ≈ dt and p� ρ, so finally

dρ

dt
= ρ

n

dn

dt
= m

dn

dt
(3.67)
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3.6 Gauss’ theorem
1. We need now to recall an important mathematical result, Gauss’ theorem. In 4D, it says that

ˆ
V

V α,αd
4x =

˛
V αnαd

3s (3.68)

where the second integral runs over the surface of the volume V of the first integral, and ~n is the unit
vector orthogonal to the surface, outward pointing (it is not the number density!). This is essentially a
generalization of the standard 1D integral

ˆ
df

dx
dx = f |ab (3.69)

where a, b are the boundaries (“surface”) of the domain of integration.

2. The operation
V α,α (3.70)

is called divergence of V , or div(V ), in analogy to the 3D case.

3. Applying it to a conserved quantity like ~N , we see that

0 =
ˆ
V

Nα
,αd

4x =
˛
Nαnαd

3s (3.71)

and therefore ˛
N0n0d

3s = −
˛
N inid

3s (3.72)

This is the integral form of the conservation equation. It expresses once again the intuitive property that
the number of particles inside a surface, N0, changes by a quantity that is minus the total flux N i leaving
that surface.



Chapter 4

Curved spaces

4.1 General coordinate transformations
1. Let us consider a general coordinate transformation (GCT) in the x, y plane:

ξ = ξ(x, y) (4.1)
η = η(x, y) (4.2)

from which the variation

∆ξ = ∂ξ

∂x
∆x+ ∂ξ

∂y
∆y (4.3)

∆η = ∂η

∂x
∆x+ ∂η

∂y
∆y (4.4)

or (
∆ξ
∆η

)
= J

(
∆x
∆y

)
(4.5)

where J is the Jacobian matrix
J =

(
ξ,x ξ,y
η,x η,y

)
(4.6)

2. This transformation is a “good one” only when distinct points in the x, y plane are mapped into distinct
points in the ξ, η plane, and same points into same points. That is, when ∆x = ∆y = 0 then we wish that
also ∆ξ = ∆η = 0. From linear algebra we know that the general condition for this to happen is that the
Jacobian matrix is non singular, i.e. that

det J 6= 0 (4.7)

3. In component notation, we can write

∆ξi = Jij∆xj (4.8)
∆xi = (J−1)ij∆ξj (4.9)

where ξ = {ξ, η} and x = {x, y} and ξi, xi are their components.

4. Let us define then the matrix of transformations (not necessarily a Lorentz transformation, now the
transformation will in general depend on space and time!)

∂xᾱ

∂xβ
= Λᾱβ = J (4.10)

Now we can define again vectors as those objects that transform according to the law

V ᾱ = ΛᾱβV β (4.11)

(we are still in 2D so for now α, β = 1, 2).

41
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5. Note that
∂xᾱ

∂xβ
∂xβ

∂xγ′ = δᾱγ′ (4.12)

That is, if

J → {∂x
ᾱ

∂xβ
} (4.13)

then
J−1 → {∂x

β

∂xᾱ
} (4.14)

But note that it is in general not true that exchanging numerator and denominator in a partial derivative
one has the inverse,

∂f

∂x
6=
(
∂x

∂f

)−1
(4.15)

6. More explicitly, (
ξ,x ξ,y
η,x η,y

)(
x,ξ x,η
y,ξ y,η

)
=
(

1 0
0 1

)
(4.16)

where we used the fact that
∂ξ

∂x

∂x

∂η
+ ∂ξ

∂y

∂y

∂η
= ∂ξ

∂η
= 0 (4.17)

since ξ, η are the two independent coordinates (and similarly for ∂η/∂ξ = 0).

7. We can define vectors also starting from 1-forms. That is, let us take a generic scalar function (or field)
φ(ξ, η) and take its gradient d̃φ, of components

d̃φ→ (∂φ
∂ξ
,
∂φ

∂η
) (4.18)

The transformation rule for d̃φ can be obtained immediately as a consequence of the chain rule for partial
derivatives

∂φ

∂ξ
= ∂φ

∂x

∂x

∂ξ
+ ∂φ

∂y

∂y

∂η
(4.19)

and similarly for φ,η. That is, we have the usual co-variant transformation law

φ,ᾱ = Λβᾱφ,β (4.20)

where
Λβᾱ = ∂xβ

∂ξᾱ
(4.21)

8. The entire set of relation and transformation laws we have seen before is then again valid now. Since
dφ/dτ is a scalar, and d̃φ is a 1-form, the 4-velocity U → {dx

α

dτ } must be a vector that transforms in the
opposite way as 1-forms.

9. This shows that one can define 1-forms, vectors, tensors etc under a general coordinate transformation,
using exactly the same rules and notation that we have already employed for SR.

4.2 Tangent manifold
1. A curve is a mapping of an interval of a real line into a path in the space-time.

2. Given a parameter s in an interval (a, b) along the path that identifies uniquely every point (eg, the proper
time, or any monotonous function of it), a curve in 2D can be defined as

ξ = f(s), η = g(s) (4.22)
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3. If we change to a new parameter s′, we have to think of the resulting curve as a new curve, even if the
path is the same.

4. Now, for every scalar field φ we can differentiate and obtain
dφ

ds
= ∂φ

∂ξ

dξ

ds
+ ∂φ

∂η

dη

ds
= 〈d̃φ, ~V 〉 (4.23)

where
~V → (dξ

ds
,
dη

ds
) (4.24)

is the tangent vector to the curve. As one can see, a path has a unique tangent, but a curve will have
infinite tangents, depending on the parameter s.

5. A vector can always be defined directly in terms of tangent to curves. I.e., a vector can be defined as that
function that gives dφ

ds when it takes d̃φ as argument. The vector space defined as the collection of all the
tangent vectors in a point is called the tangent manifold.

4.3 Polar coordinates
1. As a particular example of general coordinate transformations, we take now the case of polar coordinates
r, θ

r = (x2 + y2)1/2 (4.25)

θ = arctan y
x

(4.26)

and

x = r cos θ (4.27)
y = r sin θ (4.28)

By differentiation,

∆r = cos θ∆x+ sin θ∆y (4.29)

∆θ = −1
r

sin θ∆x+ 1
r

cos θ∆y (4.30)

which, compared to the chain differential rule for a generic function f(x, y)

df = ∂f

∂x
dx+ ∂f

∂y
dy

shows that
∂r

∂x
= cos θ, ∂r

∂y
= sin θ (4.31)

etc.

2. If we say that the barred frame is (r, θ) and the unbarred one is (x, y), the transformation matrix is now

Λᾱβ = ∂xᾱ

∂xβ
=
(

cos θ sin θ
− 1
r sin θ 1

r cos θ

)
(4.32)

and its inverse by

Λα
β̄

= ∂xα

∂xβ̄
=
(

cos θ −r sin θ
sin θ r cos θ

)
(4.33)

Notice that, contrary to the LT, a general transformation need not be symmetric. Clearly

ΛᾱβΛβγ̄ = δᾱγ̄ (4.34)

Let us stress once again that
∂x

∂r
6=
(
∂r

∂x

)−1
(4.35)
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3. With this metric, we can apply all the rules we learned previously. For instance, the basis vectors transform
as

~eᾱ = Λβᾱ~eβ (4.36)

This means that the basis vectors in the r, θ frame are (with new, but obvious notation for the indexes)

~er = Λxr~ex + Λyr~ey = cos θ~ex + sin θ~ey (4.37)
~eθ = Λxθ~ex + Λyθ~ey = −r sin θ~ex + r cos θ~ey (4.38)

Since we know the basis vectors of the original frame, ~ex → (1, 0), ~ey → (0, 1), we obtain immediately that
the basis vectors of the new frame (as seen in the old frame) are

~er → (cos θ, sin θ) (4.39)
~eθ → (−r sin θ, r cos θ) (4.40)

One can easily convince themselves that these two vectors, represented in the (x, y) plane, are indeed
pointing one along the radius and the other tangent to the circumference, and orthogonal to each other,
see Fig. (4.1).

4. Similarly, an observer using the r, θ frame will define basis vectors ~er → (1, 0) and ~eθ → (0, 1) and will use
the inverse transformation to evaluate the old x, y basis in terms of the new frame basis

~ex = Λrx~er + Λθx~eθ = cos θ~er −
1
r

sin θ~eθ (4.41)

~ey = sin θ~er + 1
r

cos θ~eθ (4.42)

These transformations express the basis of the old frame as a linear combination of the basis of the new
frame

5. Similarly, the basis 1-forms of the original (x, y) frame are d̃x, d̃y, and those of the new frame will be

d̃θ = ∂θ

∂x
d̃x+ ∂θ

∂y
d̃y = −1

r
sin θd̃x+ 1

r
cos θd̃y (4.43)

d̃r = cos θd̃x+ sin θd̃y (4.44)

6. One important point to remark is that now the basis vectors/1-forms in the new frame depend on the
position, contrary to the old frame; e.g.

|~eθ|2 = r2 (4.45)

7. The metric tensor in the old x, y frame has components

g(~eα, ~eβ) = ~eα · ~eβ = δαβ (4.46)

In the new frame, the components will be (barred symbols run over r, θ)

g(~eᾱ, ~eβ̄) =
(

1 0
0 r2

)
(4.47)

8. A small interval vector can be expanded into the new frame basis vectors as

~d` = dr~er + dθ~eθ (4.48)

The length of this vector, i.e. the interval ds, is then

~d` · ~d` = ds2 = |dr~er + dθ~eθ|2 = dr2 + r2dθ2 + 0× (2drdθ) (4.49)

where we can identify the various entries of the metric tensor g(~eᾱ, ~eβ̄): we have in fact grr = 1, gθθ = r2,
grθ = 0.
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Figure 4.1: Basis in polar coordinates.

9. The metric inverse, whose components are denoted as gµν , is clearly

g−1 →
(

1 0
0 r−2

)
(4.50)

10. The metric tensor is still the quantity that maps vectors into 1-forms, or, in other words, raises and lowers
the indexes. Now however the difference is not just a sign change.

11. For instance, if d̃φ→ (φ,r, φ,θ) is the gradient of a function, the component of the dual 1-form are obtained
by

(~dφ)α = gαβφ,β (4.51)

and are therefore (φ,r, r−2φ,θ).

4.4 Derivatives of basis vectors
1. The basis vector in the Cartesian frame are constant, i.e. the same at every point,

∂~ex,y
∂x

= 0 (4.52)

and therefore also
∂~ex,y
∂r

= 0 (4.53)

and the same for derivative wrt y, θ. The basis vectors in the Polar frame are not:

∂~er
∂θ

= ∂

∂θ
(cos θ~ex + sin θ~ey) (4.54)

and similarly for ∂~er
∂r ,

∂~eθ
∂r ,

∂~eθ
∂θ .

2. However, if we evaluate the x, y basis in terms of the r, θ basis using the components that appear in Eq.
(4.42) we obtain that ~ex does depend on r, θ, in contradiction with something we know is certainly true,
namely Eq. (4.53)!
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3. This teaches us that the derivative of a vector is not in general given by the derivative of its components,
as we have seen in SR (see Sec. 2.4). So this is how we should proceed now:

∂~er
∂r

= cos θ∂~ex
∂r

+ sin θ∂~ey
∂r

= 0 (4.55)

∂~er
∂θ

= − sin θ~ex + cos θ~ey = 1
r
~eθ (4.56)

and similarly one gets
∂~eθ
∂r

= 1
r
~eθ,

∂~eθ
∂θ

= −r~er (4.57)

4. Now we can do the differentiation properly:

∂~ex
∂θ

= ∂

∂θ
[cos θ~er −

1
r

sin θ~eθ] = 0 (4.58)

as it should. That is, one must take into account the fact that the basis vectors might depend on position.

5. So the derivative of ~V → (V r, V θ) in general is

∂~V

∂r
= ∂

∂r
(V r~er + V θ~eθ) = ∂V r

∂r
~er + V r

∂~er
∂r

+ ∂V θ

∂r
~eθ + V θ

∂~eθ
∂r

) (4.59)

and the same for θ; that is, in general for the coordinate xβ ,

∂~V

∂xβ
= ∂

∂xβ
(V α~eα) = ∂V α

∂xβ
~eα + V α

∂~eα
∂xβ

(4.60)

6. We now assume that the expression
∂~eα
∂xβ

(4.61)

can be written in terms of the basis vectors ~eα as
∂~eα
∂xβ

= Γµαβ~eµ (4.62)

where the Γµαβ are called Christoffel’s symbols. They represent the µ components of ~eα,β .

7. Let us evaluate the Christoffel symbols for the polar coordinate case. For instance, since

∂~er
∂θ

= 1
r
~eθ + 0~er (4.63)

we see that Γrrθ = 0 and Γθrθ = r−1. Also, we find

Γµrr = 0, Γrθr = 0, Γθθr = 1
r

(4.64)

8. We can now go back to Eq. (4.60) and put

∂~V

∂xβ
= ∂V α

∂xβ
~eα + V α

∂~eα
∂xβ

= V α,β~eα + V αΓµαβ~eµ (4.65)

= V α,β~eα + V µΓαµβ~eα = (V α,β + V µΓαµβ)~eα (4.66)

(in the second line we interchanged the dummy indexes µ, α). This means that the (1, 1) tensor ∂~V
∂xβ

has
components

V α;β = V α,β + V µΓαµβ (4.67)
This new operation, denoted by a “;”, is called covariant derivative. We also write

∇β(~V )α = V α;β (4.68)

In Cartesian coordinates, of course, the Christoffel symbols vanish and the covariant derivative is identical
to the ordinary one.



CHAPTER 4. CURVED SPACES 47

9. For a scalar, i.e. a quantity that is independent of the basis, the covariant derivative is always identical
to the standard one, in any coordinate frame:

φ,α = φ;α (4.69)

4.5 Divergence and Laplacian
1. We define the covariant divergence of a vector as V α;α. This can be written in several equivalent ways

~∇ · ~V ≡ ∇αV α ≡ V α;α ≡ δαβV β;α (4.70)

that is,
V α;α = V α,α + ΓαµαV µ (4.71)

Notice that this is a scalar quantity, i.e. has no free indexes.

2. In polar coordinates, for instance, we have (α = r, θ)

Γαrα = Γrrr + Γθrθ = 1
r
, Γαθα = 0 (4.72)

so
V α;α = ∂V r

∂r
+ ∂V θ

∂θ
+ 1
r
V r = 1

r

∂

∂r
(rV r) + ∂

∂θ
V θ (4.73)

which is indeed the formula for the divergence in polar coordinates.

3. The Laplacian of a scalar field is defined as
~∇ · ~∇φ (4.74)

The second gradient ~∇φ is the vector associated to the gradient 1-form d̃φ. That is

d̃φ → (φ,r, φ,θ) (4.75)

~∇φ → (φ,r ≡ φ,r, φ,θ ≡
1
r2φ,θ) (4.76)

In fact, the component of ~∇φ can be obtained as

(~∇φ)α = gαβ(d̃φ)β (4.77)

Then we have that Eq. (4.74) is the divergence of the vector ~∇φ, so using (4.73) it follows

~∇ · ~∇φ = ∇2φ = 1
r

∂

∂r
(r(φ,r)) + ∂

∂θ
( 1
r2φ,θ) (4.78)

= 1
r

∂

∂r
(rφ,r) + 1

r2
∂

∂θ
φ,θ (4.79)

which is the Laplacian in polar coordinates. Once again, the result is a scalar quantity. In component
form we write it simply as

~∇ · ~∇φ ≡ φ;α
;α ≡ 2Φ (4.80)

where we introduced the box operator, called D’Alambertian. Notice that although φ,α = φ;α, for the
Laplacian the covariant derivative is not the same as the ordinary derivative, since the second derivative
acts on φ;α, that is a vector. Since the result is a scalar, it must remain the same in every frame, so indeed
one can verify that

φ;α
;α = ∂2φ

∂x2 + ∂2φ

∂y2 (4.81)
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4.6 Derivative of general tensors
1. We know that the covariant derivative of a scalar coincides with the ordinary one. Then let us assume

a scalar obtained as a contraction φ = pαV
α. The covariant derivative is assumed to obey the Leibniz

product rule
φ;β = pα;βV

α + pαV
α
;β (4.82)

On the other hand, since this is equal to the ordinary derivative, we have

φ;β = φ,β = pα,βV
α + pαV

α
,β (4.83)

= pα,βV
α + pα(V α;β − ΓαµβV µ) (4.84)

= (pα,β − pµΓµαβ)V α + pαV
α
;β (4.85)

where in the last line, second term inside parentheses, we interchanged the dummy indexes α, µ. Now the
term on the lhs is a vector, and the last term on the rhs is also a vector. So the term in the middle must
be a vector as well. That is, comparing with (4.82), we find the covariant derivative of a 1-form

pα;β = pα,β − pµΓµαβ (4.86)

2. In a similar way, one can find the general rule for every tensor. We only need to write down the one for
the various forms of tensors:

Tµν;β = Tµν,β − TανΓαµβ − TµαΓανβ (4.87)
Tµν;β = Tµν,β − T

µ
αΓανβ + TανΓµαβ (4.88)

Tµν;β = Tµν,β + TµαΓναβ + T ναΓµαβ (4.89)

3. Let us apply these rules to the metric tensor defined in terms of the basis vectors, gαβ = ~eα · ~eβ now. We
have

(~eµ · ~eν);β = (~eµ · ~eν),β − Γαµβ~eα · ~eν − Γανβ~eµ · ~eα (4.90)
But we defined the Christoffel symbols as

∂~eα
∂xβ

= Γµαβ~eµ (4.91)

so
(~eµ · ~eν);β = (~eµ · ~eν),β −

∂~eµ
∂xβ

· ~eν − ~eµ ·
∂~eν
∂xβ

= 0 (4.92)

So, we have shown that
gµν;γ = 0 (4.93)

that is,
gαβ,µ = Γναµgνβ + Γνβµgαν (4.94)

4. However, we have assumed erlier that ∂~eα
∂xβ

can be expanded as in Eq. (4.62), and we have also assumed
Eq. (4.82), and one can obtain a non vanishing gµν;γ if these assumption are lifted. The choice that gives
gµν;γ = 0, is called metric-compatibility (the Christoffel symbols are said to be metric-compatible). In
fact, we could have started from postulating metric-compatibility and derive the other conditions.

5. This choice simplifies enormously our calculations and so far seems satisfied by observations. Non-metric-
compatible theories of gravity have however been proposed many times. From now on, we will always
assume metric-compatibility.

6. As a consequence
Vα;β = (gαµV µ);β = gαµV

µ
;β (4.95)

so a vector and a 1-form that are dual, remain dual even after differentiation. This is a very useful
property. For instance, if a vector is covariantly conserved, then so is its dual.

7. If we apply this to polar coordinates, we see that, indeed, using (4.64)

gθθ;r = (r2),r −
1
r
r2 − 1

r
r2 = 0 (4.96)
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4.7 Christoffel symbols as function of the metric
1. The metric-compatibility is a very important assumption also because it allows to express the Christoffel

symbols in function of the metric.

2. We need however first another assumption, that the Christoffel symbols are symmetric in the lower indices

Γµαβ = Γµβα (4.97)

This is called torsion-free assumption. This condition is equivalent to imposing that covariant derivatives
of scalar functions commute

φ;αβ = φ;βα (4.98)
that is

φ,αβ − φ,µΓµαβ = φ,βα − φ,µΓµβα (4.99)
from which

φ,µ(Γµαβ − Γµβα) = 0 (4.100)
for any scalar function φ. Again, one can build a different theory of space-time by violating this condition.

3. The commutation holds only for scalar functions. For vector and tensors in general

V α;µν 6= V α;νµ (4.101)

4. To find an explicit expression of the Christoffel symbols, we rewrite Eq. (4.94) three times with a permu-
tation of the indices:

gαβ,µ = Γναµgνβ + Γνβµgαν (4.102)
gαµ,β = Γναβgνµ + Γνµβgαν (4.103)
gβµ,α = Γνβαgνµ + Γνµαgβν (4.104)

and add the first two expressions and subtract the third one. We obtain

gαβ,µ + gαµ,β − gβµ,α = 2gανΓνβµ (4.105)

and finally, multiplying by 1
2g
αγ on both sides

Γγβµ = 1
2g

αγ(gαβ,µ + gαµ,β − gµβ,α) (4.106)

This is one of the most important equation in GR. It is also called Levi-Civita connection. It allows to
find the Christoffel symbols given any metric. Notice that indeed there is symmetry between β, µ.

5. The Christoffel symbol is not a tensor, which means that, for instance, Γµαβ = 0 is an equation that is not
valid in every frame. The transformation law is indeed not in tensorial form:

Γγ̄
ᾱβ̄

= ∂xγ̄

∂xγ
∂xα

∂xᾱ
∂xβ

∂xβ̄
Γγαβ + ∂2xγ

∂xᾱ∂xβ̄
∂xγ̄

∂xγ
(4.107)

This transformation law can be obtained directly from Eq. (4.106) but it applies also to non-torsion-free
connections. The torsion is defined as T γ̄

ᾱβ̄
= Γγ̄

ᾱβ̄
− Γγ̄

β̄ᾱ
, and one can immediately check that this is

instead a tensor. Also, if one transforms only the γ index and one of the other indexes, so that for instance
ᾱ = α , then ∂2xγ/∂xα∂xβ̄ = ∂δγα/∂x

β̄ = 0 and Γγ̄
αβ̄

transforms as a (1, 1) tensor with respect to γ̄, β̄.

6. The expressions that we will build with the use of the Christoffel symbols, in particular the covariant
derivatives, will always be tensor expressions.

7. The Levi-Civita connection is the simplest possible connection, and it is fully determined by the metric.
More general connections (with non-zero torsion or non-metricity), will not be fully determined by the
metric. This could in principle be used to add non-gravitational forces into GR.



Chapter 5

Einstein’s equations

5.1 Manifolds
1. Amanifold is a continuum space that locally looks Euclidian, i.e. it can approximated by a Minkowski met-

ric around every point. A differential manifold is a manifold on which scalar functions can be defined that
are continuous and differentiable everywhere. That is, a differential manifold is a smooth (hyper)surface.
We will only use differential manifolds in the following (just manifold for short).

2. A surface that contains singularities, spikes, etc, is not a manifold.

3. In a slightly more abstract way, a manifold is any set of points that can be continuously parametrized.
The number of independent parameters is equal to the dimension of the manifold. The ordinary Euclidian
space, for instance, is a 3D manifold because we can identify every point with three parameters, x, y, z. The
space of permutations of a sequence of numbers is not a manifold because the order or permutations is not
a continuous parameter. The surface of a cone is not a manifold because the vertex is not differentiable.

4. Since a D-dimensional manifold can be continuously parametrized by D parameters, every manifold can
be mapped into a D -dimensional Euclidian space, that is, every point of the manifold can be identified
with (or mapped into) a point in the Euclidian space.

5. Since we can differentiate scalar functions, we can define vectors, 1-forms, tensors etc, without the need
of introducing a metric.

6. Introducing the metric, we say that a differential manifold endowed with a metric is a Riemannian space. If
the metric has Minkowskian signature (i.e., the eigenvalues of the diagonalized metric have the same signs
as the Minkowski metric; the signature it’s an invariant quantity) instead of Cartesian, we say sometimes
it’s a pseudo-Riemannian manifold.

7. Coordinate transformations are defined as

Λᾱβ = ∂xᾱ

∂xβ
(5.1)

Since second derivatives commute, we have that

∂Λᾱβ
∂xγ

=
∂Λᾱγ
∂xβ

(5.2)

Only matrices that obey this condition are coordinate transformations. Matrices that do not obey this,
are called just transformations.

8. A theorem says that for every non-singular symmetric tensor there is a transformation (not, in general, a
coordinate transformation) that transforms the metric in the vicinity of a point into a diagonal one with
±1 on the diagonal. This sequence of ±1 is a invariant characteristic of every metric tensor.

50
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9. The trace of this diagonal metric is called signature. Moreover, a coordinate transformation exists such
that around a point P

gαβ(P ) = ηµν (5.3)
gαβ,γ(P ) = 0 (5.4)
gαβ,γµ(P ) 6= 0 (5.5)

This means that it always exist a local inertial frame (LIF), i.e. a frame such that the metric is locally
(i.e., up to first derivatives, which turn out to express the forces) Minkowskian. But, in general, there is
no coordinate transformation that makes gµν Minkowskian everywhere. The second derivatives express
the tidal effects.

10. In particular, this means that locally we can always set up a locally inertial observer such that Γµαβ = 0,
but, in general,

Γµαβ,γ 6= 0 (5.6)

11. Finding for a point P a general coordinate transformation Λᾱγ = ∂xᾱ/∂xγ |P (formed by 16 entries) that
defines a LIF means solving Eqs. (5.3-5.4). However a LIF can be determined only up to the 6 free
parameters of the Lorentz group, namely three velocities vi and three rotations, so there are only 10
unknowns in Λᾱγ . They are fixed by the condition gαβ = 0, which indeed imposes 10 equations (the
independent entries of the symmetric matrix gαβ). For the second condition, gαβ,γ = 0, one has 40
equations for the 40 unknowns (4×10) given by Λᾱβ,γ = ∂2xᾱ/∂xγ∂xβ . If now we want to impose a further
condition, i.e. gαβ,γµ(P ) = 0, we see that we would get 100 equations for Λᾱβ,γµ = ∂3xᾱ/∂xγ∂xβ∂xµ,
which however consist of only 80 unknowns due to the symmetry between permutations of γ, β, µ (a fully
symmetric matrix of dimension D with m indexes has (D +m− 1)!/(D − 1)!m! independent entries). It
is therefore in general impossible to find a frame in which the second derivatives of the metric vanish.
These derivatives represent an intrinsic property of the manifold that cannot be absorbed by a coordinate
transformation. They can be put in relation to the general curvature tensor, which, as we will see later,
has exactly 20 independent entries.

5.2 Lengths and volumes in manifolds
1. The infinitesimal interval of length in a manifold is

ds2 = ( ~dx) · ( ~dx) = gαβdx
αdxβ (5.7)

A finite interval along a certain curve parametrized by λ will be therefore

` =
ˆ
ds =

ˆ
|gαβdxαdxβ |1/2 (5.8)

=
ˆ
|gαβ

dxα

dλ

dxβ

dλ
|1/2dλ (5.9)

=
ˆ
|~V · ~V |1/2dλ (5.10)

if ~V → {dx
α

dλ } is a vector tangent to the curve.

2. The infinitesimal volume in flat space with Cartesian coordinates is

d4x = dx0dx1dx2dx3 (5.11)

Under a general coordinate transformation, this becomes

d4x = |J−1|d4̄x = |J−1|dx0̄dx1̄dx2̄dx3̄ (5.12)

where |...| means determinant, and
J−1 → ∂xα

∂xβ̄
= Λα

β̄
(5.13)
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The volume, therefore, is not a scalar quantity, because it changes under a coordinate transformation,
nor evidently is a tensor. When a quantity acquires a power of the determinant of the Jacobian under a
transformation, it is called a “tensor density”, in this case a scalar density.

3. Now, we know that the metric transforms as

gᾱβ̄ = ΛµᾱΛν
β̄
gµν (5.14)

so that its determinant is
− |ḡ| = −|Λ|2|g| (5.15)

(notice therefore that |g| is not a scalar but a scalar density). Then we see that√
−|g|d4x =

√
−|ḡ|d4̄x (5.16)

that is, d4x
√
−g is the scalar quantity that defines the volume element, also called proper volume. (The

minus sign is needed because the determinant of g is always negative).

4. Derivative of the inverse of a matrix:

M−1
,α = −M−1M,αM

−1 (5.17)

or, componentwise,
(M−1)αβ,γ = −(M−1)αµMµν

,γ (M−1)νβ (5.18)

5. Derivative of metric determinant. We know that the inverse of a matrix is the transpose of the co-factor
matrix C = (−1)i+jMij , where Mij is the minor matrix (the matrix obtained by replacing every element
ij by the determinant of the matrix obtained by excluding the row and column of ij) divided by the
determinant,

g−1 = C

|g|
So we have

∂

∂gµν
|g|g−1 = ∂C

∂gµν
= 0 (5.19)

because Cµν does not depend on gµν (its entries are the determinant formed by excluding the µ-th row
and ν-th column). Then we find

∂

∂gµν
|g|g−1 = g−1 ∂

∂gµν
|g| − |g|g−1 ∂g

∂gµν
g−1 = 0 (5.20)

or, in explicit index form
∂

∂gµν
|g| = |g|∂gαβ

∂gµν
gαβ (5.21)

Multiplying by ∂gµν

∂xγ this can be written as an ordinary derivative of the determinant,

|g|,γ = |g|gαβ,γgαβ (5.22)

This is a very useful formula. Be careful: the covariant derivative of |g|, in contrast, vanishes, because
gαβ;γ = 0.

6. Notice that
∂gαβ
∂gµν

= δµαδ
ν
β (5.23)

∂gαβ
∂gµν

= −gαµgβν (5.24)

(in the second line we applied Eq. (5.18)). Therefore

∂

∂gµν
|g| = |g|∂gαβ

∂gµν
gαβ = −|g|gµν (5.25)
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7. As a consequence,

Γαµα = 1
2g

αβ(gβµ,α + gβα,µ − gµα,β) (5.26)

= 1
2g

αβ(gβµ,α − gµα,β) + 1
2g

αβgβα,µ (5.27)

but the first term is zero because is the trace of the product of a symmetric and an antisymmetric term.
Then

Γαµα = 1
2g

αβgαβ,µ = 1
2
g,µ
g

= (
√
−g),µ√
−g

= 1
2[log(−g)],µ (5.28)

8. The equation for the divergence (4.71) simplifies then in this way

V α;α = V α,α + V µΓννα = V α,α + V α
(
√
−g),α√
−g

(5.29)

= (V α
√
−g),α√
−g

(5.30)

9. This implies that, by applying Gauss’ law,
ˆ
V α;α
√
−gd4x =

ˆ
(V α
√
−g),αd4x =

˛
V αnα

√
−gd3s (5.31)

This form of Gauss’ law is very convenient.

10. Often in GR one applies the previous equation to fields that vanish at infinity, e.g. far from any mass.
Then the boundary integral vanishes at infinity. Then one has

ˆ
d4x
√
−gABα;α =

ˆ
d4x
√
−g[(ABα);α −A;αB

α] = −
ˆ
d4x
√
−gA;αB

α (5.32)

which is similar to an ordinary integration by parts.

11. If we apply the divergence to a vector defined as V µ ≡ φ;µ = φ,µ, i.e. as a derivative of a scalar, we find
the very useful relation valid in every coordinate frame

2φ = φ;µ
;µ = (φ,α

√
−g),α√
−g

= 1√
−g

∂α(
√
−ggαβ∂βφ) (5.33)

5.3 Parallel transport
1. A vector is said to be parallel-transported (same direction and same length) along a curve parametrized

by λ when its components remain constant in a locally inertial frame around point P (see Fig. 5.1).

2. That is,
dV α

dλ
= dτ

dλ
UβV α,β = 0 (5.34)

or simply
UβV α,β = 0 (5.35)

Now, in order for this equation to be valid in every frame, we upgrade it to

UβV α;β = 0 (5.36)

3. If we choose ~V = ~U , we are parallel-transporting (PT) the tangent vector to the curve. This imposes a
condition on the curve itself, that is, it identifies those curves along which the tangent vectors are PT:
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these will be called auto-parallels (when we only refer to the parallel-transport property) or geodesics
(when we include also the property of extremality, see below). Then we have

UβUα;β = UβUα,β + UβΓανβUν (5.37)

= dx

dτ

β ∂

∂xβ
dxα

dτ
+ dx

dτ

β

Γανβ
dx

dτ

ν

(5.38)

= d2xα

dτ2 + Γανβ
dx

dτ

β dx

dτ

ν

= 0 (5.39)

This is called geodesic equation (they are actually four equations). Along the curve xµ(τ) that is a solution
of this equation, the tangent vector is PT.

4. The length of a tangent vector is

|dx
µ

dλ
| =

(
gαβ

dxα

dλ

dxα

dλ

)1/2
= |dτ

dλ
| (5.40)

so we see that it does not change along the curve parametrized by λ only if τ and λ are linearly related.
Parameters that are linearly related, i.e. λ = aτ + b are called affine parameters.

5. For a light ray, we cannot use neither ~U nor the proper time τ . We use then the momentum ~p and any
monotonic parametrization λ of the null path. One can always use one of the geodesic equations to express
λ as a function of a coordinate.

6. The geodesic equation describes the dynamics (acceleration) of a particle along the geodesic path

d2xα

dτ2 = −Γανβ
dx

dτ

β dx

dτ

ν

(5.41)

If there are non-gravitational forces, then a particle will deviate from the geodesic and if the forces are
described by a potential V (xµ) then a term −∂V/∂xα is to be added at the rhs.

7. Now we show an important property of geodesics: they are the paths of extremal distance (interval)
between two points (also called stationary paths), defined as (for time-like paths, so dτ =

√
−ds2)

τ =
ˆ
dτ =

ˆ
|gαβ

dxα

dτ

dxβ

dτ
|1/2dτ (5.42)

Now, if we distort a little the path from a geodesic, we will have a small perturbation τ + δτ . If the
geodesic is extremal, then δτ = 0. That is what we are going to show. First notice that for an arbitrary
function f(τ)

δ

ˆ √
−fdτ =

ˆ
(δ
√
−f)dτ (5.43)

= −1
2

ˆ
(−f)−1/2δfdτ (5.44)

Since in our case
f = gαβ

dxα

dτ

dxβ

dτ
= UαUα = −1 (5.45)

we have
δτ = −1

2

ˆ
(δf)dτ (5.46)

that is, extremizing
√
f is the same as extremizing f . Then our problem is to show that

δI = δ[
ˆ
gαβ

dxα

dτ

dxβ

dτ
dτ ] = 0 (5.47)
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Figure 5.1: Parallel transport on a sphere.

8. The variation δ means that we have to perturb the coordinates

xµ → xµ + δxµ (5.48)

and consequently,
gµν → gµν + (gµν,σ)δxσ (5.49)

(notice it’s a normal derivative, we are doing a simple Taylor expansion of the functions gµν). Then we
have

δI =
ˆ

[δgαβ
dxα

dτ

dxβ

dτ
+ gαβ

dδxα

dτ

dxβ

dτ
+ gαβ

dxα

dτ

dδxβ

dτ
]dτ (5.50)

=
ˆ

[gαβ,σδxσ
dxα

dτ

dxβ

dτ
+ gαβ

dδxα

dτ

dxβ

dτ
+ gαβ

dxα

dτ

dδxβ

dτ
]dτ (5.51)

The second term can be integrated by parts:
ˆ
dτgαβ

dδxα

dτ

dxβ

dτ
= −

ˆ
dτ(gαβ,σ

dxσ

dτ

dxβ

dτ
+ gαβ

d2xβ

dτ2 )δxα (5.52)

and similarly for the third term. Collecting, we have

δI = −2
ˆ

[gµσ
d2xµ

dτ2 + 1
2(gνσ,µ + gσµ,ν − gµν,σ)dx

µ

dτ

dxν

dτ
]δxσdτ = 0 (5.53)

Now a crucial step: we want this equation to be satisfied for every variation δxσ. This means the expression
within square brackets must vanish:

gµσ
d2xµ

dτ2 + 1
2(gνσ,µ + gσµ,ν − gµν,σ)dx

µ

dτ

dxν

dτ
= 0 (5.54)

Finally, multiplying by gστ , we obtain the geodesic equation

d2xτ

dτ2 + Γτµν
dxµ

dτ

dxν

dτ
= 0 (5.55)

This shows that the geodesic equation produces paths of shortest (actually, extremal) interval. The
geodesics generalize the concept of “straight line” on a curved manifold.
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9. Although one can PT a tangent vector defined for any parameter λ, only for a special class of λ it
happens that the geodesic is also the shortest path, namely, only when they are related to τ by an affine
transformation, i.e. λ = aτ + b. In this case in fact Eq. (5.55) coincides with Eq. (5.39). Therefore τ and
all the affinely related λ’s are called affine parameters. From now on we only consider such parameters
for time-like geodesics.

10. A “straight line” on a curved manifold is then defined as that line on which a tangent vector remains
parallel to itself.

11. The connection with physics is given by extending to the geodesic the Galilean principle: a particle on
which no external force act will follow a geodesic. The effect of the curved manifold is, in this sense, not
an external force, it’s just the geometry of space-time. In GR, we will see that gravity is what causes the
manifold to be curved. So, a particle under the sole action of gravity follows a geodesic. This is called
free-fall.

12. Summarizing: a tangent vector is PT if it moves along a geodesic parametrized by λ. If τ = λ, then
the particle whose 4-velocity is ~U is in free-fall. The Christoffel symbols express the effect of gravity
(geometry) on the particle: they are the “gravitational force” acting on the particle.

13. A vector orthogonal to the tangent vector, is also PT along the same geodesic. Therefore, since every
vector on a point P can be decomposed into components orthogonal and parallel to the tangent vector, it
will also be PT. In other words, along a geodesic with tangent vector ~U , a vector ~V defined at one point
P is PT to another point P’ if

UαV β;α = 0 (5.56)

between P and P’.

14. Let us define now the operator of directional covariant derivative of a vector ~V along a curve with tangent
vector ~U :

∇~U ~V →
D

dτ
V α = dxµ

dτ
∇µV α = Uµ∇µV α (5.57)

(where∇µ is an alternative symbol for the covariant derivative, so∇µV ν ≡ V ν;µ): PT means then∇~U ~V = 0.
Now, since

∇~Ugαβ = gαβ;γU
γ = 0 (5.58)

it follows also that
∇~U (gαβAαB

β

) = gαβ [(∇~UA
α)Bβ +Aα(∇~UB

β)] = 0 (5.59)

This shows that (for metric-compatible theories) the norm of vectors does not vary when transported
along the geodesic. Therefore, a vector remains time-, null-, or space-like when PT.

5.4 The Riemann tensor
1. Let us consider the curved parallelogram in Fig. 5.2. A vector in A= (a, b) is PT to B along x2 = const,

i.e. along the basis vector ~e1 → {1, 0} if

∇~e1 ~V = 0 → (~e1)β(V α,β + ΓαµβV µ) = 0→ ∂V α

∂x1 = −Γαµ1V
µ (5.60)

and similarly if PT along ~e2. So, at B= (a+ δa, b), it has components

V α(B) = V α(Ainit)−
ˆ x1=a+δa

x1=a
Γαµ1V

µdx1|x2=b = V α(Ainit)− δa(Γαµ1V
µdx1)|x2=b (5.61)

From B to C= (a+ δa, b+ δb) and D= (a, b+ δb) we have similarly

V α(C) = V α(B)−
ˆ x2=b+δb

x2=b
Γαµ2V

µdx2|x1=a+δa = V α(B)− δb(Γαµ2V
µdx2)|x1=a+δa (5.62)
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V α(D) = V α(C) +
ˆ x1=a+δa

x1=a
Γαµ1V

µdx1|x2=b+δb = V α(C) + δaΓαµ1V
µdx1|x2=b+δb (5.63)

(notice the sign inversion because we move from a+ δa to a) and finally

V α(Afinal) = V α(D) +
ˆ x2=b+δb

x2=b
Γαµ2V

µdx2|x1=a = V α(D) + δb(Γαµ2V
µdx2)|x1=a (5.64)

Now, this means

δV α = V α(Afinal)− V α(Ainit) (5.65)
= δb(Γαµ2V

µdx2)|x1=a + δaΓαµ1V
µdx1|x2=b+δb (5.66)

− δb(Γαµ2V
µdx2)|x1=a+δa − δa(Γαµ1V

µdx1)|x2=b (5.67)
= δb[(Γαµ2V

µdx2)|x1=a − (Γαµ2V
µdx2)|x1=a+δa] (5.68)

+ δa[Γαµ1V
µdx1|x2=b+δb − (Γαµ1V

µdx1)|x2=b] (5.69)
= −δbδa(Γαµ2V

µ),1dx2 + δaδb(Γαµ1V
µ),2dx1 (5.70)

= δaδb[(−Γαµ2V
µ),1 + (Γαµ1V

µ),2] (5.71)

Moreover, from Eq. (5.60), V α,1 = −Γαµ1V
µ and therefore

δV α = δaδb[Γαµ1,2V
µ − Γαµ2,1V

µ + Γαµ1V
µ
,2 − Γαµ2V

µ
,1 ] (5.72)

= δaδb[Γαµ1,2V
µ − Γαµ2,1V

µ + Γα1σV σ,2 − Γασ2V
σ
,1 ] (5.73)

= δaδb[Γαµ1,2V
µ − Γαµ2,1V

µ + Γα1τ (−Γτµ2V
µ)− Γατ2(−Γτµ1V

µ)] (5.74)
= δaδb[Γαµ1,2 − Γαµ2,1 − Γα1τΓτµ2 + Γατ2Γτµ1]V µ (5.75)

The generalization to paths along coordinates xσxλ is an obvious one:

δV α = δxσδxλ[Γαµσ,λ − Γαµλ,σ − ΓαστΓτµλ + ΓατλΓτµσ]V µ (5.76)
= δxσδxλV µRαµλσ (5.77)

This defines the Riemann tensor (RT)

Rαβµν = Γαβν,µ − Γαβµ,ν − ΓανσΓσβµ + ΓασµΓσνβ (5.78)
= Γαβν;µ − Γαβµ;ν (5.79)

The last line has to be understood only in the sense that Γ is treated as a vector with index α.

2. The Riemann tensor therefore expresses how the components of the vector V α vary when it is PT along a
closed circuit. Although the vector is PT, its components change if the manifold is not flat. The Riemann
tensor is therefore an intrinsic (because obtained on the manifold itself, without making reference to an
external higher dimensional space) measure of curvature.

5.5 Properties of the Riemann tensor
1. In a local inertial frame (LIF), i.e. when the Christoffel symbols vanish but not their derivative, one has

Rαβµν = 1
2g

ασ(gσν,βµ − gβν,σµ − gσµ,βν + gβµ,σν) (5.80)

and

Rαβµν = 1
2(gαν,βµ − gβν,αµ − gαµ,βν + gβµ,αν) (5.81)
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Figure 5.2: PT of a vector around a closed loop.

2. From these expressions we can derive some properties of the RT:

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ (5.82)

i.e., antisymmetry under exchange of indexes within the first and second pair, symmetry under exchange
of indexes among the pairs.

3. Cyclic permutation among the last three indexes:

Rαβµν +Rανβµ +Rαµνβ = 0 (5.83)

4. Because of these symmetries, of the 44 = 256 components of the RT, only 20 are independent. (Think of
the RT as a RAB matrix; because of antisymmetry within the pairs A and B, only 6 values of A and 6 of
B are independent, so RAB can be written as a 6×6 matrix; this matrix is symmetric, so only 6 · 7/2 = 21
entries are independent; the permutation condition adds yet another independent constraint, so we are
left with 20.)

5. That’s exactly the number of components of gαβ,µν that remain even after exploiting the freedom allowed
by a general coordinate transformation: the RT is then a (actually the only one) covariant way to combine
the second derivatives of the metric.

6. Sufficient and necessary condition for a flat manifold is

Rαβµν = 0 (5.84)

Since this is a covariant equation, flatness is an invariant property of a manifold: it depends on its intrinsic
properties, not on the choice of coordinates. For instance, a Minkowskian metric, whether in Cartesian
form, in spherical coordinates, or in Rindler coordinates (see Eq. 1.145), has zero Riemann tensor.

7. Notice that a manifold has also global properties that are not described by curvature. For instance,
curvature does not tell us if the manifold has multiple connectdness, that is, is closed like a torus or with
holes, etc. These properties are called topological and are not described by General Relativity.
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5.6 Commutation of covariant derivatives and geodesic deviation.
1. As we mentioned, covariant derivatives do not commute in general. So we have

(V µ;β);α = (V µ;β),α + (V ν;β)Γµνα − V µ;νΓνβα (5.85)

In a LIF, this simplifies to
(V µ;β);α = V µ,αβ + Γµνβ,αV

ν (5.86)

Exchanging α, β and subtracting the two expressions, we obtain the commutator

[∇α,∇β ]V µ = ∇α∇βV µ −∇β∇αV µ = (Γµνβ,α − Γµνα,β)V ν (5.87)

The term in parentheses coincides with the RT in the LIF. So we draw the conclusion that

[∇α,∇β ]V µ = RµναβV
ν (5.88)

I.e., the RT expresses the non-commutativity of covariant derivatives. (For a covariant vector, the equation
is [∇α,∇β ]Vµ = −RνµαβVν .)

2. Similarly, we show below that the RT expresses the geodesic deviation. Let us define a family of geodesic
curves xµ = xµ(p, λ), in which λ runs along each curve, while p distinguishes one geodesic from another
one (such sets of non-intersecting curves that fill a manifold is called a congruence). We want to find how
a separation vector ξµ = ∂xµ/∂p between nearby geodesics, with tangent vector ~V = ∂xµ/∂λ, changes
when the parameter λ changes:

∇~V∇~V ξ
α = RαµνβV

µV νξβ (5.89)

3. Proof of Eq. (5.89). Following Uzan-DeRuelle, Relativity in Modern Physics, let us first derive the
following identity:

ξα∇αV β = ∂xα

∂p
(V β,α + ΓβµαV µ) = ∂xα

∂p
(V β,α + ΓβµαV µ) (5.90)

=∂xα

∂p
( ∂

∂xα
∂xβ

∂λ
+ Γβµα

∂xµ

∂λ
) = ∂

∂p

∂xβ

∂λ
+ Γβµα

∂xα

∂p

∂xµ

∂λ
(5.91)

= ∂

∂λ

∂xβ

∂p
+ Γβαµ

∂xµ

∂p

∂xα

∂λ
= ∂xα

∂λ
( ∂

∂xα
∂xβ

∂p
+ Γβµα

∂xµ

∂p
) (5.92)

= V α∇αξβ (5.93)

Then we have

∇~V∇~V ξ
α = V µ∇µ(V ν∇νξα) = V µ∇µ(ξν∇νV α) (5.94)
=V µξν∇µ∇νV α + V µ(∇µξν)(∇νV α) (5.95)
=V µξν(∇ν∇µV α +RαβµνV

β) + V µ(∇µξν)(∇νV α) (5.96)

But is also true that, since V ν∇νV α = 0 for auto-parallels, then

0 = ξµ∇µ(V ν∇νV α) = ξµV ν(∇µ∇νV α) + ξµ(∇µV ν)(∇νV α) (5.97)
=ξµV ν(∇µ∇νV α) + V µ(∇µξν)(∇νV α) (5.98)

so that V µ(∇µξν)(∇νV α) = −ξµV ν(∇µ∇νV α). Finally, inserting this in Eq. (5.96), we obtain

∇~V∇~V ξ
α = V µξν(∇ν∇µV α +RαβµνV

β)− ξµV ν(∇µ∇νV α) = RαµνβV
µV νξβ (5.99)

(after some reshuffling of dummy indexes).
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5.7 Bianchi identities, Ricci tensor, Ricci scalar, Weyl tensor
1. Putting ourselves again in the LIF, where the Γs vanish but their derivatives do not, we can evaluate

Rαβµν,λ = 1
2(gαν,βµλ − gαµ,βνλ + gβµ,ανλ − gβν,αµλ) (5.100)

Now using the symmetry gαβ = gβα one can show that

Rαβµν,λ +Rαβλµ,ν +Rαβνλ,µ = 0 (5.101)

In general, this relation becomes

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0 (5.102)

These equations are known as the Bianchi identities. Notice that they are obtained through a cyclic
permutation of the last three indexes.

2. The contraction of Riemann gives the Ricci tensor

Rαβ = Rµαµβ (5.103)

The other possible contractions are either zero (Rµµαβ = 0) or equivalent to Ricci (Rµαβµ = −Rαβ).

3. Since
Rβα = gµνRνβµα = gµνRµανβ = Rαβ (5.104)

it follows that the Ricci tensor is symmetric.

4. We can write explicitly

Rβν = Γαβν,α − Γαβα,ν − ΓανσΓσβα + ΓασαΓσνβ (5.105)
= Γαβν;α − Γαβα;ν (5.106)

5. Finally, contracting the Ricci tensor (i.e., taking the trace of the mixed tensor) we get the Ricci or curvature
scalar

gαβRαβ = R (5.107)

6. The Bianchi identities impose some constraints on Rαβ . In fact, by contracting once

gαµ (Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ) = Rβν;λ + (−Rβλ;ν) +Rµβνλ;µ (5.108)

(we used Rαβλµ;ν = −Rαβµλ;ν) and by contracting again

gβν(Rβν;λ −Rβλ;ν +Rµβνλ;µ) = R;λ −Rνλ;ν −Rνλ;ν (5.109)
= (−2Rνλ + δνλR);ν = 0 (5.110)

Now, if we define Einstein’s tensor
Gαβ ≡ Rαβ − 1

2g
αβR (5.111)

or, in mixed form,
Gαβ ≡ Rαβ −

1
2δ

α
βR (5.112)

we see that it is covariantly conserved, i.e.
Gαβ;β = 0 (5.113)

These equations are also called Bianchi identities. It can be shown that Gαβ is the only combination of the
RT that is conserved. It is actually possible to show that it is the only combination of second derivatives of
the metric that is a tensor and that is conserved. If one considers also terms of less-than-second derivatives,
then a term Λgµν can also be added (more about this later on).
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7. Notice that for a manifold to be flat, all components of the Riemann tensor must vanish; it is not sufficient
that the Ricci tensor vanishes.

8. Another tensor is often defined out of the Riemann tensor, called Weyl tensor:

Cαβµν ≡ Rαβµν + 1
2(Rανgβµ −Rαµgβν +Rβµgαν −Rβνgαµ) (5.114)

+ 1
6R(gαµgβν − gανgβµ) (5.115)

This tensor has the same symmetries of the Riemann tensor but also other interesting properties. First,
it is traceless under contraction of any two indexes. Secondly, its components do not vanish in general
in empty space (where Rµν = 0, a condition called Ricci-flatness). Third, because of this reason, it
governs the propagation of gravitational waves in empty space. Fourth, it is invariant under a conformal
transformation, that is, it is the same for a metric gµν and for a conformally rescaled metric g′µν = φgµν ,
where φ is any function of coordinates (it’s called conformal because angles do not change under it). As a
consequence, if the Weyl tensor vanishes for a given metric, then there exists a coordinate transformation
such that the metric is everywhere proportional to the Minkowski metric, that is, gµν = φηµν . Such a
metric is called conformally flat (see e.g. the metric in Eq. 8.16). Finally, in dimensions less than four,
the Weyl tensor vanishes identically. We will not make any further use of this tensor.

5.8 Einstein tensor
1. We have now all the ingredients to build Einstein’s equations. We need now a basic postulate. We know

that in flat space free particles move on straight lines, i.e. according to

UµUν,µ = 0 (5.116)

Now we assume this extends to curved manifolds, i.e. free-falling particle (i.e. particles subject only to
gravity) always move along geodesics,

UµUν;µ = 0 (5.117)

2. This is one example of a more general principle, called strong equivalence principle (SEP): Every non-
gravitational law of physics that in SR can be expressed as a tensor equation, has the same form in a local
inertial frame in GR. In other words, Minkowski metric maps into the general metric, SR tensors map
into GR tensors, and derivatives map into covariant derivatives.

3. The equivalence principle represents the famous Einstein’s “elevator gedanken experiment”. That is, on an
elevator falling on a gravitational field, all non-gravitational experiments (eg, playing with billiard balls)
perform the same way as when at rest. This is due to the fact that the gravitational field act in the
same way on everything, regardless of the mass and of their composition; if we fall on a electromagnetic
potential, instead, particles of opposite charge would act differently. If the “elevator” is very large or the
observations are carried out for a long time, however, we would see tidal effects (for instance, two balls
will be seen to approach each other as they follow radial, not parallel, free-falling trajectories converging
towards the centre of the Earth): this corresponds to the non-vanishing second-derivatives of the metric.

4. Notice that in principle one could imagine that particles move along lines that obey a different equation,
eg

UµUν;µ = R;ν (5.118)

which would still reduce to (5.116) in flat space (not in a LIF however!), but the SEP excludes this
possibility. Of course, ultimately, only experiments can say which equation is right.

5. From the SEP it follows that the flux-density vector and the EMT are covariantly conserved:

Nα
;α = 0 (5.119)

Tµν;µ = 0 (5.120)
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6. Also other expressions we found in SR are automatically extended in GR replacing a comma with a
semicolon and ηµν with gµν , for instance the definition of the energy density and pressure in a frame with
velocity ~U ,

TαβUαUβ = ρ (5.121)
and

p = 1
3T

αβ(gαβ + UαUβ) (5.122)

5.9 Weak field limit
1. If the new conservation equation is correct, we should recover Newton’s gravity in the limit of weak fields

and slow velocities in which it is normally tested.

2. We have seen that the geodesic extremizes
´
dτ or equivalently the space-time interval

´
ds. But in

presence of a gravitational potential Φ (e.g. for a point mass Φ = −GM/r) a non-relativistic particle of
mass m moves along trajectories that extremize the Lagrangian m

´
dt( 1

2v
2 − Φ). This is v in the usual

units; to convert to our c = 1 units, this Lagrangian becomes

m

ˆ
dt(1

2(v
c

)2 − Φ
c2

)→ m

ˆ
dt(1

2v
2 − Φ) (5.123)

where now Φ includes the 1/c2 factor, so that for a point mass

Φ = −GM
rc2

(5.124)

For the Earth, for instance, Φ ≈ 10−9, so much smaller than unity. From now on we revert to c = 1 units.

3. To convert the Langrangian into a new interval ds, we add a constant (which does not change the dynamics)
and write

m

ˆ
dt(−1− Φ + 1

2v
2) ≈ m

ˆ
dt(−1− 2Φ + v2)1/2 ≡ m

ˆ
ds (5.125)

Then we see that, putting v = dr/dt, the new interval is

ds2 = dt2(−1− 2Φ + v2) (5.126)
= −dt2(1 + 2Φ) + dr2 (5.127)

4. If we had considered higher order terms in the velocity, we would have obtained a slight generalization,
namely the weak field interval

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)(dx2 + dy2 + dz2) (5.128)

with Φ = Φ(t, x, y, z) a field over the entire space-time. Our goal now is to insert this metric

gµν =


−1− 2Φ 0 0 0

0 1− 2Φ 0 0
0 0 1− 2Φ 0
0 0 0 1− 2Φ

 (5.129)

and

gµν =


(−1− 2Φ)−1 0 0 0

0 (1− 2Φ)−1 0 0
0 0 (1− 2Φ)−1 0
0 0 0 (1− 2Φ)−1

 (5.130)

≈


−1 + 2Φ 0 0 0

0 1 + 2Φ 0 0
0 0 1 + 2Φ 0
0 0 0 1 + 2Φ

 (5.131)
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into the geodesic equation and recover Newton’s law. These expressions are only valid when Φ� 1 (which
is very well verified in all astrophysical bodies except black holes).

5. Since for now we confine ourselves to small velocities, we can actually put gii, gii = 1 in the following
calculations.

6. We now show that this metric indeed recovers the standard Newtonian equations. For a massive particle,
the geodesic equation can also be written with the four momentum ~p as

pαpβ;α = 0 (5.132)

For β = 0 this is
pαp0

,α + Γ0
αβp

αpβ = 0 (5.133)

For small velocities, we can assume p0 � pi; moreover we have

pα∂α = mUα
∂

∂xα
= m

d

dτ
(5.134)

so we obtain
m
d

dτ
p0 + Γ0

00p
0p0 = 0 (5.135)

Now, direct calculation shows that at first order

Γ0
00 = 1

2g
00(g00,0 + g00,0 − g00,0) = 1

2g
00g00,0 = Φ̇ (5.136)

so finally, since p0 = m for small velocities (but dp0/dτ 6= 0), we get

dp0

dτ
= −mΦ̇ (5.137)

7. So we see that in weak field GR the energy p0 is conserved only if Φ̇ = 0 (which is always the case in
ordinary experiments).

8. A similar calculation for β = i, using now
Γi00 ≈ Φ,i (5.138)

(notice that Φ,i = Φ,i at first order), gives

dpi

dτ
= −mΦ,i (5.139)

which as expected just says that the force acting on a particle equals minus the gradient of the potential.
(Also, notice that dτ ≈ dt for small velocities). This confirms that particles indeed move along geodesics.

5.10 Conserved quantities
1. Let us consider again the geodesic equation, written now with one index down,

pαpβ;α = 0 (5.140)

which is also
pα∂αpβ − Γγαβp

αpγ = m
dpβ
dτ
− Γγαβp

αpγ = 0 (5.141)

Now we have that

Γγαβp
αpγ = 1

2(gνβ,α + gνα,β − gαβ,ν)pνpα (5.142)

= 1
2gνα,βp

νpα (5.143)
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(in fact, the first and third term, which together form an antisymmetric matrix in να, vanish when
multiplied by the symmetric matrix pνpα). Let us focus now on a particular coordinate β̂. Therefore we
have

m
dpβ̂
dτ

= Γγ
αβ̂
pαpγ = 1

2gνα,β̂p
νpα (5.144)

This shows that pβ̂ is constant (conserved) if and only if

gνα,β̂ = 0 (5.145)

that is, if the metric does not depend on the coordinate β̂. In general, pβ̂ = const does not imply
pβ̂ = const.

2. So for instance, if the metric does not depend on time (stationary metric), then the energy, p0 = −E, is
conserved. If, in spherical coordinates, the metric does not depend on the azimuthal angle φ, the angular
momentum pφ = gφφp

φ = r2mdφ/dτ is conserved (notice that pφ is not).

3. From the equation
pαp

α = −m2 = gαβpαpβ (5.146)

in the weak field metric Φ� 1 and in the small velocity limit p0 � pi, we find that at the lowest order

−m2 = gαβpαpβ = (−1 + 2Φ)p2
0 + p2 (5.147)

(where p = |p| is the spatial momentum amplitude) from which (choosing the minus sign since p0 = −E)

p0 = −m
√

1 + v2

1− 2Φ ≈ −m(1 + 1
2v

2 + Φ) (5.148)

So, the energy of a massive particle for small velocities and small Φ (the so-called Newtonian limit) is

− p0 = E ≈ m+ 1
2mv

2 +mΦ = m+ p2

2m +mΦ (5.149)

Terms like Φv2 have been discarded because very small in this approximation. This recover the standard
Netwonian expression (a parte the rest mass), i.e. kinetic energy plus potential energy. As we have seen,
this energy is conserved only if Φ does not depend on time.

5.11 Killing vectors
1. The momentum conservation rule can be generalized to conservation along a set of vectors ~ξ known as

Killing vectors or Killing fields. Suppose
pαξα = const (5.150)

Then

(pαξα);µ = pα;µξα + pαξα;µ (5.151)
= pα,µξα + pαξα,µ + ξαΓανµpν − ξνΓναµpα (5.152)
= pα,µξα + pαξα,µ = (pαξα),µ = 0 (5.153)

Now, this implies
pµ(pαξα);µ = pµpα;µξα + pµpαξα;µ = 0 (5.154)

and since the first term vanishes (because of the geodetic condition), the second must as well. Now pµpα

is a symmetric matrix, so it vanishes when contracted with an antisymmetric matrix, so the condition for
Eq. (5.150) to be verified is that

ξα;µ + ξµ;α = 0 (5.155)
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2. These conditions define the Killing vector field ~ξ. This means that to find the Killing vectors in a given
metric one should solve these differential equations, which in general is a very non-trivial task. The
projection of momentum along a Killing vector is conserved.

3. When the metric does not depend on coordinate α̂, the Killing vector is ξµ = δµα̂. In fact, ξµ = gµνξ
ν
α̂ = gµα̂

and ξµpµ = pα̂ which is indeed constant. Considering ξµ = gµα̂ as a vector, and therefore applying the
covariant derivative of vectors, we have infact that the antisymmetry condition is satisfied

gµα̂;ν + gνα̂;µ = gµα̂,ν − Γτµνgτα̂ + gνα̂,µ − Γτνµgτα̂ = gµα̂,ν + gνα̂,µ − 2Γτνµgτα̂ (5.156)
= gµα̂,ν + gνα̂,µ − gτα̂gτβ(gβµ,ν + gβν,µ − gµν,β) (5.157)

= gµα̂,ν + gνα̂,µ − δβα̂(gβµ,ν + gβν,µ − gµν,β) (5.158)
= gµα̂,ν + gνα̂,µ − gµα̂,ν − gνα̂,µ + gµν,α̂ (5.159)
= gµν,α̂ (5.160)

which indeed vanishes if gµν,α̂ = 0.

5.12 Einstein equations
1. We know that the Newtonian gravitational equations are the Poisson equation and the gravitational

potential equation

∇2
(3)Φ = 4πGρ (5.161)

Φ = −GM
r

(5.162)

We now look for the simplest set of equations involving the metric and the EMT such that this limit is
reproduced. These will be the GR equations.

2. Since the Poisson equation contains two derivatives, we expect that also our GR equations are (at least)
second order. Moreover, since ρ appears linearly (in the second equation,M = 4πρR3/3 for a homogeneous
sphere), and ρ is part of Tµν , we expect the equations to be linear in Tµν . So, since Tµν is covariantly
conserved, the metric should appear in a form that contains second order derivatives and that is conserved.
There is then only a possibility left:

Gµν ≡ Rµν −
1
2gµνR = κTµν (5.163)

These are Einstein’s equations.

3. Einstein equations are generally covariant, that is, they remain formally identical under a general trans-
formation of coordinates, since the tensors on both sides transform in the same way. This property is
also called diffeomorphism invariance, i.e. invariance under a differentiable transformation of coordinates.
This property crucially requires that the metric gµν be a dynamical quantity, not a fixed one. Standard
field theory is defined on a fixed Minkowski background and therefore is not diffeomorphism invariant.

4. In reality, we could add a term linear in the metric, Λgµν , which is also conserved. For now we do not
consider this “cosmological constant” term.

5. If we allow for more derivatives, then the equations can become much more complicated. For instance,
one can show that the tensor

Eµν ≡
df(R)
dR

Rµν −
1
2f(R)gµν −

(
df(R)
dR

)
;µν

+ gµνg
αβ

(
df(R)
dR

)
;αβ

(5.164)

where f(R) is any function of R, is conserved (Eµν;µ = 0), and therefore could be added to Gµν . These
“modified gravity” theories, although possible in principle, have received so far no experimental support.
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6. In order to find κ, the only free parameter, we compare Einstein’s equations with the Newtonian limit.
First we choose units in which

1 = G

c2
= 7.45× 10−28 m

kg (5.165)

so the mass can be expressed in meters. For instance

M☼ ≈ 1500m (5.166)

The correct dimensionality of the equations can be checked by noting that now mass, length and time are
all in length units, e.g. meters. That is

1s = 3 · 108m (5.167)
1kg = 7.45 · 10−28m (5.168)

7. We now set κ = 8πG/c4 → 8π, and show that this is the correct choice by comparing the weak field limit
to the Poisson equation.

8. Using units such that c = h = 1 (so-called natural units), one finds that G has dimensions of mass−2. We
can write therefore

G = M−2
P (5.169)

where MP ≈ 1019 GeV is called Planck mass.

5.13 Linearized equations
1. Let us write

gµν = ηµν + hµν (5.170)

(we can say that η is the background metric, and h is the perturbed metric). Since we are looking for the
Newtonian limit, we assume the metric will always be close to Minkowski, that is

hµν � ηµν (5.171)

or |hµν | � 1. Notice that one should write

gµν = ηµν − hµν (5.172)

so that gµνgνσ = δσµ at first order. The indexes of hµν can be raised/lowered simply with ηµν , since using
the full gµν would introduce a second order correction. To keep track of the order, it is often convenient
to add a factor ε to every perturbed quantity, and keep only O(ε) terms. By the same reason, covariant
derivatives become ordinary derivatives when linearizing.

2. Let us perform now a Lorentz transformation Λᾱβ . Schematically, we have

ḡ = ΛΛg = ΛΛη + ΛΛh (5.173)

But ηµν is invariant under a Lorentz transformation, so

ḡ = η + h̄ = η + ΛΛh (5.174)

that is, although h is not a tensor under a general transformation (g is), it transforms as a tensor under
LT.

3. How does h transform then under a general coordinate transformation? Since h is supposed to be a
small quantity, it is enough we consider “small transformations”, i.e. transformations that deviate from
identity just by a small quantity ξα (these are called gauge transformations: they leave the background
ηαβ unchanged, but change the perturbation hαβ)

xᾱ = xα + ξα(xβ) (5.175)
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Then we have
Λᾱβ = ∂xᾱ

∂xβ
= δαβ + ξα,β (5.176)

and the inverse
Λα
β̄

= ∂xα

∂xβ̄
= δαβ − ξα,β (5.177)

(note indeed that at first order in ξ one has Λα
β̄
Λβ̄γ = δαγ ).

4. So we have

gµ̄ν̄ = Λαµ̄Λβν̄(ηαβ + hαβ) (5.178)
= (δαµ − ξα,µ)(δβν − ξβ,ν)(ηαβ + hαβ) (5.179)
≈ ηµν + hµν − ξµ,ν − ξν,µ (5.180)

where we discarded higher-order terms like ξξ and ξh. Notice that it is correct to use η alone to raise and
lower indexes, ηαβξα,γ = ξβ,γ since using the full gαβ would introduce only higher order terms. Similarly,

hαβ = ηαµηβνhµν (5.181)
hαβ = ηαµhµβ (5.182)
h = hαα (5.183)

5. The components of hµν are then identical to those of hµν . Notice however that if we write gµν = ηµν+h̃µν ,
then h̃µν has the same components as −hµν , since δµν = gµνgνσ = ηµνηνσ + h̃µνηνσ + ηµνhνσ + h̃µνhνσ
which reduces to ηµνηνσ + h̃µνhνσ ≈ δµσ (i.e., the identity matrix at first order) if h̃µν = −hµν . So
h̃µν 6= ηαµηβνhαβ . In fact, we should simply write gµν = ηµν − hµν , where hµν = ηαµηβνhαβ .

6. Eq. (5.180) shows that we can always change the perturbation hαβ so that

h
(new)
αβ = h

(old)
αβ − ξα,β − ξβ,α (5.184)

for any choice of ~ξ. This is called gauge freedom. By a suitable choice of ~ξ (which amount to choosing
four functions of space and time) one can simplify a lot the equations.

7. Inserting the perturbed metric gµν = ηµν + hµν inside the Riemann tensor, and taking the limit of small
h, one gets at first order

Rαβµν = 1
2(hαν,βµ + hβµ,αν − hαµ,βν − hβν,αµ) (5.185)

It is not difficult to show that this expression is gauge-invariant, i.e. does not change under any gauge
choice ~ξ.

8. Now we define the Trace reverse

h̄αβ ≡ hαβ − 1
2η

αβh (5.186)

h̄ ≡ h̄αα = −h (5.187)

(notice that hαβ = h̄αβ − ηαβh̄/2). In terms of h̄, the Einstein equations at first order become

Gαβ = −1
2 [h̄ ,µ

αβ,µ + ηαβh̄
,µν
µν − h̄ ,µ

αµ,β − h̄
,µ
βµ,α] (5.188)

9. Now we can use a gauge transformation to simplify this expression. We choose the so-called Lorentz gauge,
such that

h̄µν,ν = 0 (5.189)

(that is, we choose four functions ξα such that the h̄ is transformed into a new h̄ that obeys the Lorentz
gauge; notice that we do not need to specify ~ξ, just show that it exists).
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10. The gauge condition (5.184) can be written for h̄ as

h̄
(new)
αβ = h̄

(old)
αβ − ξα,β − ξβ,α + ηαβξ

,σ
σ (5.190)

11. We now differentiate Eq. (5.190) wrt β

(h̄(new)
αβ ),β = (h̄(old)

αβ ),β − ξ,βα,β − ξ
,β
β,α + ηαβξ

,σβ
σ (5.191)

= (h̄(old)
αβ ),β − ξ,βα,β (5.192)

The new metric is the one we want to obey the Lorentz gauge, so the lhs vanishes. We see then that the
condition on ~ξ to satisfy the Lorentz gauge is

2ξα = h̄αβ,β (5.193)

Notice that we can always add to ~ξ another vector ~η such that 2ηα = 0 and still satisfy the Lorentz gauge.

12. In this case, all terms in (5.188) cancel except the first one,

Gαβ = −1
2 h̄

,µ
αβ,µ ≡ −

1
22h̄αβ (5.194)

where we employed the box operator
2φ ≡ φ;α

;α (5.195)

When using our background metric, η, the covariant derivatives and the ordinary ones coincide.

13. Finally, the weak-field Einstein equations in the Lorentz gauge (“linearized theory”) are

2h̄αβ = −16πTαβ (5.196)

14. The energy-momentum tensor for a perfect fluid is already linear in the metric. For a non-relativistic fluid
we can now neglect all the entries except T 00 = ρ. In fact, in general, the components T 0i are of order v,
and the components T ij are of order v2, while ρ is of order 1 (i.e., goes like c2).

15. Then the equations in flat space and small velocities, i.e. in the Newtonian limit, are just one,

2h̄00 = −16πT00 = −16πρ (5.197)

The other components h̄ij will be then much smaller than h̄00. Therefore

h̄ ≈ h̄0
0 (5.198)

Moreover, we can assume a static metric (as we have seen, the perturbed metric is proportional to the
gravitational potential Φ, so we are assuming a static potential), and therefore

2→ ∇2
(3) (5.199)

(standard 3D Laplacian), and therefore

∇2
(3)h̄00 = −16πρ (5.200)

which, compared to Poisson equation Eq. (5.161) gives

h̄00 = −4Φ (5.201)

Finally, since
h00 = h̄00 −

1
2η00h̄ ≈ h̄00 −

1
2 h̄00 = 1

2 h̄00 (5.202)
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we have
h00 = −2Φ (5.203)

and also
hxx = hyy = hzz = 1

2 h̄00 = h00 = −2Φ (5.204)

This shows that the linearized metric is indeed

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)(dx2 + dy2 + dz2) (5.205)

as we know already. This confirms that κ = 8πG/c4 → 8π is indeed the right choice.

16. How large is Φ? For the Earth, Sun and Galaxy we have

ΦEarth = GMEarth

REarthc2
≈ 10−9 (5.206)

ΦSun = GMSun

RSunc2
≈ 10−6 (5.207)

ΦGalaxy = GMGalaxy

RGalaxyc2
≈ 10−4 (5.208)

That is, the weak field approximation is always very good, except near compact stars and black holes.

5.14 Far-field solution
1. Far from any source, ρ ≈ 0. If we also impose a static field, then the GR equations are

∇2
(3)h̄

µν = 0 (5.209)

Now these are just the standard Poisson equation in vacuum, except applied to every component of h̄.
Far from a source, the distance to every point of the source can be approximated just by the distance to
its center r.

2. The Laplacian of a function φ in radial form can be obtained from Eq. (5.30) with V µ = φ;µ = φ,µ ,
noting that the determinant of the metric in spherical coordinates is g = −r4 sin2 θ, and assuming that φ
only depends on r

∇2
(3) = 1

r2
d

dr
r2 d

dr
= 0 (5.210)

so that we have now
1
r2

d

dr
r2 d

dr
h̄µν = 0 (5.211)

whose solution is
h̄µν = Aµν

r
(5.212)

where Aµν are constants (a second solution, h̄µν = const, should be discarded since we must recover ηµν
at infinity).

3. However, the Aµν are not independent, since we have imposed the Lorentz gauge, so they must obey the
equation

0 = h̄µν,ν = h̄µi,i = −Aµjnjr−2 (5.213)

where we defined the unit radial 3-vector nj = r−1xi, (since (1/r),i = −xi/r3). It follows that

Aµj = 0 (5.214)

(so only A00 remains) and since Φ = −h̄00/4, we obtain

Φ = −1
4
A00

r
(5.215)
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Comparing with Newton’s law, Φ = −M/r , we see that

A00 = 4M (5.216)

So, the gravitational mass can always be inferred in GR by looking at the far-field behavior of the metric
around a static source.

5.15 Einstein-Hilbert Lagrangian
1. The Einstein equations can be derived from an Action, known as Einstein-Hilbert action:

A =
ˆ
d4x
√
−g R+ 16π

ˆ
d4x
√
−g Lm (5.217)

where Lm is the Lagrangian for the matter sector.

2. To obtain Einstein’s equation, one finds the variation of A with respect to gµν . Since R = gµνRµν , and
considering only the gravitational part, one has

δA =
ˆ
d4x[δ(

√
−g)R+

√
−g(δgµν)Rµν + gµνδRµν ] + 16π

ˆ
d4x[δ(

√
−g Lm)] (5.218)

3. Now, from (5.25) we have

δ(
√
−g) =

(
∂

∂gµν
√
−g
)
δgµν = −1

2
√
−ggµνδgµν (5.219)

4. We now show that the gαβδRαβ part is a total divergence, and therefore gives rise to a constant boundary
term, which does not influence the equations of motion. One has (see Eq. 5.106)

gαβδRαβ = gαβ [(δΓµαβ);µ − (δΓµαµ);β ] (5.220)

= [(gαβδΓµαβ)− (gαµδΓννα)];µ (5.221)
= V µ;µ (5.222)

where in the last step we see that the term can be written as the covariant divergence of a vector. By
Gauss’ theorem, this is equivalent to a boundary term, which as usual can be taken to be zero on a surface
very far from the source of the gravitational field.

5. Assuming now that Lm depends only on gµν , and not on, e.g., its derivatives, we have

δA =
ˆ
d4x[−1

2
√
−ggµν R+

√
−gRµν ]δgµν + 16π

ˆ
d4x[∂(

√
−g Lm)
∂gµν

]δgµν (5.223)

=
ˆ
d4x
√
−g[−1

2gµν R+Rµν + 16π∂(
√
−g Lm)√
−g ∂gµν

]δgµν (5.224)

In order for the variation to vanish, δA = 0, for any δgµν , one requires the term inside square bracket to
vanish. This gives Einstein’s equations

Rµν −
1
2gµν R = 8πTµν (5.225)

where we have defined
Tµν = −2∂(

√
−gLm)√
−g∂gµν

(5.226)
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6. As we have seen in Sec. 4.7, the torsion tensor is defined as

T γαβ = Γγαβ − Γγβα (5.227)

If we do not assume it to vanish, then the connection is no longer given as function of the metric and does
not necessarily vanish even in a flat manifold. In fact, one has then a new connection

Γ̃γαβ = Γγαβ +Kγ
αβ (5.228)

where Γ is the usual Levi-Civita connection, and K is the contorsion tensor, defined as

Kγ
αβ = 1

2(T γαβ − T
γ
αβ − T

γ
β α) (5.229)

Now the commutator of covariant derivatives of a scalar field is no longer zero

[∇α,∇β ]φ = Kγ
αβφ,γ (5.230)

The Riemann and Ricci tensors can be written as is the standard case, but with Γ̃ instead of Γ.

7. We will not make further use of the Lagrangian formalism in this course.



Chapter 6

Gravitational waves

6.1 Wave equation
1. We go back to Eq. (5.196) now, and we solve this equation in empty space, i.e.

2h̄αβ = h̄ ;γ
αβ;γ = (− ∂2

∂t2
+∇2

(3))h̄αβ = 0 (6.1)

Contrary to the cases seen above, we now keep the time derivative. This is a wave equation and the
solutions are called gravitational waves (GW). They exist (also) in empty space and propagate, as we see
in a moment, with the speed of light. As well-known, they have been first directly measured in 2015 by
the LIGO interferometer.

2. We now verify that a solution is a plane wave

h̄αβ = Aαβeikαx
α

(6.2)

where Aαβ are constants and ~k is a null vector. In fact (remember the background is Minkowski, so all
derivatives here are standard derivatives)

h̄αβ,µ = Aαβ
∂

∂xµ
eikαx

α

= iAαβkα
∂xα

∂xµ
eikαx

α

(6.3)

= iAαβkµe
ikαx

α

(6.4)

and similarly
h̄αβ,µ,µ = −Aαβkµkµeikαx

α

= 0 (6.5)

This shows that kµkµ = 0, i.e. is a null vector. This implies that the GWs travel along the same paths as
light.

3. Since ~k is a null vector, we can write its component as ~k → (ω,k) with ω2 = |k|2, and therefore

ikαx
α = ikαxβηαβ = −i(ωt− k · x) (6.6)

which becomes −iω(t− x) for propagation along x. This, again, shows that the velocity of propagation is
c.

4. Now, Eq. (6.1) is linear and therefore any linear combination of plane waves is a solution. For a realistic
case, the linear combination has to produce a real number, not a complex one, for instance

1
2A

αβ(eikαx
α

+ e−ikαx
α

) = Aαβ cos(kαxα) (6.7)

We need to consider only a single plane wave. A realistic GW signal will be the sum of many independent
plane waves with different ~k’s.

72
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5. We still have to impose the Lorentz gauge. This gives immediately

Aαβkβ = 0 (6.8)

i.e., the matrix Aαβ is orthogonal to the propagation vector ~k.

6. We are still free to modify h̄αβ by adding a gauge vector ~ξ such that 2~ξ = 0. Now we choose this vector
as

ξα = Bαe
ikµx

µ

(6.9)

Then, as a consequence, the perturbed metric changes as

hnewαβ = holdαβ − ξα,β − ξβ,α (6.10)

and
h̄newαβ = h̄oldαβ − ξα,β − ξβ,α + ηαβξ

µ
,µ (6.11)

This shows that we can write

Anewαβ = Aoldαβ − iBαkβ − iBβkα + iηαβB
µkµ (6.12)

Taking the trace we obtain
Anew,αα = Aold,αα + 2iBµkµ (6.13)

So if we choose Bµ in such a way that

−Aold,αα = 2iBαkα (6.14)

we produce a matrix that is traceless,
Aαα = 0 (6.15)

and therefore h̄ = 0.

7. Similarly, taking ~k → {ω, 0, 0, ω}, we can write Eqs. (6.12) as

Anew00 = Aold00 − iω(B0 +B3) (6.16)
Anew11 = Aold11 − iω(B0 −B3) (6.17)
Anew22 = Aold22 − iω(B0 −B3) (6.18)
Anew01 = Aold01 − iωB1 (6.19)
Anew02 = Aold02 − iωB2 (6.20)
Anew12 = Aold12 (6.21)

and we can easily choose coefficients Bµ such that

Anew00 = Anew01 = Anew02 = 0 (6.22)

(for instance, B1 = −iAold01 /ω, B2 = −iAold02 /k etc.). Finally, Aαβkβ = 0 implies Aµ0 = Aµ3 and therefore
A00 = A03 = A30 = A33 = 0 (all for the new A). These conditions together are called traceless-transverse
gauge (TT). These are additional to the Lorentz gauge. The conditions on Bµ are equivalent to choosing
Aµν such that

AαβU
β = 0 (6.23)

where ~U is any constant 4-velocity time-like vector (for instance, ~U → (1, 0, 0, 0)).

8. So in the TT gauge we have
h̄TTαβ = hαβ (6.24)
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9. The only non-zero components are then Axx, Axy, Ayy (as every metric, hαβ is symmetric). However, the
traceless condition says that Axx = −Ayy so finally a GW has only two independent non-zero components,
Axx, Axy (also called degrees of freedom)

h̄TTαβ =


0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0

 eikαx
α

(6.25)

To summarize, this expression applies to a GW propagating along the z direction, seen in the frame in
which ~U is the timelike rest-frame 4-velocity, in the Lorentz TT gauge. The complex factor can be replaced
by the real part cosω(t− z) in any practical application. It is clear then that ω is the wave frequency, and
the wavelength is λ = 2π/ω. The wavelength of course depends on the generation mechanism: two binary
stars, for instance, will typically produce waves of wavelength that depends on their orbital radius.

10. Initially, the metric has 10 degrees of freedom. Four of these can be erased by the gauge transformation,
and four more by the extra freedom to choose ξα such that 2ξα = 0, so we are left with two. This extra
freedom however only works in vacuum, where 2h̄αβ = 0 as well.

6.2 GWs on particles
1. Consider a particle initially at rest in a frame, so that its 4-velocity is ~U → (1, 0, 0, 0). Its geodesic equation

is then
d

dτ
Uα + ΓαµνUµUν = 0 (6.26)

and, when at rest, one has that a GW with metric hαβ will act on the particle as

d

dτ
Uα = −Γα00 = 1

2η
αβ(hβ0,0 + h0β,0 − h00,β) (6.27)

In the TT gauge, hTTβ0 = 0, so it would seem that the particle remains at rest. However, in reality this
only means that it remains at rest in a particular frame, that is, the coordinates that describe the particle
remain the same. This would also be true if one uses the geodesic deviation equation (5.89), which just
gives the coordinate separation between nearby geodesics. What we should do is looking for how the
proper separation between two particles change when a GW hits the system.

2. Let us consider two particles at positions x1 = (0, 0, 0) and x2 → (ε, 0, 0) and assume they can move only
along x. Their space-time interval is

ds =
√
gαβdxαdxβ =

√
gxxdx2 = √gxxε (6.28)

For the GW metric ηαβ + hαβ this amounts to

ds = √gxxε = (1 + 1
2h

TT
xx )ε (6.29)

So we see that the proper distance (the distance measured by an observer that has both events on its axis
of simultaneity) changes when a GW hits the particles.

3. For realistic GWs emitted by astrophysical sources (see later) one has

hxx ≈ 10−21 (6.30)

which means the particles will move by only an infinitesimal distance. Over 1 km, the change in separation
is around 10−9nm!
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4. Following the derivation in Maggiore, Gravitational Waves I, or in Hobson, Efstathious, Lasenby, General
Relativity, the invariant way to describe the effect of an impinging GW is to work out the variation of the
proper distances (all in TT gauge but we suppress the TT subscript for now)

ds2 = (δij + hij)dxidxj = ε2 + hijdx
idxj (6.31)

where ε is the initial separation. At first order, this gives

s = ε+ 1
2hijdx

idxj

Then if the initial separation vector is εi, the proper distance vector at any given time is si(t) = εi + ξi(t)
with ξi � εi (because ξ is proportional to h, as intuitive and shown below) and we have

s2 = ξ2 + ε2 + 2ξiεi

and, at first order
s = ε+ ξin

i

where ni = εi/ε. Therefore, at first order

ξin
i = s− ε = 1

2hijn
iεj (6.32)

or
ni(ξi −

1
2hijε

j) = 0 (6.33)

Since this is to be valid for any ni, the expression in parentheses must vanish.

5. Differentiating wrt t (which coincides with τ when the motion of the particles is non-relativistic) we obtain

ξ̈i = 1
2 ḧij(t)ε

j (6.34)

6. We can now write the equation for the proper distance along x as

ξ̈x = 1
2 ḧxj(t)ε

j = 1
2 ḧxx(t)εx + 1

2 ḧxy(t)εy (6.35)

and, repeating along y and using hyy = −hxx,

ξ̈y = 1
2 ḧyj(t)ε

j = 1
2 ḧyx(t)εx − 1

2 ḧxx(t)εy (6.36)

7. Let us now consider separately a wave composed only by the diagonal terms in the TT gauge, hTTxx = −hTTyy
and a wave with only the off-diagonal ones, hTTxy . The equations for the two waves become

ξ̈x = 1
2ε

xḧTTxx (6.37)

ξ̈y = −1
2ε

yḧTTxx (6.38)

and

ξ̈y = 1
2ε

xḧTTxy (6.39)

ξ̈x = 1
2ε

yḧTTxy (6.40)

8. If one first assumes that hTTxy = 0, then one sees that the four particles oscillate forming a “+”, because
the oscillation is proportional to the separation along the same direction. If instead hTTxx = 0, then the
four particles oscillate forming a “×”, because the oscillation is now orthogonal to the separation (see Fig.
6.1).
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Figure 6.1: GW polarization states.

9. This shows that it makes sense to write

hTTµν = hTTµν(+) + hTTµν(×) =
(
hxx 0
0 −hxx

)
+
(

0 hxy
hxy 0

)
(6.41)

i.e. as the sum of two GWs (“polarization states”) called orthogonal and cross polarization, respectively.
A generic GW will of course be the sum of both states.

10. Electromagnetic waves, in contrast, can be decomposed into polarization states that are orthogonal to
each other. Ultimately, this depends on the fact that EM waves are spin 1 (vector field), while GW are
spin 2 (tensor field).

6.3 Production of GWs
1. Let’s go back to the weak field equations

2h̄αβ = (− ∂2

∂t2
+∇2

(3))h̄αβ = −16πTαβ (6.42)

and let us apply this to a particular source that varies in time, for instance a binary star. For simplicity,
we take as source a sinusoidal signal with frequency Ω

Tµν = Sµν(xi)e−iΩt (6.43)

and assume that Sµν = 0 outside a small region of size ε � 2πc/Ω. This means that the binary stars
move with velocity ≈ Ωε� 1, i.e. non-relativistically (in this particular case, ε would be the binary star
orbit radius).

2. The GR equations are then solved by
h̄αβ = Bµν(xi)e−iΩt (6.44)

where the coefficients obey the equations

(Ω2 +∇2
(3))Bµν(xi) = −16πSµν (6.45)
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Notice that in a radial system,
∇2

(3) = 1
r2

∂

∂r
(r2 ∂

∂r
) (6.46)

3. Outside the source Sµν = 0, so in this region it is easy to see by direct substitution in the equation that
we have the general homogeneous solution

Bµν = Aµν
r
eiΩr + Zµν

r
e−iΩr (6.47)

Only the first term however represents outward moving waves, i.e. emitted waves (the full solution would
in fact be h ∼ ei(Ωr−Ωt), whose phase is constant when r = t; we put then Zµν = 0). The external solution
represents then a GW outside the source. At large r, the behavior within a region ∆r � r (as is the case
for a GW detection) is just like we found already in Eq. (6.2).

4. So we need now to find Aµν as a function of Sµν matching the external solution with the internal one at
ε. Let us integrate the equations within the source volume 4πε3/3:ˆ

d3x(Ω2 +∇2
(3))Bµν(xi) = −16π

ˆ
d3xSµν (6.48)

The first term on the lhs gives

Ω2
ˆ
d3xBµν(xi) ≤ Ω2Bµν,max

4πε3

3 (6.49)

which is negligible because Ωε� 1. Using Gauss’ theorem, the second term gives (3D vectors here)ˆ
d3x∇2

(3)Bµν(xi) =
˛
~n · ~∇Bds (6.50)

where ~n is the outward unit normal to the spherical surface of radius ε. Now the radial unit normal is

ni = ∂r

∂xi
= xi

r
(6.51)

and since Bµν depends only on r (because of symmetry) we have

~∇Bµν →
∂

∂xi
Bµν = ∂r

∂xi
∂

∂r
Bµν = ni

∂

∂r
Bµν (6.52)

Since nini = 1, this implies
niBµν,i = ∂Bµν

∂r
(6.53)

Now, the spherical area element is dS = r2 sin θdθdφ . At the surface S, or immediately outside, Bµν is
given by the external solution and therefore˛

~n · ~∇Bds =
ˆ
∂Bµν
∂r

r2 sin θdθdφ (6.54)

≈ 4π[(−Aµν
r2 r2)eiΩr]r=ε ≈ −4πAµν (6.55)

Here we have neglected the small contribution due to the derivative of eiΩr at r = ε and finally approxi-
mated eiΩε ≈ 1 because Ωε� 1

5. So finally we have shown thatˆ
d3x(Ω2 +∇2

(3))Bµν(xi) = −4πAµν = −16π
ˆ
Sµνd

3x ≡ −16πJµν (6.56)

where the last member defines the source matrix Jµν ≡
´
Sµνd

3x. This shows that

Aµν = 4Jµν (6.57)

h̄µν = 4Jµν
eiΩ(r−t)

r
(6.58)
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6. We still have to find Jµν . We have

Jµνe
−iΩt =

ˆ
Tµνd

3x (6.59)

from which, differentiating wrt time,

− iΩJµ0e−iΩt =
ˆ
Tµ0
,0 d

3x = −
ˆ
Tµk,k d

3x = −
˛
Tµknkds (6.60)

If the surface of the last integral is just outside the source, Tµν = 0, so

Jµ0 = 0→ h̄µ0 = 0 (6.61)

7. Let us define now the source quadrupole moment I`m

I`m ≡
ˆ
T 00x`xmd3x (6.62)

(since we are here concerned only with spatial indexes in a Minkowski background, we can raise and lower
them without worrying about signs nor position of indexes; repeated indexes are always understood to be
summed over ). Since T 00 = ρe−iΩt , we have

I`m = e−iΩt
ˆ
ρx`xmd3x (6.63)

We need now a result that will be derived in an exercise, namely the tensor virial theorem

∂2

∂t2

ˆ
T 00x`xmd3x ≡ ∂2

∂t2
(I`m) = 2

ˆ
T `md3x (6.64)

Now since
1
2
∂2

∂t2
(I`m) = −1

2Ω2(
ˆ
ρx`xmd3x)e−iΩt = −1

2Ω2I`m (6.65)

by the virial theorem we get ˆ
T `md3x = −1

2Ω2I`m (6.66)

8. Inserting this in Eq. (6.58) and using Eq. (6.59) we obtain the GW emitted by a source of a given
quadrupole 3D-tensor Iij

h̄ij = 4
r
eiΩrJije

−iΩt = 4
r
eiΩr
ˆ
Tijd

3x = −2Ω2Iij
eiΩr

r
(6.67)

9. The reduced quadrupole is defined as
Ī`m = I`m −

1
3δ`mI (6.68)

where I is the trace of I`m. Clearly, the trace of Ī`m is zero. A spherical source has vanishing reduced
quadrupole. One can show this by writing in spherical coordinate d3x = r2 sin θdθdφ, and x = rfx(θ, φ) =
r sin θ cosφ etc, and therefore

I`m ≡
ˆ
T 00(r, t)x`xmd3x =

ˆ
T 00(r, t)r4dr

ˆ
f `(θ, φ)fm(θ, φ) sin θdθdφ (6.69)

It is easy to see by direct calculation that the last integral vanishes for any ` 6= m and is 4π/3 for any
` = m. Explicitly, e.g. for ` = m = 1, we have

ˆ
(sin θdθdφ)2 sin θdθdφ =

ˆ π

0
sin3 θdθ

ˆ 2π

0
cos2 φdφ = 4π

3 (6.70)

Therefore, since T 00 = ρ(r)e−iΩt, we have

I`m ≡ 4π
3 e−iΩtδ`m

ˆ
ρr4dr (6.71)

and Ī`m = 0.
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10. To go now to the TT gauge, we define the projection operator

Pij ≡ δij − n̂in̂j (6.72)

where n̂ is a unit vector in the direction of wave propagation. Pij is called projector because PijPjk = Pik,
i.e. when applied twice it gives back itself. Then the TT gauge can be obtained from h̄ij as

h̄TTlm ≡ hijΛij,`m (6.73)

where
Λij,`m ≡

(
PilPjm −

1
2PijPlm

)
(6.74)

(the comma here is not a derivative, it’s just to separate the pairs of indexes!). One can easily check that
1) Λ is a projector itself; 2) Λ is traceless in ij and, separately, in `m; 3) Λ is normal to n̂i. Finally, since
2h̄ij = 0,then also 2h̄TTij = 0. This corresponds exactly to the properties of the TT gauge. So applying
the projector Λ to hij we automatically implement the TT.

11. We now implement the TT gauge on I`m. Because of Eq. (6.73), we have

ITT`m ≡ IijΛij,`m (6.75)

and, choosing z−propagation, i.e. n̂i = δzi , we can derive the relations

ITTxx = −ITTyy = 1
2(Ixx − Iyy) (6.76)

ITTxy = ITTyx = Ixy (6.77)
ITTzz = 0 = ITTxz = ITTyz (6.78)

12. Finally, since Ixx − Iyy = Īxx − Īyy and Ixy = Īxy, we write the result as

h̄TTxx = −h̄TTyy = −Ω2(Īxx − Īyy)e
iΩr

r
(6.79)

h̄TTxy = −2Ω2Īxy
eiΩr

r
(6.80)

An exactly spherical source has zero reduced quadrupole and therefore cannot emit GWs. Similarly, a
static source (i.e. Ω→ 0) does not emit GWs. Although we derived these two results only at first order in
1/r, they are valid at any order. Remember that Ī`m depends on time as e−iΩt, so our solutions propagate
as expected as e−iΩ(t−r).

13. The mass monopole corresponds to the energy of a source. Since this is conserved, there is no GW emission.
Similarly, the mass dipole corresponds to the center of mass and its first derivative to momentum. Since
momentum is conserved for an isolated system, again there is no GW emission.

14. Let us now produce a simple order-of-magnitude estimate for the GW from an astrophysical source. The
quadrupole of a source of mass M and size R has to be of the order of MR2 . Then

|h| ≈MR2 Ω2

r
= v2M

r
(6.81)

where v = ΩR is the typical orbital velocity of the source. By the virial theorem, the velocity squared
approximates the gravitational potential at the source,

v2 ≈ |Φ0| (6.82)

while M/r = |Φr| is the potential at the observer. Then

|h| ≈ |Φ0Φr| (6.83)

For hypothetical GWs emitted by the Sun (Φ0 ≈ 10−6 at Sun’s radius RS) and observed on Earth (at a
distance DS from the Sun), this would be h ≈ 10−6 · 10−6 · RSDS = 10−15 : but this is of course a gross
overestimate, since the Sun is a spherical source and has very little quadrupole. For a binary system of
solar mass at a typical distance of 10pc= 2·106AU , one has an amplitude 106 times smaller, i.e. h ≈ 10−21,
as we estimated previously.
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6.4 Examples of GW sources
1. Let us consider two oscillating, equal point particle, each of mass m, separated initially by `0, lying on

the x line (y, z constant). Their movement is described by the equations

x1(t) = −1
2`0 −A cos(ωt) (6.84)

x2(t) = 1
2`0 +A cos(ωt) (6.85)

We can describe the energy density of the particles using the Dirac δD as ρ1,2 = mδD(x−x1,2), since then

m =
ˆ
ρ1,2d

3x (6.86)

The quadrupole tensor has then a single component

Ixx =
ˆ
ρx2d3x =

∑
i

mx2
i (6.87)

= m[(−1
2`0 −A cos(ωt))2 + (1

2`0 +A cos(ωt))2] (6.88)

= const+mA2 cos(2ωt) + 2m`0A cosωt (6.89)

all the others being zero. Since any constant component disappears under time differentiation, we can
discard the constant term.

2. The quadrupole shows two components of frequency ω and 2ω. Since the problem is entirely linear (because
we linearized it!), we can estimate the contribution of the two components separately. We now complexify
the problem, i.e. cosωt→ e−iωt and if needed we go back to real values at the end.

3. For the ω component we find

Īxx = 2
3Ixx = 4

3m`0Ae
−iωt (6.90)

Īyy = Īzz = −1
3Ixx = −2

3m`0e
−iωt (6.91)

4. Therefore, for the z direction of GW propagation, we have

h̄TTxx = −h̄TTyy = −Ω2(Īxx − Īyy)e
iΩr

r
= −ω

2

r
(2m`0A)eiω(r−t) (6.92)

h̄TTxy = 0 (6.93)

i.e., a linearly polarized GW. For the y-component, one gets the same result.

5. For the x direction of GW propagation, instead, we obtain

h̄TTzz = −h̄TTyy = −Ω2(Īzz − Īyy)e
iΩr

r
= 0 (6.94)

h̄TTzy = 0 (6.95)

that is, no emission along the x-direction!

6. The second component of the source is a quadrupole that has frequency 2ω and amplitude mA2. So we
can just repeat the calculation replacing in (6.92) ω with 2ω and the factor 2m`0A with mA2. Then we
obtain

h̄TTxx = −h̄TTyy = −4ω
2

r
mA2e2iω(r−t) (6.96)

h̄TTxy = 0 (6.97)
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The total radiation field is then the real part of the sum of the two components:

h̄TTxx = −h̄TTyy = −[2mω2`0A cos(ω(r − t)) + 4mω2A2 cos(2ω(r − t))]r−1 (6.98)
h̄TTxy = 0 (6.99)

7. If we insert “laboratory values”, e.g. m = 103kg, `0 = 1m, A = 10−4 m, ω = 104s−1, we get h ≈ 10−34/r.
To make this calculation, one could either express lengths, times and masses in meters or reinsert the
constants G, c and obtain for the dimensionless h the value

Gm

rc4
[2ω2`0A cos(ω(r − t)) + 4ω2A2 cos(2ω(r − t))] (6.100)

6.5 Binary stars
1. The second system we study is two stars of equal mass m orbiting around each other, with an orbital

radius r = `0/2 and frequency ω, located on the z = const plane (see Fig. 6.2). Equaling the gravitational
force and the centrifugal force we obtain

m2

`20
= mω2 `0

2 (6.101)

from which Kepler’s law follows,

ω =
(

2m
`30

)1/2
(6.102)

2. The coordinates of the stars are described by

x1(t) = 1
2`0 cosωt, x2(t) = −x1(t) (6.103)

y1(t) = 1
2`0 sinωt, y2(t) = −y1(t) (6.104)

3. So we have (cos 2θ = 2 cos2 θ − 1, sin 2θ = 2 cos θ sin θ)

Ixx = m
∑

(x2
1 + x2

2) = m

4 `
2
0(2 cos2 ωt) = m

4 `
2
0 cos 2ωt+ const (6.105)

(as previously, we neglect any constant because of time differentiation). Similarly,

Iyy = −m4 `
2
0 cos 2ωt+ const (6.106)

Ixy = m

4 `
2
0 sin 2ωt+ const (6.107)

and Izz = Izy = Izx = 0. Now for simplicity and to connect with the previous formulae, we complexify
again the quadrupole, i.e. cos 2ωt → e−2iωt and sin 2ωt = − cos(2ωt + π/2) → −e−(2iωt+π/2) = ie−2ωt.
Then, since the trace I = Ixx + Iyy + Izz = 0, we obtain

Īxx = −Īyy = m

4 `
2
0e
−2iωt (6.108)

Īxy = i
m

4 `
2
0e
−2iωt (6.109)

So we obtain finally, for the z component (orthogonal to the source plane)

h̄TTxx = −2m
r
`20ω

2e2iω(r−t) (6.110)

h̄TTxy = −2im
r
`20ω

2e2iω(r−t) (6.111)
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Figure 6.2: GW from a binary system.

This is a circularly polarized GW. Along y, instead, we find a linear polarization,

h̄TTzz = −Ω2(Īzz − Īxx) e
iΩr

r = m

r
`20ω

2e2iω(r−t) (6.112)

h̄TTxz = −2Ω2Īzx
eiΩr

r = 0 (6.113)

and analogously along x.

4. Inserting the values for the pulsar PSR1913+16, orbital period 7h, distance r = 5kpc , m = 1.4M☼, we
obtain h ≈ 10−20 at Earth. However, this is a pulsar system and we can measure the variation of the
signal due to the stars losing energy, as we see next.

6.6 The pulsar PSR1913+16 and the detection of GWs
1. This section is very sketchy, refer to Schutz’s book for a complete treatment. The flux of energy associated

to a GW is
F = 1

32πΩ2〈h̄TTµν h̄µνTT 〉 (6.114)

(see the proof in Schutz, Chapter 9, or Maggiore, Chapter 3), where the brackets mean average over one
period.

2. Inserting the solution (6.79) we find

F = 1
32πr2 Ω6〈2Ī2

xx + 2Ī2
yy − 4ĪxxĪyy + 8Ī2

xy〉 (6.115)

3. This result can be generalized to propagation in any direction ni as

F = 1
16πr2 Ω6〈2Īij Īij − 4njnk ĪjiĪik + ninjnkn`Īij Īk`〉 (6.116)
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4. Integrating over a sphere, and using the identitiesˆ
njnk sin θdθdφ = 4π

3 δjk (6.117)
ˆ
ninjnkn` sin θdθdφ = 4π

15 (δijδk` + δikδj` + δi`δjk) (6.118)

we obtain the luminosity of a GW-emitting source

L =
ˆ
Fr2 sin θdθdφ = 1

5Ω6〈Īij Īij〉 (6.119)

5. The factor Ω6 comes from time derivatives, so in general

L = 1
5 〈

...
Īij

...
Ī
ij
〉 (6.120)

6. As an order-of-magnitude estimate, we can write Ī ≈MR2 and v ≈ ΩR, so L ≈M2R4Ω6 ≈ φ2
0v

6, so the
luminosity is extremely sensitive to the orbital velocity of the sources. That’s why the prime target for
detection were GW from fast inspiraling compact bodies, as in fact happened.

7. For the binary pulsar PSR1913+16, observed by Hulse and Taylor in the 80s, we can use the results of
the previous section (6.109) for the emission along z to find

〈
...
Īij

...
Ī
ij
〉 = Ω6〈Īij Īij〉 = 2Ω6〈Ī2

xx + Ī2
xy〉 = Ω6m

2

8 `40〈cos2(2ωt) + sin2(2ωt)〉 = Ω6m
2

8 `40 (6.121)

which gives (here Ω = 2ω)
L = 8

5m
2`40ω

6 (6.122)

and, inserting Eq. (6.102)

L = 64
5
m5

`50
≈ 4(mω)10/3

Now, the luminosity is energy per unit time. Energy is mass per velocity squared, so to go back to SI units,
we have to multiply energy by c2/G, to convert mass, and again by c2 to convert the velocity squared,
and divide time by c, so in total a factor of c5/G. For the pulsar we have m ≈ 1.4M☼, r = 5kpc, and a
orbital period of P = 2π/ω ≈ 7h (the rotation period of the pulsar is much shorter, of order 50 µs), which
gives

L = c5

G
(1.7 · 10−29)Watt (6.123)

8. Emitting this energy, the binary system becomes more compact. The energy of the pulsar system is the
sum of the kinetic energy of the two stars and the potential energy (r = `0/2). With Eq. (6.102), we can
express it in function of the binary period P

E = 2× 1
2mω

2r2 − m2

2r (6.124)

= −2−4/3m5/3ω2/3 (6.125)
= const× P−2/3 (6.126)

(negative because the system is gravitationally bound). So the relative energy and period changes are
related by

1
E

dE

dt
= −2

3
1
P

dP

dt
(6.127)

The output luminosity L represents the change in energy, L = −dE/dt. Inserting the numbers, we obtain
finally a theoretical prediction Ṗ ≈ −2 · 10−13. However, the large ellipticity of the actual pulsar orbit
makes the real value 12 times larger, so we get

Ṗ = 3
2
P

E
L ≈ −2.4 · 10−12 (6.128)
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Figure 6.3: GW “chirp” signal detected in 2016 by the LIGO collaboration (from www.ligo.org, credit: LIGO).

or, roughly, a period decrease (angular velocity increase) of 10−4 s/yr, which is in perfect agreement with
observations. This results earned Hulse and Taylor the Nobel Prize in 1993 as the first clear evidence of
the existence of GWs.

9. In the final phase, the angular velocity increases to relativistic speed and the stars or black holes finally
merge. The signal is then no longer a simple sinusoid, but a more complex signal called a chirp, with fast
increasing amplitude and shorter and shorter period, lasting overall less than a second, with an abrupt
halt. This chirp from two merging black holes has been first detected in 2016 by the LIGO collaboration
(Fig. 6.3).

10. In 2017, the LIGO-Virgo collaboration detected also GWs from a system of two merging neutron stars.
During the final phase, the two stars emitted also a burst of γ-ray radiation, detected by the Fermi space
telescope. For the first time ever, an event was observed both in GWs and in electromagnetic radiation.
Since the signals arrived almost simultaneously, this confirms GR prediction that GWs have the same
velocity as light.



Chapter 7

Spherically symmetric systems

7.1 Spherical metric
1. We proceed now to solving the GR equations when the space-time is assumed spherically symmetric. In a

flat space, this implies that the space part of the metric, when seen by an observer at rest with the system
in the center of symmetry, has to depend equally on x, y, z, i.e. has to depend on

dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2 θdφ2) (7.1)

In this case, the usual result that a circumference is 2πr and the surface of a sphere is 4πr2, where r is
the radius of the sphere, holds true. The element of surface is

dS = r2 sin θdθdφ (7.2)

In a curved space, however, this is no longer the case. In other words, one can define two different “radii”,
one, R, that gives the line element for fixed θ, φ; the other, r, that gives the surface element for a fixed R.
In this case the space part of the metric is

dR2 + r2(dθ2 + sin2 θdφ2) (7.3)

The coordinate r is called curvature coordinate. Now the circumference is 2πr and surface area is 4πr2 ,
as previously, but the sphere has radius R.

2. Now, we choose θ, φ so that they are always orthogonal to r (in other words, if I move radially, I remain
at the same values of θ, φ). This amounts to

grθ = ~er · ~eθ = 0 (7.4)
grφ = ~er · ~eφ = 0 (7.5)

So the space-time interval can be written as

ds2 = g00dt
2 + 2g0rdrdt+ 2g0θdtdθ + 2g0φdtdφ+ grrdr

2 + r2dΩ2 (7.6)

where we put for brevity
dΩ2 = dθ2 + sin2 θdφ2 (7.7)

Now the terms
2dt(g0θdθ + g0φdφ) = 2dt(Vidxi) (7.8)

with i = θ, φ and Vi = {g0θ, g0φ} select a particular direction, ~V . This is not acceptable however in a
spherically symmetric system, and therefore we must assume ~V = 0, i.e. g0θ, g0φ = 0. Then we obtain

ds2 = g00dt
2 + 2g0rdrdt+ grrdr

2 + r2dΩ2 (7.9)

85



CHAPTER 7. SPHERICALLY SYMMETRIC SYSTEMS 86

3. We now focus on static metrics, that is, time independent, and also we assume symmetry under time
inversion, t into −t. The last condition forces g0r = 0, otherwise ds2(t) would not be equal to ds2(−t).
Then finally we obtain the most general static spherical metric (in the frame at rest at the center of the
system)

ds2 = g00dt
2 + grrdr

2 + r2dΩ2 (7.10)
= −e2φ(r)dt2 + e2Λ(r)dr2 + r2dΩ2 (7.11)

4. We wish to apply this metric to isolated systems like stars and black holes. Therefore, we impose from
the start that far from the source we recover a Minkowskian metric,

lim
r→∞

φ(r),Λ(r) = 0 (7.12)

5. The proper radial distance of the metric is obtained for dt = dφ = dθ = 0, so

` =
ˆ r2

r1

eΛdr (7.13)

This is in general completely unrelated to the surface area 4πr2, as anticipated.

7.2 Gravitational redshift
1. Since the metric does not depend on t, we know that p0 = −E is a conserved quantity along a geodesic.

However, this is not the energy measured in the LIF at distance r of a particle with momentum p (a
LIF is momentarily at rest with the particle). In fact, in the LIF one has U i = 0 and therefore UµUµ =
gµνU

µUν = −1 (always valid by definition) gives

U0 = 1√
−g00

= e−φ(r) (7.14)

Then
ELIF = −~U · ~p = e−φ(r)E (7.15)

The two quantities, ELIF , E, coincide at infinity (φ(∞) = 0). So we can write that the energy of a particle
at r is

ELIF = e−φ(r)Einf (7.16)

2. Imagine now a photon propagating from a star (i.e., emitted at a distance r from the center) towards
infinity, where it is observed. At infinity, it has energy Einf = hνinf = ELIF e

φ(r), where ELIF is the
energy measured in the LIF at distance r from the center of the star. If we write ELIF = hνem for the
emitted energy, we see that the observed one at infinity is

νobs = νeme
φ(r) (7.17)

3. This shift in frequency implies a shift in wavelength as well. So since λ ∼ 1/ν we have

λobs = λeme
−φ(r) (7.18)

and a gravitational redshift
1 + z = λobs

λem
= νem
νobs

= 1√
−g00

= e−φ(r) (7.19)

This is then the redshift that is observed at infinity when a photon is emitted in a gravitational potential
at distance r from the center of a source. (Of course we assume we know νem because this frequency will
be identical to the frequency of a particular emission line measured in laboratory.)
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4. Since light wavelength is what is used to synchronize clocks, this shows that clocks in a gravitational field
do not remain synchronized. In particular, clocks in the gravitational field of a star run slower than at
infinity (i.e. νobs > νem) because, as we should have expected and will be shown shortly, φ(r) ≈ −M/r.

5. In full generality, the redshift can be written in an invariant way as follows:

1 + z = (~U · ~p)em
(~U · ~p)obs

(7.20)

7.3 Gravitational equations
1. We proceed now to derive the gravitational equations in a spherically symmetric system. We have (a

prime means d/dr )

G00 = 1
r2 e

2φ d

dr
[r(1− e−2Λ)] (7.21)

Grr = − 1
r2 e

2Λ(1− e−2Λ) + 2
r
φ′ (7.22)

Gθθ = r2e−2Λ[φ′′ + (φ′)2 + φ′

r
− φ′Λ′ − Λ′

r
] (7.23)

Gφφ = sin2 θGθθ (7.24)

All the other components vanish.

2. As we have seen, for an observer at rest with the star, U0 = −eφ and U0 = e−φ, and U i = 0. Therefore
the EMT has components

T00 = (ρ+ p)U0U0 + pg00 = ρe2φ (7.25)
Trr = pe2Λ, Tθθ = r2p, Tφφ = sin2 θTθθ (7.26)

3. Now we need to add information about the kind of matter that forms the star. In particular, we need an
equation of state (EOS) that links pressure with energy density and, if necessary, other thermodynamical
quantities like temperature. We assume now that p = p(ρ) , i.e. that the pressure depends only on
the energy density. For a ideal gas in equilibrium, indeed, the pressure depends only on ρ (since the
temperature is constant).

4. The conservation equations tell us that Tµν;µ = 0. These vanish for all components except ν = r, when we
get

(ρ+ p)dφ
dr

= −dp
dr

(7.27)

i.e. the pressure gradient is in equilibrium with the gravitational force.

5. The Einstein equation G00 = 8πT00 is now

1
r2 e

2φ d

dr
[r(1− e−2Λ)] = 8πρe2φ (7.28)

from which
d

dr
[r(1− e−2Λ)] = 8πρr2 (7.29)

If we define now the gravitational mass

m(r) ≡ 1
2r(1− e

−2Λ) (7.30)

we have that
grr = e2Λ = [1− 2m(r)

r
]−1 (7.31)
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and we obtain a familiar result, namely
dm(r)
dr

= 4πρr2 (7.32)
or

m(r) = 4π
ˆ
ρr2dr (7.33)

This shows that indeed m(r) is a mass (density times volume).

6. The rr Einstein equation is

φ′ = m(r) + 4πpr3

r[r − 2m(r)] (7.34)

Now we have all the equations we need: one for m(r), one for φ′, the EOS, and the conservation equation
(7.27), for four variables, ρ, φ,Λ, p.

7.4 Schwarzschild metric
1. Outside the star, ρ = p = 0. In this case we get the so-called exterior solution, or Schwarzschild metric.

We have now

m′ = 0, (7.35)

φ′ = m

r(r − 2m) (7.36)

from which m(r) = M = const and

φ =
ˆ

M

r(r − 2M)dr (7.37)

= 1
2 log(1− 2M

r
) (7.38)

(we imposed φ = 0 at infinity).

2. The Schwarzschild metric is therefore

ds2 = −dt2(1− 2M
r

) + dr2(1− 2M
r

)−1 + r2dΩ2 (7.39)

For large r, this can be approximated as

ds2 = −dt2(1− 2M
r

) + dr2(1 + 2M
r

) + r2dΩ2 (7.40)

and also as
ds2 = −dt2(1− 2M

r
) + (1 + 2M

r
)(dr2 + r2dΩ2) (7.41)

by a redefinition of the radial coordinate (still only for large r)

r → r(1 + M

r
) (7.42)

This last form of ds2 coincides indeed with the weak field limit we already obtained in Eq. (5.128) if
Φ = −M/r. This justifies again the use of M as the mass of the star.

3. The value R = 2M is called Schwarzschild radius. For the Sun it is 3 km, for the Earth is 9 mm. Except
for black holes, all objects in the Universe are much larger than their Schwarzschild radius.

4. Birkhoff theorem states that the Schwarzschild metric is the unique solution of the Einstein equations with
spherical symmetry in vacuum, even if the source is not static (but maintains spherical symmetry, that
is, collapsing or expanding but not rotating). This means that there are no GWs for spherical source at
all orders, not just at first order as we have demonstrated explicitly.
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5. There are several equivalent forms of the Schwarzschild metric, all related by simple coordinate transfor-
mations. For instance, with the transformation

r = r̄(1 + M

2r̄ )2 (7.43)

one finds the isotropic form

ds2 = −
(

1−M/2r̄
1 +M/2r̄

)2
dt2 +

(
1 + M

2r̄

)4
(dr̄2 + r̄2dθ2 + r̄2 sin2 θdφ2) (7.44)

(isotropic because the space part can be written as dx2 + dy2 + dz2 with suitably redefined coordinates).
This shows once again that the meaning of the coordinates is not absolute; they are just labels on the
manifold. Physical (i.e., measurable) quantities should be related to invariants like dτ or ~p · ~U .

7.5 Interior solution
1. Inside the radius R of the star, we have ρ, p 6= 0. Combining Eq. (7.27) with (7.34) we obtain the

Tolman-Oppenheimer-Volkov (TOV) equation,

p′ = − (ρ+ p)(m+ 4πr3p)
r(r − 2m) (7.45)

We need now to choose boundary conditions. We impose then m(r = 0) = 0 and p(r = 0) = pc. The
solution will therefore depend on the central pressure pc. Moreover, we put the pressure at the surface of
the star to vanish, since it must match the conditions in vacuum. Also, by continuity

m(R) = M = 4π
ˆ R

0
ρr2dr (7.46)

However, one has to notice that the proper volume of the star is
ˆ √

−g3d
3x =

ˆ
eΛr2 sin θdrdθdφ = 4π

ˆ
eΛr2dr (7.47)

which differs from 4π
´
r2dr. So the mass we measure outside, M , is different from the total energy stored

inside the star, which is given by M̂ = 4π
´
ρeΛr2dr. The difference gives the energy in the gravitational

field itself.

2. Eq. (7.45) can be integrated if ρ = const. Then m(r) = 4πρr3/3 and

p′ = −4π
3 r3 (ρ+ p)(ρ+ 3p)

r(r − 2m) (7.48)

so that ˆ
dp

(ρ+ p)(ρ+ 3p) = −4π
3

ˆ
rdr

1− 8
3πr

2ρ
= 1

4ρ log(1− 8
3πr

2ρ) + const (7.49)

The left-hand-side gives ˆ
dp

(ρ+ p)(ρ+ 3p) = 1
2ρ log 3p+ ρ

3(p+ ρ) + const

The integration constant should be fixed by the condition p(r = 0) = pc. Finally this gives

ρ+ 3p
ρ+ p

= ρ+ 3pc
ρ+ pc

(1− 2m
r

)1/2 (7.50)
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3. At r = R we have p = 0 and m = M = 4πρR3/3 so

1 =
(
ρ+ 3pc
ρ+ pc

)2
(1− 2M

R
) (7.51)

from which

R2 = 3
8πρ [1−

(
ρ+ 3pc
ρ+ pc

)−2
] (7.52)

or equivalently

pc = ρ
1− (1− 2M

R )1/2

3(1− 2M
R )1/2 − 1

(7.53)

which gives the central pressure as a function of the parameters M,R (see Fig. 7.2).

4. As an explicit function of M,R alone, the internal pressure is then

p = ρ

√
1− 2M

R −
√

1− 2Mr2

R3√
1− 2Mr2

R3 − 3
√

1− 2M
R

(7.54)

5. When the denominator goes to zero, pc →∞. This happens for

M

R
= 4

9 (7.55)

This result, called Buchdahl’s theorem, can be extended also to more general cases. It is an upper bound
for M/R for any star. Beyond this value, no central pressure can support a star.

6. For the Sun, M☼ ≈ 1.5 km, one has R ≈ 106 km, so ordinary stars are very far from this limit.

7. We can obtain the internal metric by using now Eq. (7.27):

(ρ+ p)dφ
dr

= −dp
dr

(7.56)

from which
φ = −

ˆ
dp

ρ+ p
(7.57)

Using the boundary value φ(R) = 1
2 log(1− 2M

R ), we obtain finally

eφ(r) = 3
2(1− 2M

R
)1/2 − 1

2(1− 2M
R3 r

2)1/2 (7.58)

for r ≤ R. The interior and exterior solutions are represented in Fig. (7.1).

7.6 White dwarfs and quantum pressure degeneracy
1. White dwarfs are stars supported not by radiation pressure (as ordinary stars) but by the pressure exerted

by a relativistic electron gas. We evaluate now the equation of state for a gas of charged particles
(electrons).

2. Due to Heisenberg uncertainly, ∆p∆x ≥ h, in a volume V , the minimal momentum of a quantum wave is

∆p ≥ hV −1/3 (7.59)

(in this section p is momentum and P is pressure). Therefore, for fermions, the number of states in p, p+dp
is

dN = 2× 4π p2dp

(∆p)3 = 8πp2 dp

h3V (7.60)
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Figure 7.1: Internal and external Schwarzschild solution for a star of radius 1, mass 0.25 (the pressure is
multiplied by 100).
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Figure 7.2: Central pressure as a function of M/R, showing the singularity for M/R→ 4/9.
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where the extra factor of 2 takes into account the two spin states. The total density of states for N
particles is then

N

V
=
ˆ p

0
8πp̄2 dp̄

h3 = 8πp3

3h3 (7.61)

3. If we cool a gas of electrons as much as possible (degenerate state), they will fill all the N states from the
lowest energy to some maximal pf (Fermi momentum), so that N will be the total number of particle,
n = N/V the number density and pf is given by

n = N

V
=

8πp3
f

3h3 (7.62)

so that the highest momentum that particles in a gas of density n can achieve is

pf = (3h3

8π )1/3n1/3 (7.63)

independent of the particle masses. For a star of mass similar to the Sun and radius similar to the Earth
(typical for white dwarfs), one finds pf ∼ 1 MeV, which is much larger that the electron mass but much
smaller than the nucleon masses. Most of the electrons are therefore relativistic.

4. With each electron state is associated an energy E = (p2 +m2)1/2 so the total energy density is

ρ = Etot
V

= 1
V

ˆ pf

0
(p2 +m2)dN =

ˆ pf

0
8πp2(p2 +m2)1/2 dp

h3 (7.64)

This tends to

ρ(p� m) =
2πp4

f

h3 (7.65)

in the relativistic limit.

5. Finally, the pressure exerted by this gas will be

P = −dE
dV

(7.66)

since the star is an isolated system. Assuming N = const, we have that n ∼ 1/V and also pf ∼ V −1/3 so
we have (V/pf )dpf/dV = −1/3 and therefore, differentiating also wrt the integration boundary,

P = −dE
dV

= −V
8πp2

f

h3 (p2
f +m2)1/2 dpf

dV
−
ˆ pf

0
8πp2(p2 +m2)1/2 dp

h3 (7.67)

or

P = −dE
dV

=
8πp3

f

3h3 (m2 + p2
f )1/2 − ρ (7.68)

Again in the limit pf � m this is
P = 2π

3h3 p
4
f = 1

3ρ (7.69)

just like for radiation. Note that this gas of electrons is at the same time relativistic but “cold” (in the
minimum state), due to Pauli exclusion principle.

6. Now white dwarfs (WD) are stars that are too cold to activate nuclear fusion, so they are not supported
by radiation pressure but by electron degeneracy pressure. They contain e− (relativistic) and n, p (non
relativistic); moreover, the density of electrons ne equals the density of protons, since WD are neutral.
Most mass is in n, p, so ρm = µmpne , (here µ takes into account the number of neutrons per proton, an
order of unity factor) while most pressure is in e−.
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7. So we have now a pressure
P ∼ p4

f ∼ n4/3
e ∼ ρ4/3

m (7.70)

or P = kρ
4/3
m (such power-law relations between pressure and density are called polytropic equations of

state), where

k = 2π
3h3

(
3h3

8πµmp

)4/3

(7.71)

8. From the equation (we can safely assume ρ� P )

dP

dr
= −ρm

m(r)
r2 (7.72)

we can estimate as an order of magnitude that (putting back G)

P

R
≈ ρm

GM

R2 (7.73)

where R is the size of the star and M its mass. Finally we see that GM = PR/ρm and replacing
R = (3M/4πρm)1/3 and P = kρ4/3,

M = G−3/2
(

3k3

4π

)1/2

= G−3/2

32µ2m2
p

(6h3

π
)1/2 ≈ M3

P

m2
p

(7.74)

(where in the last expression we used units such that c = h = 1 and therefore G = M−2
P , see Eq. (5.169)).

It is remarkable that the ratio M3
P /m

2
p is of the order of a solar mass. Inserting µ = 2 (appropriate for a

star with a large Helium content) one finds

M ≈ 0.32M☼ (7.75)

9. A more exact calculation gives
M ≈ 1.4M☼ (7.76)

a value called Chandrasekhar mass. This is the largest mass that the Fermi pressure of electrons can
support. Beyond this, the WD will collapse into a neutron star or a black hole. The typical size of a WD
is similar to the Earth.

10. In a more accurate treatment, one should consider that the typical energies are close to the electron mass,
so some electrons are relativistic, some are not. In the non-relativistic case, the density ρm will not simplify
out, and there will be a range of masses/radii that can be in equilibrium with pressure degeneracy (Fig.
7.3). Then it will appear that the Chandrasekhar mass is actually a maximal value, at which electron move
with light speed. Since they cannot exert more pressure than this, more mass (from e.g. a companion
star) will make the star unstable to further collapse, increased temperature, fusion of heavy elements, and
supernovae (type Ia) explosion.

11. Much more details on compact stars, including neutron stars, can be found for instance in Ferrari et al.,
General Relativity and its applications.

7.7 Particle’s motion
1. Let’s go back to the Schwarzschild metric (SM)

ds2 = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2dΩ2 (7.77)
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Figure 7.3: Relation mass-radius for white dwarfs. (Credit By AllenMcC., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=9383959)

2. The value (we put back c for a moment)
2GM
c2r

= 1 (7.78)

is of course particularly significant. In Newtonian mechanics, the escape velocity reaches c when

c2

2 = GM

R
(7.79)

so exactly the same condition. However, while in Newtonian physics light can go out but then, somehow,
should fall back on the star, as we will see, in GR light cannot escape at all.

3. We want to study now the evolution of particles in the SM, i.e. around a star. We will treat the particles
as test particles, i.e. they do not perturb the Schwarzschild metric but just move on the geodesics (of
course in absence of any external non-gravitational force).

4. Since the SM is independent of time, the energy of a particle moving in it, p0 = −E, is conserved. For
m 6= 0, let us define now a specific energy, Ē = −p0/m = E/m.

5. The SM is also independent of φ, so there is conservation of the orbital angular momentum

pφ = mUφ = mgφφU
φ = mr2 dφ

dτ
sin2 θ ≈ mr2 dφ

dt
(7.80)

where in the last step we put ourselves on the equatorial plane, θ = π/2 and we approximated dτ with dt
for non-relativistic speed.

6. Let us define also a specific momentum, L̄ = pφ/m. Also, we have

pr = m
dr

dτ
(7.81)

For a photon we use instead just the momentum, L = pφ.

7. Because we are in spherical symmetry, there is no force acting in the direction θ, so

pθ = 0 (7.82)

That is, if a particle begins its motion on a plane, it will remain in that plane, i.e. θ = const. From now
on, we take that plane to be the equator of the system, θ = π/2.

8. The contravariant components of the momentum are

p0 = mĒ(1− 2M
r

)−1 (7.83)

pr = m
dr

dτ
(7.84)

pφ = m

r2 L̄ (7.85)
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for a massive particle, and

p0 = E(1− 2M
r

)−1 (7.86)

pr = dr

dλ
(7.87)

pφ = L

r2 (7.88)

for a photon whose trajectory is parametrized by λ. (The parameter λ ultimately can be eliminated from
the equations in favor of some other coordinate, e.g. time, using one of the geodesic equations.)

9. For a massive particle ~p · ~p = −m2 and therefore

(p0)2g00 + (pr)2grr + (pφ)2gφφ = −m2 (7.89)

This can be written as (
dr

dτ

)2
= Ē2 − (1− 2M

r
)(1 + L̄2

r2 ) (7.90)

and similarly for a photon (
dr

dλ

)2
= E2 − (1− 2M

r
)L

2

r2 (7.91)

These are the fundamental equations to analyze. Notice that we have not used explicitly the geodesic
equations themselves: this is because the high symmetry of the system allowed us to find immediately the
conserved quantities. Notice that, as required by the equivalence principle, the particle mass m drops out
of the equations: two particles of different masses with the same initial four-velocity will have the same
geodesic. If that were not the case, then in a LIF (a free-falling frame) we would have seen two particles
initially at rest moving under the action of different forces, thereby revealing that phenomena in a LIF
are different than in Special Relativity.

10. The equation of motion can now be written as

r′2 = Ē2 − V̄ 2(r) (7.92)

where the prime is the derivative wrt τ or λ and

V̄ 2(r) = (1− 2M
r

)(1 + L̄2

r2 ) (7.93)

for massive particles and

V 2(r) = (1− 2M
r

)L
2

r2 (7.94)

for photons (in this case Ē must be replaced by E).

11. Differentiating Eq. (7.92) wrt to τ or λ we obtain

2dr
dτ

d2r

dτ2 = −dV̄
2

dr

dr

dτ
(7.95)

i.e.,
d2r

dτ2 = −1
2
dV̄ 2

dr
(7.96)

which is qualitatively analogous to ma = −Φ,r, so V̄ 2 acts as an effective potential over which the particle
rolls down. The analogy is stronger for non-relativistic speeds, when we can always approximate τ with t.
The potential is fixed once we know the mass of the star and the initial angular momentum of the particle
(which remains constant throughout).
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Figure 7.4: Potential for massive particles for L̄2 > 12M2. Trajectories 1 and 2 are unbounded, trajectory 3 is
bounded. The values rc represent circular orbits.

12. A circular orbit is possible only at distances at which V̄,r = 0. For massive particles, there are two such
points (if L̄2 > 12M2) and zero otherwise, while for photon always one:

rc = L̄2

2M

[
1± (1− 12M2

L̄2
)1/2

]
, particle (7.97)

rc = 3M, photon (7.98)

13. It is not difficult to realize, by looking at the potential, that when there are two circular orbits, one is
stable, the other is unstable. For the photon, instead, the circular orbit is always unstable. The smallest
stable circular orbit is obtained for L̄2 = 12M2 and lies at

rc = 6M (7.99)

14. When the orbits are not circular, they are almost hyperbolic or elliptic: the particle comes from infinity
and returns to infinity, or moves along an elliptic orbit between a minimum and a maximum distance, just
like in the Newtonian case.

15. In the Newtonian case, M/L̄� 1, we obtain from (7.97) the stable orbit

r = L̄2

M
(7.100)

Since L̄ = r2φ̇, we see that the frequency of the orbit is

ω = φ̇ =
√
M

r3 (7.101)

i.e., Kepler’s law (remember that M and time have dimensions of length).
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Figure 7.5: Potential for massless particles. Trajectory 1 represents a photon captured by the star; trajectory 2
a photon coming from infinity, reaching a minimum distance and then leaving again to infinity.

7.8 Perihelion shift
1. Let us first recall that the equation r(θ) of an ellipse with semi-major and semi-minor axes a, b, respectively,

in polar coordinates with the origin on a focus is

r = a(1− e2)
1± e cos(kφ) (7.102)

where e = (1− b2/a2)1/2 is the eccentricity. If k = 1, the value of r is the same after an interval ∆φ = 2π:
in this case, a planet orbiting on the ellipse returns always at the same place after each orbit. Otherwise,
it takes an interval ∆φ = 2π/k for r to go back to the same value: this is called precession of the
perihelion (i.e. of the shortest distance from the Sun). We will show that this formula holds also to a first
approximation in GR.

2. On a circular stable orbit, inverting Eq. (7.97) we get

L̄2 = Mr

1− 3M
r

(7.103)

and since Ē = V̄ for a circular orbit, we also have

Ē2 =
(1− 2M

r )2

1− 3M
r

(7.104)

Moreover, we have the following relations

dφ

dτ
= Uφ = pφ

m
= L̄

r2 =
(

Mr

1− 3M
r

)1/2
1
r2 (7.105)

dt

dτ
= U0 = p0

m
= Ē

1− 2M
r

= 1√
1− 3M

r

(7.106)
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Therefore the orbital angular velocity is

dφ

dt
= L̄

r2
1− 2M

r

Ē
=
(
M

r3

)1/2
(7.107)

so the period (in coordinate time, i.e. for the observer at the center of the system, not proper time) is

P = 2π ∆t
∆φ = 2π

(
r3

M

)1/2

(7.108)

the same result as for the Newtonian case.

3. A typical orbit of planets is just slightly eccentric, so can be treated as a small perturbation of a circular
orbit. It is found that Mercury has a perihelion shift of 43 arcsec per century that cannot be explained
by perturbations from other planets (see Fig. 7.6). Let us compare it to GR predictions.

4. Combining Eq. (7.90) and (7.105) one gets

( dr
dφ

)2 = Ē2r4 − (r2 − 2Mr)(r2 + L̄2)
L̄2

(7.109)

which, defining u = 1/r can be written as

(du
dφ

)2 = Ē2

L̄2
− (1− 2Mu)( 1

L̄2
+ u2) (7.110)

= Ē2

L̄2
− 1− 2Mu

L̄2
− u2 + 2Mu3 (7.111)

We can begin by assuming that the last term is small wrt the preceding one because for the Sun

Mu = M

r
� 1 (7.112)

5. In a circular orbit, as we have seen, rc = L̄2/M in the Newtonian limit. We define now a “small circularity
parameter” y, that vanishes for circular orbits in the Newtonian limit

y = u− M

L̄2
(7.113)

We rewrite then Eq. (7.111) as (
dy

dφ

)2
= Ē2 − 1

L̄2
+ M2

L̄4
− y2 (7.114)

which can be directly integrated. The solution is

y = 1
r
− M

L̄2
=
[
Ē2 + M2

L̄2 − 1
L̄2

]1/2

cos(φ+ φ0) (7.115)

where φ0 is an arbitrary initial phase. In terms of r, this gives the equation of an ellipse in polar coordinates,
with respect to a focus, without perihelion shift: we are in fact in the Newtonian limit.

6. If we insert back the 2Mu3 term, we perturb this solution. We rewrite then Eq. (7.111) with y instead of
u:

(y′)2 = Ē2

L̄2
− (1− 2My − 2M

2

L̄2
)( 1
L̄2

+ M2

L̄4
+ y2 + 2M

L̄2
y) (7.116)

(where the prime stands for d/dφ) and neglect the y3 term, which means we assume slight deviation from
circularity, since in a slightly non-circular, Newtonian orbit one has

y = u− M

L̄2
� 1 (7.117)
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We obtain

(y′)2 = Ē

L̄2

2

+ M2

L̄4
− 1
L̄2

+ 2M4

L̄6
+ 6M3

L̄2
y − (1− 6M2

L̄2
)y2 (7.118)

which has the form (y′)2 = A+By − Cy2 with C > 0. The solution is then
ˆ

dy√
A+By − Cy2

=
ˆ
dφ (7.119)

The solution can be found by writing A+By − Cy2 = (A+ B2

4C )− (y
√
C − B

2
√
C

)2 and then substituting
z = y

√
C − B

2
√
C
. The final solution is an ellipse with precession,

y = y0 + a cos(kφ+ φ0) (7.120)

or, more explicitly,

r =
L̄2 (M − L̄2y0

)−1

1 + aL̄2

M−L̄2y0
cos(kφ+ φ0)

(7.121)

where

k =
(

1− 6M
2

L̄2

)1/2

, y0 = 3M3

k2L̄2
(7.122)

a = 1
k

[
Ē2 + M2

L̄2 − 1
L̄2

+ 2M4

L̄6
− y2

0

]1/2

(7.123)

This is an orbit that oscillates around y0, not around y = 0, i.e. u = M/L̄2. The amplitude is also
different from the Newtonian case and finally, since k 6=1, the orbit does not return to the same y, i.e. r,
after ∆φ = 2π, but rather after k∆φ = 2π, i.e. for

∆φ = 2π
k

= 2π(1− 6M2

L̄2
)−1/2 ≈ 2π(1 + 3M2

L̄2
) (7.124)

The extra term δφ = ∆φ − 2π is the amount of the perihelion shift. For M/L̄ � 1 we are back to the
Newtonian case.

7. For the circular orbit we know that L̄ is given by Eq. (7.103), which at first order can be approximated
as L̄2 = Mr. Then we see that

δφ = 6πM
2

L̄2
≈ 6πM

r
(7.125)

We could have expected that, at first order, the shift should have been proportional to the Newtonian
potential Φ(r).

8. For Mercury the effect is the largest, due to the small r. It turns out that δφ = 5 · 10−7 radians per orbit.
Since each orbit takes 0.24 yr, the total effect is exactly 0.43′′/yr, or 43 arcseconds per century. This was
historically the first proof of GR (1915). Notice that the observed perihelion of Mercury is much larger
(around 5600 arcsec per century) but most of it can be explained by perturbations due to other planets
and by the imperfect sphericity of the Sun.

7.9 Gravitational deflection of light
1. For light propagation near a spherical body, the relevant equations are(

dr

dλ

)2
= E2 − (1− 2M

r
)L

2

r2 (7.126)

pφ = dφ

dλ
= L

r2 (7.127)
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Figure 7.6: Perihelion shift (from Wikimedia Commons, author Rainer Zenz).

Then we have

dφ

dr
= ± L

r2

[
E2 − (1− 2M

r
)L

2

r2

]−1/2

(7.128)

= ± 1
r2

[
E2

L2 − (1− 2M
r

) 1
r2

]−1/2

(7.129)

= ± 1
r2

[
1
b2
− (1− 2M

r
) 1
r2

]−1/2
(7.130)

where we define b = L/E, the impact parameter. We see that b = 0 for a radial orbit, L = 0; it is also the
minimal value of r, i.e. the closest distance to the star, in the Newtonian limit (see Fig. 7.7).

2. Replacing as previously u = 1/r we find (we choose now the positive branch)

dφ

du
=
(

1
b2
− u2 + 2Mu3

)−1/2
(7.131)

3. As previously, the Newtonian limit is obtained by neglecting u3. In this case is easy to see that the solution
is

b = r sin(φ− φ0) (7.132)
where φ0 is the initial azimuth at infinity as seen from the center of the star. This is the equation of a
straight line in polar coordinate: in this limit, the photon is not deflected by the gravitational field.

4. To move to the next order, we define
y = u(1−Mu) (7.133)

from which du = dy(1 + 2My) (at first order in Mu), so

dφ

du
= dφ

dy(1 + 2My) =
(

1
b2
− y2(1 +My)2 + 2My3(1 +My)3

)−1/2
(7.134)

and finally, again to first order in Mu,

dφ

dy
= (1 + 2My)

(
1
b2
− y2

)−1/2
+ Θ((Mu)2) (7.135)
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5. The solution is
φ− φ0 = arcsin(yb) + 2M

ˆ
ydy

(b−2 − y2)1/2 (7.136)

or finally
φ = φ0 + 2M

b
+ arcsin(yb)− 2M(b−2 − y2)1/2 (7.137)

At infinity, y = 0 and φ0 is again the initial direction of the incoming photon.

6. The closest point to the star is at dr/dλ = 0, i.e. for y = E/L = 1/b. This minimal distance occurs for

φmin = φ0 + 2M
b

+ π

2 (7.138)

All this is on the “positive branch” of the solution, i.e. from infinity to closest distance. Then the photon
continues on the negative branch, from the closest point to infinity on the other side, and acquires another
shift by 2M/b+ π/2. The total change of azimuth for a straight line would have been π. Here we see the
total change 2(φmin − φ0) is π plus a relativistic correction

δφ = 4M
b

(7.139)

This expresses the gravitational deflection due to GR.

7. For the Sun, if b = R☼ (as close as possible to Sun’s surface), we have

δφ = 4 1.5km
7 · 105km = 8.4 · 10−6rad = 1′′.74 (7.140)

This gravitational deflection has been observed in 1919 during a solar eclipse, so as to measure the position
of stars near the solar limb. For Jupiter, the effect is 0′′.013.

8. One could make a naive Newtonian argument replacing the formula for deflection for particles with velocity
v for small deflections,

∆φ = 2M
v2b

(7.141)

with v = c; in this case, one obtains half the prediction of GR.

9. The same deflection effect, more generally called gravitational lensing, is nowadays observed using galaxies
as lenses and distant quasars or galaxies as sources. In general, the original images are both distorted (or
even multiplied) and magnified.

7.10 Black holes
1. We consider now the apparent singularity of the SM when r = 2M , a surface called event horizon. Let us

assume that a star is so compact that this surface is outside the star itself: this is called a black hole. A
particle falling into it in a radial trajectory (so pφ = L = 0) obeys the equation(

dr

dτ

)2
= Ē2 − 1 + 2M

r
(7.142)

from which
dτ = − dr

(Ē2 − 1 + 2M
r )1/2

(7.143)

(the minus sign implies the particle is infalling, not escaping). If Ē ≥ 1, the particle falls from infinity
and reaches infinity again (unless absorbed by the star). In this case, τ remains finite and there is no
singularity.
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Figure 7.7: Gravitational deflection of light.

2. If Ē < 1, the particle is bound to stay within r smaller than

r <
2M

1− Ē2
(7.144)

so again there is no singularity. So in all cases a particle can cross the boundary r = 2M without problem.
The apparent singularity at r = 2M appears only because of our choice of coordinates (in other coordinates
in fact it disappears, see below). The elements of the Riemann tensor remain always regular for r 6= 0.
Since we are in vacuum, Rµν = 0, but another invariant, RαβµνRαβµν (called Kretschmann scalar) equals
48M/r6 and confirms that r = 2M is not a singularity, while r = 0 is.

3. In terms of coordinate time, i.e. the time t measured by an observer at infinity at rest with the black hole,
it takes indeed an infinite time for the particle to fall. In fact, one has

dt

dτ
= g00U0 = −g00Ē = Ē

1− 2M
r

(7.145)

and therefore for Ē = 1

dt = − Ēdr

(1− 2M
r )(Ē2 − 1 + 2M

r )1/2
= − dr

(1− 2M
r )( 2M

r )1/2 (7.146)

which is singular for r → 2M . This means that for an observer at infinity it takes an infinite time for an
object to enter the horizon.

4. Solving for ds = 0 the Schwarzschild metric along a radial path, we find
dt

dr
= ±(1− 2M

r
)−1 (7.147)

This shows that the light cones t(r) become very narrow for r → 2M and take the usual 450 angle for
r → ∞. To analyze better the behavior near the horizon we move to the Kruskal-Szekeres coordinates
u, v, defined as

u =
( r

2M − 1
)1/2

er/4M cosh t

4M (7.148)

v =
( r

2M − 1
)1/2

er/4M sinh t

4M (7.149)
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for r > 2M and

u =
(

1− r

2M

)1/2
er/4M sinh t

4M (7.150)

v =
(

1− r

2M

)1/2
er/4M cosh t

4M (7.151)

for r < 2M . The SM metric becomes then

ds2 = −32M
3

r
e−r/2M (dv2 − du2) + r2dΩ2 (7.152)

where r(u, v) is a function obtained by inverting the relation

( r

2M − 1)er/2M = u2 − v2 (7.153)

so constant r means constant curves u2− v2, that is, hyperbolae in the u, v plane (see Fig. 7.8). The time
t depends on v, u through

t = 4M tanh−1 v

u
(7.154)

for r > 2M and
t = 4M tanh−1 u

v
(7.155)

for r < 2M , so lines of constant t are straight lines in the u, v plane.

5. Now there is no singularity for r = 2M . There still is of course a singularity for r = 0. Notice that v plays
the role of time (i.e. the factor in front of dv2 has a negative sign). Now radial null cones are always 450,
dv = ±du

6. In Kruskal coordinates one sees that once a particle passes inside the Schwarzschild radius, its light cone
points inward, so the particle cannot escape any longer and has to hit the r = 0 singularity.

7. Region IV (see Fig. 7.8) is called a “white hole”: it represents a point in space in the asymptotic past
from which particles might emerge “from nowhere”. This is just the time-reverse of the fall “into nowhere”
when particles reach the black hole singularity. This is a valid mathematical solution but it seems to
contradict basic postulates of physics.

8. Region III is a region of space-time that appears completely disconnected from our accessible region I that
lies outside the Schwarzschild radius. However, if we move along ν = 0 (just mathematically, because
physically this is a space-like line and no particle can run along it), we see that Eq. (7.153) becomes

( r

2M − 1)er/2M = u2 (7.156)

If we put r =
√
x2 + y2 (forgetting about z) we obtain a figure u = u(x, y) as in Fig. 7.9. The hole in the

middle occurs for r = 2M . Smaller r are not real solutions of Eq. (7.156). Moving up or down from the
hole we reach u = ±∞ and r → +∞. In both cases we are in an asymptotic Minkowski space-time. So the
hole, called Einstein-Rosen bridge, is a sort of passage between two distant regions of flat space-time. Such
constructions are called wormholes. The Schwarzschild wormhole is, as already remarked, not traversable
by real particles, but there are speculations that in more complicated space-times wormholes might be
traversable and even give rise to closed time curves (i.e. travels in time!).

7.11 Kerr black holes
1. We study now a rotating black hole, with angular momentum J . For a solid sphere of size R, constant

density ρ and angular velocity Ω, the angular momentum is the moment of inertia I times Ω, i.e.

J = ΩI = Ω
ˆ
ρr2 sin2 θr2drd(cos θ)dφ = 8π

15 ρR
5Ω = 2

5MR2Ω (7.157)
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Figure 7.8: Kruskal coordinates (from Wikimedia Commons, author Dr Greg). Here, X = u and T = v. The
coordinate r is expressed in unit of the Schwarzschild radius.

Figure 7.9: The Einstein-Rosen bridge.
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We define the specific angular momentum
a = J

M
(7.158)

Then the Kerr metric for a rotating black hole in empty space is (Boyer–Lindquist coordinates)

ds2 = −∆− a2 sin2 θ

ρ2 dt2 − 2a2Mr sin2 θ

ρ2 dtdφ (7.159)

+ (r2 + a2)2 − a2∆ sin2 θ

ρ2 sin2 θdφ2 + ρ2

∆ dr2 + ρ2dθ2 (7.160)

where

∆ ≡ r2 − 2Mr + a2 (7.161)
ρ2 ≡ r2 + a2 cos2 θ (7.162)

(this ρ is not the density, is a new parameter). Now of course there is no longer spherical symmetry: the
fact that gtφ 6= 0 implies rotation (one can show that there is no choice of frame such that gφt = 0). For
r →∞ however the rotation effects disappear. For a→ 0 we are back to SM.

2. Remarkably, the Kerr metric shows that a black hole is fully characterized by two parameters, mass and
spin. A charged BH has a third parameter, the total charge (Reissner-Nordström metric).

3. Let us consider now a particle falling onto the Kerr BH with a trajectory that is initially radial, i.e. pφ = 0.
Since the metric does not depend on φ, we know that pφ = const. Then we have

pφ = gφtpt (7.163)
pt = gttpt (7.164)

and therefore
pφ

pt
= dφ

dt
= gφt

gtt
≡ ω(r, θ) (7.165)

is the angular velocity. One can show that it has the same sign as a. This means that a particle that
falls on an initially radial trajectory will be “dragged along” with the rotating metric and acquires a
non-zero angular velocity in the same direction as the hole rotates. This phenomenon is called frame
dragging or gravitomagnetism. Another consequence is that a gyroscope precesses around a rotating star
(Lense-Thirring effect). This has indeed been measured even on Earth.

4. Now let us consider a photon emitted initially on tangential direction, dr = 0 and on the equatorial plane,
dθ = 0 . In this case we have

ds2 = 0 = gttdt
2 + 2gφtdφdt+ gφφdφ

2 (7.166)

from which
dφ

dt
≡ Ω = − gtφ

gφφ
±

[(
gtφ
gφφ

)2
− gtt
gφφ

]1/2

(7.167)

Now on the surface on which gtt = 0, one has two solutions,

Ω1 = 0 (7.168)

Ω2 = −2 gtφ
gφφ

(7.169)

This implies that photons can orbit the rotating BH in two directions, in one being co-rotating with the
star with angular velocity Ω2, in the opposite one being “at rest” when seen by an external observer. That
is, the dragging effect is so strong that all particles slower than photons rotate with the star, and photons
emitted opposite to the rotating hole have no angular momentum.
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Figure 7.10: Ergoregion in a Kerr black hole.

5. All this happens when gtt = 0, i.e. for

r2 − 2Mr + a2 − a2 sin2 θ = 0 (7.170)

so when
r = M ±

√
M2 − a2 cos2 θ (7.171)

The region below the upper value of r is called ergoregion. Everything inside the ergoregion (gtt > 0) is
dragged along with the BH and remains bound to it.

6. The horizon is obtained for grr =∞ (as in SM) i.e. for (we need consider only the upper value of r)

rHOR = M +
√
M2 − a2 (7.172)

and is therefore contained within the ergoregion (and is tangent to it at the poles, θ = 0). In principle,
for a > M the horizon seems to disappear: this could be a way to obtain a “naked singularity”, but the
issue is controversial. When a = M , the Kerr black hole is called extremal.

7. There is no known interior solution that matches the Kerr metric (as we have instead for the Schwarzschild
metric), so the Kerr metric cannot be employed to describe the exterior metric of a rotating star, but only
of black holes.

8. A complete introduction to the Kerr metric can be found in Hobson et al., General Relativity. An intro-
duction for physicists.



Chapter 8

Cosmology

For an introduction to cosmology, see my lecture notes on Cosmology. Here we only discuss some preliminary
concepts.

8.1 Homogeneity and isotropy
1. Measurements of galaxy density and clustering, and of the cosmic backgrounds, show that the universe

is homogeneous and isotropic to a large extent. This is commonly called the Cosmological Principle. In
order to maintain homogeneity and isotropy along with the cosmic expansion, the Hubble-Lemaitre law
(or Hubble law for shortness) need to be verified at every point and at every time,

~v = H0~d (8.1)

where ~v is the relative velocity between any two points separated by ~d. Only in this case in fact the
expansion law between any two points remains the same (since it is linear in ~v and ~d). The Hubble
constant H0 has been measured to be

H0 = 70± 4 km/sec/Mpc (8.2)

From this value we can derive a distance and a time lengths:
c

H0
= 3000 Mpc/h (8.3)

1
H0

= 10 Gyr/h (8.4)

where h = H0/(100km/sec/Mpc) ≈ 0.7.

2. In reality, homogeneity and isotropy only hold when averaging out the fluctuations of matter density over
distances larger than roughly 50 Mpc. That is, averaging over volumes of this size, the density of galaxies
is approximately the same everywhere (as long as we do not go too far away so that we see galaxies into
the remote past, when the average density was higher than today due to the cosmic expansion).

3. In order for the expansion to be the same everywhere, the space interval

d`2 = [hijdxidxj ]R2(t) (8.5)

must depend on time only through an overall factor, denoted as R2(t). We are free to choose distance
units such that R(today) = 1. R is called scale factor.

4. So the most general form of the metric so far is

ds2 = −dt2 + g0idtdx
i +R2(t)hijdxidxj (8.6)

The first term should have been g00(t)dt2 but we can always redefine the time coordinate such that
dt2 = −g00(t′)(dt′)2. As for the Schwarzschild case, however, we require g0i to vanish on account of
isotropy. We need then to find hij .

107
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5. We already know the most general hij that produces an isotropic (i.e., spherically symmetric) metric

d`2 = e2Λ(r)dr2 + r2dΩ2 (8.7)

Now we must impose a further condition, namely that the space curvature is the same everywhere, because
of homogeneity. Since there is only one unknown, Λ, we need a single condition. The space curvature
is the curvature of t = const hypersurfaces, so we need that the curvature scalar R or, equivalently G is
constant, i.e.

Gii ≡ e−2ΛGrr + r−2G
θθ

+ r−2 sin−2 θGφφ = κ (8.8)

From Eqs. (7.21) we see that this becomes

− 1
r2 [r(1− e−2Λ)]′ = κ (8.9)

which is solved by
grr = e2Λ = 1

1 + κr2

3 −
A
r

(8.10)

where A is an initial condition parameter. Assuming flatness around r = 0, we require A = 0. Finally,
absorbing a factor −1/3 into κ we write

grr = e2Λ = 1
1− κr2 (8.11)

6. This gives the famous Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = −dt2 +R2(t)
[

dr2

1− κr2 + r2dΩ2
]

(8.12)

The parameter κ can take any value but we can always redefine r to absorb its absolute value, so from a
qualitative point of view there are only three values of κ

κ = 0, flat (8.13)
κ = +1, spherical (8.14)
κ = −1, hyperbolic (8.15)

where the names refer to the geometry of the space surfaces at constant t. These three cases are the only
homogeneous and isotropic geometries of space.

7. If k = 0, defining a new time dτ = dt/a, one can write

ds2 = a2(−dτ2 + dr2 + r2dΩ2) (8.16)

i.e. a metric conformally flat (proportional to Minkowski). This form is often convenient for calculations.

8. For κ = 1, we can rewrite the metric by defining

dχ2 = dr2

1− r2 ,→ r = sinχ (8.17)

so that
d`2 = R2(t)[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)] (8.18)

which is the element of a surface of a 3-sphere with equation

x2 + y2 + z2 + w2 = r2 (8.19)
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embedded into a 4D-space, with coordinates

w = r cosχ (8.20)
z = r sinχ cos θ (8.21)
y = r sinχ sin θ cosφ (8.22)
x = r sinχ sin θ sinφ (8.23)

This represents a space of finite volume,

V =
ˆ √
−g3d

3x = 4π
ˆ

r2dr

(1− r2)1/2 = 4π
ˆ π

0
sin2 χdχ = 2π2 (8.24)

While the “angle” χ varies from 0 to π, the radial coordinate r goes from 0 to 1 and back to 0 again. That
is, traveling radially from a point one returns to the same point (assuming the expansion is frozen).

9. Similarly, for k = −1 one can transform

dχ2 = dr2

1 + r2 ,→ r = sinhχ (8.25)

and
d`2 = R2(t)[dχ2 + sinh2 χ(dθ2 + sin2 θdφ2)] (8.26)

Now the space is open and of infinite volume.

8.2 Redshift
1. The coordinates r, φ, θ are comoving coordinates, i.e. they remain fixed when the universe expands. This

means that for a radial light ray the quantity

χ =
ˆ
dt

R
(8.27)

must remain constant during the expansion. This in turn implies that the ratio ∆t/R taken at a time t0
(today) when a photon is observed and at the time t1 when that photon is emitted, is itself constant:

∆t0
R0

= ∆t1
R1

(8.28)

Suppose now the time interval ∆t corresponds to the time it takes for two subsequent wave crests to pass
at a given point; then ∆t = λ/c. This gives

λ0

λ1
= R0

R1
(8.29)

and the redshift is then
z = λobs − λem

λem
= λ0

λ1
− 1 = 1

R1
− 1 (8.30)

(we always put R0 = 1). That is, the redshift of distant sources is related to the scale factor at the epoch
of emission. In this way, the scale factor evolution becomes observable.

2. Multiplying the comoving coordinates by R(t) one gets the physical coordinates at time t, that expand
with the Universe. In the following we also use the notation

a(t) ≡ R(t)
R0

(8.31)

so that a(today) = a0 = 1. With this normalization, comoving distances r and physical distances ar
coincide at the present time. This means that a galaxy that today is at a distance of, say, 100 Mpc, is
said to be at 100 Mpc comoving distance at all times.
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3. The proper distance is obtained with dt, dΩ = 0 and is therefore

d = Rχ (8.32)

Since χ is contant, the time derivative is

ḋ = v = Ṙ

R
d (8.33)

which is again Hubble’s law. We define the Hubble function or expansion rate

H(t) ≡ Ṙ

R
= ȧ

a
(8.34)

4. Therefore
a(t) = a0 exp

ˆ
Hdt (8.35)

Now we can expand around today’s value H0

H(t) = H0 + Ḣ|0(t− t0) + ... (8.36)

and thus

a(t) = a0[1 +H0(t− t0) + 1
2(H2

0 + Ḣ|0)(t− t0)2 + ...] (8.37)

= a0[1 +H0(t− t0)− 1
2q0H

2
0 (t− t0)2 + ...] (8.38)

where
q0 = −(1 + Ḣ

H2 )0 = −aä
ȧ2 |0 (8.39)

is the deceleration parameter (positive for a decelerated expansion, negative for an accelerated one).

8.3 Cosmological distances
1. The present proper radial distance to a source can be evaluated putting dt = dΩ = 0 as

d =
ˆ r

0

dr

(1− kr2)1/2 = 1√
ΩkH2

0

ˆ r

0

d(
√

ΩkH2
0r)

(1 + ΩkH2
0r

2)1/2 = 1√
ΩkH2

0
sinh−1 r

√
ΩkH0 (8.40)

where Ωk = −k/H2
0 . If Ωk < 0 (spherical spaces), the sinh function converts into a sin. If Ωk = 0, then

d = r.

2. On an incoming light ray path we have ds = 0 and therefore

1√
ΩkH2

0
sinh−1 r

√
ΩkH2

0 = −
ˆ t

t0

dt

a(t) = −
ˆ R

R0

da

H(t)a2(t) =
ˆ z

0

dz

H(z) (8.41)

since dz = −dR/R2. That is, we find a relation between coordinate r and redshift,

r(z) = 1
H0
√

Ωk
sinh

[
H0
√

Ωk
ˆ z

0

dz

H(z)

]
(8.42)

3. In laboratory, the relation between the flux (energy per area per second) received by an observer and the
luminosity of a source (energy output per second) at distance d is given by

f = L

4πd2 (8.43)
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Figure 8.1: Distances in cosmology for a flat FLRWmetric with standard cosmological parameters. The distance
labeled “LOS comoving” is r(z). The “lookback time” is cT (z). The “naive Hubble” is cz/H0 (By Wesino at
English Wikipedia - Public Domain, https://commons.wikimedia.org/w/index.php?curid=18249846)

4. In a FLRW metric, the photons emitted are redshifted by 1 +z and therefore their energy hν decreases by
the same amount; moreover, the time it takes for the emission, ∆tem, is dilated by another factor 1 + z.
Therefore the flux is diminished by a factor (1 + z)−2, and the distance is d = R0r. Then the flux can be
written as

f = L

4πd2(1 + z)2 (8.44)

5. So we define a luminosity distance such that d2
L = L/4πf , that is

dL = d(1 + z) (8.45)
= r(z)(1 + z) (8.46)

If we know the absolute luminosity L we can therefore measure the flux and the redshift of many sources
and obtain their coordinates r(z). Comparing with Eq. (8.42) we can infer H(z).

6. We can also define the proper area of a small source as seen projected on the sky, i.e. at dt = dr = 0,

A = D2 = a2r2(dΩ)2 (8.47)

From this, we can define another important astronomical distance, the angular-diameter distance of a
source at coordinate r that subtends an angle dΩ,

dA = D

dΩ = ar = dL
(1 + z)2 (8.48)

Notice that dA → 0 for z → ∞ (see Fig. 8.1). All the distances coincide for z � 1; in the same limit,
r(z)→ z/H0, i.e. the Hubble-Lemaitre law, independently of the cosmological model.

7. The relation dL = dA(1 + z)2 is called Etherington relation. Although the distance so far defined are
valid only in a FLRW metric (and should therefore be generalized in, e.g., inhomogeneous models), the
Etherington relation is valid in any cosmology.
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8.4 Evolution of the FLRW metric
1. In a homogeneous and isotropic universe matter is at rest in comoving coordinates, that is, it just expands

staying at constant r, θ, φ. So Uµ = (1, 0, 0, 0). We now solve the GR equations with the FLRW metric
assuming a perfect fluid EMT.

2. Let us now write down the metric equations in a homogeneous and isotropic space, i.e. in the FLRW
metric:

ds2 = −dt2 + a2(t)[ dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)] (8.49)

For k = 0 the Christoffel symbols are all vanishing except (it is easier here to perform the calculations
using the Cartesian form dr2 + r2dΩ2 → dx2 + dy2 + dz2)

Γij0 = Γi0j = Hδij , Γ0
ij = aȧδij

We have then

R00 = Γµ00,µ − Γµ0µ,0 + ΓµσµΓσ00 − Γµσ0Γσµ0 = −3Ḣ −H2δijδ
j
i = −3(Ḣ +H2) = −3 ä

a

and the trace
R = 6

a2 (ȧ2 + aä+ k) = 6Ḣ + 12H2 + 6ka−2 (8.50)

3. The energy momentum tensor for a perfect fluid in comoving expansion can be simply evaluated as

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (8.51)

4. Let us now consider the (0, 0) component and the trace component of the Einstein equations:

R00 −
1
2g00R = 8πT00

R = −8πT

From the first equation and by combining the two we obtain the two Friedmann equations:

H2 = 8π
3 ρ− k

a2 (8.52)
ä

a
= −4π

3 (ρ+ 3p) (8.53)

to be complemented by the conservation equation T 0µ
;µ (all the other equations vanish identically)

ρ̇+ 3H(ρ+ p) = 0 (8.54)

Notice that this can be interpreted as a simple conservation law dE = −pdV in an expanding space, by
putting the total energy as E = V ρ and V = V0a

3. Then one has in fact

d(a3ρ)
dt

= −pda
3

dt
(8.55)

which gives Eq. (8.54).

5. The Friedmann equations and the conservation equations are however not independent. By differentiating
eq. (8.52) and inserting eq. (8.54) we obtain the other Friedmann equation. Let us define now the critical
density

ρc = 3H2

8πG
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and the density parameter
Ω = ρ

ρc

so that eq. (8.52) becomes
1 = Ω− k

a2H2 (8.56)

This shows that k = 0 corresponds to a universe with density equal to the critical one, that is Ω = 1.
Spaces with k = +1 correspond instead to Ω > 1, spaces with k = −1 to Ω < 1. We can also define a
curvature component

Ωk ≡ −
k

a2H2 (8.57)

(which implies the definition ρk = −3k/8πa2). At every epoch we have then

1 = Ω(a) + Ωk(a)

As we will see, this relation extends directly to models with several components.

8.5 Non relativistic component
1. Let us consider now a fluid with zero pressure

p = 0

Such a fluid approximates “dust” matter (like e.g. galaxies) or a gas composed by non-interacting particles
with non-relativistic velocities (like e.g. cold dark matter). In fact, the pressure of a free-particle fluid
with mean square velocity v is p = nmv2, much smaller than ρ = nmc2 for non relativistic speeds. Then
we have from (8.54) that

ρ̇/ρ = −3ȧ/a

or
ρ ∼ a−3

Every time we write a relation of this kind we mean a power law normalized to an arbitrary instant a0
(here assumed to be the present epoch). We mean then

ρ = ρ0

(a0

a

)3

As a function of redshift we have (the subscript NR or m denotes the pressureless non-relativistic com-
ponent)

ρ = ρ0(1 + z)3 = ρcΩNR(1 + z)3 (8.58)

where from now on, except where otherwise denoted, Ωi represents the present value for the species i and
ρc is the present critical density.

2. Let us assume now a flat space k = 0. The present density ρ0 is linked to the Hubble constant by the
relation

H2
0 = 8π

3 ρ0

Then we have (defining distances such that a0 = 1)(
ȧ

a

)2
= 8π

3 ρ0a
3
0a
−3 = H2

0a
−3

from which integrating
a ∼ t2/3
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3. Since we measure a present Hubble constant

H0 = 100hkm/sec/Mpc

where h = 0.70 ± 0.04, (roughly according to the recent estimates of the Hubble Space Telescope and of
the Planck satellite), and since 1Mpc = 3 · 1019km and G = 6.67 · 10−8cm3g−1sec−2 we have the present
critical density

ρc,0 = 3H2
0

8πG ≈ 2 · 10−29h2gcm−3

The matter density currently measured is indeed close to ρc,0. More exactly, it is found

Ωm ≈ 0.3± 0.1 (8.59)

8.6 Relativistic component
1. A photon gas distributed as a black body has a pressure per unit volume equal to

p = 1
3ρ

(notice that for radiation the energy-momentum trace vanishes, T = 0; this can be seen also from the
form of the electromagnetic tensor

Tµν = 1
4π

(
FµλF νλ −

1
4g

µνFλσFλσ

)
whose trace vanishes). Then we have from (8.54) that

ρ̇ = −4Hρ

from which (the subscript R or γ denotes the relativistic or radiation component)

ρR ∼ a−4 = ρcΩR(1 + z)4 (8.60)

The radiation density dilutes as a−3 because of the volume expansion and as a−1 because of the energy
redshift.

2. To evaluate the present radiation density we’ll remind that a photon gas in equilibrium with matter (black
body) has energy density

ργ = g

2π2

ˆ
E3dE

eE/T + 1
= gπ2

30
(kBT )4

~3c3

where T is expressed in energy units and g are the degrees of freedom of the relativistic particles (g = 2
for the photons, g ≈ 3.36 including 3 massless neutrino species). Notice that since ργ ∼ a−4 the radiation
temperature scales as

T ∼ 1
a

(8.61)

Since today we measure T ≈ 3K, we have

ργ = g · 2.5 · 10−34gcm−3

which is much smaller than the present matter density. The present epoch is denoted therefore matter
dominated epoch (MDE). (Notice: in Planck units (~ = G = c = 1) T3K = 10−32EP ; so that T 4

3K =
10−128E4

P = 10−128MPL
−3
P = 10−12810−51099 g/cm3. Thus T 4

3K ≈ 10−34g/cm3.)
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3. From the matter and radiation trends

ρm = ρm,0a
−3 (8.62)

ργ = ργ,0a
−4 (8.63)

we can define the equivalence epoch ae for which ργ = ρm:

ae = ργ,0
ρm,0

= Ωγ
Ωm

(8.64)

Since we have
Ωγ = ργ

ρcrit
' 4.3 · 10−5h−2 (8.65)

it follows that the equivalence occurred at a redshift

1 + ze = a−1
e =

(
4.3 · 10−5)−1 Ωmh2 = 23, 000Ωmh2 (8.66)

Putting Ωc = 0.3 and h = 0.7 we obtain ze ≈ 3450.

8.7 General component
1. It is clear now that any fluid with equation of state

p = wρ

goes like
ρ ∼ a−3(1+w)

In the case k = 0 and if the fluid is the dominating component in the Friedmann equation, the scale factor
grows like

a ∼ t2/3(1+w)

2. We can now write the Friedmann equation as

H2 = 8π
3 (ρma−3 + ργa

−4 + ρka
−2) = H2

0 (Ωma−3 + Ωγa−4 + Ωka−2) (8.67)

where as already noted Ωi denotes the present density of species i, so that
∑
i Ωi = 1. Every other

hypothetical component can be added to this Friedmann equation when its behavior with a is known.

8.8 Qualitative trends
1. In all the cases seen so far we always had ρ + 3p > 0. Then from (8.53) it follows ä < 0, that is, a

decelerated trend at all times. From this it follows that 1) the scale factor must have been zero at some
time tsing in the past; and 2) the trajectory with ȧ = const,ä = 0 is the one with minimal velocity in the
past (among the decelerated ones) . From ȧ = const it follows the law

a(t) = a0 + ȧ0(t− t0)

and one can derive that the time
T = t0 = a0/ȧ0 = H−1

0

it takes for the expansion to go from a = 0 to a = a0 is the maximal one. H−1
0 is then the maximal age

of the universe for all models with ρ+ 3p > 0. Note that

H−1
0 = sec ·Mpc

100h km = 9.97Gyr/h

This extremal model is called Milne’s universe and can be obtained from 8.67 for

Ωm = Ωγ = 0

so that Ωk = 1. Then we have H2 = H2
0a
−2 and thus ȧ = H0.
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Figure 8.2: Evolution of the scale factor a(t) in various cosmological models. For ΩΛ = 0 (here denoted ΩV ),
the models are decelerated: the blue curve has k = −1, the green curve has k = 0 and the orange curve has
k = +1. The red curve is accelerated at the present time and in the future. (Credits: NASA)

2. For a general case with non vanishing matter we have instead, by integrating the Friedmann equation,

H = da

adt
= H0(Ωma−3 + Ωka−2)1/2 ≡ H0E(a)

that
H0T =

ˆ a0

0

da

aE(a) =
ˆ a0

0

da√
Ωma−1 + 1− Ωm

For Ωm = 1 we get
T = 2

3H0
= 6.7h−1Gyr

an age too short to accommodate the oldest stars in our Galaxy, unless h is smaller than 0.5. The age
corresponding to a given redshift z can be obtained by integrating from a = 0 to a = (1 + z)−1, or

t = 2
3H
−1
0 (1 + z)−3/2

For instance, zdec = 1100 corresponds to an age t = 200, 000h−1yr.

3. Finally, in the case k = 1, i.e. a closed spherical geometry, we can see that H vanishes for ρ = 3/8πa2 or
Ωma−3 = −Ωka−2 i.e. (when only matter is present and obviously for Ωm > 1) when

amax = Ωm
Ωm − 1

(remember that Ωk = 1−Ωm). At this epoch, expansion stops and a contraction phase with H < 0 begins.
This phase will end in a big crunch after an interval equal to the one needed to reach the maximum amax.
See Fig. (8.2) for an illustration.
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8.9 Cosmological constant
1. To obtain a cosmic age larger than H−1

0 it is necessary to violate the so-called “strong energy condition”
ρ+ 3p > 0. The most important example of this case is the vacuum energy or cosmological constant.

2. As we have briefly mentioned, Einstein’s eqations remain second-order in the metric and satisfy Bianchi
identities if we modify them in the following way

Rµν −
1
2gµνR+ Λgµν = 8πTµν (8.68)

3. Let us consider the energy-momentum tensor

Tµν = (ρ+ p)UµUν + pgµν (8.69)

This expression holds for observers that are comoving with the expansion. Every other observer will see
a different content of energy/pressure. There exists however a case in which every observer sees exactly
the same energy-momentum tensor, regardless of the 4-velocity uµ: this occurs when ρ = −p: in such a
case in fact Tµν = −ρgµν . The conservation condition then implies ρ,µ = 0 or ρ = const. It follows that
if we identify the cosmological constant term with an energy-momentum tensor such that

Tµν(Λ) = − Λ
8πgµν (8.70)

where Λ is the cosmological constant, then the tensor is independent of the observer motion. This condition
indeed characterizes an empty space, i.e. a space without real particles. Tµν(Λ) is denoted then vacuum
energy. We have now

ρΛ = −pΛ = Λ
8π (8.71)

which corresponds to the equation of state w = p/ρ = −1. If the Λ term is dominating, one sees from Eq.
(8.53) that the expansion would be accelerated.

4. Present observations using supernovae Type Ia as standard candles (i.e., objects with constant absolute
luminosity) show that the present value of the density fraction ΩΛ is

ΩΛ = 8πρΛ

3H2
0
≈ 0.7± 0.1 (8.72)

Together with Ωm = 0.3± 0.1, one sees that

Ωk = 1− Ωm − ΩΛ ≈ 0 (8.73)

That is, the current Universe appears spatially flat or Euclidian.
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