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Due to the enormous complexity of amphiphilic systems on microscopic
scales, their modelling often starts from mesoscopic length scales. In recent
years Ginzburg�Landau theories and curvature models have fostered con-
siderable progress in understanding di�erent aspects of binary and ternary
amphiphilic systems. We have investigated to what extent these models
can be used to understand amphiphilic phase behavior. It is argued that
Ginzburg�Landau model are well suited to describe ordered phases at low
temperatures. A Ginzburg�Landau model for binary amphiphilic systems
is presented which yields the typical phase sequence disordered micellar�
micellar cubic�hexagonal�lamellar�bicontinuous cubic�inverted hexagonal�
inverted micellar cubic�disordered inverted micellar, which is observed ex-
perimentally. At higher temperatures �uctuation e�ects become more im-
portant, and lamellar and sponge phases/microemulsions are favored. It
is argued that curvature models which include �uctuation e�ects and long
ranged interactions like steric or van der Waals interations are more suited
to predict amphiphilic phase behavior in this case. It is shown that such a
model can explain, for example, that in ternary systems the lamellar phase
often extends far into the water apex when the phase inversion temperature
is approached from below.

PACS numbers: 82.65. Dp, 82.70. -y, 64.70. Md, 61.30. Cz

1. Introduction

Amphiphiles are molecules which have both non-polar and polar parts [1].
Special cases of amphiphilies are tensides which are used for all kinds of wash-
ing and emulsi�cation purposes and lipids which build up biological mem-
branes. Regarding amphiphilic phase behavior, tenside systems with poly-
oxyethylenes CiEj are particularly well investigated experimentally.

� Presented at the Marian Smoluchowski Symposium on Statistical Physics, Zakopane,

Poland, September 1�10, 1997.



2 U.S. Schwarz

Here Ci = H (CH
2
) i stands for the non-polar polyethylene part and

Ej = (OCH2CH2)jOH for the polar polyethylene oxide part [2�5].
In polar solvents like water, amphiphiles succeed in shielding non-polar

parts from the solvent by self-assembling into amphiphilic aggregates like
micelles and bilayers. In the case of spherical micelles, for example, the
hydrophobic parts are located inside the globules and the hydrophilic ones
form a spherical shell which faces the aqueous solvent. For small water
concentrations, one might �nd inverted micelles with the hydrophobic parts
outside and the water inside. Adding a non-polar component like oil to a
binary system leads to a ternary system with the oil incorporated within
the hydrophobic regions. Now the basic building blocks are not micelles and
bilayers, but monolayers between polar and non-polar regions forming e.g.

oil-�lled micelles.
Binary as well as ternary amphiphilic systems generically feature an

amazing degree of polymorphism due to the very small di�erences in free
energy between the various structures. This means that structural changes
can occur not only as a function of temperature, but also as the composi-
tion of the system is varied. In order to classify the di�erent amphiphilic
phases, we distinguish between micellar and non-micellar phases as well as
between ordered and disordered phases. Micellar phases consist of spherical,
cylindrical or plate-like amphiphilic aggregrates which are disordered at low
amphiphile concentration and pack into ordered phases at high amphiphile
concentration. This includes the micellar disordered phase L1, the micellar
cubic phase I1, the hexagonal phase H1 and the lamellar phase L�. Fig. 1(a)
depicts the di�erent geometries of micellar phases. Non-micellar phases con-
sist of amphiphilic sheets (mono- or bilayers) which extend throughout the
whole sample. Since they thereby divide it into two intertwined labyrinths
which both can be used to traverse the sample in any arbitrary direction,
they are also called bicontinuous. Non-micellar disordered phases include
the sponge phase in binary and the microemulsion in ternary systems. Non-
micellar ordered phases in most cases have cubic symmetry and are then
denoted by V1. Fig. 1(b) depicts the di�erent geometries of non-micellar
phases. Inverted versions of all structures are denoted by the index 2. For
example the inverted hexagonal phase is H2.

The main driving force for amphiphilic self-assembly is the hydrophobic
e�ect which is very di�cult to model on microscopic length scales. Therefore
the modelling of amphiphilic systems often starts on mesoscopic length scales
where one can make use of e�ective properties which are common to all
amphiphilic systems [6]. In this contribution we discuss two model classes
which have been proven to be very useful for studies of amphiphilic phase
behavior: curvature models, which start from the e�ective properties of the
amphiphilic interfaces, and Ginzburg�Landau models, which start from the
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Fig. 1(a). Geometries of micellar phases, where the amphiphile is constrained
to micellar aggregates. The micellar disordered phase L1 consist of disordered
spherical micelles. The micellar ordered phases consist of packed amphiphilic ag-
gregates: spherical micelles form the micellar cubic phase I1, cylindrical micelles
the hexagonal phase H1 and plate-like micelles the lamellar phase L�. Note that
the geometries are the same for binary and ternary systems; they di�er in whether
the micelles are �lled with oil or not.

symmetries of order parameter �elds which arise when averaging molecular
densities over small regions of space. In comparing their respective virtues,
we want to show that these two approaches are complementary to each other.
Since typical energies are of the order of kBT , the theoretical description of
amphiphilic systems in both cases centers around the roles of geometrical
structure and thermal �uctuations. Although there has been much work on
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Fig. 1(b). Geometries of non-micellar or bicontinuous phases, where one am-
phiphilic sheet extends throughout the whole sample. As with micellar phases,
the geometries are the same for binary and ternary systems, the di�erence being
whether one has mono- or bilayers. The disordered phases are the sponge phase for
binary and the microemulsion for ternary systems. Both can be modeled by ran-
dom surfaces. Ordered bicontinuous phases normally have cubic symmetry. They
can be modeled by triply periodic surfaces with cubic symmetry like the triply
periodic minimal surfaces P, D and G which are shown. The latter two structures
correspond to the double diamond and gyroid structures, respectively.

amphiphilic phase behavior in the framework of microscopic lattice models
[6�8], in this contribution we focus on mesoscopic continuum models only.

In binary systems, bilayer structures can be modeled by using the cur-
vature model. However, micellar structures have to be treated separately.
Therefore curvature models are particularly suited when studying ternary
systems since here all structures are build from monolayers. Thus with the
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curvature model all relevant structures can be modeled on the same footing.
It has been shown that a simple curvature model is su�cient to predict the
typical phase sequence which one �nds experimentally in ternary systems
with water, polyoxyethylenes and alkanes when increasing the amphiphile
concentration: spheres, cylinders, bicontinuous cubic structures, lamellae [9].
However, since this model is not thermodynamically stable, it does not give
a thermodynamically correct phase diagram. Therefore we studied a cur-
vature model which also considers �uctuation e�ects and van der Waals-
interaction [10]. In the second section, we will report on results for the
disordered micellar phase L1 and the lamellar phase L�. It will be demon-
strated that apart from giving a valid phase diagram, this curvature model
can predict how �uctuation e�ects and van der Waals-interactions in�uence
amphiphilic phase behavior in excellent agreement with experiments.

Ginzburg�Landau models not only allow to treat binary and ternary
systems on the same footing, but also to implement arbitrary geometries.
However, when doing so one is often faced with large parameter spaces and
numerical solutions. In the third section, we introduce a Ginzburg�Landau
model [11, 12] which can account very well for the polymorphism observed
experimentally in binary systems and present a new phase diagram [13]
which compares very favorably with experiments. In the fourth section, we
conclude by comparing the respective virtues of curvature and Ginzburg�
Landau models for the modelling of amphiphilic phase behavior.

2. Curvature model

When modelling ternary amphiphilic systems within the framework of
curvature models, one assumes that the dominant contribution to the free
energy comes from the elastic energy of the amphiphilic monolayers which
can be calculated from the Canham�Helfrich Hamiltonian [14,15]:

Fcurv =
Z
dA

n
2� (H � c0)

2 + �� K
o
: (1)

Here the integration extends over the neutral surface of the amphiphilic
monolayer. At every point of the surface one has the mean curvature H
and the Gaussian curvature K. The spontaneous curvature c0 re�ects the
tendency of the monolayer to bend preferably either towards the adjacent
oil regions (c0 > 0) or towards the adjacent water regions (c0 < 0). This
quantity carries the main temperature dependence of the model since it is
found experimentally to vary linearly with temperature [16]:

c0(T ) = c0(TR)
(Tm � T )

(Tm � TR)
; (2)
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where TR denotes the room temperature and Tm the phase inversion tem-
perature. The bending of the monolayers is governed by the bending rigidity
� which can range from 1 kBT for tensides like C12E5 to 10 kBT for biolog-
ical lipids like DMPC. It follows from the Gauss�Bonnet theorem that the
Gaussian bending rigidity �� re�ects the energy cost associated with chang-
ing topology. Usually it is assumed to have a small negative value. Here we
choose ��=� = �0:5 which suppresses the hexagonal phase H1 in favor of the
micellar disordered phase L1 [9].

In addition to the curvature energy, we also consider �uctuation e�ects
and the van der Waals-interaction. These contributions to the free energy
can be calculated in closed form for the micellar disordered phase L1 and the
lamellar phase L� only. Therefore these two phases have been considered
in our �rst study [10]. Fluctuations in the droplet phase can be shown to
encompass the usual hard sphere entropy as well as the undulation energy
of the single closed monolayers [17]. Fluctuations in the lamellar phase
lead to the steric repulsion between adjacent monolayers [18]. The van der
Waals-energy is calculated from

FvdW =
A

�2

Z
d3r1

Z
d3r2

(
"2

[(r1 � r2)2 + "2]4
�

1

[(r1 � r2)2 + "2]3

)
(3)

with the Hamaker constant A = 1 kBT for the interaction of hydrocarbon
across water and the cuto� length " = 0:7 (length is measured in units of
amphiphile length).

Fig. 2(a) shows two phase diagrams calculated for parameter values char-
acteristic for the system H2O=C12E5=C14. Then Tm = 48�C, c0(TR) = 1=6
and � = 1 kBT [16]. The �rst phase diagram corresponds to T = 20�C,
the second to T = 37�C. As temperature is increased, the lamellar phase
L� extends further and further into the water apex of the Gibbs triangle, in
excellent agreement with experiments [4, 5]. It follows from our model that
the channel of disordered micellar phase L1 which is observed between the
binary side and the lamellar phase is caused by the steric repulsion of the
monolayers over the oil regions. Fig. 2(b) shows phase diagrams calculated
for higher values of the bending rigidity � (with 1=c0(T ) = 15:3). When �
is increased to 2:8 kBT , the L1-channel disappears since the steric repulsion
gets weaker. If � is raised to 9:5 kBT , the van der Waals-interaction be-
gins to dominate and one �nds bound lamellae coexisting with excess water.
This prediction is in excellent agreement with experiments on the binary
system H2O=DMPC [19]. Moreover, here also the lamellae gradually un-
bind as pentanol is added as cosurfactant which e�ectively decreases �. In
any of the phase diagrams shown there is another coexistence between the
L1-phase and the excess oil phase, the so-called emulsi�cation failure which
is common to all amphiphilic systems.
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Fig. 2(a) Phase diagrams calculated with the curvature model for low bending rigid-
ity: (a) T = 20�C and (b) T = 37�C, � = 1 kBT , Tm = 48�C and c0(TR) = 1=6.
This choice corresponds to the tenside system H2O=C12E5=C14. As temperature is
increased, the lamellar phase L� stretches further into the water apex while leaving
a channel of disordered micellar phase L1 on the binary side which can be explained
with the steric repulsion between monolayers. The coexistence of L1 with excess
oil is known as emulsi�cation failure.

W O

A

W O

A

L

1

α

L 1L

Lα

(a) (b)

Fig. 2(b) Phase diagrams calculated with the curvature model for high bending
rigidity: (a) � = 2:8 kBT and (b) � = 9:5 kBT , 1=c0(T ) = 15:3. The latter value
corresponds to a lipid system with DMPC. With increasing �, the L1-channel
on the binary side disappears. The lamellae then become bound since the steric
interaction becomes weaker and the van der Waals-interaction begins to dominate.

3. Ginzburg�Landau model

In order to model binary amphiphilic systems within the framework of
a Ginzburg�Landau model, we choose to use the amphiphile concentration
�(r) and orientation � (r) as appropriate order parameter �elds. Here j� (r)j
re�ects the degree of the amphiphile alignment. Since we assume incompress-
ibility, the water concentration then follows as 1 � �(r). The free energy
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functional F [�; � ] can be derived either as continuum limit of an appropriate
lattice model or from a symmetry analysis. Assuming r � �(r) = 0, one
�nds [11,12]

F [�; �]=
Z
dr
n
�1(r � �)2+�2(��)2+�1(r�)

2+1(r� � � )+U(�; �
2)
o
;

(4)
where U(�; �2) is the free energy density of the homogeneous phases. Within
the Flory�Huggins approximation it is calculated as

U(�; �2)=a2�
2+ T (� ln�+M(1� �) ln(1��))+ b2�

2 + T�

 
c2
�
2

�2
+c4

�
4

�4

!
:

(5)
Here T denotes the reduced temperature and M the amphiphile molecular
volume relative to the water molecular volume. The model describes the
usual lower miscibility gap of a binary system for a2 < 0. A calculation
of correlation functions in the Gaussian approximation shows that �1 < 0
corresponds to amphiphilic self-assembly. All other parameters are taken
to be positive. It is straightforward to derive a similar model for ternary
systems when the order parameter �eld �(r), which is the local density
di�erence between oil and water, is considered additionally [13,20].

Fig. 3 shows a typical phase diagram calculated in mean �eld approxi-
mation [13]. In order to test systematically and e�ciently for the stable
phase at any given point of the phase diagram, a Fourier ansatz has been
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Fig. 3. Phase diagram calculated with the Ginzburg�Landau model in mean �eld
approximation: �1 = �6, �2 = 10, �1 = 10, 1 = 30, a2 = �10, M = 20, b2 = 1,
c2 = 1:4 and c4 = 1. A line of critical points separates the ordered phases at
low temperatures from the disordered phase at high temperatures. Phase bound-
aries are mainly lyotropic and the sequence of phases with increasing amphiphile
concentration is as typically observed for systems with H2O and CiEj.
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used for all relevant ordered phases [21]. Special care has been taken to in-
clude various bicontinuous cubic phases which recently have been shown to
be accessible by Ginzburg�Landau models [22]. The phase diagram shows
a line of critical points separating the ordered phases at low temperatures
from the high temperature disordered phase. Following a cut at T = 1:0, one
�nds the sequence disordered micellar�fcc�bcc�hexagonal�lamellar�gyroid-
inverted hexagonal�inverted bcc�disordered inverted micellar when increas-
ing the amphiphile concentration. This corresponds nicely to experimental
results on systems with H2O and CiEj [2,3]. Note that there are two stable
cubic bicontinuous phases: P denotes a structure which results when drap-
ing an amphiphilic monolayer onto the triply periodic minimal surface P
(spacegroup 221). G results when draping an amphiphilic bilayer onto the
triply periodic minimal surface G (spacegroup 230). The latter structure is
known as double gyroid from diblock copolymer systems [23] and is depicted
in Fig. 4. Since there are di�erent structural types arising from the same
triply periodic surface when draped di�erently with physical entities, one
has to make sure not to miss any of these possible phases when testing for
the stable phase.

Fig. 4. Visualisation of the double gyroid, which is a stable phase in the phase
diagram of Fig. 3. As a guide to the eyes, the triply periodic minimal surface G
is shown in dark. Since an amphiphilic bilayer is draped onto it, there are two
disconnected, but interwoven water labyrinths which are shown in light. The space
group is 230 (Ia�3d).
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4. Conclusion

It has been shown here that mesoscopic models like curvature and
Ginzburg�Landau models can explain many generic aspects of amphiphilic
phase behavior. Curvature models are particulary useful for investigating
ternary phase behavior since here even micellar structures are build up from
amphiphilic monolayers which are governed by the Canham�Helfrich Hamil-
tonian. For simple geometries like lamellae and spheres, one can calcu-
late explicitly the e�ects of �uctuations and long-ranged forces like the van
der Waals-interaction. Since curvature models feature only few parameters,
comparison with experiments is rather easy. It follows that there are indeed
e�ects on amphiphilic phase behavior which can be observed experimentally:
for low bending rigidity � (i.e. tensides), the lamellar phase extends further
and further into the water apex of the Gibbs triangle as temperature is in-
creased towards the phase inversion temperature. For high bending rigidity
� (i.e. lipids), one �nds bound lamellae in coexistence with excess water.

Ginzburg�Landau models can be used to model many di�erent structures
both for binary and ternary systems. Although they can be shown to re-
produce the Canham-Helfrich Hamiltonian, they only describe short-ranged
interactions [6]. Since phase diagrams can be calculated easily only in the
mean �eld approximation, we conclude that they are more appropriate for
low temperature behavior where �uctuation e�ects are less prominent. In
fact we showed that they very well predict the typical phase sequence ob-
served for binary systems with H2O and CiEj when raising the amphiphile
concentration. In contrast to curvature models, the relevant geometries are
not presupposed but within the mean �eld approximation are obtained from
minimizing the free energy functional. In fact we believe that the broad two-
phase regions obtained with the curvature model results from the fact that
soft geometries like deformed droplets have not been taken into account.

In conclusion, di�erent aspects of amphiphilic phase behavior can be
modeled best by di�erent models. In order to obtain a complete picture, it
is therefore impedient to use all models available. In this sense curvature
and Ginzburg�Landau models have to be considered to be complementary
to each other.

It is a pleasure to thank G. Gompper for very enjoyable collaboration.
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