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I. DESCRIPTION OF MODEL EQUATIONS

The complete mechano-chemical model has been described previously [1]. In the following

we briefly review all model equations, summarized in Tab. SI. We start with a description of

the reaction diffusion equations for the Rho-pathway, that is initiated at focal adhesions. We

then discuss the mechanical stress fiber equation and how the biochemical signal couples into its

contraction dynamics.

Eq. (m1): It is expected that mechanical forces exerted on focal adhesions eventually initiate

the GTP loading of RhoA leading to the activation of the Rho associated kinase (ROCK). Due

to the lack of information we lump the focal adhesion associated processes into one equation that

effectively describes the conversion of ROCK into its activated form (presumably complexed with

RhoA-GTP). The mechanical force Ft that stimulates the activation is treated as an enzyme in the

framework of Michaelis-Menten kinetics. The variable ROCK in Eq. (m1) denotes the activated

form of ROCK and we assume that the overall concentration of ROCK is constant at ROCKtot.

The force exerted by the stress fiber on the focal adhesion, Ft(t), stimulates the conversion of

ROCK into its activated form with maximum velocity r1Ft(t) and Michaelis-Menten constant

K1. The parameter r1 is equivalent to a rate constant but relates mechanical force to a chemical

reaction. For this reason the units of r1 are given as [nM/s nN], see Tab. SII. The second term

accounts for the degradation of activated ROCK to its inactive form, with maximum velocity V
−1

and Michaelis-Menten constant K
−1. Since we expect ROCK in its active form to be associated

with focal adhesions, we omit diffusive contributions to this equation.

Eq. (m2) and (m3): One main effector of ROCK is myosin light chain phosphatase (MLCP),

which we regard as a diffusible compound, described by the reaction-diffusion equation. Here, the

variables MLCP-P and MLCP denote the phosphorylated and unphosphorylated form of myosin

light chain phosphatase, respectively. The first term accounts for the dephosphorylation of MLCP-

P with maximum velocity V
−2 and Michaelis-Menten constant K

−2. The second term allows for

the diffusion of the phosphatase with diffusion constant D. The phosphorylation level of MLCP

is also regulated by the active form of ROCK which catalyzes the reverse reaction, that is the

conversion of the phosphatase into its phosphorylated form. ROCK is only active in the vicinity of

focal adhesions located at each end of the stress fiber. Thus, this source term can be incorporated

into the boundary conditions for Eq. (m2). The diffusive flux into the boundary has to balance

the conversion into its inactive form, see Eq. (bc2) in Tab. SI. The reaction at the boundaries is

again modeled by Michalis-Menten kinetics, where R2 = r2vb is the product of a rate constant r2



with an effective volume vb of the focal adhesion in which the reaction takes place. K2 is the usual

Michaelis-Menten constant. An equivalent reaction-diffusion equation with the same boundary

conditions follows for the phosphorylated form of the phosphatase (MLCP-P), see Eq. (m3) and

Eq. (bc3) in Tab. SI.

Eq. (m4): MLCP together with myosin light chain kinase (MLCK) regulate the phosphoryla-

tion level of myosin light chain (MLC). Since myosin in stress fibers form mini-filaments, which are

bound to actin filaments, we neglect diffusion of this compound, leading to the rate equation for

the phosphorylated fraction n of MLC. By allowing only the ratio of the phosphorylated fraction

to vary, we assume that the overall amount of myosin in stress fibers is constant. MLC is phos-

phorylated by MLCK with a maximum velocity V3 = r3MLCK and respective Michaelis-Menten

constant K3. We assume that the concentration of MLCK is constant within the cell. The kinase is

antagonized by MLCP that dephosphorylates MLC with a rate constant r
−3 and Michaelis-Menten

constant K
−3. Since MLCP has spatial dependent source terms and is diffusible, the inhibition of

MLC by the phosphatase will vary in space.

The factor I in Eq. (m4) accounts for the effect of calyculin on actomyosin contractility. Caly-

culin is an inhibitor of MLCP and thereby enhances the phosphorylation level of MLC. We model

the interaction of calyculin with its target MLCP as a competitive inhibition [2]. The unperturbed

case corresponds to I = 1. Induction of calyculin corresponds to I > 1 which, in the model,

effectively increases the Michaelis-Menten constant K
−3 and thus decreases the rate of MLC de-

phosphorylation. Thus, more myosin motors will be activated and cell contractility is stimulated.

The used parameter values for the reaction-diffusion system are based on an extensive survey

of the literature and are summarized in Tab. SII. If a range of values is reported in the literature,

we chose an intermediate value for this parameter. If no value could be found in the literature,

we made reasonable assumptions based on similar parameters in other systems. No attempt was

made to fit the parameters to some target function.

Eq. (m5): The stress fiber model equation has previously been derived and discussed in detail

[1, 3]. It describes the displacement u(x, t) along the fiber and is derived from the force balance of

passive viscoelastic and active contractile forces:

a2 ∂

∂x

(

γ(x)
∂

∂x
u̇(x, t)

)

+ a2 ∂

∂x

(

k(x)
∂

∂x
u(x, t)

)

+ a
∂Fm(x, t)

∂x
= 0 (1)

The first and the second term represent the passive viscous and elastic forces, respectively. The

frictional coefficient is given by γ, the elastic constant is denoted by k, a is the typical length of a

sarcomeric unit, see Tab. SII. The third term accounts for the contractile actomyosin forces. The



contraction force Fm is described by a linear force-velocity relation: Fm(x, t) = Fs(x, t)(1 + v(x,t)
v0

)

with stall force Fs and maximum motor velocity v0. The local contraction velocity of the fiber

v(x, t) is given by the local strain rate v(x, t) = −a∂xu̇(x, t) which leads to:

Fm(x, t) = Fs(x, t)

(

1 +
a

v0

∂

∂x
u̇(x, t)

)

(2)

We couple the biochemical signaling to the actomyosin contraction by assuming that the stall force

depends on the phosphorylated fraction n(x, t) of MLC along the stress fiber. This assumption is

based on the fact that myosin heads can only bind to actin and perform an ATP-cycles if MLC is

phosphorylated. The more myosin heads are activated along a myosin minifilament, the larger the

maximum force that the bundle can exert to the actin filaments. Thus, we regard the ensemble of

myosins within a cross section of a stress fiber as one large contractile unit with an effective stall

force that depends linearly on the active fraction n of myosin heads:

Fs(x, t) = Fmax n(x, t) (3)

The effective stall force Fs(x, t) would reach the maximum force Fmax if all myosins within this

cross section were activated (n = 1). Eq. (1) together with Eq. (2) and Eq. (3) lead to the final

stress fiber model given by Eq. (m5). The boundary conditions at the two ends of the fiber (each

end is terminating at one focal adhesion) are given by a balance of the stress fiber forces, namely

the traction forces Ft, and the elastic restoring forces from the compliant substrate. The latter is

modeled as linear elastic spring of stiffness ks. The boundary conditions are given in Eq. (bc5).

II. ANALYSIS OF SUBSTRATE DEFORMATION

Instead of the traction force Ft one could also choose the substrate deformation u as a state

variable in the bifurcation analysis. The analysis is equivalent in the sense that these two measures

are linearly related by Ft = |ksu|. Nevertheless, the bifurcation diagram for the substrate defor-

mation reveals some notable features which we want to discuss here. The bifurcation diagram is

shown Fig. S1 for different values of the stimulation strength I. The upper stable branch exhibits a

maximum at an intermediate stiffness ratio. This is because on the one hand the contractile forces

sharply decrease with decreasing substrate stiffness as the left bifurcation point is approached,

compare Fig. 2 in the main text. Thus, also the resulting deformations decrease in the vicinity of

the left bifurcation point. On the other hand, the exerted forces saturate for large stiffness ratios.

As a consequence, the deformations roughly decay proportional to 1/ks for high stiffness ratios.



These results depict the dilemma experimentalists face when they perform experiments with

cells on soft substrates and measure the resulting substrate deformations. On a very stiff substrate,

cells are able to build up high forces, but since the substrate is so stiff, the caused displacements

are very small and hardly measurable. On the other hand, if the substrate is very soft, cells can

not exert large forces, thus the substrate deformations are also very small and hardly measurable.

There is only a small window of suitable substrate stiffness over which cells reach a contractile

state and the substrate is sufficiently soft to allow for measurable deformations.

We have also analyzed the time courses of the substrate deformations when substrates of cyclic

stiffness are imposed. The sinusoidal function of the time-dependent substrate stiffness was, as in

the main text, given by:

ks(t)/k = 10−2 + 10

(

1

2
+

1

2
cos(ωt)

)

(4)

The results for the substrate deformations are shown in Fig. S2. The same periods have been used in

the main text. Also here, the area of the hysteresis cycle first increases with the angular frequency,

reaches a maximum (not necessarily at the same T -value as the force) and then decreases again

with increasing frequency. In the latter case, when the frequency is very high, the system maintains

unusually high forces on soft substrates. This combination of high forces and low stiffness leads to

very large deformations. This can be deduced from the trajectories for T < 4300 s which undergo

large excursions away from the steady state branches. It is also noteworthy that the substrate

deformations reach a maximum shortly before the stiffness passes through its minimal value.

III. BUILD UP OF TRACTION FORCES

To simulate the build up of traction forces during cell spreading we imposed that initially all

biochemical components are equilibrated for vanishing mechanical input. That is, we have set

Ft(t) = 0 in Eq. (m1) and let the biochemical components evolve to their steady state. The

resulting concentration profiles are then taken as initial conditions for the subsequent simulation.

This situation is meant to represent a cell that was formerly in suspension where no forces could

be built up and that starts to adhere to the substrate at t = 0. The time courses of the established

traction forces on substrates of different stiffness are shown in Fig. S3. We find that the stiffer the

substrate the faster is the build up of contractility and the higher is the force reached in the steady

state. However, the reached steady state forces of cells in the contractile state only differ within

a few percent, reflecting the fact that eventually all motors are activated and loaded to their stall



force. A dramatically simplified version (the so-called two-spring model) of this process has been

analyzed before [4]. As discussed earlier, cells on very soft substrates, (see ks/k = 0.46 in Fig. S3),

can not establish high traction forces and are kept in the inactive state.

IV. DISCUSSION OF CONTROL PARAMETERS

To perform the stability analysis of our model, we have chosen the non-dimensional ratio of

substrate stiffness over stress fiber stiffness ks/k and the stimulation strength I (calyculin) as

control parameters of the model system because both can be directly addressed by well established

experimental methods. All other model parameters have been given a specific value based on

literature reports. However, it is important to note that the bistability results from the inherent

positive feedback in the system and is not constraint to variations in a specific model parameter.

For this reason, the control parameter I can also be exchanged by another reaction parameter and

the model still remains bistable, as we have verified explicitly for some selected parameters.
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Model equations

∂ROCK(t)

∂t
=

r1Ft(t)(ROCKtot − ROCK(t))

K1 + (ROCKtot − ROCK(t))
−

V
−1ROCK(t)

K
−1 + ROCK(t)

(m1)

∂MLCP(x, t)

∂t
=

V
−2MLCP-P(x, t)

K
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+ D
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(

k(x)
∂
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)

+ a
∂

∂x
Fs(x, t) = 0 (m5)

Boundary conditions at x = 0, L

∂MLCP(x, t)

∂x
= ±

R2

D

ROCK(t)MLCP(x, t)

K2 + MLCP(x, t)
(bc2)

∂MLCP-P(x, t)

∂x
= ∓

R2

Dp

ROCK(t)MLCP(x, t)

K2 + MLCP(x, t)
(bc3)

Ft(t) = ±ks(t)u(x, t) (bc5)

Abbreviations

Fs(x, t) = Fmax n(x, t)

γ̃(x, t) = γ(x) + Fs(x, t)/v0

Ft(t) = aγ̃(x, t)
∂

∂x
u̇(x, t) + ak(x)

∂

∂x
u(x, t) +

∂

∂x
Fs(x, t)

TABLE SI: Summary of model equations. Eqs. (m1-m4) describe successive biochemical signaling events:
(m1) focal adhesion associated activation of ROCK; (m2) and (m3) phosphorylation and diffusion of MLCP
and dephosphorylation and diffusion of MLCP-P; (m4) regulation of the active fraction of the myosins, which
is identified with the phosphorylated fraction of MLC. Eq. (m5) is the model equation for stress fibers where
u(x, t) is the displacement along the fiber. The boundary conditions for the partial differential Eqs. (m2),
(m3), (m5) are given by (bc2), (bc3), (bc5), respectively. In Eq. (bc2), (bc3), (bc5) the upper (lower) sign
is valid for the left x = 0 (right x = L) boundary. For brevity we have introduced abbreviations for the stall
force Fs, the effective viscosity γ̃ and the traction forces Ft. All presented results have been derived with
the assumptions that: (I) The diffusion properties of the phosphorylated and unphosphorylated form of the
phosphatase are the same, hence D = Dp. (II) The viscoelastic properties of the stress fiber do not vary in
space, therefore k(x) → k and γ̃(x, t) → γ + Fmax n(x, t)/v0.



Time dependent reaction variables

Abbreviation Meaning Used value Reference values Ref.

ROCK activated form of ROCK 0 . . . 5 nM & 1 nM [5]

MLCP unphosphorylated form of MLCP 0 . . . 1.2 µM 1.2 ± 0.3 µM [6]

MLCP-P phosphorylated form of MLCP 0 . . . 1.2 µM 1.2 ± 0.3 µM [6]

n fraction of active myosin 0 . . . 1 [MLC-P]/[myosin]

Reaction constants

MLCK myosin light chain kinase 0.1 µM & 100 nM [7]

M myosin concentration 30 µM 25 . . . 30 µM [8]

K1 Michaelis constant 5 nM (no value)

K
−1 Michaelis constant 7 nM (no value)

K2 Michaelis constant 0.1 µM 0.10 ± 0.01 µM [5]

K
−2 Michaelis constant 15 µM (no value)

K3∗M Michaelis constant 20 µM 52.1 ± 7.1 µM [9]

34.5 ± 2.8 µM [5]

18 µM [10]

7.7 . . . 96.0 µM [11]

19 . . . 53 µM [7]

20 µM [12]

K
−3∗M Michaelis constant 10 µM 10 µM [13]

r1 rate constant 0.3 nM/s nN (no value)

V
−1 maximum velocity 1.7 nM/s (no value)

r2 rate constant 2.4 1/s 2.36 ± 0.10 1/s [5]

R2 maximum velocity 4.8 µm/s r2 ∗ vb

V
−2 maximum velocity 0.1 µM/s (no value)

r3∗M rate constant 10 1/s 2.00 ± 0.36 1/s [9]

3.85 ± 0.095 1/s [5]

5.17 1/s [10]

7.37 . . . 171.3 1/s [11]

70 . . . 100 1/s [7]

4.64 1/s [12]

V3∗M maximum velocity 1.0 µM/s r3∗MLCK∗M

r
−3∗M rate constant 21 1/s 21 1/s [13]

D diff. const. of MLCP & MLCP-P 14µm2/s 10 . . . 100 µm2/s [14]

vb effect. react. vol. of FAs 2.0 µm (no value)

Parameters of mechanical model

Fmax stall force 50 nN 20 . . . 70 nN [15]

v0 maximum motor velocity 1.0 µm/s ≈ 0.1 . . . 1 µm/s [16]

a sarcomeric length 1.0 µm 1.0 µm [17]

k spring stiffness 45 nN/µm 45.7 nN/a [18]

γ viscosity 45 nN s/µm ≈ τk = 45.7 nN s/a [18, 19]

L fiber length 50µm ≈ 20 . . . 80µm

TABLE SII: Model parameters based on literature search. We have set the model parameters such that
they fit into the reported range. The equation for the phosphorylated fraction of MLC is normalized to the
total myosin concentration denoted by M . In order to make the involved reaction constants comparable
to the literature values we give K3, K

−3, r3 ,r
−3 and V3 scaled with M . The lower and higher estimates

for Fmax have been taken from traction force measurements of fibroblasts and myocytes, respectively [15].
The typical equilibration time τ of stress fibers is a few seconds [3, 19] which yields a rough estimate for
the viscosity γ ≈ τk, using τ = 1 s. Some of the reported values have been measured for the interactions of
protein fractions and not for the native proteins. Furthermore, the experiments have been carried out on
proteins extracted from different species.
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FIG. S1: (a) Bifurcation diagrams for the substrate deformations. The color coding is as in Fig. 2 in the
main text.
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FIG. S2: Time course of the substrate deformation for a cyclic varying substrate stiffness with periods used
as in the main text. The curve highlighted in red corresponds to the largest hysteresis cycle in Fig. 4 in the
main text. For small periods, the substrate deformation exhibit large excursions to very high values.
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FIG. S3: Time course of the traction forces established by cells on substrates with different stiffness: ks/k ∈
{0.46, 1.00, 1.98, 5.04, 10}. The stiffer the substrate the faster is the equilibration process and the higher is
the force reached in the steady state. Cells on the softest substrate, ks/k = 0.46, can not establish high
contraction forces and are kept in the inactive state.


