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� Abstract
Migration of motile cells on flat substrates is usually driven by the polymerization
of a flat actin filament network. Theoretical models have made different predic-
tions regarding the distribution of the filament orientation in the lamellipodium
with respect to the direction of motion. Here we show how one can automatically
reconstruct the orientation distribution of actin filaments in the lamellipodium of
migrating keratocytes from electron microscopy tomography data. We use two dif-
ferent image analysis methods, an algorithm which explicitly extracts an abstract
network representation and an analysis of the gray scale information based on the
structure tensor. We show that the two approaches give similar results, both for
simulated data and for electron microscopy tomography data from migrating kera-
tocytes. For the lamellipodium at the leading edge of fast moving cells, we find an
orientation distribution that is peaked at 135/235 degrees. For the lamellipodium
at the leading edge of slow moving cells as well as for the lamellipodium at
the flanks of fast moving cells, one broad peak around 0 degree dominates the
distribution. ' 2012 International Society for Advancement of Cytometry
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INTRODUCTION
The directed polymerization of filaments built from the structural protein actin

is a generic propulsion mechanism used in very different biological systems of inter-

est, ranging from immune cells to human pathogens [1]. During migration on flat

substrates, motile cells usually generate a widely spread and thin, almost sheet-like

lamellipodium at their advancing edge [2]. As a prerequisite for cell migration, such

actin polymer networks generate the necessary work for protruding the cell mem-

brane at the front by polarized growth against the leading edge [3].

Although a cell type-specific network of regulatory proteins determines the

exact dynamics of the lamellipodium, a small subgroup of what is believed to be the

key proteins of the process has been identified and appears to be conserved in many

different situations [4,5]. This fact and the particular importance of mechanical

aspects in understanding the propulsion mechanism has made this system a para-

digm for biophysical modeling in recent years [6–8]. Many mathematical models fo-

cusing on different aspects of the process have been helpful in rationalizing and inter-

preting previously puzzling experimental results [9]. These models, however, are fre-

quently challenged by the results of new experimental techniques accessing the

subject in greater detail and yielding unexpected results [7,10,11].
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Because most optical techniques up to date are not able

to resolve the required details, electron microscopy (EM) is

the most important type of experimental data which helps to

understand the spatial organization of the lamellipodium

[12]. Pioneering work by Borisy and coworkers suggested that

the lamellipodium is organized in a surprisingly regular man-

ner, with frequent branching junctions leading to an overall

criss-cross pattern [13,14]. Recently, it has been shown with

advanced EM techniques that the organization of the lamelli-

podium might be more variable, with less branching and

more three-dimensional crosslinking [10,11,15]. The newly

available EM data now open up the perspective to achieve

more reliable and quantitative information than formerly pos-

sible, and to make interesting comparison with theoretical pre-

dictions.

In the past, different theoretical models have made inter-

esting predictions for the spatial structure of the lamellipo-

dium. Modeling the polymerization of a single filament

against an external force yielded an optimum filament orienta-

tion for fastest growth at around 488 [16]. Later, Maly and

Borisy suggested that two competing patterns exist due to a

competition of branching and orientation dependent capping

of filaments, with orientations peaked at 135/235 and 170/

0/270 degrees [17]. Motivated by the available EM evidence,

it was concluded that a pattern with peaks at 135/235

degrees dominates in lamellipodia under physiological condi-

tions, as also suggested by stochastic network simulations

[18]. Introducing an orientation dependent branching rate in

the model yielded similar 135/235 degrees patterns as before,

but with subdominant patterns adding more features to the

orientation distribution histograms [19]. Recently it has been

shown that the competition between the 170/0/270 and

135/235 degrees patterns leads to bistability and hysteresis

effects [20]. Thus, these theoretical findings are able to explain

puzzling experimental results including hysteresis effects in

actin networks grown in vitro against an atomic force micro-

scope cantilever [21].

To evaluate the experimental data quantitatively, appro-

priate image processing methods have to be developed. So far

different routines have been used to deduce information on

the network architecture of biological samples, like for

instance astrocyte cell clusters [22] and intermediate filament

networks [23]. Also actin filament networks have been ana-

lyzed and classified according to their structural organization

[24,25]. Some approaches focused specifically on the actin

network orientation from microscopy images of lamellipodia.

A combination of filament edge segmentation and subsequent

Radon transform [17,26] as well as a network model based

image analysis [27] led to the conclusion that the dominant

orientation distribution peaked at around 135/235 degrees is

the only relevant pattern in the physiological context. How-

ever, recently a correlated measurement of the leading edge ve-

locity and subsequent manual orientation analysis of ran-

domly selected single filaments demonstrated a substantial

increase in the relative number of filaments oriented more

parallel to the leading edge after transitions from protrusion

to pause [28].

Here, we refine and automatize this correlated measure-

ment approach by analyzing several two-dimensional (2D)

slices of three-dimensional (3D) tomographic EM data of the

lamellipodium network. To evaluate the orientation distribu-

tion of actin filament networks on EM images of the lamelli-

podium of motile keratocyte cells, we will rely on two different

data analysis strategies. First, we will extract an abstract 2D

actin network representation, consisting of nodes connected

by straight line segments. This algorithm was customized for

our specific type of EM data. Therefore, in order to yield accu-

rate and correct results, the method requires a rather high

image quality. The performance of this algorithm can be

judged directly by visual comparison of the extracted networks

to the raw image data and hence, a similar accuracy as

observed is expected from the subsequent orientation analysis.

Second, we will discuss a gray value gradient based orien-

tation measure based on the structure tensor calculus [25,29].

As this procedure evaluates the gray value gradients within a

small neighborhood around each pixel of the image and

extracts the desired orientation information from this calcu-

lus, it is applicable to a wide range of different images. Even if

the resolution of the image is far lower than the typical length

scale of the individual actin network constituents, this analysis

can still yield informative results. Our main conclusion is that

both methods give similar results, both for simulated and ex-

perimental data, and demonstrate clear differences between

the actin filament orientation distributions of fast and slowly

protruding parts of the lamellipodia.

MATERIALS AND METHODS

We performed experiments with motile fish keratocyte

cells as described earlier [15,28,30], but now with a special

focus on the role of growth velocity. Fish keratocytes were pre-

pared from scales of freshly killed brook trout (Salvelinus fon-

tinalis). Primary cultures of keratocytes, produced by incubat-

ing the fish scales in growth medium in plastic Petri dishes,

were treated with trypsin and the released cells re-plated onto

Formvar-coated electron microscope grids. The living cells

were imaged under phase contrast optics in a Zeiss Axioscope

inverted microscope and time lapse sequences recorded on a

Micromax CCD camera (Roper Scientific) at time intervals of

5–10 seconds. After one of the motile cells slowed down, all

cells were fixed by exchanging the growth medium for a fixa-

tion/extraction solution containing a mixture of Triton X-100

(0.75%) and glutaraldehyde (0.25%) in cytoskeleton buffer

(10 mM MES buffer, 150mM NaCl, 5mM EGTA, 5 mM glu-

cose, and 5mMMgCl2, at pH 6.1). After 1 min in this mixture,

the cells were postfixed in 2% glutaradehyde in the same

buffer containing 1lg/ml phalloidin and stored in this solu-

tion at 48C until use. For electron tomography, the grids were

negatively stained in aqueous, 4% sodium silicotungstate

(Agar Scientific) at pH 7, containing BSA-saturated colloidal

gold and tomogram series collected in an FEI Polara electron

microscope operating at 300 kV. Reprojections from the tilt

series were generated using IMOD software from the

Boulder Laboratory for 3D Electron Microscopy of Cells.
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RESULTS

Live Cell Imaging and Tomography

Although we expect that changes in network growth ve-

locity trigger transitions in the filament orientation distribu-

tion in the lamellipodium, this cannot be easily manipulated

from the outside. In fact it is not sufficient to compare two

cells crawling with different absolute velocities, because the

important parameter that dictates network orientation is the

protrusion speed measured relative to the single filament poly-

merization velocity [20]. As this polymerization speed itself

depends on many intrinsic characteristics of the cell, like the

available actin monomer concentration at the leading edge

and regulatory circuits, it is an individual property of each

cell. Hence, it is not unlikely that two cells, migrating at differ-

ent speed, could still crawl in the same dynamic regime and

with similar actin network organization.

To approach this problem, we utilized two different stra-

tegies. First, we used the fact that the velocity of individual

cells crawling on a culture dish naturally varies due to random

differences in the external and internal conditions for each

cell. The analysis of correlated data from two different micros-

copy setups allowed us to exploit these stochastic variations

and extract the structural organization of the actin network

for different cell velocity and therefore protrusion speed of the

leading edge network. Different moving fish keratocyte cells

are observed in a live-microscope in real time. Once one cell

slows down significantly, all cells are fixed in their present dy-

namical state. Subsequently, the lamellipodium network of the

cells is analyzed in high resolution EM tomography. Although

it is not possible to measure directly the network velocity rela-

tive to the active single filament polymerization speed in the

final state, we know from the live-cell images which cell slowed

down just before fixation. Therefore it is likely that this cell

switched its dynamical state at this point. From here on we

can compare the network orientation distribution in this cell

to another cell which was moving unperturbed at a relatively

high velocity and compare the two for differences in the

filament orientation patterns.

Second, we used the fact that protrusion rates and there-

fore presumably also actin network organization vary consid-

erably along the boundary of a locomoting keratocyte, with a

much smaller normal component at the flanks than at the

front [31,32]. We therefore also performed analysis of EM

data from different locations at the boundary of steadily mov-

ing cells, namely both at the center of the leading edge and at

the sides.

In Figure 1, we show two snapshots from a live-micros-

copy video of motile keratocytes (see Supporting Information

movie 1). The absolute velocities of the two cells marked on the

images is not directly relevant for our considerations. However,

it is important to note that Cell 1 moved steadily and with

approximately constant velocity over the whole recording time,

while Cell 2 has slowed down to the point where its cell body

was only barely moving anymore. The important parameter for

our analysis is the relative velocity of the leading edge with

respect to filament polymerization, which we assume to be

much smaller here compared to the steadily moving cell. After

fixation and tomography reconstruction, all slices of the volu-

metric stack were preprocessed, before the actual filament net-

work analysis started. Here, the contrast of all images was

increased and bright prominent marker dots that are necessary

for the reconstruction of the tomograph were removed from

Figure 1. Two snapshots of a live-microscopy video of motile keratocyte cells at the beginning of the recorded movie (a) and just before

the fixation of the cells (b). The time code of the individual images is displayed on the respective lower right corner in units of minutes and

seconds. The two keratocyte cells that were analyzed in EM and image processed later are indicated on these images. Cell 1 moved stea-

dily over the substrate at a relatively high velocity. Compared to its initial velocity, Cell 2 slowed down significantly just before fixation.

Scale bar is 10 lm.
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the images. Figure 2 shows a slice plot through the image stack.

It clearly demonstrates that relatively long segments of indivi-

dual filaments lie in a single image z-plane parallel to the sur-

face before they are leaving the focus of the slice (see also Sup-

porting Information movie 2). This shows that the lamellipo-

dium is essentially organized in two dimensions and validates

our approach to conduct a 2D analysis.

Filament Network Extraction

We first developed a 2D network extraction algorithm

suitable for our EM tomography slices of lamellipodium actin

networks. A similar approach has been used successfully

before to construct graphs from image data of astroglial cells

in the central nervous system [22]. Despite the fact that in

principle the network extraction routine described in the fol-

lowing could be generalized to 3D, here we restrict our

approach to two dimensions. Our available EM data consists

of volumetric stacks of 2D slices through the lamellipodium

parallel to the surface, at a position close to the leading edge

of the cell. The lamellipodium is typically 200 nm thick, but

several microns wide, and therefore effectively 2D. For the spe-

cific scope of this work, namely extracting projected filament

orientation distributions, the 2D approach is therefore suffi-

cient. To obtain other physical parameters from the extracted

actin networks, like filament connectivity, a complete 3D net-

work reconstruction would be required. Such a 3D network

analysis has been carried out before for intermediate filament

networks using a commercially available image processing

package in combination with algorithms for artifact compen-

sation [23].

The final goal of our 2D approach is to describe the com-

plex 2D actin network structures by a graph consisting of

located nodes and a connectivity matrix indicating which

pairs of nodes are directly linked by linear (filament) line seg-

ments. In this way, we are efficiently reducing the experimen-

tal data to the information which is relevant for us, the fila-

ment orientation distribution. Although nodes between seg-

ments that are found by the algorithm might often only be

artifacts but no physical crosslinks between filaments, due to

the 2D projections of the 3D network, we are interested in the

orientation of filament segments and thus this effect does not

influence our results significantly. The algorithm for network

extraction can be subdivided in the following five steps,

segmentation, skeletonization, classification of nodes, graph

creation, and network correction and simplification.

Segmentation. As a preparation for network extraction, the

actin network visible on the EM image is segmented. This is a

crucial step in the analysis as the final accuracy of this segmen-

tation will have a significant impact on the quality of the

results from later processing steps for network extraction. For

Figure 2. Plot of representative slices through a typical EM image

data cube. The total volume of the image data is 1.3 lm 3 1.2 lm
3 0.1 lm.

Figure 3. Segmentation of the actin network on a representative slice of EM tomography data obtained from the lamellipodium of a motile

fish keratocyte cell. (a) Grayscale representation of one slice of the volumetric data reconstructed from EM tomography. Scale bar is

0.1lm. (b) Final black and white network image after binarization, removal of the background and smaller artifacts.
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this reason it is not possible to apply this approach to low

quality image data, as then it is very hard or often even impos-

sible to reliably segment the network constituents in an auto-

mated procedure. As an alternative to an initial segmentation

step, also other approaches exist which allow to simplify a

grayscale image directly, while preserving its topology [35].

For 2D scanning electron microscope images, network charac-

teristics of intermediate filaments have been successfully ana-

lyzed along these lines before [36].

For a good segmentation, i.e., a black and white represen-

tation of the actin network on the image, we first binarized the

image using Otsu’s method [37]. This primary segmentation

however was imperfect due to artifacts outside the lamellipo-

dium and between filaments. Therefore we needed to specify

the bulk region occupied by the actin network in the image.

As the EM images were taken in close proximity to the leading

edge, not the whole image region was filled by the network.

For this purpose, we evaluated the coherency measure for the

images that have been noise reduced by median and Wiener

filters before. Coherency is able to distinguish actin network

structures from a uniform or noisy background [25]. A binar-

ized version of the coherency feature image yielded a good

estimate for the boundaries of the actin network in the 2D

slices of the volumetric image stack. As an additional measure

that is able to detect smaller holes in the actin mesh, where no

filaments are present, we used the normalized square root of

the trace of the structure tensor. This tensor had already been

calculated before to obtain the coherency. After applying a

maximum filter and subsequent binarization, we got the rele-

vant network region in the image, in which filaments were

actually present. Pixelwise multiplication of the three binar-

ized images, i.e. the one obtained from Otsu’s method, the

binarized coherency and the binarized trace of the structure

tensor yielded a preliminary result for the segmented network.

In a last step, we analyzed this image for small artifacts, i.e.,

separated clusters of pixels with a total area smaller than a

given threshold, which were then deleted. This completed the

segmentation process. A representative original image is

shown in Figure 3a, together with its segmented version in

(b). In the following, to give a detailed impression on how the

network extraction procedure performs on EM images, we will

illustrate individual analysis steps on a small region of the

large sample image. Figure 4 indicates this smaller cutout

from the sample EM slice.

Skeletonization. We begin the network extraction starting

from the black and white version of the filament network, that

is cut from the binarized full image as shown in Figure 5a.

First, a thinning or skeletonization algorithm is applied. In

this step, the width of all segmented objects is iteratively

reduced to a final thickness of one pixel, without altering the

connectivity of the binary image. The final skeletonization

result is displayed in Figure 5b.

Classification of nodes. At this point, the width of all objects

in the image is exactly one pixel and therefore it is possible to

classify endpoints of objects as nodes. Endpoints are defined

as white pixels with exactly one other white pixel in their

direct neighborhood defined by eight surrounding pixels. In

Figure 5c such endpoints are marked in red. As we disregard

single isolated white pixels, every endpoint is connected to at

least one other endpoint by a closed path of white pixels.

However, it is also possible that a single endpoint is linked to

more than one other endpoints, if the connecting white path

starting at its position splits up on the way. Hence, we define a

Figure 4. To keep the presentation of the network extraction algorithm illustrative, we will explain the analysis procedure by applying it to

a smaller sample section of the full 2D sample slice. (a) Full EM slice, with the boundary of the smaller sample region indicated in black. (b)

Magnified sample region from (a). One edge of the quadratic sample region spans 0.34 lm.
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second class of nodes at the position of these split-ups. Such

higher order nodes or crosslinks are defined as white pixels

with at least three other white pixels in their direct neighbor-

hood. Higher order nodes are marked in green in Figure 5c.

Graph creation. Next, it is possible to construct a graph or

network by tracing connected paths sequentially starting at all

nodes which have been classified in the previous step. The

result of this procedure is essentially an adjacency matrix. This

quadratic matrix holds as many columns as nodes were found

in the previous step and all of its entries are initially set to

zero. If a connection is established between two nodes with

indices i and j, the i, j-th element of the matrix is set to one.

As links between nodes are undirected, only the upper triangle

of the symmetric matrix has to be considered. In this way, we

complement extracted nodes at certain positions in the image

with the additional information, if pairs of nodes are con-

nected. In other words, we have already extracted a primary

network from the segmented image. This rudimentary net-

work representation is shown in Figures 5d and 5e. To be able

to judge the accuracy of the extracted abstract linearized net-

work compared to the original actin filament network, the

skeletonized binary image and the sample section of the gray

value EM image are shown in the background of the plots,

respectively.

Network correction and simplification. The preliminary

network holds a rather large number of unnecessary nodes,

that does not contribute significantly to its architecture nor

the segment orientation distribution. Additionally, imperfec-

tions in the segmentation process lead to artificial disconnec-

tions in filaments. Therefore, we implemented an additional

correction and simplification routine for the primary

extracted network.

Due to the specifics of the skeletonization algorithm we

are using, multiple higher order nodes are often located in

their direct neighborhood. Merging these clusters efficiently

reduces the total number of nodes and therefore the dimen-

sion of the adjacency matrix. A new node, representative for

the whole cluster, is positioned at the centerpoint of all nodes

Figure 5. Sequential steps of the network extraction routine. (a) Sample region of the binarized 2D EM image as indicated in Figure 4. (b)

Segmented region after skeletonization. The connectivity of segmented objects is not altered in this operation. (c) Nodes are located and

classified according to the number of white pixels in their direct neighborhood. Red nodes indicate endpoints, while green nodes indicate

higher order nodes. (d) An adjacency matrix is constructed, that incorporates which nodes are directly connected by a continuous path of

white pixels. An abstract network according to straight links between connected nodes is shown in yellow. (e) The same graph as in (d) is

plotted on top of the original sample section of the gray value EM image for comparison. (f) The extracted network is simplified and cor-

rected to some extend. Unnecessary nodes, short dead ends and small loops are removed, while potential gaps in line segments are

bridged. The area of the quadratic sample region spans 0.34 lm 3 0.34 lm. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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which were merged and accumulates all connections to out-

side nodes.

From Figure 5e it is also evident that the extracted net-

work incorporates many rather short dead ends. Either these

line segments do not correspond to filaments in the gray

value image at all or represent filaments that were discon-

nected due to artifacts in the original image or due to an

imperfect segmentation. Therefore, we correct for such dead

ends in the following way: First, short dead ends are detected

in the network as line segments that are shorter than a given

threshold, while connecting at least one endpoint with an ar-

bitrary node. Subsequently, the algorithm extrapolates these

segments at their endpoint and connects them to other dead

ends which are oriented similarly and located close to the

extrapolated path. In this way small gaps in filaments are

bridged. If a connection to another line segment is not likely,

the dead end is classified as an artifact and deleted from the

network.

An additional artifact of the skeletonization is the appear-

ance of very small loops in the network. Therefore, we are tra-

cing the network for such rather small loops, using a depth

first search algorithm up to a maximum segment path length.

Once a loop is detected, all involved nodes are merged to a

single node located in their center, which also accumulates all

of the connections to outside nodes.

As a last step, second order nodes, only connected to

exactly two other nodes in the network, are analyzed for their

importance. Such second order nodes might appear as a result

of one of the simplification steps. If the change in orientation

of the two connections at the position of such a node is smal-

ler than a predefined threshold, the node is removed and the

two connected nodes are linked directly.

For our example region, the final network after correction

and simplification is shown in Figure 5f. Figure 6 shows the

abstract fiber network extracted from the full sample slice of

the EM data.

Gray Value Gradient-Based Orientation Analysis

As an alternative to the network extraction algorithm, we

also implemented an orientation analysis based on the struc-

ture tensor [29]. We have utilized this approach successfully

before in the biological context to classify actin network archi-

tecture on high-throughput fluorescence microscopy data

[25]. Briefly, a strategy to extract a unit vector n̂ defining the

local orientation in a small region of the image is to assume,

that it deviates least from the gradient direction of the image

gray values, rgð~xÞ. For this purpose, a promising procedure is

to maximize,

n̂ � rgð~xÞð Þ2¼ jrgð~xÞj2 cos2 rgð~xÞ; n̂ð Þð Þ: ð1Þ

Within a finite region, this amounts to an extremum

principle,

Zþ1

�1
wð~x �~x0Þ n̂ � rgð~x0Þð Þ2 d2x0 ! max; ð2Þ

where wð~x �~x0Þ is a window function, defining the neighbor-

hood around pixel ~x ¼ ðx; yÞ. To formulate these mathemati-

cal considerations, the discrete gray values of the image were

considered as a scalar field gð~xÞ, continuous in position and

magnitude. For the analysis, we will express the necessary

mathematical operators by 2D filter masks that are suitable to

transfer our derived expressions to the quantized gray value

images. The optimization problem can be solved by rewriting

Eq. (2) as,

Figure 6. Extracted abstract fiber network as the result of the network extraction algorithm described in the main text and in Figure 5. (a)

For better judgment of the quality of the resulting network, the original gray value EM image is shown in the background. (b) Plot of the

extracted network exclusively. The scale of these images is defined as in Figure 3. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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n̂T Jn̂ ! max; ð3Þ
where the structure tensor J is defined as,

Jpqð~xÞ ¼
Zþ1

�1
wð~x �~x0Þ @gð~x0Þ

@p

@gð~x0Þ
@q

� �
d2x0: ð4Þ

This is a symmetric, positive semidefinit matrix and therefore

there exist two orthogonal eigenvectors with non-negative

eigenvalues. Hence, a suitable coordinate rotation reduces J to

a diagonal matrix and the optimization problem reads,

n̂0x n̂0y
� � Jx0x0 0

0 Jy 0y0

� �
n̂0x
n̂0y

� �
! max: ð5Þ

If both eigenvalues are equal, i.e., Jx0x0 5 Jy0y0, there is no domi-

nant orientation observed in this neighborhood. Therefore,

without loss of generality, we can assume Jx0x0 [ Jy0y0 and hence

n̂0 ¼ 1 0½ � maximizes Eq. (5) with maximum value Jx0x0.

This means that in the coordinate system in which the struc-

ture tensor J is diagonal, i.e., the coordinate system spanned

by the two orthogonal eigenvectors of the matrix J, n̂ and

therefore the local orientation is given parallel to the eigenvec-

tor with the largest eigenvalue.

As an example, Figure 7 shows a representative extraction

of a feature image from two different variants of a computer

generated random fiber network. These random fiber net-

works have been used before to model mechanical characteris-

tics [33] and transport properties [34] of biopolymer net-

works, but also to benchmark image processing routines for

microscopy data of actin [25]. To obtain a realization of the

stochastic network model, the positions of a constant number

of fibers are chosen uniformly randomly within a confined 2D

domain. Subsequently, the orientation angle of each fiber is

randomly selected from a specified orientation distribution.

Connections in the network are formed when two fibers hap-

pen to cross each other. For testing the extraction of fiber

orientation distributions with our approaches, the connectiv-

ity of the fibers is of minor importance for low to moderate

fiber densities; only at high fiber density, the large number of

connections makes it difficult to resolve single fibers in the

network. Reconsidering the model predictions for the struc-

tural organization of lamellipodium actin networks in [17,20],

we expect two fiber orientation patterns to be especially rele-

vant. Therefore at this point we draw fiber orientations from

two different linear combinations of Gaussian distributions

with means at either 135/235 (Figs. 7a and 7b) or 170/0/

270 degrees (Figs. 7c and 7d), each with constant standard

deviation r 5 158. In the case of 135/235 degrees networks,

the weight of both peaks is chosen equal, while for the second

170/0/270 degrees pattern, the weight of the peak at 08 is

chosen twice as large as the constant weight at 170/270

degrees. For illustration the absolute orientation of each fiber

relative to the vertical boundary of the network is color coded

in these images as indicated by the colorbar.

The lower two images in Figure 7 show results of the

structure tensor analysis applied to gray scale representations

of the network examples above using a feature image represen-

tation. The color in each pixel indicates its local orientation,

while the saturation is given by the coherency measure,

cc ¼ Jx0x0 � Jy0y 0

Jx0x0 þ Jy0y 0

� �2

¼ Jyy � Jxx
� �2þ 4J 2xy

Jxx þ Jyy
� �2 ; ð6Þ

and the intensity by the trace of the structure tensor,

Tr J ¼ Jxx þ Jyy ¼ Jx0x0 þ Jy0y 0 : ð7Þ

This is a variant of the HSV-colorspace with a constraint hue

domain. Colored pixels in the image indicate regions of clear

orientation, while black pixels mark the uniform background

without any dominant orientation. With regard to visual

inspection the feature images appear to capture the original

fiber orientation of their individual sample images reasonably

well. In the following section, we will quantify this impression

by calculating fiber orientation distributions from such

random fiber networks and compare them to the actual

Figure 7. Orientation analysis of two realizations of random fiber

networks using the structure tensor calculus. (a) and (c): Two

examples of random fiber networks according to a 135/235 (a)
and a 170/0/270 degrees (c) distribution. The orientation of the
individual filaments is color labeled. (b) and (d): Feature images

of the orientation, that were extracted using the structure tensor

analysis of black and white versions of (a) and (c). The colorbars

shown apply to all four images. To obtain such illustrative exam-

ple images, the size of the window function (i.e., Gaussian filter)

was reduced compared to the later analysis to obtain relatively

sharp feature representations of the individual fibers. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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orientation probability distributions from which the ensemble

of fibers has been drawn.

Analysis of Simulated Random Fiber Networks

To benchmark the accuracy of our two different image

processing routines for extracting filament orientation pat-

terns, we processed the two realizations of the computer gen-

erated random fiber model introduced earlier in ‘‘Gray Value

Gradient-Based Orientation Analysis’’ Section. The line of ref-

erence for color labeling the fiber orientations in Figures 8a

and 8d is assumed vertically, parallel to the lateral boundaries

of the network like before. As can be roughly estimated by eye

from this color labeling, the network in (a) was randomly cre-

ated to simulate a 135/235 degrees pattern, while a comple-

mentary 170/0/270 degrees distribution is visible in (d). In

(b) and (e) the extracted filament networks for the two exam-

ples are shown. The network extraction procedure was applied

to a binarized version of the random fiber networks in (a) and

(d) and subsequently extracted filament segments were color

coded according to their individual absolute orientation.

Extracted orientation distributions for the two simulated net-

works from our two independent approaches are shown in (c)

and (f). To evaluate this distribution from an extracted net-

work, the orientation of each line was considered as a small

Gaussian with standard deviation r 5 38 weighted by the

corresponding segment length. In case of the structure tensor

the evaluated orientation at each pixel was considered and

weighted by the coherency measure cc at this position. The full

distribution was subsequently convolved with a Gaussian filter

of size 128 and r 5 48 to average out fluctuations. All applied

methods are able to recover the original fiber orientation dis-

tribution of the random networks to a similar, reasonably high

extend. The major difficulty arises in the large angle domain

of the 170/0/270 degrees pattern. This is due to the limited

separation of the 170/270 degrees peaks. As the orientation

of filaments is only defined in an angle domain modulo 1808,
the orientation difference between these peaks is only 408. It
turns out, that the resolution of the applied analysis is not suf-

ficiently high to clearly resolve those two separated Gaussians.

Analysis of Lamellipodia Networks

Finally, the two independent automated orientation anal-

ysis routines, i.e. network extraction and gradient based struc-

ture tensor calculus, were applied to stacks of EM images

obtained experimentally. In case of the structure tensor rou-

tine, the preprocessed images were filtered with a median filter

to reduce noise before analysis. Results from network extrac-

tion with color labeled orientation relative to a line perpendic-

ular to the leading edge are shown in Figures 9b and 9e. The

leading edge orientation is indicated as a separate black dashed

Figure 8. Orientation analysis of random fiber networks using network extraction and structure tensor calculus. (a) and (d): Two realiza-

tions of the random fiber networks. The model orientation distributions are either peaked at135/235 (a) or 170/0/270 degrees (d), as indi-
cated by the black curve in (c) and (f), respectively. (b) and (e): Extracted filament networks for the two sample networks above. (c) and (f):

Resulting filament orientation distributions extracted from the networks according to our two independent approaches, using the structure

tensor analysis (red line) and the network extraction routine (dashed blue line). The true distribution that was used during random fiber

creation is shown as a benchmark (black line). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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line. This leading edge orientation was fitted manually to the

stack and held as a constant reference orientation for the com-

plete stack.

The final results for the orientation distribution of the

filaments in the lamellipodium networks are shown in Figures

9c and 9f for Cell 1 and Cell 2 (compare Fig. 1). To obtain

these distributions, we averaged over twenty adjacent slices in

the middle of each stack, where the lamellipodium network

appeared to be best visible without artifacts from the upper or

lower boundaries. The tomograph voxels are cubic and so the

spacing in z-direction is equal to the lateral dimensions, 0.746

nm. Therefore, in total we are averaging over around 14.92

nm in z. Considering typical actin filament diameters around

7 nm, this means that we take into account filaments from at

least two independent layers of actin and so the results are not

only locally representative but rather for a reasonable fraction

of the bulk network. This analysis shows, that the actin net-

work protruding in the steadily moving Cell 1 features a pro-

minent orientation pattern around 135/235 degrees. In

marked contrast, Cell 2, which has slown down before fixa-

tion, yields a qualitatively different distribution. First, this

orientation pattern spreads to broader angles more parallel to

the front as already indicated in [28] and second, a single peak

is observed within an angle domain near perpendicular to the

leading edge. Although peaks at 170/270 degrees are not

detected, as would be expected from the theoretical predic-

tions [20], this might be attributed to the close proximity of

these populations in orientation space modulo 1808 as it was
observed for the analysis of artificially created random fiber

networks before in Figure 8 (‘‘Analysis of Simulated Random

Fiber Networks’’ section). In general, the 135/235 degrees

pattern is expected to always give a clearer signature than the

170/270 degrees pattern.

The results from the two independent image analysis pro-

cedures shown in Figure 9 demonstrate a clear difference in

the orientation patterns of the fast and slow moving cells.

However, there are also clear differences between the results

from the different algorithms, especially for the slower cell at

large filament orientations. The strong asymmetry of the

orientation distribution extracted with the structure tensor

might have different reasons, including a stochastic fluctua-

tion in network growth (compare the simulated realizations in

Figure 8, which also lead to asymmetries), the corrugation in

the nearby cell edge, or some artifact resulting from the algo-

rithm. In general, the two procedures developed here are very

different in nature. Although the network extraction routine

Figure 9. Representative slices of the EM tomograph and subsequent analysis results. The upper images correspond to Cell 1 (fast) and

the lower images to Cell 2 (slow) as indicated in Figure 1. (a) and (d): Representative slices of the original data stack after preprocessing.

Scale bar is 0.1 lm. (b) and (e): Extracted 2D filament segments from these images plotted in color coded orientation. (c) and (f): Orienta-

tion distributions of the two independent analysis methods averaged over twenty slices of the complete stack (i.e., 20 3 0.746 nm 5
14.92 nm). Results from the structure tensor calculus are red and from filament network extraction are dashed blue. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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exclusively accounts for the filament orientation of segments

that have been explicitly identified due to their large contrast,

the structure tensor averages orientations over all grayvalue

gradients within the network region. Future work is required

to determine which of the two algorithms gives a more reliable

presentation of the actin filament orientations, but both agree

in demonstrating a clear difference between fast and slow cells.

The same results were obtained for EM data sets taken

from different locations along the cell boundary of steadily

moving cells (additional data given in Supporting Informa-

tion). Three additional data sets were analyzed from the front

of the lamellipodium. These networks feature the same criss-

cross filament orientation pattern as the steadily moving Cell

1 in Figure 9. Then two additional data sets were analyzed

from the lateral flanks of the lamellipodium, where protrusion

in the locally orthogonal direction is diminished. Here, quali-

tatively different filament orientation distributions emerge,

which feature a single dominant peak approximately orthogo-

nal to the local orientation of the cell membrane. Therefore

slowly protruding parts of the lamellipodium of a fast moving

cell are organized in a similar manner than the lamellipodium

at the leading edge of the slow moving cell in Figure 9.

DISCUSSION

The actin filament orientation distribution is a key quantity

to understand how the lamellipodium performs its function.

Here we have described a quantitative approach to extract this

orientation distribution for the lamellipodium of locomoting ker-

atocytes and found that two distinctly different patterns emerge

for fast versus slowly protruding networks. In particular, we find

that the leading edge of slowly moving cells and the flanks of fast

moving cells show the same broad orientation distribution, in

contrast to the leading edge of fast moving cells, which show the

well known criss-cross pattern of fast growing networks.

We have developed two independent data analysis meth-

ods for the orientation analysis of the lamellipodium EM data.

Both procedures work mostly automated with only minor or

no manual adjustments necessary. On the microscopic level,

we have implemented a network extraction algorithm which

generates abstract graph representations of the underlying

actin networks. The quality of the resulting artificial networks

can be tested directly by visual comparison to the original gray

value EM images. On a more macroscopic level, we have used

an established gradient based structure tensor analysis. This

method does not incorporate any a priori knowledge that

could bias the resulting orientation distributions.

We tested our analysis with artificially created random

fiber networks for the two different orientation patterns that

have been theoretically predicted before. The two approaches

were able to reliably distinguish the two patterns and extract a

reasonable estimate for the underlying original distribution.

Applying our analysis to experimental data, we measured and

analyzed actin networks in the lamellipodia of two different

fish keratocyte cells. One was moving steadily while the other

slowed down just before fixation. Both independent analysis

methods yielded similar results on each of these two sample

cells. The resulting orientation distributions were averaged

over 20 subsequent slices of the volumetric EM data. For the

fast cell, a dominant distribution with peaks around 135/235

degrees was measured, which could be attributed to a cell

moving in a medium growth phase dynamic regime as pre-

dicted theoretically in [20]. The second perturbed cell featured

a broad distribution with a dominant peak at an orientation

almost orthogonal to the leading edge. This hints at a cell

moving in a different regime, termed slow growth phase in the

theoretical description. Secondary peaks at 170/270 degrees

which would be expected from the model were not observed.

However, this could be attributed to the limited resolution of

the two methods as confirmed by the analysis of artificial ran-

dom fiber networks. Our conclusions were verified by an addi-

tional analysis using EM data sets from different locations

along the boundary of steadily moving cells. This showed that

the slowly protruding regions at the flanks of fast moving cells

have a similar actin orientation distribution like the front

regions in slowly moving cells. Future experiments have to

show if the obtained results can be confirmed for larger cell

populations.

Our representative orientation analysis results fit very

well to previously published experimental data, where changes

in the filament orientation of mouse melanoma cells have

been correlated to the speed of lamellipodium protrusion

[28]. In this study, it was also observed that the orientation

distribution broadens for slower velocities of the leading edge.

The dominant 135/235 degrees pattern, that has been

observed in the steadily moving cell, has also been reported

previously in Refs. 17 and 26. The methods developed here

now set the ground to evaluate the actin filament orientation

distribution in migrating cells for a larger number of data sets

and for systematically varied conditions. In the long run, this

might allow us to clearly discriminate between different model

predictions.
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