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Abstract. Cells in multicellular organisms adhere to the extracellular matrix through two-dimensional
clusters spanning a size range from very few to thousands of adhesion bonds. For many common receptor-
ligand systems, the ligands are tethered to a surface via polymeric spacers with finite binding range, thus
adhesion cluster stability crucially depends on receptor-ligand distance. We introduce a one-step master
equation which incorporates the effect of cooperative binding through a finite number of polymeric ligand
tethers. We also derive Fokker-Planck and mean field equations as continuum limits of the master equation.
Polymers are modeled either as harmonic springs or as worm-like chains. In both cases, we find bistability
between bound and unbound states for intermediate values of receptor-ligand distance and calculate the
corresponding switching times. For small cluster sizes, stochastic effects destabilize the clusters at large
separation, as shown by a detailed analysis of the stochastic potential resulting from the Fokker-Planck
equation.

PACS. 87.15.-v Biomolecules: structure and physical properties – 82.39.-k Chemical kinetics in biological
systems – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)

1 Introduction

Cells adhere to the extracellular matrix or to each other
through a multitude of weak interactions. The transient
character of their adhesions allows cells to adapt quickly
to changes in their environment. In particular, cell adhe-
sion has to be transiently down-regulated during impor-
tant physiological processes like migration or division. For
tissue cells, the main receptors for cell-matrix adhesion
are integrins, which are linked on the extracellular side to
ligands like fibronectin and on the cytoplasmic side to the
actin cytoskeleton [1]. This provides structural integrity
between extracellular matrix and cytoskeleton, which is
important because cell-matrix adhesion clusters usually
have to operate under considerable mechanical load. The
behaviour of single receptor-ligand bonds under force was
first discussed by Bell [2], who suggested that bond life-
time is reduced exponentially by an applied load. This
concept has been impressively confirmed and extended by
dynamic force spectroscopy [3–7], which showed that bind-
ing strength can only be defined in a dynamical context.
In particular, it has been shown both theoretically and
experimentally that for linearly increasing load, binding
strength increases linearly with the logarithm of loading
rate. If loading occurs through a soft polymeric linker,
binding strength is decreased compared to loading at the
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same speed but through a rigid linker [8]. In practice, cell
adhesion does not work with single bonds, but with clus-
ters of bonds. It has been noted earlier that the distri-
bution of load over the receptors in a finite-sized cluster
induces non-trivial cooperativity between adhesion bonds:
as one bond is disrupted, the load on the remaining bonds
increases and cluster stability diminishes [2,9–11]. Like-
wise, as a new bond is established, the other bonds feel
less force and cluster stability is enhanced.

For many common receptor-ligand systems, the lig-
ands are tethered to a surface through polymeric spac-
ers. This reduces the disturbance of ligand structure to
preserve its specificity and allows exploration of space
for receptors so that the effective affinity of surfaces cov-
ered with specific bonds is increased. For example, it has
been shown recently in a macroscopic shearing experiment
for streptavidin-biotin bonded beads that bonding is en-
hanced if ligands are tethered with polymeric spacers [12].
Thus the distance between ligands and receptors is an im-
portant determinant for specific adhesion. When cells ad-
here to and eventually spread on a surface, the distance be-
tween the ligand- and receptor-carrying surfaces decreases
from the µm- to the nm-range on the time scale of min-
utes [13]. The final receptor-ligand distance for integrins is
of the order of 15–20 nm, which is bridged by the polymer
spacer carrying the ligand.

During recent years, the distance-dependent bind-
ing of tethered ligands has been investigated experimen-
tally as well as theoretically. In experiments using the
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surface force apparatus and high-affinity streptavidin-
biotin bonds [14,15], it has been shown that binding de-
pends on rare, strongly extended conformations of the
spacers and that the onset of binding is followed by
a very fast increase of the fraction of bound tethers.
Binding of tethered ligands to receptors has been de-
scribed using a combination of Monte Carlo simulations
and reaction-diffusion theory. Simulations of pearl-bead
chains confined between two walls were used to determine
the force-extension relation for the polymers and to de-
rive a potential landscape for the movement of the lig-
ands. Later reversible tethered bonds have been treated
as deep but finite potential wells in the polymer poten-
tial landscape derived from simulations and used in the
reaction-diffusion equations [16,17]. Moreover, the effect
of changing receptor-ligand distance with a prescribed ve-
locity has been discussed. It was concluded that kinetic
effects are most important for strong binders with large
affinity while thermodynamic equilibrium dominates for
weak, reversible binders with small affinity. Recently, a
theoretical treatment has also been given for receptor-
ligand binding between curved surfaces, where different
bonds are not equivalent for geometrical reasons [18].

It is important to note that these theoretical stud-
ies have been conducted in the framework of a mean-
field description for a large numbers of independent,
non-cooperative bonds. No theoretical treatment has been
presented yet for the impact of receptor-ligand distance
on the stability and dynamics of finite-sized clusters with
cooperative bonds. Experimentally, it is well-known that
the lateral arrangement of the integrins and therefore the
integrin cluster size is regulated by cytoplasmic proteins
like talin and α-actinin, which can bind both to the in-
tegrins and to the actin cytoskeleton [19]. Using image
correlation microscopy, it has been shown for migrating
cells that the integrins which are not yet organized in ad-
hesions are already preclustered with an average cluster
size of three to four [20]. With a measured area density of
few hundreds of integrins per µm2, this corresponds to a
lateral distance well above 100 nm between the different
mini-clusters. As the adhesion contacts nucleate and grow,
integrins are increasingly clustered, until they approach a
density of 1.000–10.000 per µm2, corresponding to a lat-
eral distance of 10–30 nm. The progression from very few
to thousands of integrins per cluster suggests that finite
size effects might be highly relevant in the stabilization of
initial cell adhesion.

In this paper, we theoretically study the effect of
feedback and cooperativity on the distance-dependent
receptor-ligand binding dynamics in finite-sized adhesion
clusters. To this end, we use a one-step master equa-
tion, which has been used before to study the adhesion
cluster stability under mechanical load, both for constant
force [11,21] and linearly rising force [22]. Here we extend
this framework to include the effect of receptor-ligand dis-
tance. We start in Section 2 by introducing the appropri-
ate one-step master equation. In addition, we derive two
corresponding continuum descriptions, namely a Fokker-
Planck equation and a deterministic differential (mean

field) equation. Our modeling framework can be used for
any spatial distribution of the ligand in the direction nor-
mal to the substrate to which it is tethered. For sim-
plicity, we start with a harmonic tether potential (spring
model), which is the first order approximation for all poly-
mer models at small extensions. In Section 3, we analyze
the stationary states of the mean field equation and de-
rive one-parameter bifurcation diagrams which show that
the receptor-ligand dynamics of adhesion clusters leads
to bistability between bound and unbound states. In Sec-
tions 5 and 6 we discuss stationary and dynamic properties
of the master equation, respectively. In particular, we find
that large adhesion clusters are stabilized in the bound
state due to very large switching times to the unbound
state. In Section 7 we combine our conceptual framework
with the worm-like chain model for semiflexible polymers
to study the effect of finite polymer contour length. We
conclude in Section 8 by discussing some biological appli-
cations of our results. A short report on our main results
regarding the spring model has been given before [23].

2 Model

2.1 Master equation and continuum limits

Figure 1 shows a schematic representation of our model for
an adhesion cluster. The mechanical properties of the force
transducer holding the receptors and of the polymeric
tethers holding the ligands are represented by harmonic
springs. We consider a situation in which Nt receptor-
ligand pairs are arranged in parallel between the planar
force transducer and the substrate. At a given time, each
of these adhesion bonds can either be open or closed. All
bonds are considered to be equivalent so that the state
of the adhesion cluster is characterized by the number of
closed bonds i alone. The number of open bonds is Nt− i.
Because i ranges from i = 0 (completely unbound state) to
i = Nt (completely bound state), our model has Nt+1 dis-
crete states. Every bond changes its state (rebinds or rup-
tures) through thermally activated, stochastic transitions.
The stochastic rates for these transitions will be specified
below. Therefore, the stochastic variable i changes by dis-
crete steps ±1 (one-step process). The time dependence of
the functions {pi(t)}Nt

i=0 representing the probability that
i bonds are closed at time t are described by a one-step
master equation which has the general form

dpi

dt
= ri+1pi+1 + gi−1pi−1 − {ri + gi} pi. (1)

The forward rates gi for the formation and the reverse
rates ri for the rupture of a closed bond have to be speci-
fied for all states 0 ≤ i ≤ Nt. They have the general form
ri = ikoff (i) and gi = (Nt − i)kon(i). The reverse rate is
the product of the number of closed bonds and the sin-
gle bond off-rate koff (i) because the closed bonds rupture
independently and at a given time any of them could be
the next to break. The forward rate is the product of the
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Fig. 1. (a) Cartoon of a cell adhering to a substrate through two sites of adhesion. Each adhesion corresponds to an elastic
deformation in regard to the average cell-substrate distance. (b) Simple mechanical model for a site of adhesion. The cluster
consists of Nt bonds (here Nt = 5). At a given time t, i of these bonds are closed (here 3) while Nt − i (here 2) are open.
The force transducer at the top (cell envelope) and the ligand tethers at the bottom are modeled as harmonic springs, with
rest lengths �t and �b and spring constants kt and kb, respectively. The equilibrium positions of the springs (dashed lines) are
separated by the receptor-ligand distance �. The extensions of the bond springs and the transducer are denoted by xb and
xt = � − xb, respectively.

number of open bonds (Nt − i) and the single bond on-
rate kon(i) because the open bonds are independent and
any one of them could be the next to bind. Both, off- and
on-rate will in general depend on i. The form of the tran-
sition rates implies that the system is constrained to the
interval 0 ≤ i ≤ Nt by two natural, reflecting boundaries
at i = 0 and i = Nt, provided the single bond rates are
finite at these boundaries.

If the transition rates are continuous functions of i,
that is gi = g(i) and ri = r(i), it is useful to introduce
a mean-field description for the average number of closed
bonds, N(t) = 〈i〉 =

∑Nt

i=1 ipi(t). The time derivative of
N(t) follows from the master equation (1) in terms of av-
erages over the transition rates. Dragging the average into
the argument, it can be approximated as

dN

dt
= 〈g(i)〉−〈r(i)〉 ≈ g(〈i〉)−r(〈i〉) = g(N)−r(N). (2)

This procedure yields an ordinary differential equation for
N which in the following we term the mean field equation.
It is an exact equation for the mean number of bonds N
if the transition rates are linear functions in i. Otherwise,
it is only valid in the limit of large system size Nt.

To assess the role of fluctuations in the continuum
limit, we derive a Fokker-Planck equation from the master
equation. To achieve this, the one-step master equation (1)
is written in operator form [24]

∂p(i, t)
∂t

=
{
(E − 1)r(i) + (E−1 − 1)g(i)

}
p(i, t) (3)

where the operators E and E−1 act on the index i as

Ef(i) := f(i + 1) and E−1f(i) := f(i − 1). (4)

In a continuum description for i these can be expanded in
a Taylor series,

E = 1 +
∞∑

n=1

1
n!

∂n
i and E−1 = 1 +

∞∑

n=1

(−1)i

n!
∂n

i . (5)

Inserting equation (5) in equation (3) leads to the
Kramers-Moyal expansion [25]

∂p(i, t)
∂t

=

{

−
∞∑

n=0

∂2n+1
i

(2n + 1)!
A(i) +

∞∑

n=1

∂2n
i

2n!
D(i)

}

p(i, t),

(6)
in which the Kramers-Moyal coefficients are defined by

A(i) = g(i) − r(i) and D(i) = g(i) + r(i). (7)

The Kramers-Moyal expansion equation (6) is an exact
continuum representation of the master equation. Ter-
minating the infinite series after second order yields the
Fokker-Planck equation

∂p(i, t)
∂t

=
{

−∂iA(i) +
1
2
∂2

i D(i)
}

p(i, t) (8)

where A(i) is the drift and D(i) the diffusion coefficient,
which determine the short time behavior of the first and
second centered moments, respectively:

A(i(t0)) = lim
∆t→0

〈i(t0 + ∆t) − i(t0)〉
∆t

(9)

and

D(i(t0)) = lim
∆t→0

〈(i(t0 + ∆t) − i(t0))2〉
∆t

. (10)

By deriving the differential equations for average and vari-
ance directly from the master equation, one can verify that
the left hand sides are the derivatives dN/dt and dσ2/dt
for the initial conditions N(t0) = i(t0) and σ2(t0) = 0 at
time t = t0 [21,24]. The Fokker-Planck equation thus de-
scribes the average and the variance correctly. However,
the centered moments of higher order are not correctly
represented due to the truncation procedure.

In general, a continuous description of a one-step pro-
cess through the mean field equation (2) or the Fokker-
Planck equation (8) will be valid if the variation of tran-
sition rates and probability distribution is small over the
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step size ∆i = ±1. Below we will use the mean field equa-
tion for a bifurcation analysis in order to demonstrate that
our system is bistable. Because the Fokker-Planck equa-
tion results from a truncated Kramers-Moyal expansion,
it cannot be used to describe the full dynamics. For a
bistable system it has been shown before that the diffu-
sion approximation equation (8) leads to an error in the
stationary probability distribution and an overestimation
of the transition rates between the coexisting states [26].
However, this error is small for sufficiently smooth tran-
sition rates. Moreover, the extrema of the stationary
distribution are correctly described by the diffusion ap-
proximation of the Fokker-Planck equation as used here.
Therefore we will use it below to investigate how the sta-
tionary states are affected by thermal fluctuations which
are not included in the mean field approximation. In order
to describe the full stochastic dynamics, we will use the
original master equation (1). Alternatively, an improved
Fokker-Planck description could be used as explained in
reference [26].

2.2 Transition rates

2.2.1 Reverse rate

The bond dissociation dynamics is characterized by the re-
verse rate r(i) and strongly depends on the forces acting
in the cluster. We start with the simplest possible model
as suggested by the cartoon in Figure 1, that is the trans-
ducer and ligand tethers are modeled as harmonic springs
with rest lengths �t and �b and spring constants kt and kb,
respectively. Because the receptors are usually firmly at-
tached to the actin cytoskeleton, deformation of the trans-
ducer requires a local deformation of the whole cell mem-
brane as shown in the cartoon of Figure 1a. Therefore the
stiffness kt of the transducer is the combined stiffness of
plasma membrane and cell cortex. The extensions xb for
a bound ligand and xt for the transducer satisfy the rela-
tion xb +xt = �, where � is the receptor-ligand distance in
the completely dissociated state. In the following, we will
treat the relaxed or unloaded receptor-ligand distance � as
a parameter which has been fixed externally, e.g. by the
average cell-substrate distance or in an experiment with
the surface forces apparatus. Mechanical equilibrium re-
quires

iFb = Ft = ktxt = kt(� − xb) = kt (� − Fb/kb) (11)

so that
Fb(i) = kbxb(i) =

kb�

1 + i(kb/kt)
. (12)

The dissociation rate of a bond under force is described
by the Bell model as koff = k0 exp (Fb/F0), where k0 is
the unstressed off-rate and F0 is the bond’s internal force
scale [2]. The Bell model can be rationalized in the frame-
work of Kramers’ theory for the escape over a sharp energy
barrier [3]. The reverse rate r(i) for the one-step master
equation now follows as

r(i) = ik0 exp (Fb(i)/F0) . (13)

When a bond ruptures, force is redistributed according to
equation (12) over the smaller number of bonds so that
the load on the remaining bonds increases. As a conse-
quence, the extension of the remaining tethers increases
which increases the force even further. A decrease of the
number of closed bonds thus increases the off-rate for the
single bonds and makes rupture of a further bond more
likely. Thus the reverse rate from equation (13) describes
a positive feedback mechanism for rupture which results
from cooperativity in load sharing.

2.2.2 Forward rate

The bond association dynamics is characterized by the for-
ward rate g(i) and is strongly determined by the receptor-
ligand distance which has to be bridged for the formation
of a new bond. In the cartoon of Figure 1, the ligands
are attached to springs and can move between the ligand-
coated surface at the bottom and the transducer surface
at the top. Hence, they move in a truncated harmonic
potential, which is

U(x) =
kb

2
x2 if −�b ≤ x ≤ xb (14)

and U(x) = ∞ otherwise. For a finite temperature T ,
the probability density for the ligand to be at position
x ∈ [−�b, xb] reads

ρ(x) =
1
Z

exp (−U(x)/kBT ) =
1
Z

exp
(−kbx

2/2kBT
)

(15)
with the partition sum

Z =
[
πkBT

2kb

] 1
2
{

erf

([
kb�b

2kBT

] 1
2
)

+ erf

([
kbx

2
b

2kBT

] 1
2
)}

.

(16)
Here erf (x) = (2/

√
π)
∫∞
0

exp
(−t2

)
dt is the error func-

tion. The binding process can conceptually be divided into
two steps. First, ligand and receptor have to come suffi-
ciently close to form an encounter complex [27–30]. Sec-
ond, this entangled state has to react to form the final
complex. For a stationary distribution of tethers, the first
step is limited by ρ(xb), the probability of the ligand to
be close to the transducer surface. The second step is de-
scribed by the on-rate kon for the case that ligand and
receptor are sufficiently close within the binding radius
�bind. The forward rate g(i) for the one-step master equa-
tion (1) thus reads

g(i) = kon(Nt − i)ρ(xb). (17)

When an open bond rebinds, force is redistributed over
the larger number of bonds according to equation (12)
and the load on the single bonds decreases. This reduces
the extension of the bound tethers and increases the den-
sity of free ligands close to the transducer. An increase of
the number of closed bonds thus increases the on-rate for
the single bonds and makes rebinding of a further bond
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more likely. Thus the forward rate from equation (17) de-
scribes a positive feedback mechanism for binding which
results from cooperativity in the formation of encounter
complexes.

2.3 Adiabatic assumption

In the derivation of reverse and forward rates it was as-
sumed that relaxation of transducer and polymer tethers
to mechanical equilibrium after a change in i is fast com-
pared to rupture and rebinding of adhesion bonds. This
assumption is a prerequisite for the definition of discrete
states described by the number of closed bonds alone and
hence for the validity of the master equation. Experimen-
tally it has been found for a biomembrane force probe that
the damping time for the system with tethered bonds is
on the order of 10−3 s [31], which is typically at least
one order of magnitude smaller than the transition times
for adhesion bonds [32]. The polymer relaxation time is
determined by the Zimm time [33]. For a Flory chain, it
is τZ = ηR3

F /kBT where η is the viscosity of the sur-
rounding fluid, RF is the Flory radius RF � aN0.6 with
Kuhn length a and number of Kuhn segments N . The
viscosity of water is on the order of η ∼ 10−3 Pa s. For
polymers with RF ∼ 10 nm and for kBT ∼ 4 pNnm one
has τZ ∼ 10−7 s. This result agrees with earlier estimates
for polyethylene glycol chains [14,16,18]. The very fast
relaxation time scale for the polymers allows us to use a
stationary density distribution for the ligands.

2.4 Dimensionless parameters

The master equation (1) together with equations (13)
and (12) for the reverse rate and equations (17, 16)
and (15) for the forward rate completely specifies our
model. For the following, it is useful to introduce dimen-
sionless quantities. First we introduce dimensionless time
τ = k0t. Then we non-dimensionalize all distances by writ-
ing them in units of the unstressed ligand tether length
�b. The dimensionless relaxed ligand-receptor distance is
denoted by λ = �/�b. We also introduce κ = kb/kt, the ra-
tio of the spring constants of bonds and transducer, and
φ = kb�b/F0, the force in units of F0 that is necessary
to extend a ligand tether spring by �b, i.e. to twice its
unstressed length. Then, the reverse rate reads

r(i) = i exp (φλ/(1 + κi)) = i exp (φλ(i)), (18)

where λ(i) = λ/(1 + κi) has been introduced as an
abbreviation for the extension of the tethers (receptor-
ligand distance with i closed bonds). Regarding the as-
sociation process, we define the dimensionless on-rate
γ = (kon/k0)(�bind/�b), which is weighted with the ra-
tio of binding radius �bind and unstressed tether length �b,
and the inverse thermal energy kBT non-dimensionalised
by the tether energy at an extension equal to their rest
length, β = kb�

2
b/2kBT . Then, the forward rate reads

g(i) = 2γ(Nt − i)
[
β

π

] 1
2 exp

(−βλ2(i)
)

erf
(
β

1
2

)
+ erf

(
β

1
2 λ(i)

) . (19)

With the definition of these dimensionless rates, the dy-
namical equations, that is master equation, mean field
equation and Fokker-Planck equation have the same form
as in equations (1, 2) and (8), but with time derivatives
in τ rather than t. Since reverse rate equation (18) and
forward rate equation (19) are both non-linear in i, the
mean field equation for N is only valid for large system
size.

Our model now contains six dimensionless parameters.
The number of receptor-ligand pairs is given by the clus-
ter size Nt. The conditional rebinding rate γ describes
the rate of binding with a flat density distribution (infi-
nite temperature) on an interval of length �b. The relative
stiffness of the tethers, κ = kb/kt, implies the two limits of
κ → ∞ (soft transducer) and κ → 0 (stiff transducer). In
the following we will use the intermediate case κ = 1. The
dimensionless force constant φ measures the force needed
to stretch the tethers to twice their unstressed length in
units of the intrinsic force scale of the adhesion bonds.
For an entropic spring, this essentially scales as the ratio
of two length scales, the bond reactive compliance kBT/F0

and the rest length of the tethers. In practice it will have a
rather small value and in the following we use φ = 0.1. The
mobility of the ligands is represented by the inverse ligand
temperature β. In the limits of soft transducer (κ → ∞)
and very high ligand temperature (β → 0), our model
simplifies to a case which we have studied before in order
to assess adhesion cluster stability under force [11,21]. In
this paper, we rather focus on the role of ligand-receptor
distance λ, which in combination with the different spring
constants replaces the dimensionless force f used in the
earlier model. In experimental setups, λ is certainly the
most accessible parameter. The parameters and their def-
inition are summarized in Table 1. There, we also give
the typical range of parameters which was used for cal-
culations and some estimates for the integrin-fibronectin
system.

3 Bifurcation analysis of the mean field
equation

To analyze the stationary solutions of the mean field equa-
tion, we first consider the dependence of the reverse rate
r(N) from equation (18) and the forward rate g(N) from
equation (19) on the number of closed bonds N and
on the model parameters. Stationary solutions are the
fixed points of equation (2) and correspond to intersec-
tions of r(N) and g(N), because then the time derivative
dN/dτ = g(N) − r(N) vanishes. Figure 2a plots r(N)
and g(N) as function of N for different values of the re-
laxed receptor-ligand distance λ. The single bond off-rate,
koff (N) = exp (φλ/(1 + κN)), is finite at N = 0, thus
r(0) = 0. With increasing N , the reverse rate r(N) in-
creases almost linearly, although the single bond off-rate
is a monotonous decreasing function of N . The weak in-
fluence of the exponential off-rate koff (N) is mainly due
to the small force constant φ = 0.1: the entropic tether
force does not suffice to accelerate bond rupture apprecia-
bly. For larger φ the reverse rate increases quickly from
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Table 1. The six parameters of the model: definitions, typical values used in the calculations, estimates for the integrin-
fibronectin system and meaning.

Definition Typical Integrins Meaning

β := kb�
2
b/2kBT 0.1 . . . 10 7 inverse ligand temperature in units of tether energy

λ := �/�b 0.1 . . . 10 0.75 receptor-ligand distance
Nt 10 . . . 25 10 cluster size
φ := kb�b/F0 0.1 0.27 tether force in units of internal force scale of bonds
κ := kb/kt 1 0.9 ratio of tether and transducer stiffness
γ := γ̂(�bind/�b) 1 1 conditional single bond on-rate

Fig. 2. (a) Reverse and forward rate r(N) and g(N) and (b) the time derivative dN/dτ = g(N) − r(N) as a function of the
number of closed bonds N for Nt = 10 and β = 1. The receptor-ligand distance is λ = 1, 2.5 and 5. The other parameters are
γ = 1, κ = 1 and φ = 0.1.

r(0) = 0 and can have a local maximum and minimum
at small N . For large N the linear term dominates in any
case. Alternatively, non-monotonous behavior could be in-
duced by a large κ, that is for a soft transducer. The for-
ward rate g(N) vanishes for N = Nt, goes through a max-
imum at intermediate N and then decreases. At N = 0
the forward rates is always positive and approaches zero
only in the limit of infinite β or λ. At intermediate val-
ues for λ, there are three intersections of g(N) and r(N).
Figure 2b plots dN/dτ as function of N for the same set
of parameters as in Figure 2a. It is positive at N = 0, be-
cause r(0) = 0 and g(0) > 0. At intermediate N and small
λ, the time derivative has a maximum which reflects the
maximum of g(N) before it becomes negative at large N
where the reverse rate dominates. The fixed point at large
N is stable and represents the bound state of the adhesion
cluster containing a large number of closed bonds. For in-
termediate λ there are three fixed points, including two
stable fixed points at large N (bound state) and N ≈ 0
(unbound state). The two stable fixed points are separated
by an unstable one. At large λ there is only one stable,
unbound state which approaches N = 0 in the limit of
large λ.

Figure 3 summarizes the behavior of the fixed points
in the form of two one-parameter bifurcation diagrams
which show the fixed points as function of λ and β, re-
spectively. At small separation, a single stable fixed point
exists at large N . Here, the adhesion cluster is bound be-
cause the force on the bonds is small and the density of
free ligands close to the receptor is large, therefore rup-
ture events are rare and can be balanced by rebinding.

With increasing λ, the force on the bonds increases and
the number of closed bonds in the bound state decreases.
At large λ, there is a single stable fixed point at N ≈ 0.
Here, the adhesion cluster is unbound because forces are
large and ligand density at the receptors is small so that
rupture events occur frequently and cannot be balanced
by rebinding. The transition from bound to unbound pro-
ceeds via two saddle-node bifurcations. At small λ, the
stable unbound fixed point appears together with an un-
stable fixed point separating the stable ones. The unsta-
ble fixed point merges with the bound stable fixed point
at larger λ. In the window of bistability between the two
bifurcations, two stable fixed points coexist. The position
of this window moves to smaller λ with increasing β. The
bifurcation behavior as function of the inverse ligand tem-
perature β is qualitatively similar although the position of
the stable bound state initially increases with β because
the forward rate initially increases. With decreasing λ, the
position of the bistable range shifts to larger β while its
width increases strongly.

In Figure 4 we construct a stability diagram which
identifies the region of bistability as a function of λ and
β. The positions of the bifurcation delineating the bistable
region were determined numerically. For large β the width
of the interval in λ stays almost constant while the posi-
tion decreases slowly which explains the very large bistable
range in β at small λ. In general, λ and β are inversely
related. For the lower bifurcation one can use the approx-
imate criterion that the slope of dN/dτ with respect to N
has to become negative. Neglecting r′(N), one is left with
the condition dg(N)/dN = 0 at N = 0. For large β � 1
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Fig. 3. One-parameter bifurcation diagrams showing the fixed points of the mean field equation for the cluster size Nt = 10 as
function of (a) λ for β = 0.5, 1 and 2 and (b) β for λ = 1, 1.5 and 2. The stable stationary states are the solid lines, the unstable
fixed points are dash-dotted. The other parameters are γ = 1, κ = 1 and φ = 0.1.

Fig. 4. Stability diagram for adhesion clusters: solid lines are numerically determined positions of the lower and upper bifurca-
tions as function of β and λ. The shaded area between the curves is the region of bistability, above this region there is a single,
unbound state while below it a single stable bound cluster exists. The curves are derived for the cluster size Nt = 10, κ = 1,
φ = 0.1 and (a) γ = 1 and (b) γ = 5.

one finds λ2 � 1/(2βκ). For β � 1 and for sufficiently
large λ, on the other hand, one finds β � ln(κNt)/λ2.
Thus in both limits, β and λ are related by an inverse
square root. At small β, the width of the bistable range
decreases as the two curves eventually converge and bista-
bility vanishes. The stability diagram can be regarded as
the projection of the cusp-like surface of the fixed points
on the (λ, β) plane. For large clusters and also for larger
on-rates γ, the curves will meet at negative β and bista-
bility persist for positive β.

In the framework of biochemical control of biological
systems, bistability is commonly associated with an un-
derlying positive feedback mechanism [34]. In our case,
bistability can arise from two positive feedback mecha-
nisms as described above. First, there is positive feedback
for bond rupture: as one bond breaks, the force on the
remaining bonds increases, thus increasing their dissocia-
tion rate. Second, there is positive feedback for binding: as
one ligand binds a receptor, the receptor-ligand distance
is decreased and the binding rate for the other ligands is
increased. In general, we verified that in our model, both
mechanisms can lead to bistability. However, for the pa-
rameter range chosen here it is only the positive feedback
of binding which is responsible for the observed bistabil-
ity. As shown in Figure 2, the reverse rate r(N) increases
almost linearly for the set of parameters chosen. The for-
ward rate g(N), on the other hand, is non-monotonous.

Thus for the parameter range chosen here, the positive
feedback underlying bistability is mostly due to the for-
ward rate g(N).

4 Bifurcation analysis with a stochastic
potential

4.1 Stationary solution of the Fokker-Planck equation

The Fokker-Planck equation (8) has the stationary solu-
tion

P s(i) =
C

D(i)
exp

(

2
∫ i

0

A(i′)
D(i′)

di′
)

, (20)

where C is a normalization constant. The integrand in the
exponent exists and the expression is integrable because
the Fokker-Planck coefficients are finite and defined on a
compact interval. In the absence of sources and sinks the
flux

Js(i) = A(i)P s(i) − 1
2
{D′(i)P s(i) + D(i)P s(i)′} (21)

has to vanish. The derivative of P s(i) with respect to i is

P s(i)′ =
2A(i) − D′(i)

D(i)
P s(i), (22)
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so that indeed

Js(i) =
{

A(i) − 1
2
{D′(i) + 2A(i) − D′(i)}

}

P s(i) = 0.

(23)
In particular, the flux through the boundaries vanishes, as
required for reflecting boundaries.

4.2 Stochastic potential

The stationary probability distribution equation (20) can
be used to define an energy landscape E(i) by

E(i) = − logP s(i). (24)

The extrema of this potential are determined by the con-
dition

dE(i)
di

= − 1
P s(i)

dP s(i)
di

= 0 ⇔ dP s(i)
di

= 0. (25)

With equation (22) for the first derivative of the distribu-
tion, the position of the extrema of the stochastic potential
E(i) are thus determined by

A(i) − 1
2
D′(i) = 0. (26)

These extrema have a similar physical meaning as the
fixed points of the mean field equation, but they are more
rigorous in including thermal fluctuations. In the frame-
work of the stochastic potential, bistability requires a bi-
modal potential landscape in which two minima of the
stochastic potential coexist. The coexisting minima (max-
ima of the probability distribution) are separated by a
potential barrier (minimum of the probability distribu-
tion). The separated peaks of the probability distribution
in these minima are commonly referred to as macrostates
of the stochastic system because they are possible real-
izations of a macroscopic, deterministic system. One can
regard the extrema as the fixed points of the dynamical
system

di

dt
= A(i) − 1

2
D′(i) = g(i)− r(i) − 1

2
(g′(i) + r′(i)). (27)

This is the mean field equation corrected for the effects
of non-homogeneous mobility. Equation (27) allows to de-
termine extrema in the same way as the fixed points of
the mean field equation in the previous section. For a con-
stant diffusion coefficient the fixed points are identical to
the extrema of the stochastic potential. Non-homogeneous
diffusion terms change the position of fixed point and can
even destroy fixed points or create new ones (noise-induced
transitions) [35].

4.3 Bifurcation analysis

Using the stochastic dynamic system, the topology of the
stochastic potential can be analyzed just as the mean field

equation by deriving bifurcation diagrams showing the po-
sitions of the macrostates (the extrema of the potential) as
function of the model parameters. The extrema are deter-
mined as stable and unstable fixed points of equation (27).
Figure 5 shows these stochastic bifurcation diagrams as
function of receptor-ligand distance λ in comparison to
those from the mean field equation. For sufficiently small
λ, the upper stable fixed point of the deterministic equa-
tion agrees well with a bound macrostate at large N in the
stochastic potential. The saddle-node bifurcation in which
the bound macrostate vanishes occurs at much smaller
separation λ than in the deterministic picture, thus fluc-
tuations destabilize the adhesion cluster. The minimum of
the stochastic potential lies above the unstable determin-
istic fixed point and becomes negative at small λ. For pos-
itive i, the stochastic potential has no second minimum,
but it has a boundary minimum at i = 0. This second
macrostate corresponds to the unbound fixed point of the
mean field equation. For larger clusters, the agreement be-
tween the fixed points of the stochastic potential and the
mean field equation improves. In the limit of very large
clusters, the two solution approach each other as shown
in Figure 6 for Nt = 100 and 250. In this case, the un-
bound state is practically indistinguishable from i = 0.

5 Stationary solutions of the master equation

For a one-step master equation on a finite range without
sources or sinks, stationarity ṗi(∞) = 0 implies detailed
balance, that is r(i)pi(∞) = g(i−1)pi−1(∞). Iterating this
relation results in the stationary probability distribution

pi(∞)
p0(∞)

=
g(0)
r(i)

i−1∏

j=1

g(j)
r(j)

for 0 < i ≤ Nt. (28)

The normalization constant is the stationary state proba-
bility for the completely dissociated state i = 0,

p0(∞) =

⎛

⎝1 +
Nt∑

i=1

g(0)
r(i)

i−1∏

j=1

g(j)
r(j)

⎞

⎠

−1

. (29)

Figure 7 shows a density plot of the stationary distribu-
tion {pi(∞)}Nt

i=0 as function of relaxed receptor-ligand dis-
tance λ for cluster sizes Nt = 10 and Nt = 25. For small
λ, there is a single peak at a finite number of closed bonds
which is broadened by fluctuations. This corresponds to
the bound state of adhesion clusters. For large λ, there
is a single maximum at the completely dissociated state
i = 0, which is the unbound state. In an intermediate
range of λ, the stationary distribution has two maxima
and bound and unbound adhesion clusters coexist. Thus
the full stochastic model indeed shows bistability as sug-
gested by the bifurcation analysis of the mean field equa-
tions. For the smaller cluster size Nt = 10, fluctuations are
large and the transition from bound to unbound appears
rather smooth. For larger systems, the transition becomes



T. Erdmann and U.S. Schwarz: Impact of receptor-ligand distance on adhesion cluster stability 131

0

1

2

3

4

5

6

7

8

0  10  20  30  40  50

(b)

0

1

2

3

4

5

6

7

0  0.5 1  1.5 2  2.5 3  3.5

(a)N N

Fig. 5. Comparison of the extrema of the stochastic potential with the deterministic fixed points as function of (a) λ with
β = 0.5, 1 and 2 and (b) β with λ = 1, 1.5 and 2 for the cluster size Nt = 10. For small parameters λ and β, stochastic and
deterministic results agree well for the stable fixpoints at large N , but differ strongly in the transition regions.

Fig. 6. Extrema of the stochastic potential as function of λ compared with the deterministic fixed points for the same parameters
as in Figure 5, but for cluster sizes (a) Nt = 100 and (b) Nt = 250. For these large system sizes, stochastic and deterministic
results agree well over the full range of parameters.

sharper and discontinuous. This discontinuity is demon-
strated by the average number of closed bonds in the adhe-
sion cluster which shows a steep decrease as the occupancy
switches from bound to unbound. For a bimodal distribu-
tion with two distinct macrostates, average numbers of
closed bonds can be defined in the two peaks separately.
We use the probability functions {pi(∞)}Nt

i=3 for the upper
and {pi(∞)}1

i=0 for the lower peak with proper normal-
ization to calculate the average number of closed bonds in
the two macrostates. Figure 7 shows that these averages
vary slightly with λ and the steep decrease of the full aver-
age is mostly due to the change in occupancy probability
than in the position of the peaks. Figure 7 also shows the
bifurcation result from the mean field equation. For the
larger system Nt = 25, the position of the maxima are
in good agreement with the fixed points and the onset of
bistability at small λ agrees well with the first bifurcation.
For the smaller system Nt = 10, the agreement between
fixed points and maxima is still good, but the onset of bi-
modality is overestimated by the lower bifurcation. Here,
the stochastic potential yields a much better estimate for
the locations of the bifurcation (not shown). For growing
cluster size, the range of parameters in which the coexist-
ing macrostates are occupied to a similar degree shrinks,
although the range of bistability as revealed by the de-

terministic equation or the stochastic potential grows. In
analogy to first order phase transitions, the discontinuous
transition from bound to unbound will occur at a sharp
parameter value in the limit of infinite clusters.

Biological systems are usually of finite size and time
dependent processes are often important. Whether coex-
isting states and transitions between them can be observed
depends on the relative occupancy of the coexisting states
and on the time scale for transitions between the states.
The bare presence of bistability identified in the determin-
istic equation is irrelevant if the time scale for the tran-
sitions is larger than the typical observation times. The
time scale for transitions will also be important if param-
eters are time dependent. If the change of parameters is
faster than the time scale for equilibration of the probabil-
ity distribution, metastable states will be populated and
hysteresis in the transition parameters will be observed. In
the following section, we therefore analyze dynamic prop-
erties of the master equation.

6 Dynamic properties of the master equation

The stationary probability distribution equation (28)
arises by averaging over many individual trajectories or
over a single trajectory for a long time. Figure 8 shows
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Fig. 7. Density plot of the stationary probability distribution of the master equation {pi(∞)}∞i=0 as function of separation λ
for cluster sizes (a) Nt = 10 and (b) Nt = 25. The other parameters are β = 1.0, γ = 1, κ = 1 and φ = 0.1. Dark regions
indicate high probability. The curves are the average number of closed bonds in the bound and unbound macrostates, in the
full distribution and as predicted from the mean field equation, respectively.
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Fig. 8. Single adhesion cluster trajectories for the cluster size Nt = 10 at β = 0.5 at two different values of (a) λ = 1 and (b)
λ = 3 generated with the Gillespie algorithm. Averaging over time or over many trajectories gives the stationary probability
distribution.

two sample trajectories for Nt = 10 bonds and β = 0.5
at λ = 1 and λ = 3, respectively. The stochastic trajecto-
ries are generated with the Gillespie algorithm for exact
stochastic simulations [36,37] and show how the number
of closed bonds i changes over time. For λ = 1, the station-
ary distribution is unimodal and has a single peak around
the bound state. Due to the small cluster size, the number
of closed bonds fluctuates strongly around the average; oc-
casionally it reaches the completely dissociated state, but
rebinding takes place immediately. This leads to a sin-
gle, broad peak as in Figure 7 at small λ. For λ = 3 the
stationary distribution is bimodal. The sample trajectory
alternates between bound and unbound state. As long as
the time spent in the respective states is large enough, the
time taken for the actual transition is negligible. When
bound, the trajectory fluctuates around an average as in
(a). An encounter of the completely dissociated state, how-
ever, is usually followed by a longer time with no or few
bonds. Single closed bonds are formed occasionally, but
this rarely leads to the formation of a large number of
closed bonds. Increasing the receptor-ligand distance fur-
ther increases the time spent in the unbound state rel-
ative to that in the bound state. This means that the

occupancy probability of the bound state is reduced. The
trajectories alternating between the states with very short
transition times yield the bimodal stationary distribution.
The probability to find the system in one of the states is
proportional to the time spent in that state before a tran-
sition. For very large λ with unimodal distribution, bind-
ing of trajectories does not take place with appreciable
frequency.

The dynamic properties of the stochastic model can
be characterized by the mean first passage time Tm,n be-
tween two states m and n, that is, the time it takes on
average to reach n for the first time from m. To elucidate
the relevance of the fixed points in the stochastic system,
the transition times from the unbound state m = 0 to the
bound state n � Nt/2 and vice versa are of particular in-
terest. The value Nt/2 can be used because in this context
it is only relevant that the bound state is above the tran-
sition barrier between the two macrostates; the dynamics
within the respective basins of attraction are much faster
than the dynamics across the barrier. For a one-step mas-
ter equation like equation (1), the mean first passage time
from the initial state m to the final state n satisfies the
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Fig. 9. Mean first passage times Tm,n from equations (31) and (32) for transitions between unbound state m = 0 and unbound
state n = Nt/2 as function of λ for (a) Nt = 10 and β = 0.5, 1 and 2 and (b) for β = 1 with Nt = 10, 25 and 50. The other
parameters are γ = 1, κ = 1 and φ = 0.1.

recursion relation [24]

g(n) {Tm+1,n − Tn,m} + r(m) {Tm−1,n − Tm,n} = −1
(30)

with the boundary condition Tm,m = 0. For a transition
from a state m to n > m, that is for an increase of the
number of closed bonds, one has

Tm,n =
n−1∑

i=m

⎧
⎨

⎩

1
g(i)

+
i−1∑

j=0

1
g(j)

i∏

k=j+1

r(k)
g(k)

⎫
⎬

⎭
. (31)

For the reverse transition from a state m to n < m, where
the number of closed bonds decreases, one has

Tm,n =
m∑

i=n+1

⎧
⎨

⎩

1
r(i)

+
Nt∑

j=i+1

1
r(j)

j−1∏

k=i

g(k)
r(k)

⎫
⎬

⎭
. (32)

The first term in curly brackets in equations (31) and (32)
is the mean first passage time for a trajectory exclusively
with binding or rupture, respectively. The second term
with the product over the ratio of rebinding and rupture
rates describes the increase of the mean first passage time
through backward reactions, that is rupture if m < n and
rebinding if m > n.

Figure 9 plots the mean first passage times Tm,n from
equations (31) and (32) for transitions from the unbound
state m = 0 to the bound state n = Nt/2 (binding time)
and from the bound state to the unbound (unbinding
time). For parameter values for which only a single sta-
ble macrostate exists, the transition time into this state
is very small and on the order of magnitude of transi-
tions between neighboring states. The time for transitions
in the reverse direction becomes extremely large for large
clusters. The range of bistability is characterized by bind-
ing and unbinding times which are both larger than the
single step transition times. Because barrier crossing itself
is a fast process, the ratio of binding to unbinding time
equals the ratio of occupancy of the two macrostates in
the range of bistability. The point where the transition
times are equal thus defines a stochastic transition point
at which both states are equally occupied. The plots of the
transition times as function of λ for different β at Nt = 10
in Figure 9a show that this transition point shifts to larger

λ with decreasing β, because with increasing temperature
(ligand mobility), larger separations can be bridged by
the ligand tethers. Figure 9b plots the transition times for
β = 1 at different Nt. This shows that the stochastic tran-
sition point shifts to larger separation values with growing
cluster size. At the same time the corresponding switch-
ing times grow super-exponentially fast. This implies that
for a given separation and growing cluster size, the bound
macrostate will effectively become the only stable state;
frequent switching between bound and unbound states can
thus only occur for small clusters. It is important to note
that these important conclusions can only be drawn by
considering the full stochastic dynamics.

Stochasticity of binding and strong dependence of the
mean first passage time on λ has to be considered in mea-
surements of the binding ranges of tethered ligands. If the
receptor-ligand distance is reduced step by step and the
transducer is held at a constant distance during a short
period of time τs, binding will typically be observed at a
distance where the mean first passage time from unbound
to bound T (λ) is comparable to τs. In general, binding
is always possible for all distances smaller than the con-
tour length of the tethers. The actual binding distance is
a stochastic variable. If transitions proceed with the con-
stant rate 1/T (λ), the probability to observe binding after
the nth step at a distance λn is

p = (1 − exp (−τs/T (λn)))
n−1∏

i=1

exp (−τs/T (λi)). (33)

With the strong dependence of the binding time on λ as
shown in Figure 9 this distribution will be have a sharp
peak when T (λn) ≤ τs ≤ T (λi<n). The probability to
bind at any distance below a given λn is then close to
a step function as observed experimentally and theoreti-
cally [15,16].

7 Extension to worm-like chain model

Unlike in the simple harmonic spring model, real polymers
are not infinitely extensible, but are characterized by a
finite contour length. A commonly used model for real
polymers is the so-called worm-like chain or Kratky-Porod
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model [33]. It has been used before to model semi-flexible
biopolymers like DNA, F-actin or titin [38]. A worm-like
chain is characterized by the contour length L and the
persistence length Lp which describes the bending stiffness
of the filament. The worm-like chain model can also be
extended to include elasticity of the polymer backbone
which allows stretching beyond the contour length [39].
The forces needed to stretch the polymer monomers are
much larger than the typical thermal forces and will not
be considered in the following.

7.1 Force extension relation and rupture rate

For a worm-like chain, the force Fwlc which induces an
average extension x of the worm-like chain polymer can
be approximated by the interpolation formula [38]

Fwlc(x) =
kBT

Lp

{
1

4(1 − (x/L))2
+

x

L
− 1

4

}

. (34)

With the first term in curly brackets the force diverges as
x approaches the contour length L. The second term de-
scribes harmonic behavior at small extensions with a force
constant 3kBT/2LLp. The third, constant term guaran-
tees that the force vanishes at vanishing extension. We
express equation (34) in non-dimensional units by writing
extension in units of the contour length, ξ = x/L, and
force in units of the intrinsic force scale F0 of adhesion
bonds, fwlc = Fwlc/F0. The force extension relation equa-
tion (34) then reads

fwlc(ξ) = φwlc

{
1

4(1 − ξ)2
+ ξ − 1

4

}

(35)

where the ratio φwlc = kBT/(F0Lp) is defined in analogy
to φ. For small extension, ξ � 1, the constant of propor-
tionality between ξ and fwlc is 3φ/2.

The extension ξb(i) of bound tethers is determined by
mechanical equilibrium between tethers and transducer.
In non-dimensional units this reads

2iκwlc

3

{
1

4(1 − ξb(i))2
+ ξb(i) − 1

4

}

= λwlc − ξb(i) (36)

which has to be solved for ξb(i). The parameter λwlc = �/L
is the non-dimensional relaxed receptor-ligand distance
and κwlc = (3kBT/2LLp)/kt measures the ratio of the
harmonic force constant of the polymer and the force con-
stant of the transducer. The two parameters are analogous
to λ and κ for the spring model. Solving equation (36) for
ξb(i) yields tether extension and force fwlc(ξb(i)) as func-
tion of the number of bound tethers alone. This result has
to be inserted into Bell’s expression koff = efwlc(i), leading
to the reverse rate of the adhesion cluster

r(i) = iefwlc(i) (37)

which has to be used in the one-step master equation (1)
and the mean field equation (2). As a polynomial of third
order, equation (36) can be easily solved for ξb(i).

7.2 Rebinding rate

The energy needed to stretch a worm-like chain from zero
extension to an extension xb is given by the integral over
the force Fwlc

Vwlc(x) =
∫ xb(i)

0

Fwlc(x′)dx′. (38)

In non-dimensional units the energy is

vwlc(ξb(i)) =
1

Λp

{
1

4(1 − ξb(i))
+

ξ2
b (i)
2

− ξb(i)
4

− 1
4

}

(39)
where the dimensionless persistence length is Λp = Lp/L.
With the Boltzmann factor e−vwlc(ξb) the density of un-
bound ligands at the transducer is

ρ(ξb(i)) = e−vwlc(ξb(i)))/Z(ξb(i)) (40)

where

Z(ξb(i)) =
∫ 1

0

e−v(ξ)dξ +
∫ ξb(i)

0

e−vwlc(ξ)dξ (41)

is used as the partition sum. The first term is added to
prevent the density from diverging at ξb = 0; for v(ξ) a
harmonic potential with the same force constant as for
the worm-like chain was used. It takes into account that
for entropic reasons the ligands are found on average at a
certain height above the substrate. The exact distribution
of the polymers in the presence of a wall is unknown [40].
In [15], it has been calculated by Monte Carlo simulations
for a bead-pearl model. It was found that at large exten-
sions, the distribution resembled that of a freely jointed
chain [33]. The exact form of the distribution should have
no influence on the generic aspects we are interested in.
The distribution below the rest length is used only for
normalization but is irrelevant for binding.

The forward rate of the adhesion cluster as function of
the number of closed bonds i is

g(i) = γ(Nt − i)ρ(i), (42)

where γ = (kon/k0)(�bind/L) has been defined. Equa-
tions (37) and (42) together with the master equation (1)
and the deterministic equation (2) define the dynamical
system. The six dimensionless parameters for the worm-
like chain model are defined in analogy to those for the
harmonic model. In the following we use Λp = 1, γ = 1,
κwlc = 1.5 and φwlc = 0.1. The choices for κwlc and φwlc

mean that the properties of the tethers at small extension
are similar as above for the harmonic tethers.

7.3 Analysis of the worm-like chain

A steady state analysis of the mean field equation (2)
with the transition rates equations (37) and (42) from
the worm-like chain model shows that the bifurcation be-
haviour is very similar to the one obtained for the linear
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Fig. 10. Stationary probability distribution {pi(∞)}Nt
i=0 from equation (28) with the transition rates equations (37) and (42) for

the worm-like chain model and for cluster sizes (a) Nt = 10 and (b) Nt = 25 plotted as a function of the relaxed receptor-ligand
distance λwlc. The other parameters are κwlc = 1.5, φwlc = 0.1, Λp = 1 and γ = 1. The curves show the upper stable fixed point
of the mean field equation, the average number of closed bonds in the bound and the unbound macrostate, and in the whole
cluster, respectively.

springs, except that distances larger than λwlc = 1 are
not possible due to the finite contour length. Figure 10
shows a density plot of the stationary probability distribu-
tion equation (28) for the worm-like chain transition rates
equations (37) and (42) as function of λwlc. Together with
the distribution, the dependence of the upper stable fixed
point of the mean field equation and the average num-
ber of closed bonds of the full distribution as well as that
of the bound and unbound macro-states are displayed.
Again the binding region is bounded by the maximum ex-
tension λwlc = �/L = 1. As for the harmonic tethers a
bimodal region is found in which two macrostates coexist.
The average number of closed bonds in the bound state
and the position of the maximum agree well with the up-
per stable fixed point of the deterministic equation. Both
depend hardly on the receptor-ligand distance λwlc. The
average number of closed bonds jumps from bound to un-
bound state in a discontinuous transition. This transition
becomes sharper for larger clusters, that is, the width of
the region in which both states are occupied to an appre-
ciable degree decreases with increasing cluster size.

The physical reason for the striking plateau in the
bound state is the non-linearity of the worm-like chain
force extension relation, which reflects the strain-stiffening
typical for biopolymers. A binding tether thus pulls the
relatively soft transducer until the stiffnesses match, that
is to the regime of harmonic tethers with κwlc = 1.5.
Therefore, the final extension of the bound tethers de-
creases less than linear with λwlc and the effect on the
number of closed bonds is weaker than for the harmonic
model. If the transducer was replaced by another worm-
like chain, the behavior of the system should be more like
the harmonic model.

8 Conclusion

In this paper, we have introduced a stochastic model
which allows to study the interplay of cooperative binding
and unbinding for finite-sized adhesion clusters mediated
by tethered ligands. Our model is based on established

principles of receptor-ligand binding, including Kramers-
type rupture rates and separation-dependent binding rates
based on the notion of an encounter complex. By im-
plementing these principles in the framework of a one-
step master equation, we were able to apply many pow-
erful techniques from stochastic dynamics, including a
Kramers-Moyal derivation of a Fokker-Planck equation
(which in turn corresponds to a stochastic potential) and
exact solutions for stationary solutions and mean first pas-
sage times. In particular, a bifurcation analysis based on
the stochastic potential could be compared to the bifur-
cation analysis of the mean field equation to the master
equation.

Our model shows that the simple mechanical model
of Figure 1 can lead to a bistable situation in which two
different states of adhesion, bound and unbound, coexist.
The underlying reason for the occurrence of bistability
is the existence of two mechanisms for positive feedback,
one for rupture and one for binding. Cooperative bonds
share the force exerted by the transducer so that the force
exerted on each closed bond reduces upon binding. At
the same time, the extension of the tethers reduces upon
binding, which then increases the probability for further
binding. In consequence, the transition rates in the mas-
ter equation are both strongly non-linear functions of the
number of closed bonds, which both can lead to positive
feedback. This leads to an instability for the intermedi-
ate numbers of closed bonds and thus to bistability. The
model discussed in this paper is an extension to a previ-
ously introduced model in which only the rupture rate was
a non-linear function of the number of closed bonds [11,
21]. It could be re-obtained from the current model in the
limit of a soft transducer, that is for κ → ∞. In the present
discussion, non-linear effects were mainly due to coopera-
tive rebinding while the non-linearity of the rupture rate
was weak.

In the mean field description, bistability leads to hys-
teresis for the binding and unbinding range: binding from
the unbound state takes place at a smaller distance than
unbinding from the bound state. Unlike for previous
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discussions for non-cooperative bonds [16,17], this is not
due to kinetic effects. In the stochastic description, the
bistable system is characterized by a bimodal stationary
probability distribution. Fluctuations over the barrier sep-
arating the stable states allow equilibration of the distri-
bution. The time scale for equilibration has been calcu-
lated as the mean first passage time between the different
adhesion states. Due to these finite transition times kinetic
effects from changes of external parameters are important
for the behavior of the system. In analogy to thermody-
namic systems at first order phase transitions, changes
of parameters on time scales smaller than the transition
times allow occupation of the metastable states, while for
slower changes, a stationary distribution will occur. In the
bimodal region, the system frequently alternates between
bound and unbound state. For large systems, the transi-
tion times become very large and the transition between
bound and unbound becomes very sharp. The bimodal
region in which two states are occupied to an appreciable
and comparable amount becomes very small.

The predictions of this paper for the internal dynam-
ics of adhesion clusters can be investigated with exper-
imental setups like AFM or the surface force apparatus
which allow to study the specific binding of two opposing
surfaces with controlled separation. However, to map out
the occupancy distribution for bound and unbound states
could be tedious because of large transition times and low
occupancy outside the dominant state. If measuring the
binding range by stepwise reduction of the receptor-ligand
distance, binding will take place when the transition time
is smaller or equal to the waiting time. For large systems
this will lead to hysteresis as in the deterministic case. For
smaller systems, hysteresis will decrease due to the smaller
transition times. In experiments with the surface forces
apparatus [14,15], a behavior similar to the one predicted
here has been observed. After initial binding a large at-
tractive force was measured until an equilibrium position
of the surfaces was established. In our model this increase
would be due to the increased extension of the transducer
spring. In those experiments, irreversible bonds with very
large affinity have been used so that repeated transitions
between bound and unbound states could not be observed.

In order to test our results, it would be necessary to
use reversible adhesion bonds with low affinity. In general,
binding through reversible bonds is highly relevant for bi-
ological systems. In particular, cell-matrix adhesion is me-
diated by reversible bonds like the ones between integrin-
receptors in the plasma membrane and fibronectin in the
extracellular environment. In this case, the equilibrium
length of the ligand tether is �b = 11 nm. Using the pa-
rameter values given in Table 1, one then finds from the
stochastic model for Nt = 5 that for small adhesion clus-
ters, bistability should occur around a relaxed receptor-
ligand distance of 8 nm (λ = 0.75) [23]. Together with
the ligand and receptor rest lengths, this results in a cell
substrate distance of around 20 nm, that is the physio-
logical value for cell-matrix adhesion [13]. Therefore the
mechanism of bistability as described here can be used by
cells to explore the extracellular space by many small and

transient adhesions. On encountering favorable conditions,
these small adhesions might mature, e.g. by recruitment
of additional receptors. The results presented here show
that this quickly leads to switching times which keep the
adhesions in the bound macrostate.

In order to present a simple and reasonable model,
here we have made the crucial assumption that all bonds
are equivalent. This assumption leads to a one-step master
equation and allows the application of many powerful tools
from stochastic dynamics. In the future, our model could
be extended to include additional aspects of biomimetic
or biological systems, which usually however can not be
described in the framework of a one-step master equa-
tion. In order to describe the growth and shrinkage of
adhesion clusters, the overall number of bonds Nt should
be made dynamic, possible involving regulation through
the cytoskeleton. Assuming an elastic rather than a rigid
transducer requires solution of elastic equations in order
to derive the exact details of the force distribution. The
force distribution would also be changed when accounting
for possible curvature of the opposing surfaces. Finally it
would also be interesting to consider the effect of disor-
der, e.g. in bond resting lengths or single bond on- and
off-rates.
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