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Abstract. – Multi-walled hollow nanoparticles made from tungsten disulphide (WS2) show
exceptional tribological performance as additives to liquid lubricants due to effective transfer
of low shear strength material onto the sliding surfaces. Using a scaling approach based on
continuum elasticity theory for shells and pairwise summation of van der Waals interactions,
we show that van der Waals interactions cause strong adhesion to the substrate which favors
release of delaminated layers onto the surfaces. For large and thin nanoparticles, van der Waals
adhesion can cause considerable deformation and subsequent delamination. For the thick WS2

nanoparticles, deformation due to van der Waals interactions remains small and the main
mechanism for delamination is pressure which in fact leads to collapse beyond a critical value.
We also discuss the effect of shear flow on deformation and rolling on the substrate.

Introduction. – Graphite and layered material made from metal disulphides (MoS2,
WS2) and similar composites (MoSe2, WSe2, BN, etc.) are good lubricants since under shear
the layers can easily slide over each other due to atomic smoothness and weak van der Waals
(vdW) interactions [1]. Therefore they are widely used as solid lubricants or additives to liquid
lubricants. However, finite-sized crystallites in powders have edges with dangling bonds which
can react chemically with the sliding surfaces. This problem can be avoided by using hollow
nanoparticles made from the same material, where the layers are not planar, but are bent into
closed shells. It has been shown recently that multi-walled WS2 nanoparticles perform very
well as additives [2,3]. Closer investigations using the Surface Force Apparatus (SFA) revealed
that WS2 layers are transfered onto the sliding surfaces by delamination of the nanoparticles
[4]. These peeled layers form islands on which the Friction Force Microscope measured much
smaller friction than on the surrounding mica. Hence multi-walled nanoparticles can act as
reservoirs which release layers of low shear strength exactly where needed while avoiding too
many dangling bonds.

A theoretical understanding of the mechanical properties of multi-walled hollow nanopar-
ticles is important for future tribological applications. In this paper, we use scaling arguments
based on continuum elasticity theory and pairwise summation of vdW interactions in order
to investigate theoretically the effect of adhesion, pressure and shear flow on the deformation
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Fig. 1 – Several aspects of friction experiments with multi-walled nanoparticles: (a) weak deformation
due to adhesion onto a substrate; (b) strong deformation due to pressure; (c) deformation in shear
flow and (d) rolling of adhering particles in shear flow.

Fig. 2 – High-resolution transmission electron micrograph of a multi-walled WS2 nanoparticle. The
slightly faceted shape is typical and can be attributed to the assembly of defects into grain bound-
aries [7].

and mechanical stability of hollow nanoparticles of spherical shape. Figure 1 schematically
depicts some of the aspects discussed in the following. We show that vdW adhesion to the
substrate (as well as to each other) can be several orders of magnitude larger than thermal
energies and scales linearly with radius, but is almost independent of thickness. Despite the
large energy of adhesion, we find that for typical WS2 nanoparticles, coherent and even in-
coherent deformations due to the vdW adhesion to the substrate are only in the Angstrom
range and will leave the nanoparticles basically intact. Thus for WS2 nanoparticles the vdW
adhesion favors the release of delaminated layers onto the surfaces, but does not trigger the
delamination itself. The main mechanism for delamination of WS2 nanoparticles is shown
to be pressure which leads to a mechanical instability in linear elasticity theory. This might
explain why damage of WS2 nanoparticles was found to occur only beyond a critical load [3].
We also show that shear flow does not lead to considerable deformation of WS2 nanoparticles
and that very large shear rates are needed in order to make adhering particles roll in shear
flow.

Similar methods have been used before to predict the shape of fullerenes [5, 6] and to
account for the faceted shape of metal disulphide particles [7, 8]. Compared with ab initio
methods [9], tight-binding schemes [10] and molecular simulations [11] which have been used
before to investigate the mechanical properties of fullerene-like material, our approach has
the advantage that it is asymptotically correct for large systems and universal in the sense
that different material systems enter on the level of their elastic and vdW constants. In
particular we discuss C, MoS2 and WS2, although we focus on the WS2 nanoparticles used in
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the tribological experiments mentioned above. Our scaling approach allows us to predict how
tribological performance depends on radius R, shell thickness h and layer thickness a of the
nanoparticles. We show that scaling with h does not result from the vdW contributions, but
rather from the scaling of the elastic constants with h. Several critical quantities derived scale
strongly with R/h for coherent deformation and with R/a for incoherent deformation. Hence
tribological performance can be tuned by varying the concentration of defects (which switches
between the coherent and incoherent regime) and the ratios R/h and R/a, respectively.

Preliminaries. – In the following we consider hollow nanoparticles with outer radius R
and thickness h which results from nesting several elastic shells of thickness a each. Typical
WS2 particles used in tribological experiments have R ≈ 60 nm and h ≈ 9.3 nm (15 layers
with an interlayer distance of a = 0.62 nm, R/h ≈ 6, R/a ≈ 100). In fig. 2 a high-resolution
transmission electron micrograph of a WS2 nanoparticle with 11 layers is shown. The elastic
shells are closed since their formation is driven by the energy reduction due to the absence
of dangling bonds. In order to achieve closure, topology dictates that for carbon shells 12
pentagons have to be inserted into the graphite network of hexagons. For hexagonally layered
composites, the sheets have a more complicated molecular structure (typically triple layers)
and different kinds of defects have to occur to ensure closure. In our continuum approach, we
assume that defects are distributed in a homogeneous way to give a spherical shape with a
certain preferred radius R [7]. Similar approaches to fullerene-like particles have considered
sheets which are planar in equilibrium; in order to account for their curvature, they explicitly
considered defects [5–8]. However, in this approach the elastic response of a spherical shell is
very complicated and no unifying scaling approach is possible.

The new feature of the elasticity of a closed shell with a preferred radius R is that stretching
is a first-order effect and the spherical shell cannot be bent without being stretched [12]. This
interplay between bending and stretching has been studied before for thermal fluctuations of
polymerized vesicles [13]. The elastic behavior of the shell is determined by two contributions:
bending energy Eb ∼ κ

∫
dA c2 with bending rigidity κ and mean curvature c, and stretching

energy Es ∼ G
∫
dA e2 with in-plane stretching modulus (or two-dimensional Young modulus)

G and in-plane strain e. Here
∫
dA represents the surface integral; the elastic contributions

in shell theory follow by integrating over the thickness of the shell. Consider a spherical
shell of radius R which is expanded by ∆R. Then c changes by ∆R/R2 and e by ∆R/R,
thus both contributions are first-order effects. Since Eb/Es ∼ κ/GR2, the relative strength
of bending and stretching depends both on material parameters and radius; on large length
scales R � (κ/G)1/2 and stretching will always dominate.

In the framework of continuum elasticity theory, the elastic moduli κ and G can be calcu-
lated from the in-plane stretching elastic constant C11 of the corresponding hexagonal layered
material as κ = C11h

3/12 and G = C11h [7]. The values for C11 are 1060, 238 and 150× 1010

erg/cm3 for C, MoS2 and WS2, respectively [14]. The same scaling with h is found for thin
films made from isotropic elastic material [12]. It only applies for coherent bending of the dif-
ferent layers; for incoherent bending, slip occurs between adjacent layers and overall bending
becomes easier. The bending rigidity then follows as κ ∼ C11a

3(h/a) = C11a
2h, where a is

the effective thickness of a single layer [7]. It should be of the same order of magnitude, but
somewhat smaller than the interlayer distance (which is 3.4 Å for C and 6.2 Å for MoS2 and
WS2). Note that the in-plane modulus G ∼ C11a(h/a) = C11h stays the same since it scales
linearly with thickness. The change from coherent to incoherent bending can be considered to
be defect-mediated; dislocations will proliferate for increasing thickness and finally will lead
to grain boundaries which account for the typical faceted shape seen in fig. 2 [7].
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Fig. 3 – Possible deformations of a spherical elastic shell on contact with a substrate: (a) flattening and
(b) contact disc. R is the initial particle radius, R′ the radius after flattening, h the shell thickness, H
the indentation and r the radius of the contact disc. For small H, one finds geometrically r2 = 2HR′.

Adhesion. – We consider a substrate which interacts by attractive vdW forces with a
film of thickness h which is a distance D away from the substrate. Pairwise integration of the
potential −A/π2r6 (where the Hamaker constant A is typically of the order of 10−12 erg) over
the two volumes yields the vdW energy per unit area

u =
A

12π
h(h + 2D)

D2(h + D)2
. (1)

Here D is an atomic cutoff for the vdW interaction which in the following is chosen to be
1.65 Å [15]. Although the adhesion energy u scales linearly with h for small h, for more than
one layer we have h > D and u saturates at a constant value u = A/12πD2 ≈ 100 erg/cm2.
For the case of a single layer, one can replace the volume integral over the film by a surface
integral times the effective thickness h; this is equivalent to considering h � D in eq. (1) and
leads to u = Ah/6πD3. Since D and h are of the same order of magnitude, we essentially
recover the result for a multi-layered film. Hence we conclude that due to the rapid saturation
of the vdW binding energy with increasing h, for multi-layered films under adhesion conditions
no considerable scaling with h is expected from the vdW terms.

It can be shown by similar arguments (e.g., by using eq. (1) within the Derjaguin approx-
imation) that the energy of a hollow nanoparticle adhering to a substrate does not depend
on h as long as h >∼ D. Then the adhesion energy equals the vdW energy of close approach
between a sphere and a substrate, EA = AR/6D [15]. Using values for A, D and R as given
above yields EA = 6 × 10−11 erg = 1400 kT. The energy of adhesion between two particles
is only a factor of 2 smaller than the one between a particle and the substrate, and hence
well above thermal energies as well. We thus conclude that the vdW interaction leads to
considerable adhesion of the particles to the substrate and to each other. The same holds true
for peeled off outer layers: with R = 60 nm, the energy of adhesion can be estimated to be
R2u = 105 kT.

Deformation under adhesion. – The onset of delamination can be estimated by consider-
ing large deformations of the nanoparticles. We do not offer a theory for fracture and estimate
the limit of mechanical stability by an internal criterion within our continuum description:
fracture and delamination sets in when so much stress has accumulated that the deformation
becomes of the order of the radius. Determining the deformation of a spherical elastic shell
is a difficult problem which depends on prestress, elastic constants and size as well as on the
nature of the deforming force. Here we discuss the deformation on a substrate for two cases
which can be treated in the framework of our scaling approach. In the following H is the
indentation. For small deformations H < h (fig. 3a), the shell flattens at the bottom. For
large deformations H > h (fig. 3b), a contact disc with radius r develops and the elastic
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energy is localized in the circular fold surrounding it. The respective elastic energies are [12]

Esmall ∼ G1/2κ1/2

R
H2, Elarge ∼ G1/4κ3/4

R
H3/2 . (2)

Here we neglect a bending term ∼ κH/R. We also assumed that due to low friction, slip can
occur between the contact disc and the substrate; otherwise compression energy ∼ GH3/R
would accumulate in the contact disc. The rest of the relaxing shell is assumed to keep a
spherical form with radius R′ > R in order to keep area constant and to avoid compression
energy. However, the difference is (R′ −R) ∼ H2/R and can be shown to be negligible in the
following.

If the deformations are driven by vdW adhesion, the energy gained on adhesion can be
shown to scale as EA ∼ uRH for both small and large deformations. Setting this adhe-
sion energy equal to the estimates for the elastic energies from eq. (2) yields estimates for
indentation:

Hsmall ∼ R2u

G1/2κ1/2
∼

(
u

C11h

) (
R

h

)
R, Hlarge ∼ R4u2

G1/2κ3/2
∼

(
u

C11h

)2 (
R

h

)3

R . (3)

Here and in the following we will always give the result both in terms of the elastic moduli
and their scaling with thickness for coherent bending. The dimensionless quantity u/C11h
is the ratio of van der Waals adhesion energy to two-dimensional Young modulus and will
be of order 10−4 for the WS2 nanoparticles. In this case we are in the regime H < h and
deformations will be in the Angstrom range. Thus delamination cannot be expected to be
caused by adhesion. For incoherent bending, R/h has to be replaced by R/a in both regimes.

One system for which vdW adhesion leads to strong deformations are single-walled hollow
nanoparticles. In this case, care has to be taken to use the correct values for G and κ. Since
G is a purely two-dimensional quantity, G = C11h can be used where h is identified with the
interlayer distance. However, κ has to be extracted from molecular calculations [5,10,11]. For
carbon, one finds G = 3.6×105 erg/cm2 and κ ≈ 1.6×10−12 erg ≈ 40 kT. For both MoS2 and
WS2, G is smaller by a factor 4 and κ is larger by a factor 10. In all three cases, for radii larger
than a few nm considerable deformations arise. The critical radius Rc where indentation H
and radius R become of the same magnitude follows from the second relation of eq. (3) as
Rc ∼ G1/6κ1/2u−2/3. For C, we find Rc ≈ 5 nm and for the metal disulphides Rc ≈ 10 nm.
For nanotubes, we find similar results which are in good agreement with experiments and
molecular calculations [16,17].

Deformation under pressure. – We now proceed to show that pressure can lead to an
instability which could account for the observed delamination. We consider the formation of
a contact disc for a shell which is pressed onto the substrate by pressure in the surrounding
liquid. The corresponding energy is Ep ∼ −pRH2, thus it scales more strongly with H than
the restoring elastic energy Elarge in eq. (2). This scaling indicates an instability: small
deformations are suppressed, but large deformations grow without limits beyond the critical
indentation Hc where Elarge +Ep attains a maximum [12]. Setting Hc = R gives an estimate
for the critical pressure for delamination:

pc ∼ G1/4κ3/4

R5/2
∼ C11

h

R

(
h

R

)3/2

. (4)

Using typical values gives pc ≈ 1.7 GPa. Incoherent deformations can be treated by replacing
(h/R)3/2 by (a/R)3/2 in eq. (4) and hence would decrease the estimate to 25 MPa. Although
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a full treatment of the instability requires a theory for the non-linear elasticity, we can still
suggest that pressure will be a very likely mechanism to cause delamination. This prediction
agrees nicely with the experimental observation that damage sets in at a finite threshold of the
load [3]. Note that for single-walled buckyballs C60 with R = 3.55 Å, eq. (4) gives pc = 15 GPa
which is in surprisingly good agreement with the value 20 GPa found experimentally [18].

Although the pressure values estimated here seem to be high, they refer to particles of
nm-size, and the corresponding forces are of the order of 10−3 dyn. In friction experiments,
the pressures and forces needed for delamination are most likely to occur near asperities.
This might explain why delamination has been observed in the SFA only when shearing the
two surfaces [4]: the nanoparticles then behaves as granular material which gets jammed and
pressure and forces become localized.

Shear flow. – Since the WS2 nanoparticles are immersed in liquid lubricant in strong
motion, we finally consider the effect of shear flow. Balancing the deforming viscous force
with the elastic restoring force and setting the resulting deformation equal to the radius gives
an estimate for the shear rate at which delamination sets in. For h < R, we find that only
stretching is relevant and that the critical shear rate is

γ̇c ∼ G

ηR
∼ C11

η

h

R
. (5)

Using viscosity η ≈ 1 cP (which applies both to water and mineral oil), we find γ̇c ∼ 2.5 ×
1013 Hz. Such high shear rates are unattainable even near contacting asperities in macroscopic
friction experiments, thus delamination is not likely to occur due to shear flow alone.

Shear flow past nanoparticle adhering to a substrate can cause them to roll. The particle
begins to roll if the viscous drag evaluated at the midpoint, FS = 6πηR2γ̇, equals the friction
force FF caused by the adhesive load FA = 2πRu. Assuming Amontons’ law for rolling friction,
FF = µFA, we find

γ̇c =
µu

3ηR
, (6)

where the coefficient of rolling friction µ can be taken to have the typical value 10−3; then
γ̇c is of the order of 5 × 105 Hz. This value is higher than typical shear rates probed with
the SFA (v = 10 µm/s, γ̇ = 104 Hz on nm-separation), but certainly lower than shear rates
occurring near the asperities of macroscopic friction experiments (v = 1m/s, γ̇ = 109 Hz on
nm-separation).

Conclusion. – We have shown that in friction experiments with multi-walled hollow
nanoparticles, delamination is likely to be caused by pressure. When nanoparticles delami-
nate, dangling bonds develop as they do for powders from layered material. However, there
are two reasons why they should be less problematic. First delamination takes place with
one or two layers and the density of dangling bonds remains low. Second we showed that
delamination may occur under adhering conditions. The adhesion (and possibly the shear)
will cause the layers to align parallel to the substrate, in contrast to the powders where the
orientation is preferentially perpendicular to the substrate. It has been shown experimen-
tally that delaminated layers from nanoparticles form islands while platelets form a thicker,
more disorganized film [4]. Our scaling approach shows that there are two control parameters
which might be used for tribological optimization: the ratio of radius to thickness and the
concentration of defects (that determine the regimes of coherent and incoherent bending).

Using nanoparticles as additives to liquid lubricants raises interesting questions about the
role of wetting. The lubricant used in the friction experiments mentioned is a bad solvent
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for the nanoparticles, which provides an additional force to drive them onto the substrate. A
dewetted region is expected to form between the adhering particle and the substrate; like a
capillary bridge in a good wetting situation, it might enhance adhesion.
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