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Abstract. – We study the cooperative rupture of multiple adhesion bonds under shared
linear loading. Simulations of the appropriate master equation are compared with numerical
integration of a rate equation for the mean number of bonds and its scaling analysis. In
general, force-accelerated rupture is rather abrupt. For small clusters and slow loading, large
fluctuations occur regarding the timepoint of final rupture, but not the typical shape of the
rupture trajectory. For vanishing rebinding, our numerical results confirm three scaling regimes
predicted before for cluster lifetime as a function of loading rate. For finite rebinding, the
intermediate loading regime becomes irrelevant, and a sequence of two new scaling laws can be
identified in the slow loading regime.

Introduction. – Cell adhesion is based on a large variety of different adhesion molecules,
each of which is optimised for its specific biological function [1]. Most adhesion molecules
have evolved to operate under force. For example, in cell-matrix adhesion, receptors from
the integrin family usually function under conditions of cellular contractility [2], while in
leukocyte adhesion to blood vessel walls, receptors from the selectin family operate under shear
flow [3]. During recent years, single-molecule force spectroscopy has revealed formerly hidden
properties of many different adhesion molecules, which in the future might be linked explicitly
to their biological function [4]. Rupture of molecular bonds under force is a stochastic process
which can be modeled with Kramers theory as thermally activated escape over a sequence of
transition state barriers [5–7]. The most convenient loading protocol is a linear ramp of force,
both experimentally and theoretically. For single molecules, the most frequent rupture force
as a function of the logarithm of loading rate has been predicted to be a sequence of linear
parts, each of which corresponding to one transition state barrier along the rupture path [5].
This prediction has been confirmed experimentally for many different adhesion systems [4,8],
including α5β1-integrin [9] and L-selectin mediated bonds [10].

Although single-molecule force spectroscopy has strongly changed our understanding of
specific adhesion, cell adhesion is usually not based on single molecules, but on clusters of
varying size. Therefore, future understanding of cell adhesion also has to include the cooper-
ative behaviour of adhesion molecules under force. In single-molecule experiments, ruptured
bonds usually cannot rebind due to elastic recoil of the transducer. In contrast, ruptured
c© EDP Sciences
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bonds in adhesion clusters can rebind as long as other bonds are still closed, thus holding
ligands and receptors in close proximity. For adhesion clusters under constant loading, it is
well known that despite rebinding, stability is lost beyond a critical force [1]. For adhesion
clusters under linear loading, force grows without bounds and the cluster will always rupture.
Recently, the most frequent rupture force has been measured as a function of loading rate
for clusters of ανβ3-integrins and RGD-lipopeptides loaded through a soft transducer in a
homogeneous way [11]. Theoretically, it has been shown before that different scaling regimes
exist for cluster lifetime as a function of cluster size, loading rate and rebinding rate [12]. For
the case of a stiff transducer, force on single bonds is independent of the number of closed
bonds and a mean-field approximation can be applied to make further theoretical progress [13].
However, for the case of a soft transducer, force is shared between closed bonds, leading to real
cooperativity: if one of the closed bonds ruptures, force is redistributed over the remaining
closed ones. Here we present for the first time a full treatment of this case. We start with a
one-step master equation with Kramers-like rates, which is solved by Monte Carlo methods.
These results are then compared to numerical integration of a rate equation for the mean
number of bonds. We show that considerable differences exist between the stochastic and de-
terministic treatments for small clusters or slow loading. For the case of vanishing rebinding,
our results confirm the three scaling regimes for cluster lifetime as a function of loading rate,
which have been predicted before on the basis of a scaling analysis of the rate equation for the
mean number of bonds [12]. For the case of finite rebinding, the intermediate scaling regime
becomes irrelevant. For slow loading, we identify a sequence of two new scaling laws, which
result from stochastic decay towards an absorbing boundary and finite rupture strength at
constant loading, respectively.

Model. – We consider a cluster with Nt parallel bonds. At any time t, i bonds are closed
and Nt − i bonds are open (0 ≤ i ≤ Nt). The i closed bonds are assumed to share the force F
equally, that is each closed bond is subject to the force F/i. In the following, we will consider
linear loading, that is F = rt, where r is the loading rate. Single closed bonds are assumed to
rupture with the dissociation rate k = k0e

F/iFb , which corresponds to the case of one sharp
transition state barrier along the rupture path [1,5]. Here, Fb is the internal force scale of the
bond set by the barrier. Single open bonds are assumed to rebind with the force independent
association rate kon. We now introduce dimensionless variables: dimensionless time τ = k0t,
dimensionless loading rate µ = r/k0Fb and dimensionless rebinding rate γ = kon/k0. The
stochastic dynamics of our model is described by a one-step master equation:

dpi

dτ
= ri+1pi+1 + gi−1pi−1 − [ri + gi]pi , (1)

where pi(τ) is the probability that i closed bonds are present at time τ . The reverse and
forward rates between the different states i follow from the single-molecule rates as

ri = ieµτ/i and gi = γ(Nt − i). (2)

For constant force, this master equation has been studied before [14, 15]. Since adhesion
clusters (like single molecules) usually cannot rebind from the completely dissociated state
due to elastic recoil of the transducer, we implement an absorbing boundary at i = 0 by
setting g0 = 0. Since force increases in time without bounds, the cluster will always dissociate
in the long run, that is pi(τ) → δi0 for τ → ∞, both for absorbing and reflecting boundaries.
Cluster lifetime T is the mean time to reach the absorbing state i = 0. By defining the cluster
dissociation rate D = dp0/dτ = r1p1, cluster lifetime follows as T =

∫ ∞
0

dτ τD. Since the
reverse rates ri are non-linear in i and time-dependent, an analytical solution for the pi as a
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Fig. 1 – (a) Mean number of closed bonds N as a function of time τ for the case of vanishing rebinding,
γ = 0, for µ/N0 = 0.1 and Nt = N0 = 2, 10, 102 and 103. Dotted lines: initial exponential decay.
Dashed lines: first moment of the Monte Carlo simulations. Solid lines: numerical integration of
deterministic rate equation (not for Nt = 2). (b) Individual trajectories from Monte Carlo simulations
in comparison with the mean (not for Nt = 2).

function of the three model parameters Nt, µ and γ seems to be impossible. Therefore we
solve the master equation numerically using the Gillespie algorithm for efficient Monte Carlo
simulations, typically averaging over 105 simulation trajectories for each set of parameters [16].

A quantity of large interest is the mean number of closed bonds, N = 〈i〉 =
∑Nt

i=1 ipi. In a
continuum approach, one expects that this quantity satisfies the ordinary differential equation

dN

dτ
= −Neµτ/N + γ(Nt − N). (3)

Cluster lifetime T can be defined by N(T ) = 1. Several different scaling regimes for T as a
function of Nt, µ and γ have been predicted on the basis of eq. (3) [12]. Below these scaling
predictions will be compared to both numerical integration of the deterministic equation and
to our stochastic results.

Decay without rebinding. – We first consider the case of vanishing rebinding, γ = 0. In
this case, the total number of bonds Nt does not appear in the model equations and the initial
condition N(0) = N0 is the only relevant parameter concerning the number of bonds. The
scaling analysis of eq. (3) suggests that decay can be divided into two parts [12]. Initial decay
is not yet affected by loading and thus is exponential with N(τ) = N0e

−τ . The second part
of the decay is super-exponential and can be shown to be much shorter than the first one.
Therefore, the crossover time, which is defined by an implicit function, determines cluster
lifetime T . In the regime of slow loading, µ < 1, exponential decay persists until N(τ) = 1
and T = ln N0. In the regime of intermediate loading, 1 < µ < N0, the crossover occurs before
N(τ) = 1 is reached, and lifetime is reduced to T ∼ ln(N0/µ). In the regime of fast loading,
µ > N0, lifetime scales even stronger with loading rate, T ∼ (N0/µ) ln(µ/N0).

In fig. 1a we plot N(τ) as obtained from simulations of the master equation (dashed lines)
and from numerical integration of the deterministic equation (solid lines) for N0 = 2, 10, 102

and 103. The dotted lines are the exponential decays N(τ) = N0e
−τ for vanishing loading.

In the presence of loading, the later part of the decay process clearly is super-exponential.
The first moment of the stochastic process decays less abruptly than the deterministic result,
although for increasing cluster size the difference between stochastic and deterministic results
becomes smaller. In fig. 1b, we show representative trajectories from Monte Carlo simulations.
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Fig. 2 – Solid lines: deterministic results for (a) cluster lifetime T and (b) rupture force F = µT for
the case of vanishing rebinding, γ = 0, as a function of µ/N0 for Nt = N0 = 10, 102, 103 and 104.
Broken lines: curves for all three scaling regimes.

They demonstrate that the final stage of the rupture process is rather abrupt. In fact, abrupt
decay is typical for shared loading and is found also for shared constant loading: a decreasing
number of closed bonds increases force on the remaining bonds, thus further increasing their
dissociation rates [15]. As fig. 1b shows, fluctuations tend to change the timepoint of rupture,
rather than the typical shape of the decay curve. For increasing cluster size, fluctuations
become smaller and rupture events are concentrated around the rupture of the deterministic
cluster. An analysis of the variance of the number of closed bonds i shows that, for slow
loading, it is close to the exact result for vanishing loading, 〈i2〉− 〈i〉2 = N0e

−τ (1− e−τ ) [17].
It vanishes for τ = 0 due to the initial condition, then quickly rises to a maximum and finally
decays exponentially. As the loading rate µ increases, a large additional peak appears shortly
before the final rupture (not shown).

Simulations allow to measure the cluster dissociation rate D(τ) and cluster lifetime T for all
parameter values. For µ < 1, the simulation results are close to the known analytical results for
µ = 0, D(τ) = N0e

−τ (1− e−τ )N0−1 [17] and T =
∑N0

i=1 1/i ≈ ln N0 + (1/2N0) + 0.577 [18,19].
For large N0, the deterministic scaling T = ln N0 results. For µ > 1, the functions D(τ)
become narrowly peaked around the mean value T . As suggested by the scaling analysis, we
find that now T depends only on the value of µ/N0. In fig. 2a, we plot deterministic results
for T as a function of µ/N0 and for different values of N0. The stochastic results are very
similar, except for the differences in the initial plateau values. Initially, the different curves
plateau at the values ln N0 for µ < 1. For 1 < µ < N0 and sufficiently large N0, they collapse
onto a universal curve, which can be approximated by 0.84 ln(0.35N0/µ). For µ > N0, they
collapse onto another universal curve, (N0/µ) ln(µ/N0). In fig. 2b, we plot the logarithm of
the deterministic rupture force, F = µT , as a function of µ/N0. For large N0, one clearly
sees the sequence of the three different scaling regimes. For decreasing N0, the intermediate
scaling curve becomes an increasingly bad fit.

Effect of rebinding. – In the stochastic framework, cluster lifetime can be identified with
the finite mean first-passage time of reaching the absorbing boundary at i = 0. For µ = 0 and
N0 = Nt, an exact result can be obtained with the help of Laplace transforms [15]:

Tstoch =
1

1 + γ

(
HNt +

Nt∑
i=1

(
Nt

i

)
γi

i

)
, (4)
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Fig. 3 – (a) Mean number of closed bonds N as a function of time τ for rebinding rate γ = 1 and
loading rate µ/N0 = 0.01. Cluster sizes Nt = 2, 10, 102 and 103, initial condition N0 = Neq =
γNt/(1 + γ). Dotted lines: initial number of closed bonds. Dashed lines: first moment of the Monte
Carlo simulations. Solid lines: numerical integration of deterministic equation (not for Nt = 2).
Dash-dotted lines: effect of reflecting boundary for Nt = 2 and 10. (b) Individual trajectories from
Monte Carlo simulations in comparison with the mean (not for Nt = 2).

where HNt =
∑Nt

i=1(1/i) is the Nt-th harmonic number. In the deterministic framework of
eq. (3) and µ = 0, an adhesion cluster with a total of Nt molecular bonds will equilibrate
from any initial number of closed bonds N0 to a stable steady state with Neq = γNt/(1 + γ)
closed bonds. For convenience, in the following we will use N0 = Neq. Then similar results
follow for Tstoch as given in eq. (4). A stability analysis of the deterministic equation, eq. (3),
for loading with a constant force f = F/Fb shows that the steady-state cluster size decreases
until stability is lost beyond a critical force fc = Nt plog(γ/e) [1, 15]. Here the product
logarithm plog(a) is defined as the solution x of xex = a. For γ < 1, the critical force can be
approximated as fc ≈ Ntγ/e: it vanishes with γ since without rebinding the cluster decays by
itself. For γ > 1, it can be approximated as fc ≈ 0.5Nt ln γ, that is the critical force now is
only a weak function of rebinding. For slow loading, µ < 1, the adhesion cluster will follow the
quasi-steady state until the critical force fc is reached at the time τc = fc/µ. The remaining
time to rupture is smaller and thus the lifetime of the adhesion cluster is close to

Tdet =
Nt

µ
plog

γ

e
. (5)

It diverges with the inverse of loading rate in the limit of vanishing µ, as is required by the
existence of a stable steady state and a finite rupture force F = µT = fc. For intermediate
loading, 1 < µ < N0, a power law behaviour T ∼ (N0/µ)1/2 has been erroneously predicted
in ref. [12], as reported in ref. [13]. For fast loading, µ > N0, rebinding can be neglected and
T ∼ (N0/µ) ln(µ/N0) as in the previous section.

In fig. 3a N(τ) is plotted for γ = 1 as obtained from Monte Carlo simulations (dashed
lines) and from numerical integration of the deterministic equation (solid lines). The different
initial conditions N0 for Nt = 2, 10, 102 and 103 are represented by the dotted lines. In fig. 3b
individual trajectories from the simulations are compared to the stochastic averages from
fig. 3a. For the small clusters, Nt = 2 and 10, the loading rate is so small that fc/µ > Tstoch.
Then T ≈ Tstoch and the clusters decay by themselves due to stochastic fluctuations to the
absorbing boundary (ultra-slow regime). The dash-dotted lines in fig. 3a show the effect
of a reflecting boundary, which is rather dramatic for these small cluster sizes. For the
large clusters, Nt = 102 and 103, fluctuations are less probable until the force is close to fc.
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Fig. 4 – (a) Mean cluster lifetime T and (b) mean rupture force F = µT for the case γ = 1 as a function
of µ/N0 for Nt = 2, 10, 102 and 103. In (a), the curves for the two larger clusters are nearly identical.

Therefore, the individual clusters fluctuate around the quasi-steady state and dissociate only
close to the deterministic cluster lifetime Tdet. Due to the large force on a single bond at
fc, the boundary has little influence here. A detailed analysis of the variance of i confirms
this description (not shown): for the smallest cluster, when fluctuations dominate during the
whole time evolution, the variance shows a broad peak. For the larger clusters, it develops a
narrow peak around the mean rupture time.

In fig. 4, we show mean cluster lifetime T and mean rupture force F = µT for γ = 1 as
a function of µ/N0 for the cases Nt = 2, 10, 102 and 103. For the small clusters, T starts
at the value of Tstoch and ends in the scaling regime for fast loading, where the curves are
practically identical for all different parameter values at a given value for µ/N0. The curves
for the large clusters are nearly identical. They start at the values of Tdet for small loading
rates and end in the same fast loading regime. An intermediate loading regime seems to exist
only as a transient between the regimes of slow and fast loading. In particular, it does not fit
well to an inverse-square-root dependence, as shown in fig. 4a.

Conclusions. – In this paper, we have presented for the first time a full analysis of
the cooperative decay of a cluster of adhesion bonds under linearly rising force. Significant
differences between stochastic and deterministic treatments are found for small clusters or
slow loading, when stochastic fluctuations are relevant. However, they do not affect so much
the typical shape of the rupture trajectory, but rather the timepoint at which rupture occurs.
For the case of vanishing rebinding, γ = 0, our full treatment nicely confirms the scaling
analysis of the deterministic equation for cluster lifetime T as a function of µ and N0 [12].
However, in contrast to the scaling analysis, the full treatment presented here allows for
detailed comparision with experiments, e.g. in regard to typical unbinding trajectories or
binding strength over a range of loading rates spanning different scaling regimes. For the
case with finite rebinding, γ > 0, we identify a sequence of two new scaling laws within
the regime of slow loading, µ < 1. For ultra-slow loading, T is independent of µ and is
determined by stochastic fluctuations towards the absorbing boundary. For larger µ (but still
with µ < 1), T starts to scale inversely with µ, due to the finite rupture strength at constant
loading. In contrast to the case of vanishing rebinding, a scaling regime of intermediate
loading, 1 < µ < N0, could not be identified.

Our results can be applied, for example, to rolling adhesion of leukocytes, when multiple
L-selectin bonds are dynamically loaded in shear flow [20]. Dynamic force spectroscopy has
only recently been applied to clusters of adhesion bonds [11]. RGD-lipopeptides on a vesicle
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have been presented to ανβ3-integrins on a cell. The effect of thermal membrane fluctuations
can be disregarded on both sides, because the vesicle is under large tension and the integrins
are rigidly connected to the cytoskeleton. Appreciable loading occurs only over a ring region
along the rim of the contact disc, for which no inhomogeneities have been observed. If one
neglects the subsequent peeling of the inner region, which presumably is much faster, our
model can be applied. The parameter values can be estimated to be Nt ≈ 100, Fb ≈ 40 pN,
k0 ≈ 0.01 Hz and γ ≈ 1. Loading rates have been varied from r = 20–4 × 103 pN/s, that is
µ/Nt = 0.5–100. Therefore, this experiment should correspond to the intermediate and fast
loading regimes. We expect that future improvements in experimentation will make it possible
to probe also the slow loading regime, where rebinding and stochastic effects become relevant.
In order to achieve a more complete understanding of the role of force in cell adhesion, future
modeling should also address the detailed nature of the force transducer, non-homogeneous
loading and more realistic scenarios for the rebinding process.
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