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Abstract – For a cell moving in hydrodynamic flow above a wall, translational and rotational
degrees of freedom are coupled by the Stokes equation. In addition, there is a close coupling
of convection and diffusion due to the position-dependent mobility. These couplings render
calculation of the mean encounter time between cell surface receptors and ligands on the substrate
very difficult. Here we show for a two-dimensional model system how analytical progress can be
achieved by treating motion in the vertical direction by an effective reaction term in the mean
first passage time equation for the rotational degree of freedom. The strength of this reaction term
can either be estimated from equilibrium considerations or used as a fit parameter. Our analytical
results are confirmed by computer simulations and allow to assess the relative roles of convection
and diffusion for different scaling regimes of interest.

Copyright c© EPLA, 2008

Introduction. – Biological function is often based on
the formation of a specific binding complex between recep-
tor and ligand [1]. However, in order for binding to occur,
a physical transport process must exist which brings the
binding partners to sufficiently close proximity [2]. In
many cases of interest, this transport process is rather
complex. Usually it contains several coupled degrees of
freedom, like a cell surface receptor moving laterally on
a membrane which fluctuates in the vertical direction [3].
The efficiency of biological transport processes often can
be framed as mean first-passage time (MFPT) problems,
for example for the gating of ion channels [4] or the
arrival of a virus at the nucleus [5]. Another example
of a complex transport process of large biological rele-
vance is the receptor-mediated adhesion of cells which are
carried over a ligand-coated substrate by hydrodynamic
flow [6]. Here the mean encounter time between recep-
tors and ligands is a measure for the efficiency of cell
adhesion under the conditions of hydrodynamic flow [7].
For this system, additional complications arise from the
presence of multiple length scales. For the micron-sized
cell, the hydrodynamic equations result in coupling of the
translational and rotational degrees of freedom. Even for
high shear rates, Brownian motion is relevant because
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receptors and ligands are nanometer-sized objects, thus
even small movements for the cell result in a large
effect on the molecular level. Here we show that despite
the presence of these complications, analytical progress
can be achieved by dimensional reduction of appropriate
degrees of freedom. The reduced description then contains
effective parameters which have to be obtained from the
full model.
Experimentally the binding of cells to a substrate

in hydrodynamic flow is often studied in flow cham-
bers because this setup allows for controlled flow condi-
tions [8,9]. In vivo, this situation is relevant for white blood
cells, which travel the body with the blood flow, but have
to adhere at very specific locations, e.g. close to sites of
inflammation. Similar mechanisms are used by cancer and
stem cells. Moreover, malaria-infected red blood cells also
undergo adhesion to the vessel walls under flow conditions.
Apart from using flow chambers, one can further reduce
the experimental system by employing biomimetic analogs
of cells, that is receptor bearing micro-beads [10,11]. The
efficiency with which cells or beads in flow can bind to
a substrate depends crucially on the spatial distribution
of receptors and ligands [12]. Previously, we proposed
a model based on a Langevin equation for a spher-
ical particle in linear shear flow above a wall which
allows to numerically compute MFPTs for different ligand
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and receptor distributions and flow parameters both for
two-dimensional (2D) and three-dimensional (3D) move-
ments [7,13]. Due to the complex geometry arising from
the receptor and ligand distributions and the complexity
of the position-dependent mobility functions arising from
the hydrodynamic equations, exact analytic results for the
MFPT cannot be obtained in this general case.
In this letter we present analytical advances for

2D motion with homogeneous ligand coverage on the
substrate. In our model system, motion can occur only
in x- and z-directions and rotation is restricted about
the y-axis. Due to the assumption of homogeneous ligand
coverage, motion in the x-direction is not relevant. Thus
we deal with two degrees of freedom, falling in z-direction
and rotation about the y-axis. This is the simplest model
system which combines rotational and translational
degrees of freedom in a non-trivial manner. Because cell
movement usually occurs in the regime of small Reynolds
number, their coupling is determined by the Stokes equa-
tion for viscous flow. In addition, we account for Brownian
motion which is ubiquitous in biological systems on the
nanoscale and essential for receptor-ligand binding to
occur. Here we show that this model system can be further
reduced by effectively integrating out the translational
degree of freedom. This results in an ordinary differential
equation for the MFPT of the rotational degree of freedom
which includes a non-trivial reaction term that represents
the falling motion of the cell. We show that this equation
can be solved analytically. From this solution we then
derive various expressions that describe asymptotic limits.
By comparing with computer simulations, we finally show
for which parameter range our analytical results are
valid. Moreover, our analytical calculations explain the
numerical results outside this parameter range when the
effective reaction rate is used as a fit parameter.

Model definition. – We consider a sphere of radius
R moving in linear shear flow with shear rate γ̇ above a
planar wall. As explained above, we restrict its motion
to two dimensions, that is the translational motion of
the sphere is restricted to a plane perpendicular to the
boundary wall, i.e. the xz-plane, and rotations are only
allowed about the y-axis (see fig. 1a). As depicted in fig. 1a
the circumference of the sphere lying in the xz-plane is
covered withNr equidistantly distributed receptor patches
of height r0≪R and radius rp≪R. The boundary wall
is homogeneously covered with ligands. In order to drive
it onto the substrate, in vertical direction the sphere is
subject to a constant force −Fz. In experiments, this
force arises from gravity because cells or microbeads are
usually slightly denser than the surrounding medium. A
receptor-ligand encounter occurs with certainty whenever
a receptor patch has some overlap with the boundary
wall. Because we also consider Brownian motion, the
receptor-ligand encounter is stochastic. Our goal is to
calculate the corresponding MFPT. For the calculation
of first passage times the motion in x-direction can be
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Fig. 1: (a) A sphere (radius R) in linear shear flow (shear
rate γ̇) covered withNr = 6 receptor patches with height r0 and
radius rp is shown. The sphere translates in the xz-plane. The
orientation about the symmetry axis is given by the angle θ.
(b) The encounter problem can be mapped to that of a particle
moving in zθ-space, where the motion in the θ-direction is θs :=
2π/Nr periodic as the receptors are equidistantly distributed.
The solid curves shown enclose the areas in which receptor-
ligand encounter occurs. For the calculation we approximate
these areas by a rectangular area (grey shaded) of height r0
and width 2θ0.

neglected as the system is translationally invariant in this
direction due to homogeneous ligand coverage. Moreover,
the regular distribution of receptor patches generates a
θs:= 2π/Nr symmetry for the θ coordinate (i.e., the angle
about the y-axis). Therefore, we deal with the situation
illustrated in fig. 1b of a diffusive particle moving in the
θs-periodic (zθ)-plane (i.e., a cylindrical surface with
z >R) with absorbing boundaries θ(z) (solid lines in
fig. 1b) representing the boundaries of the encounter areas.
If T (z′, θ′) is the MFPT to reach a point on the

absorbing boundary when started at some point (z′, θ′)
then for practical purposes only 〈T (z′, θ′)〉θ′ , i.e., the
MFPT averaged over all initial orientations, is a relevant
quantity as it is experimentally very difficulty to prepare
a certain initial orientation. Concerning the initial height
we previously showed [13] that for z′ > zm >R+ r0 the
following relation holds true:

〈T (z′, θ′)〉θ′ = T (zm|z
′)+ 〈T (zm, θm)〉θm , (1)

where T (zm|z
′) is the mean time to fall from the initial

height z′ to the intermediate height zm and θm is the
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sphere’s orientation at height zm. Equation (1) states that
if the angle averaged MFPT is known for some height zm,
the MFPT can be calculated for any other height z > zm
without further considering the orientational degree of
freedom. Moreover T (zm|z

′) can be calculated exactly [13].
Thus for the following we choose as the initial height
of the disk always z′ =R+ r0 and write T (θ

′) := T (z′ =
R+ r0, θ

′).

Model reduction to one dimension. – In order
to calculate 〈T (θ′)〉θ′ one must in principle consider the
motion in the full (zθ)-plane. Here, we show that under
certain conditions a good approximation formula for this
MFPT can be derived by considering only the motion of
a particle in a periodic one-dimensional θ-space. For that
we first approximate the area in the (zθ)-plane in which
encounter occurs by a rectangle of width 2θ0 (see fig. 1b).
As an appropriate θ0 we choose the mean width of the
encounter interval the particle sees while being at height
z <R+ r0, that is

θ0 =
1

1− e−Fzr0/kBTa

∫ R+r0

R

dzθ0(z)Ψs(z), (2)

where

Ψs(z) =
Fz
kBTa

e−Fz(z−R)/kBTa (3)

is the stationary probability distribution for the height of
the sphere z with Boltzmann’s constant kB and ambient
temperature Ta. θ0(z) is the boundary of the encounter
area and depends on receptor height r0 and receptor radius
rp through θ0(z) = arccos(z/(R+ r0))+ rp [13]. Thus θ0
increases with both r0 and rp.
Changes in θ are due to rotational diffusion with diffu-

sion coefficient Dθ and a drift Aθ ∝ γ̇ arising from the
linear shear flow. This suggests to take the corresponding
Fokker-Planck equation as a starting point for a reduced
model. In order to account for the effect of the motion in
the z-direction, we argue that for θ ∈ [0, 2θ0] an encounter
occurs only with a finite probability. Thus, for the proba-
bility p(θ, t) to have the orientation θ at time t we setup
the following reaction-advection-diffusion equation

∂tp(θ, t) =Dθ∂
2
θp(θ, t)−Aθ∂θp(θ, t)− k̄(θ)p(θ, t). (4)

The reaction term is defined by k̄(θ) = k̄ for θ ∈ [0, 2θ0] and
k̄(θ) = 0 otherwise. It accounts for the finite probability
that encounter occurs while the particle is passing the
interval [0, 2θ0]. This approximation makes sense if the
correlation between the heights z for successive visits to
this interval are small. This in turn can be expected if θ0 is
small and if in addition θ0/θs≪ 1. This assumption seems
reasonable because we have the separation of length scales
rp, r0≪R. The assumption θ0/θs≪ 1 also suggests to take
the limit θ0→ 0 while keeping 2θ0k̄=: k constant. Then
the term −k̄(θ)p(θ, t) in eq. (4) becomes −kδ(θ)p(θ, t).
Equation (4) is a differential equation for the rotational
motion in which the effect of vertical motion has been
absorbed into the new model parameter k.

Boundary conditions. – Because of the
θs-periodicity the probability p(θ, t) must fulfil peri-
odic boundary conditions, i.e. p(θ+ θs, t) = p(θ, t).
Furthermore, integrating eq. (4) over a full period θs, we
obtain for the total loss of probability

d

dt

∫ θ̃+θs

θ̃

dθp(θ, t) =−kp(0, t), (5)

i.e. k denotes the rate of absorption at the boundary. In
the limit k→∞ we have purely absorbing boundaries with
p(0, t) = p(θs, t) = 0. On the other hand integrating eq. (4)
over the open interval ]0, θs[ we obtain

d

dt
lim
ǫ→0

∫ θs−ǫ

0+ǫ

dθp(θ, t) = J(0+, t)−J(θs−, t) (6)

with the probability current J(θ, t) :=−(Dθ∂θ −
Aθ)p(θ, t). Combining eq. (5) and eq. (6) we see
that the reactive delta-function at θ= 0 is equivalent to
so-called radiation boundaries [14]

J(θs, t)−J(0, t) = kp(0, t). (7)

In the limit of zero encounter probability, i.e. k= 0, the
probability flux leaving the interval on the right boundary
is equal to that entering the interval at the left boundary
and the total probability is conserved.

Mean first passage time. – Let G(θ′, t) denote the
survival probability at time t, i.e. the probability that no
encounter has occurred until time t under the condition
that the initial orientation of the particle at time t′ = 0
was θ′. With p(θ, t|θ′, 0) being the conditional probability
for the particle of having the orientation θ at time t
when the initial orientation of the particle at t′ = 0 was
θ′, the survival probability can be written as G(θ′, t) =
∫ θs
0
dθp(θ, t|θ′, 0). G(θ′, t) obeys the adjoint equation [15]

∂tG(θ
′, t) = (Dθ∂

2
θ′ +Aθ∂θ′ − kδ(θ

′))G(θ′, t). (8)

The mean first-passage time T (θ′) follows from the
survival probability as T (θ′) =

∫

∞

0
dtG(θ′, t). Thus, an

equation for the MFPT is obtained by integrating eq. (8)
over all times. With limt→∞G(θ

′, t) = 0 and G(θ′, 0) = 1
the MFPT is the solution of [15]

(Dθ∂
2
θ′ +Aθ∂θ′ − kδ(θ

′))T (θ′) =−1. (9)

The general solution of eq. (9) is given by

T (θ′) =−
θ′

Aθ
+
Dθ
A2θ

(

1− a1e
−
Aθ

Dθ
θ′
)

+ a2, (10)

with two integration constants a1, a2 which have to be
determined in order to match the boundary conditions,
i.e. periodicity T (0) = T (θs). The condition corresponding
to eq. (7) is ∂θ′T |θ′=0− ∂θ′T |θ′=θs = (k/Dθ)T (0), which
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follows from integrating eq. (9) from −ǫ to ǫ with some
ǫ > 0 and then taking the limit ǫ→ 0. This gives

T (θ′) =
θs
Aθ

1− e
−
Aθ

Dθ
θ′

1− e
−
Aθ

Dθ
θs
−
θ′

Aθ
+
θs
k
. (11)

This equation has to be corrected by the physical expecta-
tion that T (θ′) = 0 for θ′ ∈ [0, 2θ0] as we used for the initial
height always z′ =R+ r0. Therefore, for these orientations
encounter occurs instantaneously. This problem is fixed by
replacing θs by ∆θ := θs− 2θ0 in eq. (11). Then averaging
over all initial orientations including some for which T is
zero we arrive at our central result

〈T (θ′)〉θ′ =
1

θs

∫ ∆θ

0

dθ′T (θ′)

=
Aθ∆θ

2 coth
(

Aθ∆θ
2Dθ

)

− 2Dθ∆θ

2A2θθs
+
∆θ2

kθs
. (12)

As one would expect 〈T (θ′)〉θ′ becomes the smaller the
larger the encounter probability, i.e. the larger the reaction
rate k.

Parameter estimates. – In order to apply eq. (12)
to the situation of a particle moving in the (zθ)-plane we
still have to provide expressions for the reaction rate k
as well as for the diffusion constant Dθ and the drift Aθ.
Regarding the reaction rate, we have to consider the full
system again. We first note that in the stationary state the
probability for the sphere to be at a height between z and
z+dz is given by Ψs(z)dz from eq. (3). Thus, we get for
the probability for encounter while the sphere is oriented
such that θ ∈ [0, 2θ0] (valid in the limit θ0≪ 1) pz := 1−
exp(−Fzr0/kBTa). On the other hand, using the originally
introduced rate k̄ the mean probability for encounter is
pk̄ := 1− exp(−k̄τ), where τ is the mean time it takes
the particle to pass the interval of length 2θ0. For purely
diffusive motion Aθ = 0, we estimate τ = θ

2
0/2Dθ which

is the mean first passage time to reach the boundary of
[0, 2θ0] when initially started at θ(t= 0) = θ0. In the limit
of very large drift motion becomes purely deterministic
and we expect τ = 2θ0/Aθ. These two limiting cases may
be combined to provide 1/τ = 2Dθ/θ

2
0 +Aθ/2θ0. Under

the assumption that the position between two successive
approaches of the interval [0, 2θ0] is independent one can
get an estimate for k from the condition pk̄ = pz

k=
Fzr0
kBTa

2θ0
τ
=
Fzr0
kBTa

(

4Dθ
θ0
+Aθ

)

, (13)

where we used k= 2θ0k̄. From eq. (13) one sees that
encounter becomes the more probable the larger the
vertical drift force Fz and the faster rotation given by Dθ
and Aθ.

For a sphere in linear shear flow above a wall the
coefficients Dθ and Aθ depend on the height z as

Dθ(z) =
kBTa
8πηR3

β̃rr(R/z), Aθ(z) =
γ̇

2
(1− β̃dr(R/z)),

(14)

with η denoting the viscosity of the fluid. β̃rr(R/z)
and β̃dr(R/z) are dimensionless functions including the
z-dependence. A numerical scheme that allows to accu-
rately calculate these functions at arbitrary heights can
be found in [16,17]. In order to compare the results of the
model presented here with the numerical solutions of the
MFPT problem we use mean-field values in the following
way:

Dθ :=

∞
∫

R

dzΨs(z)Dθ(z), Aθ :=

∞
∫

R

dzΨs(z)Aθ(z). (15)

That is we take for Dθ and Aθ averages with respect to the
stationary probability function Ψs(z) from eq. (3) of the
z-dependent quantities Dθ(z), Aθ(z) defined in eq. (14).

Comparison to simulation results. – In fig. 2
we compare our results for the angle-averaged MFPT
〈T 〉θ′ as obtained from the analytical calculation (solid
lines) and from computer simulations (symbols). For this
purpose we rescale time in units of the diffusive time scale
6πηR3/kBTa. In fig. 2a 〈T 〉θ′ is shown as a function of the
Péclet number Pe := 6πηR3γ̇/kBTa (other parameters
are defined in the figure caption). The Péclet number is
a dimensionless measure for the relative importance of
deterministic and diffusive motion and Aθ ∝ Pe. In the
case of zero rotational drift, Aθ = 0, Pe= 0 and motion
is purely diffusive. In addition to the simulation results
(symbols) fig. 2a also shows our main result (lines) eq. (12)
where we used eqs. (13) and (15) for the rate k and the
constants Aθ, Dθ, respectively. The agreement between
the mean-field and simulation results is surprisingly good
for the parameter values chosen. In particular, even the
small shoulder for Nr = 1 seems to be reproduced by the
analytical result. In fig. 2b 〈T 〉θ′ is shown as a function of
the number of receptor patches Nr in the diffusive limit
Aθ = 0 and for two different values of the patch height r0.
Whereas the theoretical approximation with the rate given
by eq. (13) works quite well for r0 = 10

−3R, for a tenfold
larger r0 we notice clear deviations. The larger r0 the
larger θ0 and the assumption of the dwelling time within
[0, 2θ0] being small is less valid. Nevertheless, eq. (12)
describes the functional dependence of 〈T (Nr)〉θ′ in a qual-
itative way. In fact quantitative agreement can be achieved
by using the reaction rate k as a fit parameter (not shown).

Asymptotic limits. – The results shown in fig. 2 were
obtained for a fixed vertical drift with strength given by
Pez = 50. Here, Pez := FzR/kBTa is the Péclet number for
the z-direction. Figure 3a displays the comparison between
the numerical result of 〈T 〉θ′ and the approximation
eq. (12) as a function of Pez in the diffusive limit Aθ ≈ 0.
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Fig. 2: Comparison between numerical results for the MFPT
〈T 〉θ′ averaged over all initial orientations and the mean-field
approximation according to eqs. (12), (13), (15). The numerical
results were obtained as described in ref. [13] for an initial
height z = 2R. In order to display the MFPT with initial
height z =R+ r0 the falling time T (R+ r0|2R) was subtracted
according to eq. (1). (a) 〈T 〉θ′ as a function of the dimensionless
Péclet number Pe for different numbers of receptor patches Nr.
(b) 〈T 〉θ′ as a function of Nr for two different values of the
patch height r0. (Other parameters: patch radius rp = 0.001R,
vertical drift Fz = PezR/kBTa with Pez = 50.)

For small Pez the numerical results for the MFPT shows a
1/Pez scaling behaviour as indicated by the dashed line in
fig. 3a. For larger Pez, 〈T 〉θ′ plateaus. At even larger Pez
the MFPT increases with increasing Pez (not shown) as
Dθ(z)→ 0 for z→R [17]. One sees that the approximation
eq. (12) underestimates the numerical result for small
values of Pez and overestimates it for large Pez. For
intermediate values of Pez of the order of 10–100 we find
good agreement between the two results as demonstrated
before in fig. 2. For large Pez ≈ 10

3 the numerical result
provides 〈T 〉θ′ ≈ 0.1. About the same value is given by the
first term in eq. (12). This means that in the diffusive
limit and for large Pez an encounter occurs almost with
probability one for θ ∈ [0, 2θ0]. This is plausible as then the
duration time for θ ∈ [0, 2θ0] is long enough such that the
particle will most probably encounter a height z <R+ r0

Fig. 3: (a) The numerically obtained MFPT 〈T 〉θ′ as a
function of the strength of the vertical drift Pez (+). The
dashed lines show the asymptotic behaviour 〈T 〉θ′ ∝ 1/Pez
for small Pez and the value of 〈T 〉θ′ around Pez = 10

3. The
solid line shows the mean-field approximation according to
eqs. (12), (13), (15). (Other parameters: Nr = 10, r0 = rp =
10−3R.) (b) The different scaling behaviour of 〈T 〉θ′ in regard
to the number of receptor patches Nr for zero and large
rotational driftAθ at Pez = 10

3 is shown. The theoretical result
from eq. (12) matches well the numerical results (symbols)
when for k infinity and k= 2Aθ is chosen for Pe= 0 and
Pe≈ 1500, respectively (r0 = rp = 10

−3R).

while the receptor patch points downwards. Therefore,
the rate k for Pez ≈ 10

3 is rather infinity than the value
given by the estimate eq. (13). At small values of Pez we
expect combining eq. (12) and eq. (13) the second term
in eq. (12) to be dominant and 〈T 〉θ′ ∝ 1/(DθPez). As the
diffusion coefficient Dθ(z) is a monotonically increasing
with increasing distance z from the wall also the term Dθ
defined in eq. (15) becomes larger with decreasing Pez.
This is the reason why the estimate eq. (12) for 〈T 〉θ′ does
not provide the right scaling behaviour. On the other hand
using Dθ|Pez=50 also at larger Pez values a much better
agreement (not shown) between the theoretical estimate
and the numerical result of the MFPT is obtained. That
implies that the faster rotations far away from the wall,
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which are included in the definition eq. (15), are not
relevant for the encounter process which happens only very
close to the wall.
In fig. 3b we demonstrate that eq. (12) matches well

to the numerically obtained MFPT for Aθ = 0 and large
Pez when k is set to infinity as discussed above. There,
for Pez = 10

3, the numerical result for 〈T 〉θ′ (+) and the
theoretical result eq. (12) (full line) are shown. For the
dependence on the number of receptor patches Nr we find
in this limit (and for Nr small)

〈T 〉θ′ ≈
∆θ3

12θsDθ
≈

4π2

12DθN2r
, (16)

i.e. the MFPT approximately scales as 1/N2r . The situa-
tion is different in the deterministic limit, i.e. for large Aθ.
Then, eq. (12) is approximately

〈T 〉θ′ ≈
∆θ2

θs

(

1

2Aθ
+
1

k

)

≈
π

Nr

(

1

2Aθ
+
1

k

)

, (17)

i.e. the MFPT scales as 1/Nr at small numbers of receptor
patches Nr. In fig. 3b we also show a comparison between
eq. (17) (dashed line) and the numerically obtained MFPT
(×). Here we find that good agreement is obtained when
we choose k≈ 2Aθ, which is of the same order of magni-
tude as the estimate given by eq. (13). Thus, in contrast to
the diffusive limit, the second and the first term in eq. (12)
are of the same order.

Summary and outlook. – In this letter we have
derived an approximate expression eq. (12) for the angle-
averaged MFPT for receptor-ligand encounter between a
sphere equidistantly covered with receptor patches and a
wall homogeneously covered with ligands in a 2D geo-
metry. The main idea of our analysis was to integrate
out the motion in z-direction by absorbing falling in a
reaction term for the rotational degree of freedom. The
coefficients for the diffusion and drift terms of this equa-
tion were estimated from mean-field arguments in eq. (15).
Our derivation was based on the central assumption that
the heights of the sphere at two successive times of a recep-
tor patch pointing downwards is uncorrelated. This is not
true in general, and accordingly the result derived for the
reaction rate k in eq. (13) is valid only for a small range
of parameter values. However, if the rate k is viewed as a
fit parameter, then eq. (12) matches the results obtained
in computer simulations of the full problem over a large
range of parameters.
In the future, our analysis could be extended in differ-

ent ways. For non-homogeneous ligand coverage ρl < 1 not
every receptor-wall encounter is a productive receptor-
ligand encounter. This might again be expressed by an
appropriate choice of the rate k with k∝ ρl. Depending
on the receptor-ligand system under consideration, not
every encounter has to lead to functional adhesion under
flow. Conceptually, one could regard the first encounter
as formation of an encounter complex [2]. The next step
would then be the transition to a final complex. In a such

a two-state system, also dissociation of the final complex
becomes important. This composite process might again
be described by an appropriate choice of the rate k. If
complete unbinding occurs, there is also the possibility
that new bonds are formed downstream, eventually result-
ing in the physiologically very important process of rolling
adhesion. Recently we have extended the computer simula-
tions as used here to also investigate rolling adhesion [18].
Future work has to show how these simulations can now be
made more efficient using the dimensional reduction intro-
duced here. In general, analytical progress by dimensional
reduction and introduction of appropriate reaction terms
might be a very promising strategy also for other biolog-
ical systems which involve a complex interplay between
different transport modes.
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