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Optimizing micropattern geometries for cell
shape and migration with genetic algorithms†

Philipp J. Albert and Ulrich S. Schwarz*

Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture.

However, the variety of possible patterns is infinitely large and experiments often restrict themselves to

established designs. Here we suggest a systematic method to establish novel micropatterns for desired

functions using genetic algorithms. The evolutionary fitness of a certain pattern is computed using a

cellular Potts model that describes cell behavior on micropattern. We first predict optimal patterns for a

desired cell shape. We then optimize ratchet geometries to bias cell migration in a certain direction and

find that asymmetric triangles are superior over the symmetric ones often used in experiments. Finally

we design geometries which reverse the migration direction of cells when cell density increases due to

cell division.

Insight, innovation, integration
Adhesive micropatterns are increasingly used to control cellular functions, but little attention has been devoted before to their rational design. Here we
introduce a computational procedure based on genetic algorithms to predict adhesive geometries that promote a desired cell behaviour, for example migration
on a ratchet pattern into a given direction. Our approach is computationally cheap because it builds on a very efficient cellular Potts model. As long as a good
model description exists for cell behaviour, our approach can be used to predict adhesive micropatterns for virtually any task of interest.

1 Introduction

Micropatterns (MP) have become a standard tool to study cells
in culture under controlled conditions1,2 and are increasingly
combined with quantitative analysis and modeling.3–6 The appli-
cation of MP range from single cell experiments up to systems
consisting of several hundreds of cells. For single cells, it was first
found that the geometry of extracellular matrix ligand distribu-
tion determines cell fate.7 Later studies focused strongly on the
effect of MP-geometry on the internal organisation of the cells.8 It
was further demonstrated that cell shape directly relates to cell
mechanics.9,10 To address cell mechanics, MP are increasingly
combined with soft elastic substrates to measure traction forces
of single cells11–15 and multicellular systems.16,17 The extension
to multicellular systems occurs naturally when cells divide during
the time course of the experiment. Here, MP have revealed
an influence of the extracellular matrix (ECM) geometry on the
cell division axis.18,19 Larger multicellular systems have been

investigated mainly in regard to the influence of geometry on
collective cell migration.20,21 Collective migration experiments
are often combined with a removable barriers approach,22

e.g. to study migration into nonadhesive regions16 or the
formation of leader cells.23

The influence of geometry on cell migration has been addressed
in much detail for single cells. MP polarize the internal organiza-
tion of cells24 and determine where lamellipodia form.25,26 On
square and triangular patterns lamellipodia form most likely at
one of the corners.25 When the same cell line is grown on
teardrop shaped MP, lamellipodia form most likely at the blunt
end and cells move in this direction for a certain time once the
pattern has been removed.26

However, for a combination of several such patterns, single
cell polarization is only one out of several important factors,
as has been demonstrated with ratchet patterns.27 A ratchet
pattern is composed of a asymmetric building block repeated
several times, e.g. in a linear fashion, on a circle of variable
radius or in the shape of a square. For a square arrangement of
teardrop patterns, it was found that the direction of migration
depends not only on single cell polarization, but also on the
availability of adhesive ligands on the neighboring pattern.28 If
the teardrop pattern is arranged in a square in such a way that a
new pattern is not easily accessible from the blunt side, then
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cells can also migrate in the other direction. If the availability of
ligands is ensured by appropriate pattern positioning, then the
cells can maintain their single cell polarization on teardrop
patterns also over the gap.29

Importantly, these effects strongly depend on cell type. For
example, it has been shown that epithelial cells migrate on very
similar square arrangements of teardrop patterns in the other
direction30 than mesenchymal cells such as 3T3-fibroblasts,28

most likely because they protrude and stabilize lamellipodia
in different ways. The behaviour of these epithelial cells can
be further modulated using teardrop patterns with elongation
(spear-shaped).31 For a linear arrangement of triangular
shapes, it was found that cell migration of mesenchymal cells
such as 3T3-fibroblasts proceeds mainly in the direction of the
tip,32,33 most likely because lamellipodia are suppressed at the
blunt end if the triangles are somehow larger than the typical
spread area. Here again it was observed that these effects are
cell-type specific, because different cell types can traverse the
same ratchet pattern in different directions.32

Surprisingly, the range of MP usually chosen for cell studies
is rather limited and often shaped by past successes. Little
attention has been devoted to a systematic approach to design
MP for specific functions. Fig. 1A shows that experiments
usually address the so-called direct problem, that is they show
how cell shape and mechanics adapt to a given MP. For
example, the crossbow pattern seen here is often used to study
cell processes related to cell polarization, because it forces the
cell to organize its cytoskeleton in an asymmetric manner.

Although prominent patterns like the crossbow are very instructive,
in principle the number of possible geometries is infinite and
one might wonder which other patterns might be interest for
experiments. The challenge of predicting the best MP for a
desired biological function (e.g. a desired shape or migration
direction) can be called the inverse problem, compare Fig. 1A.

In principle not only the direct problem, but also the inverse
problem can be addressed experimentally, for example by high-
throughput screening. However, such an approach is unrealisti-
cally cost- and time-consuming and would still require a rational
approach to generate relevant adhesive patterns. We therefore set
out to address this challenge using a model and optimization
approach. As indicated in Fig. 1B, we approach this problem using
the cellular Potts model (CPM) for the direct problem and genetic
algorithms (GA) for the inverse problem, respectively.

CPMs where originally developed to describe cell sorting by
the differential adhesion hypothesis.34,35 They have found a
wide range of applications,36,37 including tumor invasion,38 cell
arrangement in the Drosophila retina,39 keratocyte migration40

and single cells on dot MP.41 The versatile nature of the CPM
used to solve the direct problem allows to optimize MP for
virtually any task. Here we apply a version of the CPM that
we have developed before to describe spreading and shape of
single cells42 and migrating multicellular systems of variable
sizes.43

Once the direct problem is solved with a suitable model like
the CPM, one can address the inverse problem with an optimi-
zation approach. For this purpose, we use GA, which are a well
established tool in the class of natural problem solvers and
which in contrast to other optimization methods (such as
simulated annealing or descent methods) do not try to improve
one solution, but rather to develop many solutions in parallel.44–47

The main motivation to use GA to optimize the layout of MP is the
lack of knowledge about the fitness landscape. It may be very
rough with high barriers and its effects might depend on how
the cells dynamically probe it. GA are also robust to noise,
which is inevitable in biological experiments. For example, the
exact seeding location of cells cannot be controlled and their
movement has a strong stochastic component. With GA, it is
not rigorously guaranteed to find the best solution in finite
time, but a good working solution is sufficient in our context.
In fact it has been used before to optimize patterns of motors in
motility assays to transport microtubules efficiently48 or guiding
tracks for molecular shuttles.49

In the following we describe how we combine CPM and GA
to identify optimal adhesive patterns for certain cell functions
of interest. We pick three illustrative examples to demonstrate
our approach. In the first (trivial) example we give a cell shape
to the GA and let them predict the optimal pattern shape
resulting in this cell shape. In the second example we ask
for the optimal geometry which biases cell migration into one
direction. For the third example we let the GA design a geometry
that biases cell migration in one direction for low cell densities but
reverses this direction for high densities. We envision that in the
future, our approach can be used to strongly improve the power of
MP for cell culture.

Fig. 1 Optimizing micropatterns. (A) Given a micropattern, the corres-
ponding cell shape can be obtained in experiments by letting a cell spread
on the pattern. The inverse problem of obtaining the pattern leading to a
given cell shape is an open issue. Image courtesy of Dr Vytaute Starkuviene-
Erfle. (B) Direct and inverse problem solved with a model and optimization
approach. For the direct problem of predicting cell behavior on micropatterns
(MP) a cellular Potts model (CPM) is used. The inverse problem of optimizing a
pattern layout for a specific task is addressed with genetic algorithms (GA). This
algorithm suggests layouts systematically and tests with the CPM for how well
they are suited for a desired task.
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2 Methods
2.1 Genetic algorithms for optimizing adhesive geometries

Genetic Algorithm are inspired by natural evolution. A set of
individuals, in our case the pattern layouts, compete in an
selective environment. Only the fittest individuals are allowed
to reproduce and to live on into the next generation. In the
implementation of a GA the selection pressure is generated by
a fitness measure, e.g. how well a given pattern layout leads to
a desired shape. Those patterns which perform best are more
likely to be selected for reproduction which can occur e.g. by
averaging the shapes of the patterns. Reproduction results in
a new generation which is again evaluated for its fitness and
so forth until a desired fitness value is reached.

The principle of a GA is shown in Fig. 2A. The optimization
by a GA starts out with a population consisting of several

randomized individuals. In our case each individual is a
pattern consisting of elementary building blocks called genes.
E.g. the [Y] shaped patterns is made by three genes each
encoding a straight line but with different orientations. How
patterns are encoded is discussed in detail below. The algorithm
usually starts out with a random configuration, but for better
illustration the pattern in Fig. 2A are very regular.

To mimic evolution the fitness of each individual (=pattern)
is evaluated. In the shown example the fitness is determined by
how well a cell shape (red outline) matches the shape of a target
cell (not shown). In the recombination step individuals are
selected to cross their genomes and form offspring. The like-
lihood of being selected depends on the fitness of each individual.
This mimics the selective pressure of the environment. For
illustration the fitness based selection is not shown in Fig. 2A.
Instead, two patterns generate two offspring without selection.

Fig. 2 Principles of genetic algorithms (GAs). (A) Pictorial representation of an iteration step in a GA. Members of a parent population are evaluated for their
fitness, e.g. how well a cell on a member matches the shape of a target cell (cell shapes on the pattern are indicated by a red outline). According to their fitness
they are selected for recombination in a crossover process. This generates a new generation which is subjected to mutation resulting in the offspring
generation. The offspring become the new parents and the iteration starts again. (B) Representation of a [crossbow] pattern by arcs. The [crossbow] is made
from two arcs, each arc is encoded in a gene by six numbers: the position (x,y), length L, width d, radius R and orientation a. Straight arcs have an infinite radius.
(C) Representation of a [crossbow] pattern by Fourier descriptors. The order Nmax of the Fourier expansion is indicated below the shapes.
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The crossover of the genomes in the recombination step generates
new pattern shapes which have attributes of both parents. In the
last step mutation randomly changes the properties of some genes
and one arrives at the final offspring generation. The offspring
become the new parent and the iteration starts again. The
algorithm is explained in detail in the ESI,† Section A.

The crossover and mutation operations are the main search
operators of the algorithm which explore the fitness landscape
while the fitness based parent selection ensures that good
changes persist. The mutation step is important to maintain
diversity in the population. We employ another mechanism
called elitism to ensure that good individuals survive and their
genome is not changed by mutation or recombination. During
each iteration step 10% of the best individuals are carried over
to the next generation without any changes to their genome
replacing 10% of the worst individuals.

For a GA the pattern shapes need to be encoded in a
genome. Many experiments have been performed with patterns
made from arc like building blocks. The [crossbow] shown in
Fig. 2B is made from two arcs, one curved part at the top and a
straight at the bottom. Both arcs can be described by their
position (x,y), length L, width d, radius R and orientation a as
shown in Fig. 2B. Straight arcs have an radius of infinity. Thus,
six numbers are sufficient to represent one arc. GA often use
a binary representation for a genome. With each number
represent by 16 bits the crossbow is described by a binary
genome of 192 genes. In contrast, representing the pattern on a
lattice similar to an image would result in a much larger
genome (e.g. a 50 � 50 lattice representation amounts to a
genome with 2500 binary genes).

GA are not limited to binary genomes and we take the six
numbers describing one arc as a gene. As crossover operation
we let parents exchange arcs and a mutation varies one of the
six numbers describing an arc. A detailed description of the
pattern representation as a genome, crossover and mutation
operations can be found in the ESI,† Sections B and C.

An alternative approach to describe two-dimensional shapes
is by Fourier descriptors (FD). They are a standard tool in image
processing50 and are often used to describe cell shapes
obtained by optical microscopy.51,52 For Cartesian FD a shape
is represented in the complex plane by

zðsÞ ¼
XNmax

n¼�Nmax

zn exp 2pinsð Þ: (1)

Here, the closed curve z(s) with parameter s A [0,1] is an
expansion of the actual shape in a Fourier series truncated at
Nmax. The complex valued coefficients zn = xn + iyn hold the
information about the shape. To describe a pattern one can
take the coefficients zn as genome. Each gene consists then of
two real valued numbers representing the real and imaginary
part of a coefficient. Crossover operations of the GA can exchange
coefficient of two parents to form an offspring and mutation
operations change the value of a coefficient.

As shown in Fig. 2C complex shapes can be represented by
a small number of coefficients. FD superimpose ellipses to

generate shapes and are therefore not suited to represent sharp
kinks. However, this limitation is not relevant to describe MP
or cells.

The initial population of a GA consists of individuals with
random genomes. Examples are shown in Fig. S2A for an arc
representation and in Fig. S2B for FD in the ESI.† With FD it is
possible to enforce the symmetry of the patterns as described in
the ESI.† Patterns with a reflection symmetry are shown in
Fig. S2C and patterns with a three-fold rotational symmetry in
Fig. S2D (ESI†).

2.2 Cellular Potts model for cell dynamics

The central part of a GA is the fitness functions which evaluates
individual patterns and selects them for reproduction. The
choice of the fitness function depends on the optimization
target, e.g. the optimal pattern for a predefined cell shape or
optimal pattern to bias cell migration. Thus, to calculate the
fitness function a versatile model is needed that predicts dynamic
cell behavior on MP correctly. We choose a two-dimensional
cellular Potts model (CPM) to describe cells because of its ability
to describe single and multicellular systems dynamically and
because of its computational simplicity. The central part of a
CPM model is an energy functional that we choose to be42

H ¼ sAþ lsl þ
X
arci

k

2L0;i
Li � L0;i

� �2� E0

Aref þ Aad
Aad: (2)

The first term is the contractile energy originating from the myosin
activity in the actin cortex. A denotes the cell area projected onto
the substrate. The surface tension s controls the strength of the
myosin contraction. The second term is a line energy. It acts in the
contour of the cell where the plasma membrane folds back on
itself. It scales with the contour length l of the cell and its strength
is controlled by the simple line tension ls. The third term accounts
for the reinforced contour observed at edges of cells extending
above non-adhesive regions on concave MP.9 Each edge has a
length Li and rest length L0,i. The strength of the elastic contribu-
tions of these edge bundles is controlled by the elastic rigidity k.
The last term drives spreading of a cell on MP. It decreases the
energy when the adhesive area Aad is increased. The ratio
W = E0/Aref sets the strength of the decrease and is equal to
the adhesive area energy density. The constant Aref is set
through the typical cell size A0. The gain from adhesive energy
saturates with increasing adhesive area Aad. This mirrors the
finite number of adhesion receptors available to the cell. We
propagate the cell shape by minimizing the energy functional
eqn (2) with Metropolis dynamics. This model accurately predicts
cell spreading dynamics, shape and traction forces on MP for
standard cell types.42

In order to address also cell migration, cell division and
cell–cell adhesion, the CPM for spreading of adherent cells has
to be extended by a set of additional rules.43 Cell migration is
introduced through an effective migration machinery acting
inside the cell. It decreases the surface tension at the cell front
describing actin polymerization and increase it at the back. The
movement direction is set through a velocity-alignment model.
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Cells divide with a size dependent rate which decreases for denser
tissue accounting for contact inhibition of proliferation.53 Cell–cell
interaction at adherence junction is described by a reduction of
energy when new contacts between cells are formed. Likewise,
the breakage of adherence junction requires energy. With these
extensions, division and migration of single and multiple cells can
be described in good quantitative agreement with experiments for
standard cell types.43 The parameters used in this work are for
MCF10A cells as identified previously.43

3 Results
3.1 Optimizing single cell shape

As a first and simple illustrative example we use GAs to find the
optimal pattern for a given cell shape. In Fig. 3A the averaged
cell shape of a cell on a [crossbow] is shown which we use as
target shape. Patterns are generated with the GA and the shape
of a cell on a pattern is predicted by the CPM and compared to
the target shape. The agreement with the target shape sets the
fitness of a given pattern. Hence, a fitness function describing
the agreement between the target shape and a simulated shape
is needed. To measure the difference between shapes we use FD

D2 ¼
XNmax

n¼�Nmax
na0

znj j � zðtargetÞn

�� ��� �2
: (3)

The zn and z(target)
n are the coefficients of the FD describing the

simulated and target cell shape, respectively. The calculation
of these coefficients from a given shape is defined in eqn (S8)
in the ESI.† The zeroth order term is excluded to make the
measure translation-invariant. Taking the absolute value of the
coefficients renders the measure rotation-invariant since all
orientation information is contained in the phase of the
coefficients.54 The series extends until Nmax = 10. Suppressing
higher order coefficients neglects finer structures of the shapes
such as fluctuations of the contour. For the fitness we choose
F = exp(�D). A typical fitness trajectory is shown in Fig. 3B. After
30 generations the fitness becomes stationary. Throughout the
whole population the fitness of the individuals is quite diverse.
This diversity is ensured by a adaptive mutation strength
defined in eqn (S14) in the ESI.† If the diversity of a population
measured by the variance of the fitness decreases, the mutation
rate is increased.

Fig. 3C shows optimal patterns encoded by arcs predicted
by the GA. The GA optimization is performed three times with
different initial conditions resulting in the three different
shapes. All predicted patterns are very similar to the original
one shown in Fig. 1B used to generate the target shape.
However, since we use a contour model the pattern geometry
inside of the cell has little influence on the shape of the cell.
Therefore, the central bar is not always vertical or extended to
the top. Pattern encoded by FD work equally well as shown in
Fig. 3D. Again, only the contour of the patterns matches the
pattern defining the cell shape and patterns can be asymmetric.

Our approach allows us to find the optimal pattern to a
given cell shape in a way that is computationally very efficient.

This in turn allows us to easily assess the importance of different
possible recombination and mutation operations. We found
that one point crossover is the best recombination method. For
mutation we found that adding random variables drawn from a
Gaussian distribution is beneficial over complete randomization
of a gene value. Adapting the width of the Gaussian distribution
to the diversity in the population also yields better results.
Crossover and mutation are described in detail in the ESI† by
eqn (S12) and (S14).

3.2 Optimizing single cell migration

As a more demanding application of our approach, we now turn
to optimal patterns for single cell migration and ask which
ratchet patterns can bias migration into one desired direction.
Ratchet-shaped structures as shown in Fig. 4A have been
demonstrated experimentally to bias cell migration into one
direction on triangular ratchets32,33 and teardrop shapes.28–31

However, it is not known if those shapes actually yield the
optimal directional bias. We use the GA-approach to predict the
optimal shape to bias cell migration towards one direction. To
generate ratchet geometries, we arrange patterns into a square
lattice as shown in Fig. S2E in the ESI† for patterns represented

Fig. 3 Shape predictions. (A) Target shape of a cell on a [crossbow]
pattern. (B) Fitness trajectory of the genetic algorithm. Red dots indicate
the fitness of individual members (128 in total), the green line the mean
fitness, the blue line the variance of the population and the magenta line the
mean fitness of the fittest 10%. (C) Patterns encoded by two arcs predicted
by three separate runs of the genetic algorithm. The cells on these patterns
match the target shape of a cell on a [crossbow] pattern. (D) Same as
previous but with cells encoded by FD with Nmax = 5 (compare eqn (1)).
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by arcs and in Fig. S2F for pattern represented by FD. The first
setup we investigate are ratchets connected to a reservoir on
both sides with periodic boundaries. Cells are only seeded on
the reservoir. As a second system we use no reservoirs and seed
cells at random positions. As fitness measure we take

F ¼ dr

d0
; (4)

where dr is the distance migrated by a cell to the right during
a fixed time (sufficient to cross the ratchet two times). It is
normalized by the distance d0 migrated on a homogeneously
adhesive substrate when the migration direction is kept fixed.
At any time there is only one cell on the ratchet but the seeding
and migration measurement is repeated 32 times with random
starting positions for each pattern and the results for dr are
averaged. If cells migrate to the left and the averaged fitness of
a pattern becomes negative, we set it to zero.

Fig. 4 shows optimized geometries for patterns represented
by arcs (Fig. 4B) and FD (Fig. 4C). The patterns are connected to

reservoirs at the sides and cells are initially seeded only on the
reservoirs. In Fig. 5A and B shows the same for patterns without
reservoirs and cells seeded at random initial positions. In both
cases, we mark one elementary unit in color; for the arc-case, in
addition the arc-backbones are shown in grey. The green and
blue colors differ between parts of the patterns which are
essential for the observed cell dynamics (green) and which
are not (blue). The identification of the non-essential (blue)
parts results from a more detailed analysis (compare below the
discussion of Fig. 6). These feature can in principle be removed
in an experimental realization, but they are not suppressed by
the GA. For both Fig. 4 and 5, one clearly sees how the whole
structure is generated by placing the elementary units next to
each other on a cubic lattice.

Typical fitness values (eqn (4)) for patterns connected to
reservoirs are around 0.45. Cells spend time migrating vertically
on the reservoirs which reduces the fitness. Without reservoirs
and cells seeded at random positions the fitness is close or
above one. A value above one means that cells migrate faster on
the patterns than on a continuously adhesive substrate. This is
an effect of the almost stripe like geometry of some patterns.
An increased persistence for cells on stripes has been observed
before31 and was investigated with a velocity alignment model.55

Almost all geometries predicted by us have a triangular
shape with the tip directed to the right. Such shapes have been
experimentally demonstrated to bias cell migration in the
direction of the tip, compare Fig. 4A.32,33 However, in contrast
to these earlier approaches, the triangles predicted here and
shown in Fig. 4B and C are not arranged in a symmetric
fashion. They are rotated and two corners lie on a horizontal

Fig. 4 Optimizing single cell migration on ratchet patterns with reservoirs.
(A) Experimental observation of cell migration on a symmetric ratchet pattern
with triangular shapes and cell reservoirs on both sides. Cells are stained
for actin (green) and the nucleus (blue) and migrate preferentially to the right.
Reprinted by permission from Macmillan Publishers Ltd: Nat. Phys.,32

copyright (2009). (B) Patterns optimized by the GA to bias cell migration to
the right. The four patterns originate from four independent runs of the GA.
The patterns are generated from four arcs per elementary unit. The elemen-
tary unit is shown in color, has a width of 50 and is arranged into a cubic 4� 2
lattice with periodic boundaries. Green and blue mark essential and non-
essential parts for the observed cell behaviour, respectively. The patterns are
connected to reservoirs and cells are only seeded in one of the reservoirs.
(C) Same as previous but with patterns generated from FD.

Fig. 5 Optimizing cell migration on ratchet patterns with random seeding.
(A) Patterns optimized by the GA to bias cell migration to the right. The cells
are seeded at random positions. The first two patterns show possible cell
paths. (B) Same as previous but with patterns generated from FD.

Paper Integrative Biology

Pu
bl

is
he

d 
on

 1
5 

Ju
ne

 2
01

6.
 D

ow
nl

oa
de

d 
by

 R
up

re
ch

t-
K

ar
ls

 U
ni

ve
rs

ita
t H

ei
de

lb
er

g 
on

 2
9/

08
/2

01
6 

08
:4

4:
04

. 
View Article Online

http://dx.doi.org/10.1039/c6ib00061d


This journal is©The Royal Society of Chemistry 2016 Integr. Biol., 2016, 8, 741--750 | 747

line forming an almost straight horizontal edge. In general,
patterns generated by FD perform better to bias cell migration,
most likely because they are better suited to generate triangular
shapes than arc patterns.

When cells are seeded at random positions, asymmetric
triangles are still the most prominent shape predicted. However,
there are also triangles facing the other way, e.g. the first two
patterns of Fig. 5A (when the appendices sticking out of the
continuous horizontal track are ignored). Their angle is very
acute which has been reported to bias cell migration away from
the acute end.29,56 When seeded randomly, cells move into the
direction of more available adhesive area, which is for most
random initial positions away from the acute tip. In addition,
the narrow track prevents vertical migration. The appendices
sticking out of the pattern catch randomly seeded cells and
since they are dead ends, cells are biased to migrate to the right
as indicated by the red arrows in Fig. 5A. For patterns with cells
seeded in reservoirs no appendices are predicted.

The most significant difference of the patterns predicted here
to previously used patterns in experiments is the asymmetric
shape. The mechanism how asymmetric triangles bias migration
is explained in Fig. 6, which shows snapshots of a cell migrating
on an asymmetric triangular MP. The cell initially migrates to the

left against the bias direction. When it deviates from the hori-
zontal path it either encounters a vertical barrier or it moves into
a dead end depending on the exact shape of the MP. In both
cases the migration direction is usually reversed and the cell
moves either along the long edge of the triangle or downwards
along the vertical barrier. In both cases the downward movement
is stopped at the horizontal continuous track. If the cell is not
already biased to the right, e.g. when it moves vertically
downwards, moving to the right provides more adhesive area
and it is biased towards right. The cell migrating in Fig. 6 is also
shown in Movie S1 in the ESI.†

Equilateral triangles are not predicted by the GA, most likely
because they offer less of a dead end structure to turn cells. In
addition, symmetric triangles have a continuous track in the
center. When cells migrate in vertical direction they move past
the continuous horizontal track. In fact the benefit of asym-
metric triangles can also be quantified with the CPM. Arranging
the triangles of Fig. 6 in a symmetric way reduces the fitness
from 0.45 to 0.2, indicating that the asymmetry is indeed
beneficial to bias cell migration (for a movie comparing the
two types of triangles see Movies S1 and S2, ESI†).

There exists another mechanism to bias cell migration into
one direction which uses the patterns shown in the top panel of
Fig. 4C. Here, triangles are arranged in a way that cells have to
migrate sidewards when moving to the next triangle. When
cells encounter a pointed end of a triangle, in our CPM it is
more likely that they form a sideway oriented protrusions
(assuming that the leading edge points into the same direction
as the triangle). Within our model forces generated by the
migratory machinery decay towards the sides of the leading
edge. The angle between center of mass of a cell and point on
the membrane determines the strength of protrusions.43 If the
leading edge is forced to be narrow by the pattern the forces at
the side are still large and the cell can easily form a protrusion
sideways towards the next pattern. If the cell encounters the
blunt end of a triangle, its leading front is already extended and
protruding forces towards the side are low, making a transition
less likely. This mechanism is also visualized in Movie S3 (ESI†)
which shows a cell that initially migrates to the left and gets
turned by the pattern. This mechanism of generating sideway
protrusions at pointed ends of patterns has been observed
experimentally for epithelial cells.30

3.3 Reversal of migration direction at high cell densities

We next ask if the GA can predict a geometry that biases
migration of single cells in one direction but reverses this
direction when the cell density is increased. To avoid correlations
between cells generated by the periodic boundary conditions, we
arrange the patterns on a circle. The fitness is constructed with
the angular velocities by

F ¼ � olow

o0;low

ohigh

o0;high
: (5)

olow and ohigh denote the angular velocities for a low density
of cells (up to four cells) and a high density (when the cell
area is below 0.6A0 of the typical cell size A0 of single cells).

Fig. 6 Example of a cell migrating on ratchet MP predicted with a CPM.
Initially the cell moves to the left. When it deviates from the horizontal
track, it turns at one of the corners of a triangle, which thus acts like a dead
end. Compare Movie S1 in the ESI.†
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Both velocities are normalized by the values of the angular
velocities (o0,low and o0,high) of cells migrating on a ring pattern
with the cell migration direction prescribed externally. The
minus ensures a positive fitness when the angular velocities
have opposite signs. If the fitness is negative it is set to zero.
Cells divide with a size dependent rate as described previously.43

The measurement of the angular velocities is repeated 32 times
with random initial positions for each pattern and the results are
averaged to obtain the final fitness of a pattern.

Fig. 7 shows the results of the optimization. For low densities
cells move clockwise and switch to a counterclockwise motion for
high densities. The key element for the direction reversal are the
appendices sticking out of the patterns. For low densities they are
not occupied. The cells move in-line with one cell after the other
occupying the bulk adhesive areas of the patterns. With increasing
cell density cells sit next to each other. They occupy the appendices
and form bridges above the nonadhesive areas. At that point the
movement direction reverses (compare Movies S4 and S5, ESI†).
The typical fitness of the pattern is between 0.5 and 0.7 indicating a
very efficient bias mechanism. The interaction between cells is
important for the reversal. Without any cell–cell adhesion the
optimal fitness obtained by the GA drops below 0.3. Cells cannot
bridge nonadhesive areas without cell–cell contacts which seems to

be essential for reversed migration. Without contacts, cell migra-
tion stops for higher densities (compare Movie S6 in the ESI†).

4 Conclusions

We have used GA to rationally design adhesive MP for specific
tasks. This can be considered to be an inverse problem for
which one first has to solve the forward direction, that is one
has to predict the behavior of cells on MP. Here we use a CPM
which has been demonstrated before to predict cellular
behavior on MP in good agreement with experiments.42,43 To
illustrate the algorithm we first used it to predict the optimal
pattern for a given cell shape. For this task the solution is
known and our predictions are very similar to the initial pattern
used to generate the target shape (compare Fig. 3). Since we use
a CPM which is a contour model, only the contour of the
patterns is predicted correctly. Nevertheless, this task provides
an effective benchmark for the GA.

As a second system we investigated the bias of single cell
migration on ratchet MP in a linear arrangement. Earlier
experiments focused on symmetric triangular32,33 and teardrop
patterns.28–31 In contrast to these symmetric shapes our algo-
rithm predicts asymmetric triangles as optimal shape to bias

Fig. 7 Optimal patterns predicted by the GA biasing cell migration into a clockwise motion for low cell densities and into an counterclockwise for high
densities. (A) Pattern generated by a combination of two shapes both parametrized by FD. (B) Pattern generated from a single FD. The cell movement
direction is indicated by arrows. The arrows are color-coded by the direction. The circular patterns are made from 16 unit cells, each unit cell has a
dimension of 50. The outer diameter of the circle is 330. Both patterns are generated with FD with Nmax = 5. For a visualization of the complete
movement see Movies S4 and S5 in the ESI.†
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single cell migration. A direct comparison of the symmetric and
asymmetric patterns confirmed that the asymmetric ones perform
better. Here, the full potential of our approach is revealed since it is
not obvious that asymmetric shapes perform better. We use two
different methods (arc and FD representation) to encode the
pattern geometries into a genome. Both yield similar triangular
shapes, confirming that the GA approach gives results independent
of the details of the parametrization.

In the future, these predictions should be tested in experiments.
When presenting our results, we chose not to remove small features
of the obtained patterns that do not influence the cell behavior
(marked in blue in Fig. 4 and 5). It is a general property of GA that
features that do not interfere with the task at hand are not removed
by the mutation and selection procedure. If these features are
considered to be a nuisance for the experimental implementation,
for example because feature size is too small for micropatterning,
they could be removed. In general, their identification requires an
analysis of cell behaviour with the direct model, as shown in 6.
In the FD-method, they tend to be suppressed by using high order
FD coefficients. Nevertheless here we also presented our results
with the arc method, because this is the traditional approach in
designing MP for cell adhesion.

We also note that one has to expect different experimental
outcomes for different cell types. Here we have used a para-
metrization that has worked well before for the human mammary
epithelial cell line MCF10A cells42,43 and indeed we obtain results
similar to the ones reported before for this cell line.30,31 However,
experimental results might be different for mesenchymal cell types
such as 3T3-fibroblasts, for which our CPM might has to be
adapted. Here we have focused on general aspects of linear
ratchet patterns in order to demonstrate the potential of our
method. Future applications, for example for single cell migration
on square ratchets, for which the details of ligand accessibility
become more important, might require more detailed models for
the direct problem, for example regarding the growth and regulation
of sites of adhesion.57

We note that our work does not only predict specific
patterns to be tested in experiments, it also provides deeper
insight into cell dynamics. In particular, our identification of
non-symmetrical ratchet patterns as optimal solution for uni-
directional cell migration demonstrates the importance of
continuous tracks and the dead end structures leading to cell
turning. In general, our analysis of cell dynamics on MP shows
that the spatial combination of convex and concave regions is
the most important element to determine the outcome, rather
than small features that cell tends to move over. However, this
conclusion might depend on our implementation of the CPM,
which models high persistency of cell migration.

As a third task we let the algorithm design patterns that bias
cell migration in one direction for low cell densities, but reverse
this direction for high densities which has not been addressed
experimentally before. The results are patterns which are only
partly occupied by single cells. When the cell density increases,
cells sit next to each other on the narrow tracks and completely
occupy the patterns with bridges between nonadhesive regions
(compare Fig. 7). The bridge formation seems to be very important

for these patterns to work. Removing the adhesion between cells
does not result in bridge formation and efficient reversal of the
transport for high cell densities. The exact mechanism of direction
reversal is not clear, but could be investigated in detail in experi-
ments with the patterns suggested here.

For the future MP for virtually any task can be designed with
our approach in a computationally efficient manner. Possible
targets are mainly limited by the level of detail of the forward
description. Here, the CPM proves to be very versatile, although
other computational approaches like phase field models could
also be employed in an optimization scheme for cell dynamics
on MP.6 The CPM has been employed ranging from the single
cell scale with very detailed description of the migration
machinery40 to large multicellular systems. Further extension
could include the formation of filopodia, which seem to be
important in bridging the gaps between MP.33 Cell division43

and traction forces42 are also accurately described by a CPM.
The interplay between them has been investigated on continuously
adhesive substrates experimentally.58 It is well known that division
axis, cell shape, stress and strain in a tissue are related.59 MP could
be designed to change these relationships. For example, it would
be interesting to design MP geometries with GA which have the
most probable division axis and prominent stress direction rotated
by 901 to investigate their interaction further. Another very inter-
esting extension for future work would be three-dimensional
models, for example to investigate the role of the nucleus for cell
migration on topographically structured ratchet patterns.27
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