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Stability of bicontinuous cubic phases in ternary amphiphilic systems
with spontaneous curvature
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We study the phase behavior of ternary amphiphilic systems in the framework of a curvature model
with nonvanishing spontaneous curvature. The amphiphilic monolayers can arrange in different
ways to form micellar, hexagonal, lamellar, and various bicontinuous cubic phases. For the latter
case we consider both single structures~one monolayer! and double structures~two monolayers!.
Their interfaces are modeled by the triply periodic surfaces of constant mean curvature of the
families G, D, P, C~P!, I-WP, and F-RD. The stability of the different bicontinuous cubic phases can
be explained by the way in which their universal geometrical properties conspire with the
concentration constraints. For vanishing saddle-splay modulusk̄, almost every phase considered has
some region of stability in the Gibbs triangle. Although bicontinuous cubic phases are suppressed
by sufficiently negative values of the saddle-splay modulusk̄, we find that they can exist for
considerably lower values than obtained previously. The most stable bicontinuous cubic phases with
decreasingk̄,0 are the single and double gyroid structures since they combine favorable
topological properties with extreme volume fractions. ©2000 American Institute of Physics.
@S0021-9606~00!70306-0#
m
es
g

ex
il

s
w
s
ll
u
rm
th
u
o

a
th

ic
de
th
b

io

lin
in

e are
me
end-
as-
ilic

va-
n-

-
ari-

y
-

n,
e

res

rom

n-
ical
the
d

I. INTRODUCTION

As a function of concentrations and temperature, a
phiphilic systems generically form many different phas
each of which corresponds to a specific geometrical arran
ment of the amphiphilic interfaces.1,2 Most ternary am-
phiphilic systems feature the disordered micellar, the h
agonal and the lamellar phase. Here the amphiph
monolayers, which separate regions of water from region
oil, form spheres, cylinders and lamellae, respectively. Ho
ever, many of these systems also have stable cubic phase3–5

Near the disordered micellar phase one often finds a mice
cubic phase and near the lamellar phase a bicontinuous c
phase. In the micellar cubic phase, the interfaces fo
spheres as they do in the disordered micellar phase, only
now they are packed in an orderly fashion. In the bicontin
ous cubic phase, they form sheets which span the wh
sample in all directions of space.6,7 Each of these triply pe-
riodic surfaces has a cubic Bravais lattice and divides sp
into two unconnected but intertwined labyrinths filled wi
water and oil, respectively.

In this work, the polymorphism of ternary amphiphil
systems is studied in the framework of a curvature mo
with nonvanishing spontaneous curvature. We assume
the shape of the amphiphilic monolayers is determined
their bending rigidity even in the presence of concentrat
constraints. Therefore we model them bysurfaces of con-
stant mean curvature. This encompasses the spheres, cy
ders, and lamellae of the noncubic phases; for the bicont
3790021-9606/2000/112(8)/3792/11/$17.00
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ous cubic phases, the surfaces of constant mean curvatur
triply periodic. Safran and co-workers considered the sa
geometries and showed that the interplay between the b
ing energy and the volume constraints can explain some
pects of the generic phase behavior of ternary amphiph
systems.8–10 In particular, Wang and Safran10 considered the
single structure~one monolayer! and the double structure
~two monolayers! from theD-family. Their calculation relied
on data for triply periodic surfaces of constant mean cur
ture, which were found numerically by Anderson, who i
vestigated the geometrical properties of the D, P, C~P!,
I-WP, and F-RD families.11,12However, the bicontinuous cu
bic phases most often identified experimentally are the v
ous gyroid structures which correspond to theG-family. Data
for the G-family were calculated only recently b
Große-Brauckmann.13,14 In this work, we consider as bicon
tinuous cubic phases single and double structures forall
families for which the required geometrical data are know
including the G-family. Indeed, we find that for negativ

values of the saddle-splay modulusk̄, of all bicontinuous
cubic phases considered it is mainly the gyroid structu

which are stable. They can exist for values ofk̄ which are
twice as negative as the values for which the structures f
the D-family have been found to be stable previously.10 We
will show that this finding can be explained nicely by co
sidering the interplay between certain universal geometr
properties of the various bicontinuous cubic phases and
volume constraints within the Gibbs triangle. In fact we fin
2 © 2000 American Institute of Physics
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that the gyroid structures are so favorable because they
exceptional topological properties and at the same time
accommodate extreme volume fractions of oil and water

II. CURVATURE MODEL AND NONCUBIC PHASES

The elastic properties of amphiphilic interfaces are
scribed by the Canham–Helfrich expression for the ela
energy per unit area,15,16

f elastic52k~H2c0!21k̄K, ~1!

whereH5(c11c2)/2 andK5c1c2 are mean and Gaussia
curvatures, respectively, andc1 andc2 the two principal cur-
vatures of the surface. The two elastic moduli are the be
ing rigidity k and the saddle-splay modulusk̄. The main
temperature dependence is carried by the spontaneous c
turec0. For systems with water, oil and nonionic surfacta
CiEj , it is found experimentally thatc0}(Tb2T), whereTb

is the balanced temperature.17 Here positive curvature is de
fined to be curvature towards the oil regions, thus oil is
interior phase below the balanced temperature and w
above. For example,c0'1/(6l ) and c0'1/(12l ) for
H2O/C14/C12E5 at T520 °C and T534 °C, respectively,
where l'1.5 nm is the amphiphile length in the monolay
and Tb548 °C.17 In this work, we assume a positive valu
for the spontaneous curvature, as it is typical for surfact
systems below the balanced temperature, so that oil is
interior phase. The tendency to bend towards the oil regi
decreases with temperature since the headgroups’ hydr
decreases. For the case of a negative spontaneous curv
water and oil have to be interchanged in the various str
tures as well as in the phase diagrams presented below.
is usually the case not only for surfactants above the
anced temperature, but also for lipid systems where
monolayers tend to bend towards the water regions du
their bulky tail regions.

We consider the dimensionless free energy per unit v
ume,

f 5
1

2kc0
3V
E dA felastic5

A

c0V S H

c0
21D 2

2
2pxr

c0
3V

, ~2!

where the integration extends over the neutral surfaceA of
the amphiphilic monolayers,V is the overall volume, andr
52k̄/2k. For the first~bending! term in Eq.~1!, the area
integration can be carried out since we only consider s
faces of constant mean curvature. For the second~topologi-
cal! term, we employ the Gauss–Bonnet theorem,*dAK
52px, wherex is the Euler characteristic of the surfac
The curvature model is only stable for22k<k̄<0 or 0
<r<1.18 Experimentally there is no straightforward way
measurek̄, but usually a small negative value is assumed

The phase diagram at constant temperature is a func
of the volume fractionsrW , rO and rA of water, oil, and
amphiphile, respectively, which are restricted to the Gib
triangle by rW1rO1rA51. We consider amphiphiles o
length l, which have a tail lengtha l and a head size (1
2a) l , with 0,a,1. Throughout this paper we will usea
51/2, i.e., we will consider amphiphiles which have he
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and tail regions of similar size, as they are for C12E5. The
hydrocarbon volume fraction is given byv5rO1arA .9 In
order to parametrize concentration space, it is convenien
usev and the ratiow5rA /@(rO1arA)c0l #. The amphiphile
volume fractionrA is taken to beAl/V. If the amphiphile is
assumed to occupy the space between the two parallel
faces at distancesa l and (12a) l from the neutral surface
this is a very accurate approximation when the amphiph
length l is small compared to the extension of the a
phiphilic aggregates, and gives reasonable results even
the extreme case of oil-free spherical micelles fora.1/2.

In the following all lengths are measured in units ofl.
The free-energy densities of the noncubic phases follow fr
Eq. ~2! as

f L~w,v !5wv, ~3!

f C~w,v !5wvS w

4
21D 2

, ~4!

f S~w,v,r !5wvF S w

3
21D 2

2
rw2

9 G . ~5!

Note that onlyf S depends onr, since the other two structure
have no Gaussian curvature. Since we only consider the f
energy contribution due to the curvature elasticity of the a
phiphilic monolayers, for the noncubic phasesf has a trivial
v-dependence. However, due to close packing, spheres
cylinders have maximal volume fractionsvmax5A2p/6
50.74 andp/2A350.91, respectively. Withw, v, andr, the
model has a three-dimensional parameter space.

It can be seen from Eq.~3! that the Maxwell construc-
tion is not possible for this model, sincef L is not concave.
Therefore we use the intersections of the free-energy de
ties of different phases as an indication for the location
phase transitions. We want to remark parenthetically t
Wang and Safran10 considered the free energy per unit ar
~rather than per unit volume!; this amounts to an overal
factor ofwv/c0 ~the dimensionless specific area! in the free-
energy density of all phases. As long as the location of
phase transitions is estimated from the intersection of
free-energy curves, the two approaches are equivalent. H
ever, for a calculation of two-phase regions, the use of
free energy per unitvolumebecomes essential—since in ge
eral coexisting phases will have different amphiphile conc
trations.

For r 50 ~vanishing saddle-splay modulus! and v
,0.74 ~no excluded volume effects!, Eqs. ~3!, ~4!, and ~5!
imply the phase sequenceL→C→S with decreasingw. f S

begins to rise again forw<3. This is identified with the
emulsification failure, the coexistence ofS and an excess oi
phase at low amphiphile concentration.10 In this paper, we
define the emulsification failure not as the minimum inf S in
regard tow, but by using a Maxwell construction in regard
w between S and an excess oil phase, i.e., by solvi
] f S /]w5 f S /w for w. With increasingr ~and v,0.74),
spheres become more favorable, while cylinders are incr
ingly suppressed and finally disappear forr .1/4. In particu-
lar, the phase boundariesS2C, S2L, C2L and the emul-
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sification failure are obtained from Eqs.~3!, ~4!, and~5! to be
w524/(7216r ), w56/(12r ), w58, andw53/(r 21), re-
spectively.

It is important to realize that not all values of (v,w) are
physically relevant. In Fig. 1 we show the mapping betwe
the (v,w)-plane and the Gibbs triangle for ternary mixture
The binary limitsO–W, W–A, andA–O of the Gibbs tri-
angle correspond torO1rW51, rW1rA51 and rA1rO

51, respectively. In the (v,w)-plane, this corresponds to th
lines w50, w51/(ac0) and w5(1/v21)/((12a)c0), re-
spectively. The linev50 is mapped onto theW-apex. Figure
1 demonstrates~for a51/2) this mapping of the (v,w)-plane
onto the Gibbs triangle forc051/6 andc051/12. As men-
tioned above, these values correspond to the sys
H2O/C14/C12E5 at T520 °C andT534 °C, respectively.17

Smaller/larger values for the spontaneous curvature~which
corresponds to higher/lower temperatures or other com
nents! increases/decreases the size of the relevant regio
Fig. 1~a! to larger/smaller values ofw. One also can see in
Fig. 1~b! that for a51/2 lines of constantv are perpendicu-
lar to theW–O side and lines of constantw are straight lines
through theW-apex.

III. BICONTINUOUS CUBIC PHASES

A. Properties of constant-mean-curvature surfaces

We model the amphiphilic monolayers in the bicontin
ous cubic phases by triply periodic surfaces of constant m

FIG. 1. Correspondence between the (v,w)-plane and the Gibbs triangle
Only a certain part of the (v,w)-plane is mapped onto the Gibbs triangl
The mapping depends on the values for the amphiphile chain lengtha and
for the spontaneous curvaturec0. Throughout this work we usea51/2
~length is measured in units of amphiphile length!. For c051/6 and c0

51/12, the darkly and lightly shaded parts are mapped onto the G
triangle, respectively. Water, amphiphile, and oil apex of the Gibbs trian
are denoted byW, A, andO, respectively.
n
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m
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in

an

curvatureH5(c11c2)/2. For the special caseH50, this
leads to triply periodic minimal surfaces withc152c2 and
K5c1c2<0. Due to the Gauss–Bonnet theorem,*dAK
52px, these surfaces have a negative Euler characteristx
per unit cell. Triply periodic minimal surfaces are common
used to model all kinds of extended sheetlike structures
condensed matter systems, in particular the midsurface
the lipid bilayers in inverse cubic phaseswhich are very
prominent in lipid–water mixtures.6,7 Before 1970 only three
cubic triply periodic minimal surfaces have been known@D,
P and C~P!#.19,20Then Schoen described five more@G, F-RD,
I-WP, O, C-TO and C~D!#.21 Today some more examples a
known,22,23 but none of them seems to be of physical r
evance. Karcher proved in 1989 not only the existence of
triply periodic minimal surfaces described by Schoen, b
also that the simpler of them can be deformed into trip
periodic surfaces of constant~nonzero! mean curvature.24 As
for any triply periodic surface, space is divided into tw
percolating labyrinths. A shift ofH to positive/negative val-
ues shrinks/expands one labyrinth, while it expands/shri
the other. Thus two branches are generated, which both
in cubic arrangements of~infinitesimally connected and pos
sibly self-intersecting! spheres. Since the Euler characteris
is a topological quantity connected to the genusg of the
surface byx52(12g), it does not change within a family
Anderson studied the cubic families D, P, C~P!, I-WP, and
F-RD and calculated for a conventional unit cell of unit la
tice constant both the volume fractionv of one labyrinth as a
function of scaled mean curvatureH* ~the volume fraction
of the other labyrinth follows as 12v) and the scaled surfac
areaA* as a function ofv.11,12 Recentlyv(H* ) andA* (v)
were calculated also for the G-family b
Große-Brauckmann.13,14

In this work we consider the families G, D, P, C~P!,
I-WP, and F-RD, for which these geometrical data are av

s
le

FIG. 2. Minimal surface members for the following families of triply per
odic surfaces of constant mean curvature:~a! D, ~b! C~P!, ~c! I-WP, and~d!
F-RD. Shown is one conventional unit cell. For single structures with v
ishing mean curvature, these surfaces represent the oil–water interfac
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able. Their minimal surface members are shown in Fig. 2
D, C~P!, I-WP, and F-RD in one conventional unit cell. Th
numerically calculated data points forv(H* ) andA* (v) per
conventional unit cell are taken from Refs. 11, 13; rearran
ment and interpolation with cubic splines provides smo
functions v(H* ), H* (v), and A* (v). The data are used
only up to the extremal values ofv, beyond which the curves
bend backwards. Beyond these points, the surfaces rese
ensembles of spheroidal regions connected by nearly u
loidal necks, which we do not consider to be of physic
relevance.25 The functionsH* (v) andA* (v) as used in this
work are plotted in Fig. 3 for the six families considered.
fact, only one of the two curves for each family carries
dependent information since the other one can be constru
by using dA* 52H* dv.12 Each family only exists over a
certain range of volume fractions; the extreme cases are
G-family with vP@0.056,0.944# and the C~P!-family with
vP@0.481,0.519#. If the minimal surface member of a famil
divides space into two congruent labyrinths, they have
same volume fractionv051/2, the two branches are sym
metric to each other and the minimal surface as well as
family itself is calledbalanced. For the structures considere
here, this is the case for G, D, P, and C~P!. For these struc-
tures, the curvesH* (v) and A* (v) are symmetrical with
respect tov51/2. For the nonbalanced families I-WP an

FIG. 3. Geometrical data for triply periodic surfaces of constant mean
vature:~a! scaled surface areaA* and ~b! scaled mean curvatureH* as a
function of volume fractionv. Each family exists only for a certain
v-interval. We only show the two branches connected by the minimal
face member; there exist other branches within the samev-intervals which
correspond to dense arrangements of nearly spherical regions connec
small necks. They are assumed to have no physical relevance. The
branches used are symmetrical for G, D, P, and C~P! since their minimal
surface members are balanced.
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F-RD, the two labyrinths are of different topology andv0

Þ1/2. In Table I, we collect data connected to the minim
surface members of each family, which we will use later
our discussion.

In the vicinity of the minimal surface, the volume frac
tion v as a function of scaled mean curvatureH* can be
approximated asv(H* )5v02cH* 1O(H* 2). With dA*
52H* dv it follows that

H* ~v !52
~v2v0!

c
1O~~v2v0!2!,

~6!

A* ~v !5A02
~v2v0!2

c
1O~~v2v0!3!

near the minimal surface. The values forA0 , v0 , c are given
in Table I. Since the surfaces of constant mean curvature
be expected to have similar geometrical properties as par
surfaces in the vicinity of a minimal surface, the magnitu
of c can be estimated as follows. Ift denotes the perpendicu
lar distance from the minimal to its parallel surface, to lowe
order int the volume fractionv and the mean curvatureH* ,
averagedover the surface in the whole unit cell, are given
v5v01A0t andH* 52pxt/A0 , respectively.26,27 ThusH*
52px(v2v0)/A0

2 andc52A0
2/2px for the parallel surface

case. The corresponding numbers are given in Table I;
cept for C~P!, the overall agreement with the numerical da
for c is remarkably good.

B. Single and double structures

The simplest case of a cubic bicontinuous phase i
ternary amphiphilic system is asingle structurewhere the
amphiphilic monolayers formone triply periodic surface.
Then one labyrinth is filled with oil and the other with wate
For balanced families, filling either of the two labyrinth
with oil gives the same single structure; for the nonbalan
families I-WP and F-RD, this yields different single stru

r-

r-

by
wo

TABLE I. Properties of the families of triply periodic surfaces of consta
mean curvature, which are related to their minimal surface members.x and
A0 are the Euler characteristic and the surface area in the conventiona
cell @the value ofA0 is known exactly in terms of elliptic functions for G, D
P, C~P!, and I-WP~Refs. 21, 48!#. G05(A0

3/2puxu)1/2 is the topology index;
the structures are ordered with respect to decreasing magnitude ofG0 . v0 is
the volume fraction of one of the two labyrinths; the volume fraction of t
other one follows as 12v0 . c5dv(H* )/dH* uH* 50 , wherev(H* ) is the
volume fraction of one of the two labyrinths for the corresponding family
surfaces of constant mean curvature. The values for D, I-WP, and P
taken from Ref. 12, the ones for G, F-RD, and C~P! are obtained from our
spline interpolation of the numerical data of Ref. 12.c852A0

2/2px is the
estimate ofc as derived in the text. Note thatcA0 gives a very similar
hierarchy asc8A05G0

2.

x A0 G0 v0 c c8 cA0

G 28 3.0914 0.7667 0.5 0.2191 0.1901 0.677
D 216 3.8378 0.7498 0.5 0.1411 0.1465 0.541
I-WP 212 3.4641 0.7425 0.536 0.1385 0.1592 0.479
P 24 2.3451 0.7163 0.5 0.2117 0.2188 0.496
F-RD 240 4.7707 0.6573 0.532 0.0665 0.0906 0.317
C~P! 216 3.5105 0.6560 0.5 0.0466 0.1226 0.163
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tures which we denote by I, WP, F, and RD, respectively25

Here the symbols I and F correspond to the curves plotted
I-WP and F-RD in Fig. 3. Since mean curvature is defined
curvature towards the oil regions, WP and RD follow by t
replacementsv→12v andH→2H from the data of I and F
plotted in Fig. 3, respectively. Thus, altogether we conside
different single structures, which exist for the volume inte
vals @0.056,0.944# for G, @0.131,0.869# for D, @0.249,0.751#
for P, @0.481,0.519# for C~P!, @0.357,0.857# for I,
@0.143,0.643# for WP, @0.439,0.625# for F, and
@0.375,0.561# for RD.

To each single structure corresponds adouble structure
where the amphiphilic monolayers formtwo triply periodic
surfaces arranged roughly parallel and on either side of
minimal surface of the corresponding single structure. B
surfaces divide space into two labyrinths which are topolo
cally equivalent to those of the initial structure. Howev
since two amphiphilic monolayers are present, now th
labyrinths are filled with the same component and separ
by a bilayer which is filled with the other component. Sing
and double structures are also known as monolayer and
layer structures.25,27 A double structure can be either of typ
I ~water-filled bilayer! or of type II ~oil-filled bilayer!.28

There will be no problem below to distinguish the symbo
for double structure of type I from the symbol I for one
the two simple structures of the I-WP family. In Table II, w
summarize the classification of bicontinuous cubic str
tures. In the following, single structures, type I double stru
tures and type II double structures are abbreviated as QI,
and QII , respectively. QII structures are also known asin-
verse bicontinuous cubic phases. In Fig. 4 we show single

TABLE II. Distribution of oil, water, and amphiphile in the different struc
tural types of bicontinuous cubic phases. Q denotes single structureI

double structures of type I~oil-in-water!, and QII double structures of type II
~water-in-oil or inverse!. Although double structures consist of two am
phiphilic monolayers, for this classification we consider each structur
consist of one triply periodic minimal surface separating two percola
labyrinths.

Structure Labyrinth 1 Surface Labyrinth 2

Q water monolayer oil
QI oil water-filled bilayer oil
QII water oil-filled bilayer water

FIG. 4. ~a! Single and~b! double structure of the G-family. The two gyroi
structures are the most stable bicontinuous cubic phases for negative s

splay modulusk̄. For the double gyroid of type I, the water forms th
sheetlike region between the two monolayers which effectively form a
layer in ~b!. For the double gyroid of type II, it fills the two channel ne
works which are separated by this bilayer.
or
s
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e
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and double gyroid structures in one conventional unit c
For many surfactant–water and lipid–water systems,II

and/or DII are well established; moreover there are reports
PII and GI structures in these binary amphiphilic systems.3–5

Q structures in binary systems have been discussed
theoretically so far.29–31 For many systems with water, oi
and surfactant, stable bicontinuous cubic phases have
reported, however often without identification of their spa
group~see, e.g., Ref. 32 for the system H2O/C10/C12E5!. The
best established identification is a number of QII structures
for the system DDAB–water–styrene.33 There are a few re-
ports on Q structures,11,34 and none on QI structures. How-
ever, several speculations on single structures can be fo
in the literature~e.g., in Refs. 27, 35!, and our recent theo
retical work on ternary systems with vanishing spontane
curvature suggests that they should have some phys
relevance.36 To our knowledge, hardly nothing is known o
bicontinuous cubic phases in ternary systems with water,
and lipid.

In order to construct a double structure from a giv
family of triply periodic surfaces of constant mean curvatu
we take two surfaces corresponding toH and 2H. Thus
there is one QI and one QII structure for each of the six
families. For QI structures, the minimal surface case cor
sponds tov51. As both surfaces accumulate mean curvat
in their respective branches, the volume fraction decrea
until the first labyrinth reaches its minimal size~which is the
minimal volume fraction of the corresponding single stru
ture!. The volume intervals covered by the QI structures turn
out to be@0.112,1.0# for GI, @0.262,1.0# for DI, @0.498,1.0#
for PI, @0.962,1.0# for C~P!I, @0.624,1.0# for I-WPI and
@0.818,1.0# for F-RDI. The QII structures follow from the
corresponding QI structures by an interchange of oil and w
ter. Thus here the minimal surface case corresponds tv
50, and the volume fractions covered are complementar
the ones given for the QI structures.

C. Curvature and topology index

For bicontinuous cubic structures, the free-energy d
sity depends on the hydrocarbon volume fractionv in a non-
trivial way, since only one or two amphiphilic aggregates a
present. The lattice constant is denoted witha. For a given
value of v, the mean curvatureH(v,a)5H* (v)/a and the
surface areaA(v,a)5A* (v)a2 within a unit cell are deter-
mined by the curves plotted in Fig. 3. The amphiphile co
centration rA5A(v,a)/a35A* (v)/a fixes a, so that a
5A* (v)/rA5A* (v)/(wvc0). Using the Gauss–Bonne
theorem for the Gaussian curvature term, we find from
~2! for the free-energy density of a bicontinuous cubic stru
ture,

f BC~w,v,r !5
A

c0V S H* ~v !

c0a
21D 2

2
2pxr

~c0a!3

5wv@L~v !wv21#21r
~wv !3

G~v !2
, ~7!
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L~v !5
H* ~v !

A* ~v !
, G~v !5S A* ~v !3

2puxu D 1/2

. ~8!

Here x denotes the Euler characteristic of the interfac
within one conventional unit cell, as given in Table I. Th
curvature indexL(v) and thetopology indexG(v) are two
universal geometrical quantities which characterize a sur
in three-dimensional space. Their significance can be un
stood rather easily from the observation that both the m
and Gaussian curvatures can be made dimensionless by
tiplying them with appropriate powers ofV/A, which is the
only relevant length scale; this impliesH(V/A)5L and
uKu(V/A)252puxuV2/A351/G2. It is not difficult to see that
both quantities are not only invariant under scale transfor
tions, but also under a change of unit cell. They also occu
integral geometry, a mathematical theory concerned with
variant geometrical measures.37 For convex bodies in three
dimensional space there exist two independent isoperim
inequalities and therefore two independent isoperimetric
tios, which usually are chosen to beL and 1/G2. The equiva-
lence between these quantities and the isoperimetric ra
holds since for surfaces of constant mean curvature, the
tegral mean curvature, which is one of the Minkowski fun
tionals of integral geometry, can be replaced byHA. The
curvature indexL describes how strongly the structures
curved and the topology indexG describes its porosity~the
larger its value, the less holes the structure has!. For minimal
surfaces,L vanishes andG remains the only relevant quan
tity. Its significance for amphiphilic systems has be
pointed out by Hyde,27 and its variation as a function o
crystallographic determinants has been studied recently
Fodgen and Hyde.38 For multicontinuous structures buil
from n sheets, the curvature index is smaller and the top
ogy index is larger by a factor ofn compared to the corre
sponding single structure. In particular, for double structu
the curvature index is half and the topology index is twice
large as for single structures. Thus, double structures are
porous than single structures since they have disconne
surfaces. We can infer from Table I that the minimal gyro
is the least porous of the single structures withG50.7667.
We want to remark parenthetically that—surprisingly
bicontinuous random surfaces have similar values ofG as
single cubic structures. For example, it can be shown exa
that the isosurfaces of Gaussian random fields with^H&50
haveG5A8/p50.9003.39,40Since this value is only slightly
larger than that of the single gyroid phase, it can be c
cluded that the random sponge phase on average fea
only few disconnected or multiple sheets. However, wh
the random sponge’s interfaces are made to acquire cu
ture, the topology index grows strongly withL since discon-
nected parts proliferate.40 The opposite is true for the fami
lies of surfaces of constant mean curvature considered h
if the mean curvature is increased from zero, the topolo
remains the same, but the area content decreases. The
the topology index decreases, since for given topology
measures the specific surface area.

In order to evaluate the free-energy density of the bic
tinuous cubic phases from Eq.~7! as a function ofw, v, and
r, curvature and topology index as defined in Eq.~8! have to
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be calculated as a function ofv. For the 8 Q structures, the
follow in a straightforward way from the data plotted in Fi
3. In order to derive them for the 6 QI structures, we first
consider the nonbalanced case, thus the two labyrinths 1
2 have different topologies~e.g., for I-WP, we have 15I and
25WP). We first constructv I(H* )5v1(H* )1v2(H* ) and
then invert it to obtainH I* (v), the mean curvature of both
surfaces as a function of the overall volume fraction~which
is distributed onto both labyrinths!. The surface area the
follows asAI* (v)5A1* (v1(H I* (v)))1A2* (v2(H I* (v))). The
Euler characteristic isx I5x11x2 ~with x15x2 given in
Table I!. With H I* (v), AI* (v), and x I calculated, we then
can evaluateL and G in Eq. ~8! for the nonbalanced QI
structures. For the nonbalanced QII structures, we have to
evaluate them usingH II* (v)52H I* (12v), AII* (v)5AI* (1
2v), and x II5x I . For the balanced families, one hasv1

5v25v/2, H I* (v)5H* (v/2), AI* (v)52A* (v/2), H II* (v)
52H* ((12v)/2) and AII* (v)52A* ((12v)/2). This
amounts to using L I(v)5L(v/2)/2, G I(v)52G(v/2),
L II(v)52L((12v)/2)/2, and G II(v)52G((12v)/2) in
Eq. ~8!. Note the minus sign for the curvature of the QII

structures since the monolayers change their orienta
compared to the QI structures. In Fig. 5 we plotL andG as
a function ofv for all single and double structures consi

FIG. 5. ~a! Curvature indexL and ~b! topology indexG as a function of
volume fractionv for all structures considered. Although the different stru
tures can be identified according to theirv-interval of existence~compare
Fig. 3!, here we intend to demonstrate only the difference between the t
structural types. For Q~solid lines!, QI ~dashed lines!, and QII structures
~dotted lines! the curvature index vanishes and the topology index attains
maximal value forv5v0 , v51, andv50, respectively. QII structures and
Q structures withv.v0 have negative curvature indices and therefore
not stable forc0.0.
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ered. Recall that the minimal surface case correspondsv
5v0 , 1 and 0 for Q, QI, and QII structures, respectively; in
these cases, the curvature index disappears and the top
index acquires its maximum value. In Table I, we give t
values of G05G(v5v0) for all families considered. This
implies the hierarchy G, D, I-WP, P, C~P!, F-RD with de-
creasingG0. From Fig. 5 we also see that the single stru
tures I and WP in fact can become better than single D
certain values ofv.

We see from Fig. 5 that single structures forv.v0 and
all QII structures have negative values for the curvature in
L. From Eq. ~7! it therefore follows that these structure
have f BC.wv5 f L , compare Eq.~3!; thus they are always
less stable than the lamellar phase. In other words, since
consider the case that the monolayers prefer to bend tow
the oil regions~positive spontaneous curvaturec0!, in the
framework of the curvature model no phase can be sta
which curves towards the water regions. One should n
however, that single structures forv.v0 or QII structures
could occur even for positivec0 if they were stabilized by
other contributions to the free energy which are neglecte
our treatment. For the case of negativec0, the situation is
reversed; now the monolayers prefer to bend towards
water regions, and from the double structures the~inverse!
QII and not the QI structures are stable. In general, for terna
systems one expects Q in the middle of the Gibbs trian
~possibly in the vicinity of a microemulsion phase for su
factant systems!, QI near the binary side amphiphile–oil an
QII near the binary side amphiphile–water. For surfact
systems, which usually havec0.0 at room temperature, th
curvature model predicts the stability of Q and QI structures;
for lipid systems, which usually havec0,0 at room tem-
perature, Q and~inverse! QII structures are predicted. Th
general prediction conforms with the predominance of
verse phases for lipid–water mixtures. Note that the sur
tant systems DDAB–water–styrene33 mentioned above is an
exception to our distinction between surfactant and lipid s
tems since the two tails result inc0,0 and therefore lead to
inverse phases like in the lipid case.

IV. PHASE BEHAVIOR

A. Phase diagrams for rÄ0

Altogether we consider 17 different phases, 3 noncu
8 single, and 6 double structures of type I. Moreover th
always exists an emulsification failure at low amphiphile-
oil ratios. We first discuss the case of vanishing saddle-sp
modulus,r 50. For the bicontinuous cubic phases we s
from Eq. ~7! that the optimal valuef 50 for the free-energy
density is achieved forw(v)51/@vL(v)#. For the spherical
and cylindrical phases we findw(v)53 andw(v)54 from
Eqs.~5! and~4!. For each phase the corresponding linew(v)
lies in the middle of its region of stability; these lines a
plotted in Fig. 6~a! instead of the full phase diagram forr
50. In the following we will denote them aslines of vanish-
ing frustrationsince they mark the specific parameter valu
for which a given phase can satisfy both bending and c
centration constraints simultaneously. In the (v,w)-plane,
each of the structures considered has such a line, thus ea
ogy
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them has some region of stability where its particular geo
etry serves best to accommodate the volume fractions of
different components. In fact there are even several value
(w,v) where the free-energy density of different structures
degenerate. In Fig. 6~b! we map the lines of vanishing frus
tration from Fig. 6~a! onto the Gibbs triangle forc051/6.
For these values, the Q structures run towards the W-A s
and the QI structures towards theA–O side. Although the
lines of vanishing frustration for C~P!, C~P!I, and F-RDI are
not mapped onto the Gibbs triangle, the phase behavior
remains highly degenerate.

Figure 6~a! demonstrates that the different structur
types considered occupy different regions of the phase
gram in a very characteristic fashion; for largew, Q, and QI

structures are stable forv&1/2 andv&1, respectively. With
decreasingw, the regions of stability curve to the left. I
order to understand the sequence of phases within the b
like region of each structural type for largew, it is useful to
expand the free-energy densities of the various bicontinu
structures about the minimal surface members by using
~6!. For the Q and QI structures, this corresponds to an e
pansion about the volume fractionsv0 and 1, respectively.
Again we only consider the lines of vanishing frustration f
which f 50 and w(v)51/@vL(v)#. The curvature index
L(v) defined in Eq.~8! can be approximated by

FIG. 6. Lines of vanishing frustration of various structures forr 50. In the
(v,w)-plane, the linesw(v) correspond to values for (w,v) where a specific
phase has vanishing free-energy density. Forw@1 the Q and QI structures
are stable forv&v0 and v&1, respectively. The lines atw53 andw54
correspond to spheres and cylinders, respectively. Forc051/6, only the part
below the dotted line is mapped onto the Gibbs triangle.
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FIG. 7. Phase diagram as a function ofw and r for ~a!
v50.1, ~b! v50.2, ~c! v50.4, and~d! v50.6. Forc0

51/6, only the region below the dashed line is mapp
onto the Gibbs triangle. The most stable phase w
respect tor is the double gyroid GI which however
cannot exist forv,0.112.
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L~v !5
2~v2v0!

cA0
1O~~v2v0!2!,

~9!

L I~v !5
~12v !

4cA0
1O~~12v !2!.

In the same order of approximation, the lines of vanish
frustration then follow asw52cA0 /v0(v2v0) and w5
24cA0 /(v21) for Q and QI structures, respectively. Thu
the minimal surface case corresponds to the stable solu
for w@1 at v5v0 andv51, respectively, where the curva
ture indexes of the corresponding structures disappear~com-
pare Fig. 5!. For the balanced single structures and
double structures the hierarchy of the different phases wi
the bandlike region occupied by a certain structural type
thus determined by the values ofcA0, which are given in
Table I for the six families considered. The only excepti
are the four nonbalanced single structures, which canno
compared in this way, since the value forv0 is different for
each of them. Using the approximationc'2A0

2/2px de-
rived above, we findcA0'G0

2, so that the sequence is a
proximately determined by the topology index of th
minimal-surface member of each family. In fact the stru
tures in Table I are ordered with decreasingG0. In particular,
for a given structural type and values of the hydrocarb
volume v outside the~rather restricted! v-intervals of exis-
tence of I-WP, F-RD, and C~P!, we expect from Eq.~9! to
find the sequenceG–D–P as afunction of eitherv or w.

B. Phase diagrams for rÌ0

When the saddle-splay modulus becomes negative
that r .0, the free-energy densities of lamellae and cylind
do not change since these structures have vanishing Gau
g

ns

e
in
is

be

-

n

so
s
ian

curvature. However, spheres have positive Gaussian cu
ture and therefore their free-energy density decreases@com-
pare Eq.~5!#. Since bicontinuous cubic phases have nega
~integral! Gaussian curvature, their free-energy density
creases@compare Eq.~7!# and they will be suppressed to
wards largew by the lamellar phase and towards smallw by
the cylindrical phase; these phases in turn will for su
ciently larger be suppressed by the spherical phase. Si
ternary amphiphilic systems presumably have negative
small values of the saddle-splay modulus, the import
questions here are up to which value ofr the bicontinuous
cubic phases remain stable, and which of the 14 differ
structures considered performs best. It follows from Eq.~7!
that the relevant quantity is the topology index: the larger
value for a certain bicontinuous cubic structure which
stable for r 50, the longer this structure stays stable w
increasingr. Figure 5 shows that for any value ofv, the
double structures have larger geometry indices than sin
structures. Within each of the two relevant structural class
it is the gyroid structure which has the largest value of
topology index~compare Table I!. We therefore conclude
that the double gyroid GI should dominate phase behavior f
r .0 for topological reasons. However, there are three
strictions to this general conclusion. First, GI can only realize
vP@0.112,1.0#. Second, before GI can dominate all other
bicontinuous cubic phases with increasingr, it might be al-
ready dominated itself by the lamellar phase L and the
lindrical phase C. And third, since the topological term
weighted by a factor (wv)3 in Eq. ~7!, the double gyroid
cannot perform so well for smallv as it can for largerv.

Our numerical results nicely corroborate this analy
and shows the exact outcome of the balance between
different principles mentioned. In Fig. 7 we show phase d
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grams as a function ofw andr for v50.1, 0.2, 0.4, and 0.6
Sincew, v, and r define the parameter space, these figu
show nearly the complete phase behavior predicted by
model. Only the subsequent mapping onto the Gibbs trian
is affected by the chosen values fora andc0 . In Fig. 7, we
draw the lines of constantw, which marks the upper edge o
the part of the (r ,w)-plane which is mapped onto the Gibb
triangle for a51/2 andc051/6. The degeneracy of the b
continuous cubic phases forr 50 discussed above disappea
quickly with increasingr. They eventually all disappear be
cause the lamellar phase L and the cylindrical phase C
come more stable. Atr 50.25, C itself is suppressed by th
spherical phase S. The double gyroid GI remains stable for
larger values ofr than all other bicontinuous cubic phases.
fact for v50.2 @Fig. 7~b!# it is stable up tor 50.2. This result
stands in marked contrast to the results of Ref. 10, wh

FIG. 8. Phase behavior in the Gibbs triangle for~a! r 50.01, c051/6, ~b!
r 51/1550.067,c051/6, and~c! r 51/15, c051/12. For larger values ofr,
the gyroid structures G and GI dominate. Lowering spontaneous curvatu
c0 corresponds to raising temperature and extends the region of stabilit
the lamellar phase L. For simplicity, in these plots we do not consider
close-packing constraint for S.
s
e

le

e-

h

predicted that the most stable phase should be DI with a
stability limit of r 50.1. For v50.1 @Fig. 7~a!# the double
gyroid cannot exist and the single gyroid G is the only sta
bicontinuous cubic phase. Forv50.6 @Fig. 7~d!# the single
structures are not stable since their curvature index is ne
tive for v.v0 @compare Fig. 6~a!#. If more than one structure
is stable within one structural class, we see the seque
G–D–P which was shown above to be determined by t
topology index as well.

In Fig. 8 we show the Gibbs triangles forr 50.01 and
c051/6, r 51/1550.07 andc051/6, as well asr 51/15 and
c051/12. In the first case of a very small value of the sadd
splay modulus, one still sees the degeneracy of the car
50. For the more negative value, only the single gyroid
and the double gyroid GI are stable. Comparing with Fig. 6
we see that the G-phase is stable near its extremal vol
fraction ofv50.056, while the GI-phase is stable for a larg
range of volume fractions, which covers the region of t
Gibbs triangle where its line of vanishing frustration is l
cated forr 50. The effect of decreasing spontaneous cur
ture fromc051/6 in Fig. 8~b! to c051/12 in Fig. 8~c! is to
extend the region of stability of the lamellar and bicontin
ous phases away from theW–A side, towards the center o
the Gibbs triangle.

V. DISCUSSION AND CONCLUSIONS

In order to calculate phase behavior of ternary a
phiphilic systems, we investigated a simple curvature mo
with nonzero spontaneous curvature. In particular, we
cused on the bicontinuous cubic phases whose interfa
were modeled by triply periodic surfaces of constant me
curvature. We showed that for this class of surfaces, the f
energy density of the bicontinuous cubic phases can be w
ten in a very general form which emphasizes the unive
geometrical character of the problem studied. It consists
two terms; the bending term depends on the curvature in
L and the topological term depends on the topology indexG.
The relative strength of the two terms is determined byr 5

2k̄/2k. The relevance of the two quantitiesL and G not
only depends onr, but also on the way by which they ar
weighted in the free-energy density by the two variablesw
andv which parametrize concentration space. Several pr
erties have to conspire for a specific phase to be stable
certain point of the phase diagram. First, its geometri
properties have to allow to accommodate the given conc
trations~this imposes some constraints on the allowed val
for the hydrocarbon volume fractionv). Second, the result
ing mean curvature must be close to the given spontane
curvature in order to keep the bending term small. Sin
there are two independent degrees of freedom in concen
tion space, one of which is sufficient to adjust the me
curvature to its optimal value, the regions of stability are
least one-dimensional in the (v,w)-plane forr 50. The exact
location of these lines of vanishing frustration is determin
by the curvature indexL(v). Phases with negative curvatur
index L are less stable than the lamellar phase. For posi
spontaneous curvature~monolayer bending towards oil re
gions!, this rules out the single structures forv.v0 and the

or
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double structures of type II. Third, forr .0 the structure has
to be favored by the topological term also. This requi
large values for the topology indexG(v) and basically favors
the double gyroid GI. Fourth, the concentrations in the r
gions of stability have to be physically relevant, i.e., th
have to correspond to those of the Gibbs triangle. The m
ping of the phase diagram as a function ofv andw onto the
Gibbs triangle depends on specific values for the amphip
chain lengtha and the spontaneous curvaturec0 and cuts off
some of the phase behavior in the (v,w)-plane.

The phase behavior forr 50 is highly degenerate. Thi
degeneracy has been discussed already in Ref. 41 for
Canham–Helfrich Hamiltonian without spontaneous cur
ture and concentration constraints. In order to resolve
question of the relative stability of the different bicontinuo
cubic phases, one has to consider further physical effects
topological contributions (r .0), van der Waals, electro
static or steric interactions, higher order curvature terms41 or
packing energies for the hydrocarbon chains.42,43 Our analy-
sis shows that although every phase considered has s
region of stability in phase space, there are certain gen
principles which allow to understand the complicated str
ture of the resulting phase diagram. The locations of
regions of stability are determined by the curvature indexL;
we have derived a simple approximation forL, which is
valid for largew and explains why Q and QI structures are
stable forv&1/2 andv&1, respectively. Moreover, it turn
out that the sequence of phases within the bandlike reg
of a certain structural type is determined by the value
cA0 , which in turn can be well approximated byG0

2. Thus
the relative location of the different phases of one type
determined by the topology index of the minimal-surfa
member of that family.

When the saddle-splay modulus becomes negative, m
and more of the cubic bicontinuous phases disappear
eventually all of them are suppressed by the noncu
phases. However, we found that the bicontinuous cu
phases remain stable for considerably higher values ofr than
found previously.10 Since the structure performs best whi
has both a high topology index and can accommodate la
ranges of hydrocarbon volume fractionv, the double gyroid
GI becomes the most stable bicontinuous cubic phase
increasingr. Note that GI is the only double structure of typ
I where the oil-filled labyrinths consist of channels, whi
are connected by junctions of threefold coordination exc
sively. Its outstanding stability with respect tor can therefore
be explained by the fact that it is the most cylinderlike of t
bicontinuous cubic phases. The same geometrical proper
fact can stabilize also the entropy-dominated microemuls
since low-coordinated vertices provide a lot of configu
tional entropy.44 Since with increasingr the double gyroid GI
is eventually suppressed by the lamellar and the cylindr
phase before it can suppress all other bicontinuous c
phases, the single gyroid G~with has the most favorable
topology index within its structural type! has a considerable
region of stability as well.

In summary, we have demonstrated that the complica
phase behavior of bicontinuous cubic phases in ternary
tems can be understood in terms of the interplay betw
s
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their universal geometrical properties and the concentra
constraints of a ternary system. The main result is that
gyroid structures are favored since they have the largest
ues for the topology indexG, that is the smallest porosity
among the bicontinuous cubic phases. It should be poin
out, however, that this work rests on the basic assump
that all structures form surfaces of constant mean curvat
Such surfaces arise as minima of*dA under a volume con-
straint, or as minima of*dA(H2c0)2 without volume con-
straint, but they arenot solutions to*dA(H2c0)2 under
volume constraint—except for the special case of vanish
frustration, where the surface withH5c0 just satisfies the
volume constraint. It is easy to understand that, in gene
surfaces of constant mean curvature do not minimize
curvature energy with volume constraint, since the ene
can be lowered by keeping the mean curvature on the lar
part of the surface very close toc0, and by concentrating
deviations fromH5c0—which are enforced by the volum
constraint—to a small part of the surface~which therefore
makes a small contribution to the curvature integral!. How-
ever, since the regions of stability of most bicontinuo
phases do not extend very far from the lines of vanish
frustration in the phase diagram, the deviations of the ex
solutions from surfaces of constant mean curvature can
expected to be small for the physically relevant regions.

In this work, we focused on the case of finite and po
tive spontaneous curvature. Its value can be controlled
amphiphilic systems by changing temperature and disapp
at the balanced temperature. Above the balanced temp
ture, the spontaneous curvature is negative and oil and w
have to be interchanged in the structures and phase diag
discussed. Then the double structures of type I are repla
by the double structures of type II~the inverse phases! and
the phase boundaries in the Gibbs triangle run predomina
towards the oil apex. For surfactant systems, the balan
temperature is usually well above room temperature.17 Al-
though the curvature model presented here predicts inv
bicontinuous phases above the balanced temperature,
are probably destroyed by thermal fluctuations in this ca
For lipid systems, the balanced temperature is usually sim
to the main transition temperature, and inverse phases
predicted even at room temperature. In accordance with
periments on both kinds of systems, the model presente
this paper predicts that the lamellar phase dominates at
balanced temperature. However, since it assumes finite s
taneous curvature and neglects thermal fluctuations, it ca
describe the bicontinuous microemulsion phase which
surfactant systems often coexists with the lamellar ph
around the balanced temperature.

We did not consider the effect of thermal fluctuations
long-ranged interactions. The special case of vanishing sp
taneous curvature has been investigated in Ref. 41. It
found that for the Canham–Helfrich model, the elastic bu
and shear moduli vanish atT50. Small higher order curva
ture terms make these moduli finite, but thermal lon
wavelength fluctuations with large amplitudes should
main. An extension of this type of analysis to systems w
spontaneous curvature has not been attempted so far. S
the spontaneous curvature introduces a new length sc
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many of the results of Ref. 41 should not apply in this ca
However, large fluctuations on long length scales can stil
expected. The contribution of the fluctuations to the fre
energy density should be of the formkBT ln(d/a)/a3, wherea
is the lattice constant, which is determined by the concen
tions, andd is a molecular length of the amphiphile.41,45,46

Therefore, the thermal contributions to the free energy
different bicontinuous cubic phases should be very simi
and the sequences of stable bicontinuous cubic phases
function of concentrations—as shown in Fig. 8 and e
plained in terms of their geometrical properties in Sec. IV
should be observed in experiments. In fact for the sys
DDAB–water–styrene a sequence of double structures
reported which seems to correspond to increasing topo
index.33 For the noncubic phases, thermal fluctuations co
spond mainly to steric interactions between fluctuat
lamellae and cylinders and translational entropy for sphe
Extending the model by these contributions would in fa
remove the nonconcavity of their free energy densities. P
vious work suggests that the main effect for surfactant s
tems would be to favor micellar phases near the wat
amphiphile side of the phase diagram and lamellar pha
near the water-apex.47 Such a modification could bring th
calculated phase diagrams of Fig. 8 in good qualitat
agreement with experimental phase diagrams measured
the whole Gibbs triangle, like the ones obtained in Ref.
for H2O/C10/C12E5. For a more detailed comparison, expe
mental structure determination for bicontinuous cubic pha
in ternary surfactant systems is needed. The same holds
for ternary lipid systems where to our knowledge hardly a
experimental data are known.

With respect to long-ranged interactions, it seems r
sonable to assume similar effects for all bicontinuous cu
phases. For attractive/repulsive forces, we therefore ex
all of them to be favored/disfavored to a similar degree.
principle such additional contributions could stabilize the
continuous cubic phases. In regard to the noncubic phas
was shown previously that van der Waals interactions sho
show a considerable effect only for large values of the be
ing rigidity, i.e., for lipids.47 Thus we predict that the geo
metrical arguments presented in this work describe the m
physics of bicontinuous cubic phases in ternary amphiph
systems with spontaneous curvature, even when more c
plicated models are considered.
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