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Motivated by cell adhesion in hydrodynamic flow, here the authors study bond formation between
a spherical Brownian particle in linear shear flow carrying receptors for ligands covering the
boundary wall. They derive the appropriate Langevin equation which includes multiplicative noise
due to position-dependent mobility functions resulting from the Stokes equation. They present a
numerical scheme which allows to simulate it with high accuracy for all model parameters,
including shear rate and three parameters describing receptor geometry �distance, size, and height of
the receptor patches�. In the case of homogeneous coating, the mean first passage time problem can
be solved exactly. In the case of position-resolved receptor-ligand binding, they identify different
scaling regimes and discuss their biological relevance. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2464080�

I. INTRODUCTION

One of the hallmarks of biological systems is their tre-
mendous specificity in binding reactions between receptors
and ligands. On the molecular level, a prominent example is
the antigen-antibody recognition, which allows our immune
system to react to pathogens in a highly specific way. Al-
though traditionally much attention has been devoted to the
biochemical aspects of receptor-ligand binding, physical
concepts are equally important in this context. In particular, a
physical transport process is required to bring receptor and
ligand to sufficient proximity for binding. A helpful concept
is the notion that transport has to lead to the formation of an
encounter complex, which then can react to form the final
receptor-ligand complex.1–4 In the language of stochastic dy-
namics, the formation of the encounter complex is a first
passage problem which can be treated with appropriate tools
from statistical physics. In many situations, the transport pro-
cess is simple diffusion. However, more complex situations
also exist, like the setup in affinity chips, where ligands are
transported by hydrodynamic flow into a reaction chamber
loaded with receptors.5

In cell adhesion, the physical transport processes re-
quired for specific bond formation tend to be even more
complex, because here receptors and ligands are attached to
surfaces and their movement is determined by the dynamics
of the objects they are attached to. One important example in
this context are white bloods cells, which circulate the body
with the blood flow and whose receptor-mediated binding to
ligand-coated walls is usually studied experimentally in flow
chambers.6–9 In order to fight pathogens in the surrounding
tissue, white blood cells have to extravasate from the blood
vessels. Initial binding is provided by transmembrane recep-
tors from the selectin family binding to carbohydrate ligands
on the vessel walls. Here, the probability to form an encoun-

ter complex is determined by the translational and rotational
movements of the cell as determined by hydrodynamic, ther-
mal, and other external forces. Similar situations also arise in
microbiology, when bacteria adhere to the intestinal wall,10

in malaria infection, when infected red blood cells adhere to
the vessel walls,11–13 in the initial stages of pregnancy, when
the developing embryo adheres to the uterus,14 and in bio-
technology, e.g., when sorting cells on microfluidic chips.15

In this paper, we address this situation theoretically by
combining methods from hydrodynamics and stochastic dy-
namics. In Fig. 1 we show the situation which is theoretically
analyzed in the following. A spherical particle with radius R
moves with hydrodynamic flow in the positive x direction at
a height z above a wall. The simplest possible flow pattern is
linear shear flow with shear rate �̇. For the usual dimensions
in flow chamber experiments with white blood cells, this is
the relevant flow profile. In the absence of external forces,
there is no reason for the particle to drift towards the wall
and the formation of an encounter complex has to rely com-

FIG. 1. Cartoon of a spherical particle with radius R moving in linear shear
flow above a wall. The height z of the sphere center above the substrate
obeys z�R. Bond formation between particle and wall is identified with
spatial proximity between the receptor patches on the particle and the ligand
patches on the wall being smaller than some prescribed encounter radius,
that is, overlap of the gray areas.
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pletely on thermal diffusion. In many situations of interest,
however, there are forces pushing the particle towards the
wall, e.g., gravitational or electric forces. In physiological
blood flow, cell density is high and the driving force for
encounter is provided mainly by hydrodynamic or contact
interactions with other cells. For the sake of computational
simplicity and for conceptual clarity, here we consider the
simplest case of a force driving the particle onto the wall,
namely, a constant gravitational force directed in negative z
direction. Therefore, we introduce a mass density difference
�� between the particle and the surrounding fluid. Again this
is the relevant situation in flow chamber experiments, which
are usually done with a diluted solution of cells, thus ruling
out a dominant role for cell-cell interactions. Receptors are
modeled as patches on the particle surface, while ligands are
modeled as patches on the boundary wall. The formation of
an encounter complex is then identified with the first ap-
proach of any pair of receptor and ligand patches which is
smaller than a prescribed capture radius r0. The underlying
stochastic process is rather complex due to position-
dependent mobilities resulting from the hydrodynamic equa-
tions.

In order to solve the corresponding mean first passage
time problem, here we use computer simulations of the ap-
propriate Langevin equation. A short report of some of our
results has been given before.16 We start in Sec. II by intro-
ducing the relevant concepts from hydrodynamics at small
Reynolds numbers, in particular, the friction and mobility
matrices resulting from the Stokes equation for a rigid par-
ticle in linear shear flow above a wall. In Sec. III we combine
these results with concepts from stochastic dynamics in order
to arrive at a Langevin equation describing particle motion
subject to hydrodynamic, gravitational, and thermal forces.
Due to the position-dependent mobility functions, we deal
with multiplicative noise, that is, special care is needed to
derive and interpret the noise terms. In Sec. IV our numerical
scheme is applied to a sphere falling in shear flow. The com-
parison of the measured stationary height distribution func-
tion with the exact solution provides a favorable test for our
numerical treatment. In Sec. V we show that for the case of
homogeneous coverage of sphere and wall, the mean first
passage time to contact can be solved exactly, again in ex-
cellent agreement with our numerical procedure. In Sec. VI
we explain why the choice for the initial height is not essen-
tial. In the next two sections, we present and explain our
simulation results, first for movement restricted to two di-
mensions in Sec. VII and then for the full three-dimensional
case in Sec. VIII. We finally conclude in Sec. IX by discuss-
ing the biological and biotechnological relevance of our re-
sults.

II. FRICTION AND MOBILITY MATRICES

Due to their small sizes, the hydrodynamics of cells is in
the low Reynolds number regime. Using a typical cell size
L=10 �m and a typical velocity v=mm/s �that is, the flow
velocity at a distance L to a wall with linear shear flow of
rate �̇=100 Hz�, the Reynolds number is Re=�vL /�=10−2,

where �=g/cm3 and �=10−3 Pa s are density and viscosity
of water, respectively. Therefore, we essentially deal with the
Stokes equation for incompressible fluids,

��u�r� − �P�r� = − F�r�, � · u�r� = 0, �1�

where u�r� is the fluid velocity field, P�r� is the pressure
field, and F�r� is the force density on the fluid by the par-
ticle. Here, we use the induced force picture, i.e., the fluid
equations of motion �Eq. �1�� are extended to the interior of
the particle and the particle is replaced by an appropriate
force density F�r� acting on the fluid.17 The unperturbed
flow field has to satisfy the homogeneous version of Eq. �1�
as well as no-slip boundary conditions at the wall. In this
paper, we use the simplest possible example, namely, linear
shear flow, u�= �̇zex.

The effective flow field in the region occupied by the
rigid sphere reads

u�r� = �U + � � �r − R��	�R − �r − R�� , �2�

where U and � are the translational and rotational velocities
of the sphere, respectively. R is the position of its center, R
the sphere radius, and 	 the theta step function. The particle
exerts on the fluid forces and torques which follow from the
force density as

FH =� F�r�dr, TH =� �r − R� � F�r�dr . �3�

Because we consider a rigid object, higher moments of the
force density are not required in our context. For the unper-
turbed flow at the midpoint of the sphere, we make the fol-
lowing definitions:

U� = u��R�, �� = �1

2
� � u��r��

r=R
,

�4�

Eij
� = �1

2
��iuj

��r� + � jui
��r���

r=R
,

where the vector �� is called vorticity and the tensor E� the
rate of strain tensor. Because we restrict ourselves to linear
shear flow, all higher moments of the unperturbed flow van-
ish.

Due to the linearity of the Stokes equation, a linear re-
lationship exists between the force density F�r� and the driv-
ing flow, which is the difference between real and unper-
turbed flows.18 Specified for the first moments of the force
density, it leads to the relation

�FH

TH 	 = − Ru� U� − U

�� − �
	 − FS, �5�

where the shear force FS=RE :E� with A :B=tr ABT. It re-
sults from the perturbation of the flow by the presence of the
wall and vanishes for free flow. The two matrices Ru and RE
are conveniently written as

Ru ª �
tt 
tr


rt 
rr 	, RE ª �
td


rd 	 , �6�

where the 
 are the symmetric friction matrices and the su-
perscripts t, r, and d stand for translational, rotational, and
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dipolar, respectively. In order to obtain the translational and
rotational velocities of the sphere as a function of the hydro-
dynamic forces and torques, we have to invert Eq. �5�,

�U

�
	 = �U�

�� 	 + M
�FH

TH 	 + FS� . �7�

The symmetric matrix M=Ru
−1 is called mobility matrix. It is

convenient to define the mobility tensors through

M = Ru
−1 = ��tt �tr

�rt �rr 	, Ru
−1RE = ��td

�rd 	 . �8�

In order to calculate the friction and mobility tensors for the
special case of a sphere in linear shear flow above a wall, we
follow the procedure from Ref. 19. The friction tensors 

introduced in Eq. �6� and the mobility tensors � introduced
in Eq. �8� are expressed in terms of scalar functions together
with irreducible tensors formed from the Kronecker symbol
�ij, the Levi-Civita symbol �ijk, and the normal vector k=ez.
The scalar friction and mobility functions are not known
analytically, but can be obtained to high accuracy by the
following numerical scheme. One introduces the variable t
=R /z, where R is the radius of the sphere and z is its height
above the wall. Thus, t can take values from the interval
�0, 1�. In the limit t→0, that is, far away from the wall, one
can expand the friction functions in powers of t. In the limit
t→1, that is, close to the wall, analytical results can be ob-
tained with lubrication theory. In order to cover the whole
interval, the two limit solutions are matched using a Padé
summation scheme.19 More details of this implementation
are given in Appendix A. In contrast to the tabulated finite
element results from Ref. 20, this implementation gives cor-
rect results for any possible configuration.

III. LANGEVIN EQUATION

The motion of a particle subject to thermal, hydrody-
namic, and direct external forces like gravity is called Stoke-
sian dynamics.21 In this section we derive the corresponding
stochastic differential equation �Langevin equation�. The
Langevin equation will allow us to base our statistical treat-
ment on the repeated simulation of individual trajectories.
Because we are interested in the overdamped �Stokes� limit,
we can neglect inertia in Newton’s second law,

− FH + FD + FB = 0, �9�

where −FH, FD, and FB are hydrodynamic, direct, and ther-
mal forces acting on the sphere. An analogous balance exists
for the torques. For the following, forces and torques as de-
scribed above are united in one symbol. For example, from
now on the symbol F denotes �F ,T�, a six-dimensional vec-
tor comprising force F and torque T, and U denotes the
six-dimensional particle translational/rotational velocity vec-
tor.

In the absence of Brownian forces, FB=0 and FD=FH.
Inserting this into Eq. �7� then gives

U = U� + M�FD + FS� , �10�

and the particle trajectory can be found with a simple Euler
algorithm as X�t+�t�=X�t�+U�t+O��t2�.

In the presence of Brownian motion, the situation is
more complex, because thermal noise leads to terms of the
order of �t1/2 and special care has to be taken to include all
terms up to the order of �t. Due to the fluctuation-dissipation
theorem, for our problem Gaussian white noise reads

�gt = 0, �gtgt� = 2kBTM��t − t�� . �11�

Here, the subscript t corresponds to the fact that the thermal
force g is a random process. The left part of Eq. �11� states
that the forces that the fluid exerts on the particles are
equally distributed in all directions so there is no net drift
due to thermal fluctuations. The right part of Eq. �11� states
that forces at different times are not correlated, which is a
good approximation because the diffusive forces act on a
much faster time scale than the hydrodynamic forces. Be-
cause the mobility matrix M is position dependent, we deal
with so-called multiplicative noise. Since the � correlation in
Eq. �11� can be considered to be the limit of a process with
an intrinsic time scale for thermal relaxation, which is much
faster than the time scale of hydrodynamic movement, the
Stratonovich interpretation of the stochastic process is
appropriate.22 This means that for each time step, the mobil-
ity functions have to be evaluated at X�t+ �1/2��t� �rather
than at X�t� as in the Itô interpretation�. The Stratonovich
interpretation also implies that the rules for integration and
coordinate transformation are the same as for the Riemann
integral in nonstochastic calculus.

The presence of the thermal noise �Eq. �11�� converts the
position function X�t� into a random process Xt. Multiplica-
tive noise can result in additional drift terms. We therefore
write the Langevin equation as

�tXt = U� + M�FD + FS� + kBTY + gt
S, �12�

where in comparison with the deterministic equation �Eq.
�10�� we have added both the Gaussian white noise gt

S �to be
interpreted in the Stratonovich sense� and some drift term Y.
The drift term Y can be derived by requiring Eq. �12� to be
equivalent to the appropriate Smoluchowski equation. The
details of these calculations are given in Appendix B. The
result is

Y = B � BT, M = BBT, Yi = Bik��lBlk� ,

�13�
Mij = BikB jk.

For additive noise, that is, for position-independent mobility
functions, the additional drift term would vanish. In the case
of position-dependent mobility matrices, the noise term gt

S

alone would lead to a drift of the particle towards regions of
lower mobility �that is, towards the wall, where mobility
vanishes due to the no-slip boundary condition�. This drift,
however, is exactly compensated by the additional term Y.39

For the following, it is useful to nondimensionalize Eq.
�12�. For length, the natural scale is sphere radius R. For
time, we use 6�R3 /kBT, which is the time needed to diffuse
the distance R. For force, we use 6�R2�̇, the Stokes force
at velocity R�̇, that is, in linear shear flow a distance R away
from the wall. The scalar friction and mobility functions ap-
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pearing in M, RE, and Ru also become dimensionless as
explained in Appendix A. The Langevin equation �Eq. �12��
now reads

�tXt = Pe�U� + M�fFD + FS�� + B � BT + gt
S, �14�

where the Péclet number Pe=6�R3�̇ /kBT measures the
relative importance of deterministic to Brownian motion. In
the limit Pe→0 the particle only exhibits diffusive motion
and in the limit Pe→� it is no longer subjected to diffusion.
The second dimensionless parameter f = �FD� /6�R2�̇ mea-
sures the relative importance of direct forces/torques versus
the shear force/torque. Measuring the time in units of the
diffusive time scale is appropriate for Péclet numbers of the
order of 10 or less. For simulations with larger Péclet num-
bers it is more suitable to scale time with the inverse shear
rate �̇−1. This has the effect of dividing Eq. �14� by Pe.

In order to solve Eq. �14� numerically, it has to be dis-
cretized with respect to time. The appropriate Euler algo-
rithm can be derived by first rewriting Eq. �14� in the Itô
version, which adds another drift term to the equation. As
explained in Appendix C, the two drift terms together lead to
the result

�tX = Pe�U� + M�fFD + FS�� + �M + gt
I. �15�

Its discretized version is simply

�X = ��Pe�U� + M�fFD + FS���t + � � M�t��t + g��t�

+ O��t2� . �16�

This final result has been derived before in a different way
by Brady and Bossis.21 For vanishing shear flow, it also
agrees with the classical result by Ermak and McCammon.23

In Appendix C, we describe the algorithms used to imple-
ment Eq. �16�, in particular, the algorithm to generate the
thermal forces g��t�.

IV. SPHERE FALLING IN SHEAR FLOW

As explained in the Introduction, we consider a sphere
whose density is slightly larger than that of the fluid. Due to
this density difference �� a constant drift towards the wall
exists. As we will see later, this drift ensures that on average
the sphere will bind to the wall in finite time. The two inde-
pendent parameters defined in Eq. �14� for this model system
are Pe and f = �2R��g� / �9��̇�, with the earth’s acceleration
constant g=9.81 m/s2. For later considerations, it is conve-
nient to introduce also the parameter Pez= fPe, which we call
the Péclet number in z direction. Pe and Pez represent the
strengths of the hydrodynamic and gravitational forces in
respect to the thermal force, respectively. Out of the three
parameters Pe, f , and Pez, only two are independent, because
f =Pez /Pe.

We first consider the path of a sphere falling in shear
flow after it has been dropped at some initial height. Figure 2
illustrates the effect of the Péclet number by showing some
representative simulation trajectories. For Pe=� the motion
of the sphere is purely deterministic and only governed by
the parameter f . In the diffusive limit Pe=0, the sphere
makes a pure random walk �except for the drift in the z
direction due to the gravitational force�.

As the mobility matrix does only depend on the height of
the sphere above the wall �see Appendix A�, the motion in
the z direction is independent of the position in the �x ,y�
plane and the orientation of the sphere. Therefore, it can be
treated separately. The probability density ��z , t� for the
sphere to be at height z at time t is the solution to a one-
dimensional Smoluchowski equation

�t��z,t� = − �zJz, Jz = − Mzz��z� + Pez�� . �17�

This equation cannot be solved analytically as the mobility
function Mzz is not known in closed form. In Fig. 3 we show
numerical solutions obtained by simulating the equivalent

FIG. 2. Falling sphere in shear flow.
For different values of the shear rate
�represented by the Péclet number Pe�
and the driving force �represented by f
or Pez= fPe�, the z coordinate and the
orientation angle � are plotted vs the x
coordinate. �a� Pe=� , f =2.2. �b� Pe
=10, f =0.11, Pez=1.1. �c� Pe=1, f
=0.11, Pez=0.11. �d� Pe=0, Pez

=0.11.
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Langevin equation. One clearly sees that first the � function
at t=0 is broadened due to diffusion and then develops into a
stationary solution which has its maximum at the wall. This
stationary solution has a simple analytical form which fol-
lows from Eq. �17� by integrating Jz=0,

�s�z� = Peze
−Pez�z−1�. �18�

Thus, the stationary solution is simply the barometric for-
mula, as it should be for thermodynamic reasons. We also
find that the first two moments �mean and variance� are the
same,

�z − 1 = ��z2 − �z2 =
1

Pez
. �19�

In the limit of vanishing gravitational force �Pez→0�, the
probability distribution becomes flat and the probability of
finding the sphere does not peak at the wall anymore.

V. FIRST CONTACT WITH HOMOGENEOUS
COVERAGE

If the sphere and the wall are homogeneously covered
with receptors and ligands, respectively, an encounter com-
plex is established whenever the sphere comes sufficiently
close to the wall. The mean time which elapses after the
sphere is set free at some initial position until an encounter
complex is established is then identical with the mean first
passage time �MFPT� for a sphere dropped at initial height z0

to reach the height z1. Note again that the motion in the z
direction is independent of the values of the other coordi-
nates. For a particle diffusing in an interval �z1 ,b�, with z1

being an absorbing boundary and b a reflective boundary, the
MFPT T to reach z1 when started at z� �z1 ,b� is the solution
to the following ordinary differential equation22

A�z��zT�z�z1� + D�z��z
2T�z�z1� = − 1, T�z1�z1� = 0,

�20�
��zT�z�z1��z=b = 0.

In our case, b=�. The drift term is A�z�=−Pez�̂
tt�1/z�

+�z�̂
tt�1/z� and the diffusive term D�z�=Mzz= �̂tt�1/z�,

where �̂tt�1/z� is a scalar mobility function as explained in

Appendix A. The general solution to Eq. �20� is22

T�z0�z1� = �
z1

z0

dz
1

��z���z

�

dy
��y�
D�y� 	 ,

�21�

��z� = exp��z

dx
A�x�
D�x�

	 .

This can be reduced up to an integral over �̂tt�1/z�,

T�z0�z1� =
1

Pez
�

z1

z0

dz
1

�̂tt�1/z�
. �22�

Thus the dependence of T�z0 �z1� on Pez, the only parameter
in this problem, is obtained exactly. It is important to note
that the compact form for the MFPT in Eq. �22� is a result of
the constant vertical force. For a more general vertical po-
tential force F�=−�zV�z� with a potential V, Eq. �21� can be
reduced to

T�z0�z1� = �
z1

z0 dz

�̂tt�1/z�
�

z

�

dyeV�z�−V�y�. �23�

This equation shows that the potential must satisfy the con-
dition limy→��V�z�−V�y��→−� for the MFPT to be finite.
This holds true, e.g., for the gravitational force studied here
or for the interaction of a charged object with an oppositely
charged wall, but not, e.g., for a Lennard-Jones potential.

The integral �Eq. �22�� over the scalar mobility function
�̂tt can easily be calculated numerically as �̂tt behaves well
in the full range of z. In fact, �̂tt�t� can be approximated by
its leading term from the lubrication analysis, i.e., �̂tt�t��1
− t. We then find

T�z0�z1� �
1

Pez

z0 − z1 + ln� z0 − 1

z1 − 1
	� . �24�

A numerical analysis shows that the approximation �Eq.
�24�� deviates only by a few percent from the exact solution
�Eq. �22��. Thus, T�z0 �z1� is logarithmically divergent if the
absorbing point is close to the wall, z1→1, and linearly di-
vergent if the starting point is at infinite height, z0→�.

For a sphere homogeneously covered with receptors
each having a capture radius r0, the mean time for forming
an encounter complex is T�z0 �1+r0�. This time will serve as
a useful limiting result in some of the considerations pre-
sented in the next sections. The exactly known result �Eq.
�22�� provides also a good test for the algorithm we imple-
mented. In Fig. 4�a� the MFPT obtained from simulation
experiments and from the quadrature of Eq. �22� are com-
pared. The two results agree very well �see Appendix D for a
discussion of the statistical and systematic errors of the simu-
lation results�. In Fig. 4�b� we show the numerically obtained
distribution of first passage times. One clearly sees that the
larger the Pez, the stronger they peak around the mean.

We conclude the case of homogeneous coverage by not-
ing that in order to obtain dimensionalized results, one has to
multiply the MFPT by the diffusive time scale 6�R3 /kBT.
This result does not depend on shear rate �̇ because vertical
and horizontal motions are decoupled and rotational motion
is not relevant here. However, it depends on viscosity �,

FIG. 3. Probability distribution function ��z , t� numerically obtained from
N=105 sample paths for ten consecutive points in time. The initial distribu-
tion was ��z , t0�=��z−3� at t= t0, Pez=2.
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which sets the time scale for vertical motion. If one switched
off thermal fluctuations, the falling time would be exactly the
same as the MFPT from Eq. �22�, but this is a special result
for constant force and not true in general. If one removed the
wall, the translational symmetry in the z direction would not
be broken and the MFPT would be T= �z0−z1� /Pez, that is,
the logarithmic term in Eq. �24� would be missing.

VI. EFFECT OF INITIAL HEIGHT

We now turn to the spatially resolved receptor coverage,
that is, we consider a sphere which is covered by Nr equidis-
tantly spaced receptor patches. For the moment being, the
wall is still considered to be homogeneously covered with
ligands. The MFPT T�� ,x �C� now will depend on the initial
position x= �x ,y ,z0� and the initial orientation � as well as
on the absorbing boundary C in diffusion space. The latter is
given by the special receptor and ligand geometry. In an
experimental setup with linear shear flow it is possible to
measure only particles which have been initially at a certain
height. This is due to the fact that their average velocity as
obtained from the solution of the Stokes equation �Eq. �7��
depends on their height in a unique way.8 However, it is
almost impossible to prepare a certain initial orientation � or
�x ,y� position relative to the ligands. Therefore, the quantity
of interest to us will be a MFPT which is averaged over all

possible initial orientations � and all initial positions �x ,y�,
which will be denoted as �T�� ,x �C��,�x,y�. The dependence
of �T�� ,x �C��,�x,y� on the initial height for z0�1+r0 can be
derived exactly. For homogeneous ligand coverage the quan-
tity of interest is

�T��,z0�C�� =
1

V�
�

�

d3�T��,z0�C� ,

where C is the absorbing hypersurface in �� ,z� space and V�

a normalization constant. Absorption is only possible if z
�1+r0, thus if we look at some intermediate height z0

�zm�1+r0, then

T��,z0�C� = T��,z0�zm� +� d3�mp��m���T��m,zm�C� ,

�25�

where p��m ��m� is the conditional probability to pass the
height zm with the orientation �m when starting with the ini-
tial orientation � at z0. T�� ,z0 �zm� is independent of the ini-
tial orientation and can be calculated by means of Eq. �22�.
Now averaging Eq. �25� over the initial orientation gives

�T��,z0�C��

= T�z0�zm� +
1

V�
� d3�m
� d3�p��m����T��m,zm�C�

= T�z0�zm� +
1

V�
� d3�mT��m,zm�C�

= T�z0�zm� + �T��m,zm�C��m
. �26�

Thus, if the orientation-averaged MFPT is known for some
initial height z0�1+r0, then the MFPT for any other initial
height z0��1+r0 can be calculated by means of Eqs. �26� and
�22�. In Fig. 5, this result is verified by simulations for the
two-dimensional case, that is, the sphere can only move in

FIG. 4. Results of first passage time simulations with encounter radius r0

=10−3. �a� Mean first passage time T as a function of Pez for different
starting heights. Dots are the results from simulations with N=104 runs and
time step �t=10−5. Lines are the results from the quadrature of Eq. �22�. �b�
Distribution of first passage times for different values of Pez �numerical
parameters N=105, �t=10−5�.

FIG. 5. Mean first passage time dependence on the initial height z0 in two
dimensions. The sphere is covered with Nr=10 receptor patches and the
ligand density is �l=0.01. We plot �T�z0 ,� ,x �C��,x ��� and
�T�z0 ,� ,x �C��,x+T�z=10 �z0� ��� as a function of z0, where T�z=10 �z0� is
obtained from Eq. �22�. For z0�1+r0 the latter curve is constant at the value
�T�z=10,� ,x �C��,x as predicted by the addition theorem �Eq. �26�� �nu-
merical parameters: N=105, �t=10−5�.
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the x-z plane and rotate only around the y axis �see Fig. 1�.
Due to the decomposition Eq. �26�, the initial height is not
essential. In the following, we will therefore always use the
value z0=2, that is, the sphere has to fall by one radius until
it hits the substrate for the first time.

VII. MOVEMENT IN TWO DIMENSIONS

We now study the effect of shear rate for heterogeneous
receptor distribution if the sphere is restricted to move only
in two dimensions. Then, the receptor patches can be equi-
distantly distributed over the circumference, as illustrated in
Fig. 6. Each receptor patch has a capture height of r0 and a

width of 2rp. The two-dimensional �2D� receptor density is
then �r=Nrrp /. Orientation is now represented by a single
angle �. The absorbing boundary C is illustrated in Fig. 6.
For each receptor patch, binding can occur over a range of
2�0, which consists of two parts. The inner part is valid al-
ready for rp=0 and reflects the overlap due to a finite r0. The
outer part is results from a finite rp. Together this leads to
�0�z�=arccos�z / �1+r0��+rp. The receptor patches establish a
periodicity with period �s=2 /Nr. As the number of receptor
patches grows, this period decreases and one finally achieves
overlap. Then, encounter becomes possible for all values of
�, that is, we are back to the case of homogeneous receptor
coverage. In our case of nonhomogeneous coverage, the
MFPT depends on Pe, Pez, Nr, r0, rp, and z0. For the follow-
ing simulations rp=r0=10−3, Pez=50, and z0=2 are chosen
unless other values are explicitly mentioned.

Figure 7�a� shows the MFPT as a function of the Péclet
number Pe. Note that in the log-log plot, an apparent plateau
appears at small value of Pe, although in a linear plot there
would be monotonous decay. Three regimes can be distin-
guished. For Pe�0 �diffusive limit� the transport by the im-
posed shear flow is negligible and only diffusive transport is
present. For very large values of Pe, �T� plateaus at the
value given by Eq. �22� independent of Nr. In this limit the
time for rotation to any certain orientation is negligible com-
pared to the mean time to fall down close to the wall, there-
fore, the result for rotational symmetry is recovered. Be-
tween these two limits the MFPT decreases monotonically
with increasing Pe. Figure 7�b� shows the data from Fig. 7�a�
plotted as a function of the receptor density �r�Nr. The
larger the Pe the less pronounced is the dependence of �T�

on Nr. For Pe�0, however, �T� strongly depends on Nr. The
latter relation is better illustrated in Fig. 7�c�. There, at Pe
�0, �T� is shown for a wide range of Nr. The simulations
were done for fixed patch size rp but for four different values

FIG. 6. �a� Example of a sphere restricted to move in two dimensions and
covered with Nr=4 receptor patches, which are regularly distributed over
the circumference. �b� Illustration of the range of � in which encounter
occurs. This range is given by 2�0 with �0�z�=arccos�z / �1+r0��+rp. �c� The
absorbing boundary C in the �z ,�� plane is periodic with respect to � with
period �s=2 /Nr. For large numbers of receptor patches �s the different
patches start to overlap. Then encounter is possible for all values of �.

FIG. 7. The mean first passage time
averaged over the initial orientation
�log-log plots�. �a� Plotted as a func-
tion of Pe; different symbols refer to
different numbers of receptor patches.
�b� The mean first passage time is plot-
ted as a function of the receptor den-
sity �r�Nr for different values of Pe.
�c� �T� as a function of Nr in the dif-
fusive regime �Pe�0� for different
values of the capture range r0, but
fixed value of cluster size rp=0.001.
�d� The distribution of �-averaged first
passage time is shown for Nr

=5,20,50 receptor patches �numerical
parameters for each data point: N
=105, �t=10−5�.
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of the capture radius r0 �see Fig. 6�. For �r→1, �T� reaches
the value given by Eq. �22�. As described by Eq. �22�, the
smaller �T� is, the larger r0 is. An increase in the number of
receptor patches Nr leads to a strong decrease for the MFPT,
however, no special scaling behavior can be observed. It is
remarkable that the limiting value for the case of homoge-
neous receptor coverage is already reached for �r�10−2. The
larger the capture radius r0, the more pronounced this effect
is. This can be understood by observing that the effective
patch size as given by the angle �0�rp �see Fig. 6� is mono-
tonically increasing with increasing r0.

We next try to qualitatively understand the effect of
shear rate for the simulation results shown in Fig. 7�a�. In
general, it is very hard to separate the effects of diffusion and
convection. The time for binding at Pe�0 is determined
purely by diffusion effects and will be denoted by TD. As
shear flow increases, the rotation of the sphere is increasingly
dominated by convection. We now derive a convection time
TF which competes with the diffusion time TD at large Péclet
number. For very large Péclet number, we expect the MFPT
to be the sum of the homogeneous result from Eq. �24� plus
this additional time TF. An important question then is at
which Pe the convection time TF become smaller than the
diffusion time TD.

On order to estimate TF, we note that the main effect of
increased shear rate is the faster rotation in the direction of
flow. Once a receptor has rotated by an angle �s=2 /Nr,
such that it opposes a ligand on the substrate, there is some
probability p that the sphere is at the correct height that an
encounter can occur. If no encounter occurs with the comple-
mentary probability 1− p, the sphere has to rotate about an-
other angle �s until the next receptor points downwards. Sup-
posing that the time, 2t0, to rotate about the angle �s is large
enough that there is no correlation between the height of the
sphere before and after the rotation, then, an encounter oc-
curs again with probability p �therefore this analysis also
does not hold at very large Pe�. Thus, the mean time TF for
encounter is

TF = pt0 + �1 − p��p3t0 + �1 − p��p5t0 + �1 − p��¯���

= pt0�
i=0

�

�2i + 1��1 − p�i = t0
2 − p

p
�

2t0

p
, �27�

where the series has been summed up by means of the geo-
metric formula. In the last term we assumed that the prob-
ability p for the proper height is small due to a small capture
distance r0. It follows from the stationary probability distri-
bution �s�z� given by Eq. �18�,

p = �
1

1+r0

dz�s�z� = 1 − e−Pezr0 � Pezr0. �28�

The time t0 to rotate about half of the angle �s is approxi-
mately t0=�s /Pe. Therefore, we get

TF �
4

NrPePezr0
. �29�

In this analysis, the convection time TF scales inversely with
the number of receptor patches Nr and the Péclet number Pe.

As Pe increase, TF gets smaller than TD and then dominates
the overall outcome. Comparing Eq. �29� to the simulation
data for Pe�0 shows that this crossover occurs in the range
of Pe�101–102 and that the corresponding value of Pe in-
creases with increasing receptor number Nr, exactly as ob-
served in the simulation data over the full range of Pe. How-
ever, the exact scaling of these data is not �1/Nr for large Pe
as predicted by Eq. �29�. In practice, the decay is somehow
slower due to correlations between the height of the sphere at
two successive instances of a receptor pointing downwards,
which we have neglected in our analysis.

We briefly comment on the effect of the downward driv-
ing force, that is, Pez. Above, we have found that in two
cases, homogeneous coverage from Eq. �22� and convection-
dominated rotation from Eq. �29�, the MFPT scales inversely
with Pez. This scaling behavior is indeed found in the simu-
lations, except that for very large values of Pez, the MFPT
approximates a constant value �data not shown�. The reason
is that the larger the Pez, the smaller the mean time to fall
below the height z=1+r0. As indicated by Eq. �18�, then the
sphere stays below this height until an encounter occurs. This
implies that in this limit, the MFPT depends only on rota-
tional motion and the falling motion is irrelevant.

We now introduce spatially resolved ligands into the 2D
model. Figure 8�a� shows the model definition: the ligand
patches are considered to have the same radius rd=rp as the
receptor patches and they are located at a distance d from
each other. This results in a one-dimensional ligand density
given by �l=2rd /d. The mean first passage time will now
also depend on the initial x position, T=T�z0 ,� ,x �C�, where
C is the hypersurface in �z ,� ,x� space, where a receptor
patch touches a ligand patch. But similarly as in the above

FIG. 8. �a� Illustration of the situation with a density of receptor patches �r

as well as a density of ligands �l. The first passage time is now determined
by an overlap of a receptor patch with a ligand patch. �b� �T�,x as function
of the Péclet number Pe and the ligand density �l for different values of Nr

�numerical parameters: �t=5�10−6, N=104�.
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section in regard to the initial orientation, the dependence on
the initial x position is of minor interest and, therefore, we
will discuss the MFPT averaged over the initial position and
orientation, denoted by �T�,x.

Figure 8�b� shows that by varying the Péclet number we
can identify the same three regimes for all ligand densities as
before. For Pe→0 in the limit of pure diffusive transport,
�T�,x approaches a finite value, depending on �r and �l. With
increasing Pe, �T�,x decreases monotonically and finally for
Pe→� reaches the value of the MFPT in the limit of homo-
geneous receptor and ligand coverage. In contrast to above,
however, in this limit the shear flow not only restores rota-
tional invariance of the sphere but, in addition, also transla-
tional invariance of the substrate.

Figure 9�a� provides more details for �T�,x as a function
of �l in the diffusive limit �Pe�0�. We find that in the range
of 0.1��l�1 the MFPT is almost not affected by ligand
concentration: as long as the ligand patches are sufficiently
close to each other, a receptor patch touching the wall will
most probably find a ligand before diffusing away again. The
situation changes completely with small ligand density. For
�l�1 the averaged mean first passage time �T�,x scales with
the ligand density �l as �T�,x�1/�l

2�d2. This can be under-
stood by calculating the position-averaged MFPT �Tx for a

particle diffusing in an interval �0,d� with diffusion constant
D, which gives �Tx=d2 /12D. This suggests that the qua-
dratic scaling with d results from the diffusive motion be-
tween adjacent ligand patches. Figure 9�b� summarizes our
results for the dependence of the 2D MFPT �T�,x on ligand
density �l and receptor density �r in the diffusive limit.
Clearly there exists a large plateau around the value for the
case of homogeneous coverage �r=�l=1. This implies that if
ligand and receptor patches are not too strongly diluted, the
mean encounter time is still close to the optimal value given
by Eq. �22�. On the other hand, if the number of receptor
and/or ligand patches is highly reduced the mean encounter
time is strongly increased.

VIII. MOVEMENT IN THREE DIMENSIONS

We finally turn to the full three-dimensional �3D� situa-
tion, that is, the sphere may diffuse about all three axes, as
described by Eqs. �16� and �C4�. Receptors are located in
spherical patches which are randomly distributed over the
sphere. Each receptor patch has a radius rp and a height
�capture length� r0. That is the appropriate generalization of
the situation shown in Fig. 6 for the 2D case. Thus, for Nr

receptor patches the receptor density is �r=2Nr�1
−cos�rp�� /4�Nrrp

2 /4 �for rp�1�. In contrast to the preced-
ing sections where the receptor patches could be regularly
distributed over the circumference, this is no longer possible
on the surface of a sphere. Therefore, we distribute the
patches randomly over the sphere with equal probability for
each position, with a hard disk overlap algorithm making
sure that no two patches overlap.24 One has to bear in mind
that then for small Nr two different distributions may have
slightly different binding properties. This effect becomes
weaker for larger Nr; therefore in the following we will only
use Nr�10. The quantity we measure in our simulations is
now �T� in the case of homogeneous ligand coverage and
�T�,�x,y� in the case that the ligands are located in spherical
patches on a 2D lattice. Thus, we average the MFPT over the
initial orientations and positions as explained above.

In order to explore the dependence of �T� on Nr and Pe
we first simulated the receptor-ligand encounter in the case
of homogeneous ligand coverage �l=1. In order to average
over the initial positions we started each run with a randomly
chosen initial orientation. After 100 runs we generated a new
distribution, thus averaging out also the effect of different
receptor distributions. In order to achieve reasonable statis-
tics, we typically used 100 000 runs. Our results are shown
in Fig. 10�a�. Again we find three different regimes as a
function of the Péclet number Pe. This proves that qualita-
tively the basic results of the 2D treatment remain valid in
3D. However, in detail there are important differences. In
contrast to the 2D results presented above, �T� in the limit
Pe→� is no longer given by Eq. �22� if Nr is small. That is
due to the fact that for Pe→� the receptor patches effec-
tively behave as ringlike structures. The rotation of such a
ring about the x or y axis is not affected by Pe and thus still
depends on diffusion. For large Nr the rings cover the whole
sphere and for Pe→� , �T� is again given by Eq. �22�.

FIG. 9. �a� �T�,x is shown in the diffusion limit at Pe�0 as a function the
ligand density �l. Inset �plot for �r�1�: The mean first passage time scales
as �T�,x�1/�l

2 �numerical parameters: �t=10−5, N=105�. �b� Dependence
of �T�,x in the diffusive limit at Pe�0 on �r ,�l, where �r has been varied by
changing Nr at fixed rp �numerical parameters: �t=10−5, N=105�.
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In Fig. 10�b� we plot the Pe→0 limit of �T� as a func-
tion of the number of receptor patches Nr, for different val-
ues of the capture radius r0. The fitted straight line for r0

=10−3 shows that �T� approximately behaves like �T�

�1/Nr. Neglecting effects of curvature, the average distance
between two receptors patches is d� �4 /Nr�1/2 and the
mean time to diffuse that distance is td�d2�1/Nr. This pro-
vides a simple explanation for the observed scaling behavior.
For high Nr, the MFPT reaches a plateau value, given by Eq.
�22�. This plateau value depends on r0 and is smaller if r0 is
larger. Also the crossover from the asymptotic behavior at
small Nr to the plateau at large Nr is shifted with increasing
capture radius r0 towards smaller Nr.

In Fig. 10�c� we show the effect of a finite ligand density
�l at Pe�0. For the simulations we distributed the ligands in
circular patches of radius rd=0.01 on a quadratic lattice with
lattice constant d, thus resulting in a ligand density �l

=rd
2 /d2. In our implementation, the intersection between

the receptor patch and the wall is approximated by an appro-
priate circle, because it is easy to check if this circle overlaps
with the ligand patch. The fits given in Fig. 10�c� show that
for small �l, the MFPT scales as �T�,�x,y��1/�l�d2. Because
the curves for different Nr appear to be rather similar, in the
inset we plot the ratio of different pairs of these curves. As
this results in approximately constant plateaus, we conclude
that the scaling with ligand density is hardly affected by Nr.
As in 2D, the inverse scaling with ligand density can be
understood in simple terms by noting that the MFPT to dif-
fusional capture scales like d2. At a coverage around 0.01,
saturation occurs as it did for receptor coverage.

We finally discuss the influence of the receptor geometry
described by the parameters r0 and rp. Because Pe changes
the MFPT in a monotonous way, it is sufficient to study the
diffusive limit Pe�0. Figures 11�a� and 11�b� show �T� as a
function of rp for r0=0.001 and r0=0.01, respectively. In
order to obtain smooth curves, in this case only one receptor
distribution was used for all runs. We find that the curves can
be fitted well to the function

�T�rp�� =
a

b + rp
+ T�z0 = 2�z1 = 1 + r0� , �30�

where the second term is the homogeneous result from Eq.
�22�. This means that even for vanishing receptor size rp

→0, the MFPT remains finite. This makes sense because
above we have shown that the effective patch size is deter-
mined both by rp and r0. In detail, Fig. 6 showed that capture
occurs over the solid angle 2�0 with �0�z�=arccos�z / �1
+r0��+rp. For small r0 and rp, this allows us to define an
effective patch size,

rp
eff = arccos��z/�1 + r0�� + rp

� arccos�1 −
1

2
r0	 + rp

� �r0 + rp, �31�

where we have used �z=1+r0 /2. Suppose now that the
sphere diffuses over the time td until a receptor patch points
downwards, then it may encounter a ligand with a probabil-
ity p that is given by the normalized area of one effective
receptor patch,

FIG. 10. �a� The mean time for a receptor to first reach a wall homoge-
neously covered with ligands �T� was calculated as a function of the Péclet
number Pe. �b� The dependence of the MFPT on the number of receptor
patches Nr for different values of the capture radius r0. Lines show the
scaling with 1/Nr. �c� Dependence of �T�,x,y on the 2D ligand density �l in
the diffusive limit Pe�0. For �l�1 the mean first passage time is propor-
tional to 1/�l �dotted lines�. In the inset are plotted the mutual ratios of the
averaged mean first passage times for Nr=20,30,70, showing that the de-
pendence on the ligand density is nearly independent on the number of
receptor patches Nr �numerical parameters: N=105, �t=5�10−5, rp=10−3,
r0=10−3 for �a�; r0=rd=10−2 for �c��.
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p =
1

2
�1 − cos�rp

eff�� �
1

4
��r0 + rp�2 �

1

2
�r0�1

2
�r0 + rp	 .

�32�

If no encounter occurs, the sphere has to diffuse again a time
td until the next encounter can occur. This leads to the mean
encounter time T= td / p. Putting everything together gives
Eq. �30� with a=2td / ��r0� and b= 1

2
�r0. If checked against

our simulation results, we indeed find that the fit parameter b
is an increasing function of r0 but varies only slightly with

Nr. The fit parameter a scales approximately as �1/Nr and
varies with r0, also consistent with the above analysis. In Fig.
11�c� �T� is plotted as a function of rp for several values of
r0 and Nr=30. One clearly sees that increasing rp has a much
smaller impact on �T� than a comparable increase in r0,
which is qualitatively well described by the preceding analy-
sis.

In Figs. 11�a� and 11�b� the receptor density is varied
over almost four orders of magnitude by changing rp, but the
largest measured decrease for �T� is only by a factor 4. In
contrast, an increase of the receptor density by one order of
magnitude due to tenfold more receptor patches leads to a
decrease of �T� by almost also one order of magnitude.
However, this is only true as long as Nr is not too large, as
for large Nr , �T� saturates at the limiting value of homoge-
neous receptor coverage �see Fig. 10�b��. The crossover from
the 1/Nr behavior to the saturation should take place when
the average distance between two receptor patches d�
��4 /Nr�1/2 becomes comparable to the size of one receptor
patch. This corresponds to rp

eff��4 /Nr�1/2 or Nr

�4 / ��r0+rp�. This estimate predicts that the crossover
takes place between several tens to several hundreds of re-
ceptor patches, depending on r0, in agreement with the data
shown in Fig. 10�b�.

IX. SUMMARY AND DISCUSSION

In this paper we have calculated the MFPTs for the ini-
tial encounter between spatially resolved receptors on a
Brownian particle in linear shear flow and spatially resolved
ligands on the boundary wall. Our main results were ob-
tained by repeated simulations of the discretized Langevin
equation �Eq. �16��. Each data point shown corresponds to at
least 100 000 simulation runs. It is important to note that
these simulations are very time consuming because we re-
solve objects of the size of 10−3R, that is, for micrometer-
sized particles we resolve the nanometer scale.

In general, we found that the MFPT was always mono-
tonically decreased when the Péclet number was increased.
That means that a particle which is covered with receptors in
a way that it binds well to ligands already in the diffusive
limit is even better suited to initiate binding at finite shear
rate. In our simulations we modeled the receptor geometry
using three parameters: the number of receptor patches Nr,
the radius of the receptor patches rp, and the capture radius
r0. The efficiency of binding is mainly increased by Nr, but
only up to a saturation value of the order of 100. An increase
of rp leads only to a weak enhancement of binding efficiency.
The influence of r0 to the MFPT is threefold: �i� it reduces
the mean falling time, �ii� it increases the effective patch
size, and �iii� according to the stationary probability distribu-
tion for the z direction, it becomes more probable for the
sphere to be within the encounter zone when r0 is increasing.
An additional but more indirect effect of receptor protrusions
is that the further the cell is away from the wall, the faster it
can rotate �even in the diffusive limit� due to the larger mo-
bility. As shown by Eq. �26�, rotations play a role only within
binding range, i.e., for z�1+r0. Therefore, a large r0 lets the
cell also benefit from faster rotations. Summarizing our find-

FIG. 11. ��a� and �b�� Dependence of �T� on the receptor patch radius
rp�Pe�0�. The dotted lines are fits of a / �b+rp� to the simulation results. �a�
r0=0.001 and �b� r0=0.01 �numerical parameters: N= �1–3��105, �t=5
�10−5�. �c� For Nr=30 the dependence on rp is shown for different values of
the capture radius r0. For better comparison the r0-dependent part of the
MFPT as given by Eq. �22� was subtracted.
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ings in regard to receptor geometry we conclude that the
most efficient design for particle capture under flow is to
cover the particle with hundreds of receptor patches �Nr

above threshold�, each with a rather small area �small rp�, but
formed as a protrusion �large r0�.

Indeed, this strategy seems to be used by white blood
cells, which have evolved intriguing mechanisms both on the
molecular and cellular scales in order to adhere effectively to
the endothelium under the conditions of hydrodynamic flow.
The typical size of white blood cells is R�5 �m and they
are covered with a few hundreds of protrusions �microvilli�
with the receptors �most notably L-selectin� localized to the
microvilli tips.25 In general, the microvilli of white blood
cells are much more complex than the parameter r0 in our
model: they are rather long �typical length 350 nm, that is,
R /15� and have their own physical properties �e.g., very flex-
ible in the transverse direction and viscous in the longitudi-
nal direction�.26 Nevertheless, it is striking that elevation of
the receptors above the main cell surface seems to be a major
design principle for white blood cells. In fact, the same strat-
egy appears to be used also by malaria-infected red blood
cells, which are known to develop a dense coverage with
elevated receptor patches �knobs� on the cell surface.11–13 A
typical value for the cell radius is 3.5 �m.27 The knobs have
a typical height of 20 nm, a radius of about 90 nm, and a
distance of 200 nm �for red blood cells infected by single
parasites�.12 This dense and elevated coverage suggests that
like the white blood cells, the malaria-infected red blood
cells also function in the regime of homogeneous coverage.

In order to discuss the motion of white blood cells in
more detail, it is instructive to consider the parameters for a
typical flow chamber experiment. In aqueous solution and at
room temperature, �=g/cm3, �=10−3 Pa s, and T=293 K.
Then, the dimensionless parameters determining cell motion
become

Pe = 4.67R3�̇, f = 2.17
R��

�̇
, Pez = 10.16R4�� ,

�33�

�t =
Pe

�̇
= 4.67R3 s,

where R is given in micrometers, �� in units of g /cm3, and
the shear rate �̇ in units of s−1; �t is the diffusive time scale.
For leukocytes in flow chambers we typically have R=5, �̇
=100, and ��=0.05, thus, for the two Péclet numbers we get
Pe=6�104 and Pez=317, respectively. Then, f =Pez /Pe
=0.005, that is, the effect of hydrodynamic deterministic mo-
tion will be very strong. The experimental time scale is given
by the time for transversing the field of view, which is about
3 s at a shear rate of 100 Hz and length of 670 �m. The
diffusive time scale �t for leukocytes is about 600 s
�10 min�, which reflects their large size and shows that dif-
fusive motion is by far not sufficient to initiate binding.
Binding becomes more favorable in the presence of convec-
tion. For a start height of one radius above the wall �z0=2�,
our calculations give a MFPT of about 5 s, that is, much less
than the diffusive time. However, this is still much larger
than the experimental time scale. This proves that only those

cells have a chance to bind that flow very close to the wall,
exactly as observed experimentally. In vivo, white blood cells
therefore depend also on other mechanisms driving them
onto the substrate, including contact and hydrodynamic in-
teractions with other cells. These effects have been studied in
detail before. For example, Sun et al. have shown that adhe-
sion of leukocytes close the vessel wall in postcapillary
venules is enhanced by red blood cells passing them.28 King
and Hammer have shown, using an algorithm capable of
simulating several cells, that already adherent leukocytes can
recruit other leukocytes via hydrodynamic interactions.29 The
results presented here, when specified to leukocytes, show
that indeed these mechanisms are crucial for effective leuko-
cyte capture under flow.

Our results also suggest that leukocytes are sufficiently
large that thermal fluctuations are not dominant. This
changes when studying smaller particles, e.g., receptor-
covered spheres with R�1 �m, whose binding also has
been investigated with flow chambers.30,31 Equation �33�
shows that the Péclet numbers scale strongly with particle
radius R; therefore, these beads are subject to much stronger
thermal fluctuations than leukocytes. In Ref. 31 it has been
verified that indeed in equilibrium such particles obey the
barometric distribution from Eq. �18�. In Ref. 30 it was
found that the adhesion probability pad is proportional to the
ligand density, pad��l. With pad�1/T it follows that T
�1/�l as found by our simulations in the limit of low ligand
densities.

Throughout this paper we have considered the generic
case of a constant downward acting force due to a density
difference between the sphere and the surrounding fluid. In
future work it might be interesting to examine also other
forces which can easily be done in the framework presented
here. As the addition formula �Eq. �26�� for falling and rota-
tional MFPT was not derived under the assumption of a spe-
cific force, it is also true for nonconstant forces. For general
potential forces the falling time �Eq. �22�� has then to be
replaced by Eq. �23�. Also the rotational MFPT is influenced
by a vertical force via the stationary height distribution. Ne-
glecting gravitational force and considering only short-
ranged forces such as van der Waals or electrostatic forces
would result in infinite MFPTs for the setup of the half space.
This problem, however, can be solved by using an additional
wall acting as an upper boundary.32

In this paper we assumed a rigid Brownian particle. For
cells, elastic deformations might be relevant. For free flow, a
simple scaling estimate shows that the critical value for the
shear rate leading to substantial deviations from the spherical
shape is �Eh� / ��R�,33 where E=100 Pa and h=100 nm are
the Young modulus and thickness of the cellular envelope,
respectively. The fact that the Young modulus E appears here
indicates that cells tend to passively deform less than
vesicles, whose elasticity is characterized rather by the bend-
ing rigidity.34,35 The scaling estimate leads to a critical shear
rate of 103 Hz, which is above the value of a few 102 Hz
�corresponding to Pe�105 for white blood cells� which often
provides an upper limit in flow chamber experiments. Simi-
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lar but more complicated scaling arguments can be made for
lubrication forces which arise when the cell approaches the
wall.36

To fully understand the rate of association between a
receptor-covered particle in shear flow and a ligand-covered
wall, our analysis should be completed by the implementa-
tion of an adhesion scenario, which in general should also
include molecular determinants such as residence times and
receptor flexibility. If one assumes that a bond between two
encountering molecules is formed with a certain rate, then,
the MFPT for encounter as reported here should be a good
approximation for the mean adhesion time in the limit of
zero shear rate, because in this limit the duration of each
encounter should be sufficiently long for the formation of an
adhesion contact. Then, the proper knowledge of the MFPT
could also be used to design a cell sorting experiment. Sup-
pose one has a mixture of different cells each bearing some
receptors and the wall is covered with one kind of ligand.
Then, the cells are flowed into the chamber and the flow is
stopped. Certainly, only cells that bear receptors which fit to
the ligands can attach to the wall. If the flow is then turned
on again, the attached cells will be separated from the other
cells. If the no-flow period is much shorter than the MFPT,
only a few cells can attach. If the no-flow period is much
longer than the MFPT, attached cells might already start to
spread and are therefore difficult to remove. Only if the no-
flow period is of the order of MFPT one gets an appreciable
number of weakly attached cells. In this sense our theoretical
analysis might be essential for appropriate biotechnological
applications.
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APPENDIX A: IMPLEMENTATION OF FRICTION
AND MOBILITY MATRICES

For the numerical implementation of the friction and
mobility tensors for a sphere in linear shear flow above a
wall, we use the results from Refs. 19 and 37. This imple-
mentation procedure has been described and tested in detail
in Ref. 19. In this appendix, we briefly summarize it for the
sake of completeness.

Writing the friction tensors in terms of irreducible ten-
sors formed from �ij ,�ijk ,k defines the scalar friction func-
tions. In the case that the normal vector to the wall is k=ez,
these tensors read


tt = ��tt 0 0

0 �tt 0

0 0 �tt�, 
tr = �tr� 0 1 0

− 1 0 0

0 0 0
� = 
rtT,


rr = ��rr 0 0

0 �rr 0

0 0 �rr� ,


�
td = �− 1

3��3�td 0 1
2��1�td

0 − 1
3��3�td 1

2��2�td

1
2��1�td 1

2��2�td 2
3��3�td� ,


�
rd =

1

2
�rd� 0 0 �3�1

0 0 �3�2

�3�1 �3�2 0
� ,


�
dt = �

1
2��3�dt 0 − 1

3��1�dt

0 1
2��3�dt − 1

3��2�dt

1
2��1�dt 1

2��2�dt − 2
3��3�dt� ,


�
dr =

1

2
�dr� 0 ��3 0

− ��3 0 0

− ��2 ��1 0
� .

This defines the scalar friction functions
�tt ,�tt ,�tr ,�rr ,�rr ,�td ,�td ,�dr. The scalar friction functions
� depend only on the inverse distance of the sphere from the
wall, that is, the dimensionless variable t=R /z, which takes
values from the interval �0, 1�. The friction functions can be
expanded in powers of t. The numerically obtained first 20
coefficients of such a series expansion of the dimensionless
scalar friction functions,

�̂tt = �tt/6�R, �̂tt = �tt/6�R, �̂rr = �rr/8�R3,

�̂rr = �rr/8�R3, �̂tr = �tr/8�R2 = − �̂rt,

are tabulated in Ref. 37. For the other three dimensionless
scalar friction functions,

�̂dt = �dt/6�R2 = �̂td, �̂dt = �dt/6�R2 = �̂td,

�̂dr = �dr/8�R3 = − �̂rd,

the first 32 coefficients of a series expansion in powers of t
are tabulated in Ref. 19. For small values of t the series
expansion converges quite well and only a few coefficients
are needed to obtain accurate results. However, for t→1, i.e.,
close to the wall, the friction functions are better described in
a lubrication expansion, which reads

�̂ � C1
t

1 − t
+ C2 ln�1 − t� + C3 + C4

1 − t

t
ln�1 − t�

+ O�1 − t� .

The coefficients C1 ,C2 ,C3 ,C4 for the eight friction functions
defined above can be found in Ref. 19. In order to match the
two limit cases, the asymptotic expansion of the t→1 limit is
subtracted from the friction functions

�̂�t� = �
n=0

�

fntn,

leading to a new series expansion,
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�̂�t� − C1
t

1 − t
− C2 ln�1 − t� − C4

1 − t

t
ln�1 − t�

= f0 + C4 + �
n=1

� � fn − C1 +
C2

n
−

C4

n�n + 1�	tn

¬ �
n=0

�

gntn.

This series is truncated at nmax=N and the coefficients gn are
calculated from the coefficients fn ,Ci. Next the coefficients
gn �n=0, . . . ,N� are not used to calculate the Taylor sum, but
rather to calculate the Padé approximant to this function. The
Padé approximant is given as

PN�t� =
a0 + a1t + a2t2 + ¯ + aNtN

1 + b1t + b2t2 + ¯ + bNtN ,

where the coefficients ai ,bj are the solution to

�
n=1

N

bngN−n+k = − gn+k, �
n=1

k

bngk−n = ak, k = 1, . . . ,N .

Finally, the numerically implemented friction functions be-
come

�̂�t� = C1
t

1 − t
+ C2 ln�1 − t� + C4

1 − t

t
ln�1 − t� + PN�t� .

�A1�

For the calculation of the coefficients ai ,bj of the Padé ap-
proximant we use the algorithm provided in Ref. 38.

Having implemented the scalar friction functions, the
implementation of the mobility tensors proceeds by substi-
tuting 
↔�, �↔�, �↔� in the above decomposition of
the friction tensors. This defines the scalar mobility functions
�tt ,�tt ,�rr ,�rr ,�tr ,�dt ,�dt ,�dr. Using Eq. �8� the dimension-
less scalar mobility functions can be calculated from the sca-
lar friction functions,

�̂tt = 1/�̂tt, �̂tt =
�̂rr

�̂tt�̂rr − �4/3���̂tr�2
,

�̂rr = 1/�̂rr, �̂rr =
�̂tt

�̂tt�̂rr − �4/3���̂tr�2
,

�̂tr = −
4

3

�̂tr

�̂tt�̂rr − �4/3���̂tr�2
,

�̂dt = − �̂dt�̂tt, �̂dt = − �̂dt�̂tt − �̂dr�̂tr,

�̂dr = −
3

4
�̂dt�̂tr − �̂dr�̂rr.

In Fig. 12 we use our implementation to plot the eight di-
mensionless mobility functions.

The limit of an unbounded flow corresponds to t→0 and
results in


tt = 6�RI, 
rr = 8�R3I, 
tr = 
rt = 
rd = 
td = 0,

�A2�

where I is the unity matrix. Thus Eq. �5� reduces to

FH = 6�R�U − U��, TH = 8�R3�� − ��� , �A3�

which are the well-known Stokes laws for the friction force
and torque exerted on a sphere moving in a fluid with rela-
tive velocity U−U�. For the linear shear flow considered
here, U�= �̇zex and ��= �̇ey /2.

APPENDIX B: RELATION TO THE SMOLUCHOWSKI
EQUATION

The probability distribution ��X , t� of a Brownian par-
ticle subject to external force/torque F satisfies a continuity
equation �t�+� ·J=0. The probability flux J contains a dif-
fusive and a convective part,22

Ji = − Dij� j� + MijFj� , �B1�

where D and M are diffusion and mobility matrices, respec-
tively, and F is external force. In equilibrium, the flux has to
vanish and the probability distribution has to become the
Boltzmann distribution. This leads to the Einstein relation

FIG. 12. Dimensionless scalar mobility functions. On the left the functions
are plotted vs the dimensionless parameter t. On the right the functions are
plotted vs 1− t, thus better illustrating the asymptotic behavior for t→1.

095103-14 C. B. Korn and U. S. Schwarz J. Chem. Phys. 126, 095103 �2007�

Downloaded 07 Mar 2007 to 147.142.186.54. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



D=kBTM, which is a special case of the fluctuation-
dissipation theorem. Using Eq. �B1� and the Einstein relation
in the continuity equation leads to the Smoluchowski
equation39

�t� = �i�Mij�kBT� j� − F j��� . �B2�

We will now derive the equivalent Langevin equation. In the
case of constant mobility �additive noise�, e.g., Mij =�ij, the
appropriate Langevin equation is given by

�tXt = MF + gt
S, �B3�

where gt
S is a Gaussian white noise term and the Stratonovich

interpretation is used as explained in the main text. However,
if M depends on X �multiplicative noise�, an additional drift
term occurs in the Langevin equation

�tXt = MF + kBTY + gt
S. �B4�

The following derivation of the drift term Y proceeds in two
steps.39 First we perform a coordinate transformation which
makes the noise additive. In the case of additive noise the
Langevin equation �Eq. �B3�� and the Fokker-Planck equa-
tion �Eq. �B2�� are equivalent. Then starting from the
Fokker-Planck equation in the new coordinates, we perform
the transformation back to the old coordinates. Requiring the
transformed Fokker-Planck equation to be of the same form
as in Eq. �B2� determines the drift term Y.

As we use the Stratonovich interpretation for the noise
process the usual rules for differentiation and integration ap-
ply and we can perform the following coordinate transforma-
tion:

X� = �X�t�

S�X��dX�, �B5�

with some regular matrix S. The Langevin equation for the
transformed coordinates then reads

�tXt� = S�tXt = SMF + kBTSY + Sgt
S. �B6�

From the requirement that Mij� =�ij, that is,

�SgtSgt = 2kBTE, Eij ª �ij , �B7�

we can fix S to be the inverse of a matrix B with

S = B−1, M = BBT ⇔ Mij = BikB jk. �B8�

As M is a symmetric positive definite matrix, it is always
possible to find a matrix B with M=BBT. Defining

F� ª BTF + kBTSY, g̃t
S
ª Sgt

S = B−1gt
S, �B9�

the new Langevin equation for the primed coordinates and
with additive noise reads

�tXt� = M�F� + g̃t
S. �B10�

The corresponding probability distribution ���X� , t� is the
solution of the Smoluchowski equation

�t���X�,t� = �k��ki�kBT�i��� − Fi���� . �B11�

Next we transform Eq. �B11� back to the unprimed coordi-
nates. The preservation of probability requires that

���X�,t� = J��X,t� , �B12�

where J is the Jacobian of the coordinate transformation,40

J ª det� �Xi

�Xj�
	 = det�B�,

�Xi

�Xj�
= Bij . �B13�

Inserting Eq. �B12� into Eq. �B11� gives

�t�� = J�t� = �k��kBT�k��� − Fk����

= kBT�k��k�J� − �k�Fk�J� . �B14�

Dividing by J we obtain for the first term on the right hand
side of Eq. �B14�

J−1�k��k�J� = J−1��k��k�J�� + 2J−1��k�J��k�� + �k��k��

= � j�B jkBlk�l� + B jk��lBlk��� .

Here we made use of the identities

J−1��J = �BT, J−1�i�J = � jB ji, �� = BT � ,

J−1�i�� j�J = J−1�i��JJ−1�� j�J

= J−1��i�J�J−1� j�J + �i��J
−1� j�J�

= ��kBki��lBlj + Bli�l�kBkj . �B15�

Again using the identity �Eq. �B15�� the second term of the
right hand side of Eq. �B14� can be evaluated to be

J−1�k�Fk�J� = J−1��k�J�Fk�� + �k�Fk�� = � j�B jkFk��� .

Adding both terms and inserting the definitions �Eqs. �B8�
and �B9��, we have

�t� = � j�kBTM jl�l� + kBTB jk��lBlk�� − M jlFl

− kBTY j�� .

Comparing this with the required result �Eq. �B2��, we can
read off Y,

Y = B � BT, Yi = Bik��lBlk� .

Finally, shifting �tXt→�tXt−U�, we obtain the Langevin
equation as given by Eq. �12� combined with Eq. �13�.

APPENDIX C: EULER ALGORITHM FOR A SPHERE
ABOVE A WALL

In order to solve Eq. �14� numerically we use an Euler
algorithm. As the physical situation requires to use the Stra-
tonovich interpretation of the noise term gt

S, the displacement
�X of a particle from time t to time t+�t depends on the
position of the particle at time t+ �1/2��t, which is not
known at time t. As usual, this problem is solved by rewrit-
ing the Langevin equation in the Itô version. Then the noise
term can be evaluated at time t and as a compensation an
additional drift term �l�Bik�Blk is added to Eq. �14�.22 Be-
cause Bkl

T �l�Bik�+Bik�l�Bkl
T �=�l�BikBkl

T �=�lMil, we arrive at
Eq. �15�. In this equation, the random displacements g��t�
must satisfy
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�g��t� = 0, �g��t�g��t� = 2M�t . �C1�

Following Ref. 23, gi��t� is calculated from a weighted sum
of normal deviate random numbers x̄i→ �xi� satisfying �xi
=0, �xixj=2�ij�t. This sum is given by

gi��t� = �
j=1

i

Bijx̄ j ,

where the weighting factors are the elements of the matrix B
defined in Eq. �B8�. They can recursively be calculated ac-
cording to

Bii = �Mii − �
k=1

i−1

Bik
2 	1/2

,

Bij = �Mij − �
k=1

j−1

BikB jk	�B j j,i � j ,

Bij = 0, i � j .

In the case of a sphere above a wall we obtain the following
dimensionless weighting factors �see Ref. 41�:

B̂11 = ��̂tt, B̂22 = ��̂tt, B̂33 = ��̂tt,

B̂42 = − B̂51 = −
3

4

�̂tr

��̂tt
, �C2�

B̂44 = B̂55 =
3

4

1

��̂tt
�4

3
�̂tt�̂rr − ��̂tr�2	1/2

�� 3

4�̂rr
,

B̂66 =
1

2
�3�̂rr. �C3�

As pointed out in Ref. 42, using the Euler method, instead of
normal deviate random variables, any uncorrelated random
variable x̄i→ �xi , i=1, . . . ,6� can be chosen, as long as they
fulfill the required relation for the first moments �xi=0,
�xixj=2�ij�t. Thus, it is much faster to generate the random
numbers according to x̄i=�12�t��i−0.5�, with �i , i=1, . . . ,6
being uncorrelated random variables uniformly distributed in
�0,1�. For the calculation of the random numbers we use the
pseudo-random-number generator RAN3 from Ref. 38

Calculating the new configuration after each time step
using Eq. �16� is straightforward for the spatial degrees of
freedom. For the update of the orientation of the sphere we
use a coordinate system spanned by three orthonormal basis
vectors �ni � i=1,2 ,3; �ni� j =�ij�. The origin of this coordinate
system shall be identical with the center of mass of the
sphere and the relative orientations of this system and of the
sphere are kept fixed. Given then an orientation update form
�Eq. �16�� �ª ��X4 ,�X5 ,�X6�, we decompose each of the
basis vectors ni into a component parallel to � denoted by n�

and a component perpendicular to � denoted by n� �the in-
dex i is dropped for the sake of simplicity�. These compo-
nents are given by

n� = �̂��̂ · n�, �̂ ª �/��� ,

n� = n − �̂��̂ · n� .

Then the orientation update affects only n� and the updated
n� is given by �with �ª ����

ni� = �̂��̂ · ni��1 − cos �� + ni cos � + �̂ � ni sin �,

i = 1,2,3. �C4�

APPENDIX D: REDUCING THE SYSTEMATIC ERROR
IN MEAN FIRST PASSAGE TIME ALGORITHM

Applying the Euler algorithm �Eq. �16�� to a mean first
passage time problem gives rise to two sorts of errors. First
there exists the statistical error, which is proportional to
1/�N, where N is the number of iterations the algorithm is
applied. The extent of the statistical error of the measured
mean value can be calculated during the simulation. For the
measurements performed in Secs. VII and VIII, typically N
=104–105 iterations were chosen resulting in statistical er-
rors in the range of �1%. Error bars in these sections refer to
the statistical error.

The systematic error for the mean first passage time cal-
culated by the use of an Euler algorithm scales with ��t,
although the error of the particle position is only of the order
of �t.42 Thus to decrease the systematic error by a factor of
10 one must increase the numerical cost by a factor of 100.
One way to obtain accurate results at moderate numerical
cost is to measure the mean first passage time for various
intermediate numerical time steps. Fitting these results to a
+b��t allows the extrapolation to �t→0. Figure 13 shows
an example where this procedure was applied to the case of
homogeneous coverage as considered in Sec. V. The result-
ing mean first passage time then deviates by 0.2% from the

FIG. 13. The mean first passage times for Pez=100, z1=1.001, z0=2 as a
function of the numerical time step. The points are the results from simula-
tion experiments �error bars denote their statistical error� with N=105 itera-
tions. The full line is a fit to a+b��t using the GNUPLOT implementation of
the nonlinear least-squares �NLLS� Marquardt-Levenberg algorithm. Ex-
trapolating the fit to �t→0 reduced the systematic error due to the finite
time step.
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value obtained from the quadrature of Eq. �22�. This is the
same accuracy as we have for the implemented mobility
functions themselves �see Appendix A�.
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