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Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin
cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly
clear that the reversible nature of protein assembly is also an essential element for their biologi-
cal function. Here we introduce a computational approach for the Brownian dynamics of patchy
particles with anisotropic assemblies and fully reversible reactions. Different particles stochasti-
cally associate and dissociate with microscopic reaction rates depending on their relative spatial
positions. The translational and rotational diffusive properties of all protein complexes are evalu-
ated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures
detailed balance for patchy particles. We then show how the macroscopic rates follow from the mi-
croscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for
which we find excellent agreement between simulation results and a macroscopic kinetic descrip-
tion without any adjustable parameters. This demonstrates that our approach correctly accounts for
both the diffusive and reactive processes involved in protein assembly. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4873708]

I. INTRODUCTION

Assembly of biomolecules into supramolecular com-
plexes is at the heart of many biological processes and the dy-
namic interplay of the different components leads to biologi-
cal functionality. The most important type of self-assembling
biomolecules are proteins. Although they often have a globu-
lar shape, protein assemblies can be strongly anisotropic due
to the localized binding interactions between the proteins.
Like biological systems in general, protein assemblies are op-
erative on many different scales. Their size ranges from the
nanometer-scale (for example, for two-component complexes
like Barnase and Barstar1) through tens of nanometers (for
example, for viruses, which typically consist of small mul-
tiples of 60 components2, 3) up to the micrometer scale (for
example, the mitotic spindle4–6). Even in steady state most bi-
ological complexes remain highly dynamic, with association
events being balanced by dissociation events. Prominent ex-
amples are nuclear pore complexes7–9 or focal adhesions.10–12

Another important example for the dynamic nature of bio-
logical complexes are actin filaments,13–15 which are called
living polymers due to their continuous exchange dynamics.16

Similar to the broad range of length scales, association rate
constants observed in biological systems span a wide spec-
trum ranging from <103 M−1 s−1 up to >109 M−1 s−1.17 The
highly dynamic nature of biological assemblies as well as the
large range of involved spatial and temporal scales renders
this physical problem challenging but fascinating.

Interestingly, recent advances in the fabrication of func-
tionalized colloids with directional interactions (patchy par-

a)Electronic mail: ulrich.schwarz@bioquant.uni-heidelberg.de

ticles) make it possible to design elementary building blocks
of micrometer sizes which can be used to self-assemble com-
plexes with new functionality. Experimental techniques rang-
ing from DNA-mediated self-assembly18–21 to entropic de-
pletion interactions22, 23 have been rapidly advancing during
the last decade, thus providing a plethora of possibilities to
fabricate colloidal particles whose shape and interactions can
be controlled in detail. Moreover, external stimuli such as
temperature, light, or pH can be used to control the inter-
particle interactions during the assembly process.24, 25 These
techniques allow for a state- or time-dependent switching of
the interactions and can be used to steer the assembly pro-
cess. Controlling the particle interactions during the assem-
bly process can prevent kinetic trapping resulting in a higher
yield of the desired structure, as has recently been shown in a
computational study for virus assembly.26 To fully exploit the
potential of these techniques, a detailed understanding of the
dynamics of the assembly process (distribution of intermedi-
ates, relevant time scales) is of crucial importance.

Understanding the mechanisms governing chemical reac-
tions has a long tradition in theoretical physics and chemistry.
The most powerful analytical technique in this context is the
Fokker-Planck or Smoluchowski equation, which has been
used early to study bimolecular association based on diffu-
sive motion. This approach was pioneered by Smoluchowski
who first calculated the maximum diffusion-limited reaction
rate for a fully reactive spherical particle.27 An important gen-
eralization of this result was derived by Collins and Kimball28

who studied the effect of finite reactivity by introducing a ra-
diation boundary condition relating the concentration at con-
tact to the reactive flux. Another essential extension is the case
of particles with anisotropic reactivity (patchy particles).29–34

0021-9606/2014/140(18)/184112/15/$30.00 © 2014 AIP Publishing LLC140, 184112-1
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However, most of these generalizations focus on the calcu-
lation of association rates and only a few aim at describing
reversible reactions.35, 36

To study the full dynamics of protein assembly one
needs to consider both association and dissociation processes.
Moreover, even for globular proteins the intermediates formed
during the assembly process are often of highly non-spherical
geometry, thus rendering an analytical treatment of assembly
in the framework of the Fokker-Planck equation very difficult.
In this case computer simulations provide a valuable alter-
native. While detailed molecular dynamics (MD) simulations
have been successfully used to investigate the behavior of a
single molecule in great detail, studying the dynamics of large
protein complexes on biologically relevant time and length
scales is prohibited by the high computational costs of these
simulations. Therefore, coarse-grained models are required
for this case. Brownian dynamics (BD) simulations, the nu-
merical counterpart to the Fokker-Planck equation, have been
extensively used to study bimolecular association kinetics
with realistic protein shapes.1, 37–45 These studies have been
focused mainly on a detailed calculation of association rates
in bimolecular reactions based on realistic protein shapes and
binding interactions. To study reaction dynamics in a large
system consisting of many proteins, various simulation frame-
works have been developed.46 They range from space- and
time-continuous BD simulations as, for example, in the Smol-
dyn framework47, 48 through event-driven tools like Greens
functions reaction dynamics (GFRD),49–51 which is based on
the analytical solution of the Fokker-Planck equation, up to
a space-discretized version of Gillespie’s chemical master
equation approach,52 as for example used in MesoRD.53–55

While these simulation frameworks have been successfully
used to study reaction kinetics on a large scale, they can-
not be used to study the details of assembly processes as
all of these frameworks lack a detailed description of pro-
tein anisotropy, including their shape or directional interac-
tions. To study the assembly of virus capsids as a paradigm of
a biological self-assembly process for which these elements
are essential, coarse-grained MD simulations,56–59 and Monte
Carlo (MC) techniques60–63 have been used. Similarly, the in-
teraction of colloidal particles has been investigated on var-
ious scales with different simulation techniques,21 including
MD simulations,64 MC simulations,65, 66 and BD studies.67, 68

Here we introduce a simulation framework which allows
us to study the spatial and stochastic aspects of protein as-
sembly to large detail and nevertheless is computationally
relatively cheap. In our approach, we combine BD of real-
istic protein shapes with stochastic reactivity for both, associ-
ation and dissociation. Proteins are described as assemblies of
spheres equipped with reactive patches. Their motion in real
and orientation space is based on the overdamped Langevin
equation with an anisotropic diffusion tensor. Inspired by the
notion of an encounter complex,1, 17, 28, 36, 43, 69, 70 we decom-
pose the reaction process into a diffusion and a reaction part.
Upon the diffusive formation of an encounter, two particles
can stochastically react with a microscopic reaction rate and
thus form a bond. Similarly, an existing bond can be disrupted
with a microscopic dissociation rate. We first show how these
microscopic reaction rates can be related to macroscopic, ex-

perimentally measurable rates. We then verify that our al-
gorithm correctly reproduces the macroscopically expected
equilibrium behavior for bimolecular reactions. Finally, we
investigate the assembly of a pentameric ring structure and
compare our simulation results to a macroscopic rate equation
approach. Here we again find excellent agreement between
the stochastic simulations and the macroscopic description if
the macroscopic rates are calculated without any free param-
eter in the correct way that includes both the diffusive and
reactive contributions. These results show the importance of
including spatial and orientational effects as well as realis-
tic diffusion properties to understand the dynamics governing
protein assembly.

II. MODEL AND METHODS

A. Encounter complex

Our simulation approach is based on the concept of
the encounter complex.1, 17, 28, 36, 43, 69, 70 In this concept, a bi-
molecular reaction is decomposed into two steps: the undi-
rected diffusive motion of the two binding partners A and B
until they stochastically reach the encounter state A · B and the
reaction from the encounter state to the bound complex C. In
terms of the free energy landscape the encounter complex rep-
resents a barrier separating the flat diffusive energy landscape
from the reaction funnel. Thus, it is a transient state which
can be characterized by the onset of highly correlated motion
between the binding partners.43 A barrier in the free energy
landscape might arise, for example, due to a necessary rear-
rangement of the binding site or due to a reorganization of the
water layer. In some cases, there might not exist an explicit
barrier, but even then the encounter complex is a helpful the-
oretical concept. Considering the encounter complex as the
“watershed” between diffusion and reaction processes, the bi-
molecular reaction can be split according to the following re-
action scheme:

A + B
k+
⇀↽
k−

C, (1)

A + B
kD

⇀↽
kD,b

A · B
ka

⇀↽
kd

C. (2)

Here k+ and k− represent the overall kinetic rates of the re-
action. In Eq. (2), the binding and unbinding process is split
into a diffusive part represented by the rates kD and kD, b and
a reaction part represented by ka and kd, respectively. Sep-
arating the binding process in free diffusive motion without
steering forces and localized binding requires short-ranged
interactions. Thus, our approach for the simulation of pro-
tein association corresponds to a regime of high salt concen-
tration screening long-ranged electrostatic forces. Indeed this
is a reasonable assumption for physiological salt conditions.
Moreover, our approach can be used to study the assembly of
μm-sized colloids functionalized with reactive patches where
the size of the reactive region is small compared to the parti-
cle size. As we consider a situation in which the interaction
between the proteins is short-ranged and only affects the re-
action probabilities in the encounter state, individual clusters
undergo free diffusive motion without an additional drift term.
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Moreover, here we do not consider hydrodynamic interactions
which also might influence the binding kinetics.

B. Patchy particles

Our simulation system can be decomposed into four el-
ementary structures: proteins, patches, bonds, clusters. Clus-
ters are rigid objects that can consist of a single or of multiple
proteins held together by bonds. Two clusters can react with
each other by bond formation between adhesive patches. A
cluster consisting of multiple proteins can decay into smaller
clusters by bond dissociation. Proteins are described by sets
of non-overlapping, hard spheres approximating their shape.
The proteins are equipped with reactive patches which reflect
the localized binding sites. A patch is defined starting from
a sphere of radius Rp whose center �cp (relative to the pro-
tein) can be chosen independent of the center of the protein.
In addition, each patch is described by an orientation vector �o.
As a simple example for a non-globular protein, in Fig. 1(a)
we schematically show a dumbbell-shaped protein consisting
of two hard spheres in contact. The protein is equipped with
one reactive patch of radius Rp whose center coincides with
the center of one of the steric spheres and is thus shifted by

FIG. 1. Model definition. (a) A dumbbell-shaped protein modeled by two
hard spheres. The protein is covered with a patch of radius Rp whose center
coincides with the center of one of the steric spheres and is thus shifted by
�cp relative to the center of the protein (contact point of the spheres). The
patch has an opening angle of θp around the orientation vector �o pointing
along the long axis of the dumbbell. (b) The encounter between two of the
proteins of (a). Here �r is the center-to-center(ctc)-vector between the proteins
and �rp is the center-to-center vector between the patches. (c) Illustration of
the reorientation processes upon reaction. In a first step, the ctc vectors of the
proteins are aligned with the desired ctc-vectors. In a next step, the projection
of the torsion vectors �t1 and �t2 on a plane perpendicular to �rctc are aligned.
Finally, the clusters are shifted so that the desired relative distance between
the proteins is achieved.

�cp from the protein center located at the contact point of the
steric spheres. The orientation vector �o points along the long
axis of the dumbbell. Using the above definitions, we formu-
late the following set of equations to define the encounter be-
tween two clusters mediated by a pair of patches, compare
Fig. 1(b),

rp ≤ Rp,1 + Rp,2, (3)

acos

( �r · �o1

|�r||�o1|
)

≤ θp,1, acos

(−�r · �o2

|�r||�o2|
)

≤ θp,2. (4)

Equation (3) means that the distance rp between the centers of
the two patches has to be sufficiently small for an encounter
to occur and can be implemented easily in a simulation.
Equation (4) is more complex. It involves the center-to-center
vector �r and not only reflects that the patches are anisotropic,
but also assumes that an encounter only occurs if the two
partners have a favorable orientation relatively to each other
which is defined by the two parameters θp, 1 and θp, 1. In
general an anisotropic protein can be described by multiple
spheres and the center of the patches can be chosen indepen-
dent of the steric spheres, allowing for a variable description
of proteins and their localized interactions.

C. Particle motion

In our approach, particle motion is described by the six-
dimensional, overdamped Langevin equation (Brownian mo-
tion) describing translational and rotational diffusion of an ar-
bitrarily shaped but rigid object:71, 72

∂tXt = gt with: 〈gt 〉 = 0, 〈gtgt ′ 〉 = 2kBT Mδ(t − t ′). (5)

Here Xt is a six-dimensional position vector describing the
position and orientations at time t and gt is Gaussian white
noise. M is the mobility matrix which is calculated on-the-
fly for any cluster shape71–73 following the method of de la
Torre.74 Because intermediates continuously grow and shrink
due to association and dissociation, the diffusive properties
of the involved clusters are continuously changing during a
simulation.

Protein particles are modeled as hard spheres and their
collision requires special attention. In a BD framework, par-
ticle velocities are not defined and thus a ballistic reflection
scheme is not appropriate. Here we treat steric collisions by a
rejection method similar to MC simulations. If a steric over-
lap between two clusters is created during a move step, this
move step is rejected. One method to deal with this situation
would be to repeatedly choose a new position of the two clus-
ters, starting from their original location and orientation, un-
til the move step is accepted. This method leads to incorrect
simulation results as is demonstrated for the example of two
hard spheres in a periodic box in Fig. 2. Here, a histogram
of the distance distribution between the two spheres, scaled
by the volume of a spherical shell, is shown in a range in
which boundary effects are not observed. By choosing a new
position until successful acceptance of the move step (green
histogram), an effective repulsion between the two spheres is
introduced, leading to a depletion zone at small particle dis-
tances instead of the expected uniform distribution. If, instead
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FIG. 2. Rejection methods. The distance distribution of two hard spheres of
radius R = 1 nm in a periodic box of volume Vbox = (8 nm)3 is shown for
two different rejection methods. In the first rejection method (green), new
positions of the particles are chosen (starting from their positions before col-
lision) until no overlap is observed. In the second rejection method (red) the
spheres are set back to their position before the collision. The simulations
were performed at a time-step resolution of �t = 0.1 ns.

of choosing a new position, we set the two clusters involved in
a steric collision back to their original position (and orienta-
tion) before the move step, we recover the expected uniform
equilibrium distribution (shown in red in Fig. 2). Thus, this
method ensures that the correct equilibrium distribution is re-
alized.

D. Local rules

In our approach, clusters are rigid assemblies consisting
of one or multiple proteins. Assuming that the assembly ge-
ometry is determined by unique local interactions, a set of
local rules is necessary to describe the new relative orienta-
tion and position of two reacting clusters.75 These local rules
are encoded in the bond that is formed between the clusters.
Each bond carries the information of the desired center-to-
center (ctc) vector of the two proteins directly involved in the
binding process as well as their relative orientation (torsion
vectors). Upon reaction the two clusters instantaneously flip
into the desired relative configuration. This rule follows from
the assumption that the short-ranged forces involved in the fi-
nal binding step lead to a fast rearrangement on the time scale
of our BD simulation. The reorientation process is schemati-
cally shown in Fig. 1(c). In a first step, the clusters are shifted
and rotated so that the predefined ctc-vector matches the real
ctc-vector. This procedure enforces the correct position of the
two merging clusters relative to each other. In a next step,
the relative orientation of the clusters is corrected by align-
ing the projection of the two torsion vectors on a plane per-
pendicular to the ctc-vector. The necessary rotation and trans-
lation of the clusters is distributed between them according
to their diffusive weights. This means that for a small and
a large partner, essentially only the small partner is moved,
as one expects for physical reasons; for two similarly sized
partners, both are moved to a similar extent. Since all inter-

actions are local (e.g., local patches or constraints on orienta-
tion/torsion), the encounter complex corresponds to a region
in configuration space surrounding the desired relative posi-
tion and orientation. If this region is sufficiently small, the
instantaneous flipping into the correct configuration is com-
parable to the resolution of the BD simulation. Reorienta-
tion of the clusters during the binding process can lead to
a steric overlap either with another cluster or between the
merging clusters. If this is the case, the reaction is rejected
and the old positions and orientations of the clusters before
the move step are resumed. The steric collision of two merg-
ing clusters reflects that during the assembly process incom-
patible fragments can prevent the formation of the desired
structure. For example, if the desired structure encoded by the
local bonds is a ring consisting of five proteins, two ring frag-
ments each containing three proteins cannot bind with each
other.

E. Microscopic and macroscopic rates

In order to implement full reversibility, both reaction di-
rections are treated as stochastic reactions with two corre-
sponding microscopic rates. If the reactive patches of two
clusters form an encounter, specified by the constraints in
Eqs. (3) and (4), they can react with a bond-specific rate k′

a .
Similarly, an existing bond can dissociate with a bond-specific
rate k′

d . Here we assume that the waiting times for association
or dissociation of a bond between two clusters in encounter
are Poisson-distributed, P (t, k′

i) = k′
i exp(−k′

i t), i = {a, d}.
In this case, the probability that no association or dissocia-
tion has occurred after a timestep �t is given by S(�t, k′

i)
= 1 − ∫ �t

0 P (t, k′
i)dt and hence the probabilities for bond dis-

sociation or bond formation are given by50

Passoc = 1 − S(�t, k′
a) ≈ k′

a�t,

(6)
Pdissoc = 1 − S(�t, k′

d ) ≈ k′
d�t.

The approximations used in Eq. (6) are valid if k′
d�t � 1 and

k′
a�t � 1, which is the case throughout this work.

We now show how the microscopic reaction rates k′
a and

k′
d can be related to macroscopic reaction rates. In a macro-

scopic framework, the reaction scheme in Eq. (2) can be inter-
preted as a system of ordinary differential equations describ-
ing the changes in the concentrations cA,cB,cA · B, and cC of
the different species involved in the reaction.69 In this frame-
work, the encounter is understood as a single, intermediate
state connecting the bound complex C and the unbound A and
B particles. The encounter can either react to the final com-
plex with the first order rate ka or decay into two separated
particles with the first order rate kD, b. An encounter can be
formed by the first order decay of cluster C with a rate kd or
by the diffusive association of an A and B particle described
by the second order rate kD. Here kD has the dimension m3/s,
if we consider particle concentrations in 3 dimensions. Using
a steady state approximation of the encounter complex, the
following relations are obtained for the overall forward and
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backward rates and the equilibrium constant:69

k+ = kDka

ka + kD,b

, k− = kD,bkd

ka + kD,b

(7)

⇒ Keq = k+
k−

= kD

kD,b

ka

kd

. (8)

In the case of a diffusion-limited reaction ka 
 kD, b.69 In this
case, the overall forward and reverse rates simplify into the
purely diffusion-limited forward rate k+ ≈ kD and the back-
ward rate k− becomes k− ≈ kD, bkd/ka. In the case that the
reaction is reaction-limited (kD, b 
 ka), the overall forward
rate becomes k+ ≈ kDka/kD, b and the overall backward rate is
k− ≈ kd.

In the framework of the Fokker-Planck equation, two
spherical particles are considered to be in an encounter if they
are in contact.27, 28 Finite reactivity for particles in encounter
was introduced by Collins and Kimball28 in the form of a ra-
diation boundary condition in which the rate κa (termed κ in
Ref. 70 and k in Ref. 28) relates the concentration at contact to
the reactive flux. By comparing the escape probabilities from
the encounter in the Fokker-Planck framework and the macro-
scopic rate equation framework, Shoup and Szabo showed
that κa can be related to macroscopic rates by identifying κa

= kDka/kD, b and Keq = κa/kd .70 Agmon and Szabo derived
the same relation for the equilibrium constant (Keq = κa/kd )
by considering an isolated pair of reactive spheres using a
back-reaction boundary condition.36

Here we show how the microscopic reaction rate used to
describe reactions in our simulation approach can be related
to the reaction scheme in Eq. (2) and to the equilibrium con-
stant (Eq. (8)). Inspired by the work of Shoup and Szabo,70 we
calculate the equilibrium constant for the formation of the en-
counter. In our approach the encounter is defined as a region
in configuration space (Eqs. (3) and (4)) around the desired
relative position in the bound complex instead of a boundary
as commonly used in the Fokker-Planck picture. The config-
uration space of two rigid unbound particles in a periodic box
of volume V can be described by their relative position vec-
tor �r , their center-of-mass vector �R and 2 × 3 angular coor-
dinates �ω1 and �ω2. Assuming free diffusive motion without
reactions all configurations in the two particle configuration
space are equally probable and they only interact by steric re-
pulsion. By using the thermodynamic extremum principle for
the Gibbs free energy, we can relate the equilibrium constant
for the formation of an encounter to the partition sums of the
free molecules zA and zB and to the partition sum of the en-
counter complex zA · B:44, 76

Kenc
eq = kD

kD,b

= (zA·B/V )

(zA/V )(zB/V )
, (9)

zA = zB =
∫

V

d3x

∫
d3ω = V × 4π × 2π, (10)

zA·B =
∫

V

d3R

∫
d3r

2∏
i=1

(∫
d3ωi

)
, (11)

⇒ Kenc
eq =

∫
d3r

2∏
i=1

(
1

8π2

∫
d3ωi

)
=: V �. (12)

For the single molecules all positions and orientations (ne-
glecting the excluded volume) are accessible, resulting in a
factor of V from the integration over the translational degrees
of freedom and a factor of 8π2 from the orientational degrees
of freedom of the rigid molecules. To determine the partition
sum of the encounter complex zA · B, we first integrate out the
center-of-mass coordinate �R of the two molecules resulting in
a factor of V . The boundaries of the remaining integrals over
the relative position coordinate �r and the orientation coordi-
nates �ω1 and �ω2 are determined by the patch definition and
the particle geometries. They follow from Eqs. (3) and (4)
and have to be calculated for every specific case, as will be
discussed in more detail below. The resulting reactive volume
V � is the central concept to relate microscopic and macro-
scopic rates. From Eq. (12), we see that it equals the equilib-
rium constant Kenc

eq .
If we now allow for reactions, not every configuration in

the encounter region is equally populated as some particles
will already react before they explore the inner region of V �.
However, if on average the encounter region is well explored
before an association, we can approximate the real distribu-
tion within V � by a uniform distribution. This approximation
is equivalent to the underlying assumption in the work of Pog-
son et al.77 and Klann et al.78 who introduced a reactive vol-
ume (and an intrinsic association rate78) based on the assump-
tion that the particles are randomly distributed in the box at all
times.

Alsallaq and Zhou used thermodynamic arguments to de-
termine the equilibrium constant for the bound complex.44

However, in contrast to this work we consider all config-
urations within the generalized reactive volume V � as en-
counter configurations. By introducing finite reactivity with
the microscopic reaction rate k′

a with which a bound com-
plex can be formed from the encounter region (see Fig. 3(a)),
our approach can account for reactions which are reaction- or
diffusion-limited, as will be shown below in Sec. III. To study
assembly, this is of great importance as intermediates emerg-
ing during the assembly process can have very different dif-
fusion properties and a reaction that was reaction-limited for
small clusters can become diffusion-limited for larger clus-
ters.

Thus, by identifying the equilibrium constant for the
formation of the encounter with the reactive volume V �

(Eq. (12)) and relegating bond association and dissociation
to the reaction rates, we can identify the reaction rates k′

a and
k′
d in the microscopic framework with the corresponding re-

action rates ka and kd in the macroscopic framework (Eq. (8))
and the equilibrium constant is given by

Keq = kD

kD,b

ka

kd

= V �ka/kd . (13)

In accordance with the work by Shoup and Szabo,70 the rate
κa = V �ka is given by the product of the equilibrium con-
stant for the formation of the encounter complex and the re-
action rate for the formation of the final complex. This rate
can be identified with the reaction rate used by Morelli and
ten Wolde50 (ka in Ref. 50).

While the reactive volume V � = kD/kD,b is sufficient
to predict the correct equilibrium constant (Eq. (13)), the
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FIG. 3. Illustration of the reactive volume V �. The configuration space is
defined by the relative position �r of the particles and the 2 × 3 dimensional
orientation vector ��. (a) In the case of one reactive patch V � corresponds to
the region in configuration space in which two particles are considered to be
in encounter (Eqs. (3) and (4)). (b) For particles with multiple reactive patches
different regions V �

i,j in configuration space correspond to an encounter medi-
ated by one particular patch combination i,j. For identical microscopic rates
ka and non-overlapping V �

i,j the total reactive volume V � between the two
particles is given by the sum over the encounter volumes associated with
each patch combination.

kinetics of the reactions depend on the absolute values of the
diffusive rates kD and kD, b. Thus in order to determine the
macroscopic rates k+ and k− defined in Eq. (7), we need to
evaluate kD. This can be done within our simulation approach
based on an algorithm by Zhou.39 In this algorithm, kD can be
calculated from the survival probability S(t) of two particles
starting in encounter by39, 43

kD = lim
t→∞ κa

S(t)

1 − S(t)
. (14)

Given the diffusive on-rate kD, the diffusive off-rate kD, b can
be simply calculated by kD,b = kD/V � (Eq. (9)).

Any simulation algorithm with underlying reversible dy-
namics needs to satisfy detailed balance. To establish detailed
balance we follow the approach by Morelli and ten Wolde50

who inferred from a detailed balance consideration that the
relative position distribution of two spherical particles prior

to a reaction has to be identical (after renormalization) to
the position distribution of the two particles after dissocia-
tion. For two hard spheres covered with a reactive shell, it has
been argued that detailed balance can be introduced by plac-
ing the two hard spheres according to a radial uniform dis-
tribution within the reactive shell followed by one additional
move step.79 Here we generalize this idea as follows: Upon
the dissociation of two clusters, a new configuration is chosen
uniformly within the encounter region V � followed by a dif-
fusive move step of the two clusters. To establish the uniform
distribution in V � we exploit the time invariance symmetry
of the diffusion propagator. This symmetry ensures that in a
confined volume of the configuration space, a uniform distri-
bution is established as the steady state distribution. As V �

describes a configuration around the desired relative config-
uration of the proteins, we can generate a uniform distribu-
tion without prior knowledge of the exact shape of the reac-
tive volume by performing various “pseudo-diffusion” steps
of the two clusters starting from their predefined relative con-
figuration. These “pseudo-diffusion” steps are confined to the
region V � in the relative accessible configuration space of the
two partners. We call this procedure “pseudo-diffusion” as
the two dissociating clusters are propagated diffusively within
V �, however, the timestep used to establish the uniform dis-
tribution has no physical meaning. This procedure for gener-
ating a uniform distribution within the reactive area does not
depend on the particle or patch geometry. Thus it is especially
suited to study assembly dynamics as parts of the reactive
volume might become sterically blocked during the assem-
bly process. These steric effects are automatically taken into
account with our method. The effect of steric blocking and
its consequences for assembly will be discussed in Sec. III.
Moreover, this method would also remain valid when includ-
ing long range electrostatic interactions. In this case, the dis-
tribution within the encounter complex in equilibrium would
not be uniform. However, the “pseudo-diffusive” motion step
would lead to the expected distribution within V �.

In general, the encounter volume V � has to be understood
as the volume of all two particle configurations resulting in an
encounter between two clusters (see Fig. 3(b)). This means
that for clusters with multiple patches the total encounter vol-
ume V � = ⋃

V �
pi ,pj

where V �
pi ,pj

is the encounter volume be-
tween a pair of patches. In the case of a dissociation of clusters
with multiple patches a uniform configuration in the subvol-
ume V �

pi ,pj
of the patches that formed the bond is realized. If

the different patches have a different microscopic reactivity,
the subvolumes have to be treated separately and the equilib-
rium constant for the complex formation is given by the sum
of the different equilibrium constants for different bonds.

F. Intrinsic association

Proteins with multiple reactive patches can assemble in
structures containing loops. In this case an already connected
cluster can contain open bonds with two patches being in per-
manent encounter due to the geometry of the cluster. These
patches can bind with the internal association rate kintra

a , where
we again assume Poisson-distributed waiting times for the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.206.34.215 On: Mon, 12 May 2014 15:31:48



184112-7 H. C. R. Klein and U. S. Schwarz J. Chem. Phys. 140, 184112 (2014)

bond formation. The bond formation in this case is funda-
mentally different from the above discussed process as no
diffusion is involved. Since clusters are rigid objects, inter-
nal bond formation does not change the shape of the cluster.
Thus it can be considered as an internal process stabilizing an
already existing structure. Given a dissociation rate of kd for
a specific bond, we can relate the internal association rate to
the free energy E of bond formation. For a closed loop con-
taining n bonds, there are n different configurations with one
open bond in the loop and the fraction of the open and closed
loop in equilibrium is given by

popen

pclosed
= nkd

kintra
a

= Zopen

Zclosed
= n

e−βE
⇒ kintra

a = kde
−βE. (15)

Thus, the internal association regulates the fraction of open
and closed loop configurations. In a more realistic scenario,
the dissociation of one bond in a loop will enable an enhanced
internal movement. This will be reflected in an increase in the
entropy which would shift the ratio of open and closed ring
structures towards the open state (smaller kintra

a ). In principle
it should be possible to calculate the change in energy and
entropy upon dissociation of a bond using detailed MD simu-
lations. Such simulations could be used to specify the internal
association rate.

G. Outline of the algorithm

In this part, we will describe the work flow of our algo-
rithm. Once a starting configuration is seeded the following
steps are repeated iteratively. First, every particle is translated
and rotated according to its diffusive properties in the frame-
work of free Brownian motion within a timestep �t. With the
new positions and orientations all clusters with steric overlaps
as well as all clusters participating in a reaction are tagged.
A reaction between two clusters occurs with the bond spe-
cific probability ka�t if they are in encounter. In a next step,
all steric overlaps (including box overlaps if the box is non-
periodic) are corrected by setting the involved particles back
to their original position before the move step. This might lead
to further steric overlaps as a higher order effect. These over-
laps are then also corrected. In this step, clusters tagged for a
reaction click into their predefined relative positions and ori-
entations (see Fig. 1(c)). If a reaction leads to a steric overlap
either between the two merging clusters or with other clusters,
the reaction is rejected and the particles reassume their con-
figuration before the move step. Collisions with other clus-
ters after the reorientations step is a higher order effect in
the concentration of the particles. In dilute systems, especially
for reactive configuration volumes around the desired relative
configuration, this happens rarely. In a next step open, inter-
nal bonds can be closed with probability P acc

intra = kintra
a �t . Fi-

nally, each existing bond can dissociate with the bond specific
probability kd�t. If this leads to two unconnected cluster frag-
ments, the diffusive properties of the fragments are calculated.
Subsequently, a uniform distribution within the encounter vol-
ume V � is realized by “pseudo-diffusive” motion preserving
the encounter followed by one unconstrained diffusion step
of the two clusters. All simulations have been performed at

room temperature T = 293 K and with the viscosity of water
η = mPa s.

III. RESULTS AND DISCUSSION

A. The reactive volume

As discussed in Sec. II E, we can relate the microscopic
rates to the macroscopic equilibrium constant using the con-
cept of a generalized reactive volume V � in configuration
space (Eq. (13)). Here we introduce a model system in which
it is possible to analytically calculate V � and show that the
results from our MC scheme (Eq. (17)) agree well with the
analytical results. In this model system, a protein is described
by one hard sphere of radius R equipped with one polar patch
as depicted in Fig. 3(a). The patch is centered at the origin
of the protein. It has a radius of Rp and an opening angle
of θp ∈ [0, π ] around the z-axis of the proteins. With our
definition of the encounter complex for two such particles
(Eqs. (3) and (4)), we can analytically calculate V � by decom-
posing the radial and orientational part, similar to the potential
model proposed by Kern and Frenkel,80

V � = V �
rad × V �

ori

V �
rad = 4

3
π ((Rp)3 − R3), (16)

V �
ori =

(
1

4π

∫ 2π

0
dφ

∫ θp

0
sin(θ )dθ

)2

= 1

4
(1 − cos(θp))2.

The square in the orientation part arises from the fact that we
have to consider two independently rotating particles and only
if the orientation of both particles is correct, an encounter is
reached (see Eq. (4)). For θp = π the orientation constraint
vanishes and the spherical result is recovered.

As analytically calculating the reactive volume is only
feasible for some special geometries, it can be numerically
pre-calculated for the elementary assembly blocks using a
MC integration scheme. In this scheme, we sample differ-
ent configurations by randomly positioning two clusters with
random orientations in a periodic box of volume Vbox. We re-
peat this procedure N times and can estimate V � by counting
the fraction of trials n = Nencounter/Ntotal that result in an en-
counter configuration. Then we simply have

V �
MC = nVbox. (17)

In Fig. 4, the configuration space volume V � for two iden-
tical, spherical proteins equipped with a polar patch (R = 1
nm and Rp = 1.1 nm) is shown as a function of the open-
ing angle θp. Comparing the analytical result (black line) and
MC simulation (Eq. (17)) we see that our simple MC scheme
correctly estimates V �. For proteins equipped with multiple,
non-overlapping patches which can bind with each other via
different patch combinations, we have to distinguish between
the encounter volume V �

pi ,pj
of two specific patches pi and pj

and the total encounter volume V � of two proteins. The to-
tal configuration volume V � is given by the union of all vol-
umes V �

pi ,pj
for the encounter of two different patches i,j that

can bind to each other. If the encounter volumes of different
patch combinations are disjoint, the total configuration space
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FIG. 4. V � for two identical hard spheres of radius R = 1 nm equipped with
one polar patch of radius Rp = 1.1 nm as a function of the patch angle θp.
The analytical result from Eq. (16) is shown with a dashed line, while the
MC estimates (according to Eq. (17)) are represented by red points with error
bars.

volume for the encounter of two clusters is given by sum-
ming over all V �

pi ,pj
. For multiple, identical patches that can

bind with each other, the total reactive volume V � is given
by multiplying the configuration volume V �

pi ,pj
of one patch

combination with a combinatorial prefactor accounting for the
multiplicity of the different patch configurations if the corre-
sponding volumes are not overlapping in configuration space.

B. Bimolecular reactions

To verify our algorithm and to show the importance of
detailed balance, we first analyze a system with a small num-
ber of proteins only. In detail we consider a situation in which
one particle of type A and NB particles of type B are placed
in a periodic box of volume Vbox. In this case, we can re-
late the concentration cC of the complex C to the fraction of
time tb in which particle A is bound to particle B (pb = tb/(tu
+ tb)), while the concentration cA of particle A can be related
to the fraction of time tu in which A is unbound (pb = tu/(tu
+ tb)). The unbound A particle is surrounded by a concen-
tration of cB = NB/V particles of type B. Here V = Vbox

− Vexcl is the freely accessible volume. For proteins of iden-
tical radius (RA = RB = R) the excluded volume can be ap-
proximated by Vexc = 4πNB(2R)3/3. Thus we can relate the
probability that A is bound to the equilibrium constant of the
reaction by36, 50

Keq = cC

cBcA

= pbound
NB

V

(
1 − pbound

)
⇒ pbound(NB) = KeqNB

KeqNB + V
. (18)

Equation (18) follows from elementary thermodynamic argu-
ments and is valid irrespective of the details of the binding
interactions. In Subsections III B 1 and III B 2, we will show
that the correct equilibrium bound probability is reproduced
with our algorithm for spherically reactive and patchy parti-
cles when appropriately taking the generalized encounter vol-
ume V � into account. We also show that detailed balance is
essential to reproduce pbound from Eq. (18).
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FIG. 5. Equilibrium bound probabilities and radial distribution for spheri-
cally reactive particles. (a) The probability of one A particle being bound to
a B particle is shown as a function of the number of B particles according
to Eq. (18) (black line) for Keq = Vbox. The following parameters have been
used for the simulations: RA = RB = 1 nm, Rp, A = Rp, B = 1.1 nm, θp, A

= θp, B = π leading to V � ≈ = 11.09 nm3 (Eq. (16)). For a given ka

= 10ns−1, the dissociation rate kd is chosen so that V � ka
kd

= Vbox

= 8000 nm3 (Eq. (13)). Circles depict the simulation results obtained with
our algorithm for different time resolutions, while stars correspond to simu-
lations in which detailed balance is violated by placing particles in contact
after dissociation. (b) The normalized radial distribution �t before reaction
(circles) and after dissociation including the additional unconstrained move
step (stars) is shown for two different association rates ka = 10 ns−1 (red)
and ka = 0.1 ns−1(green) with a time resolution of �t = 0.01 ns. The in-
set shows the comparison of the uniform radial distribution established by
“pseudo-diffusive” motion constraint to V � (red points) and the expected uni-
form distribution in a spherical shell (black line).

1. Spherically reactive particles

Here we compare our BD algorithm with the mean field
result (Eq. (18)) for the case of spherically reactive A and
B particles (RA = RB = 1 nm, Rp, A = Rp, B = 1.1 nm, θp, A

= θp, B = π , V � = 11.09 nm3) and show that our algorithm
fulfills detailed balance in this case. Given an association rate
of ka = 10 ns−1 we chose kd so that Keq = V � ka

kd
= V . In

Fig. 5(a), the probability of particle A being bound to par-
ticle B is shown as a function of the number of B parti-
cles NB and compared to the mean field result (black line).
Placing particles uniformly in the reactive shell by “pseudo-
diffusive” motion and allowing for one unconstrained move
step of the two proteins involved in the dissociation accord-
ing to the algorithm described above (circles) leads to very
good agreement between the mean field theory and the sim-
ulation results. Only for a very large timestep �t = 0.01 ns
leading to a large reaction probability of 0.1, a small deviation
between the simulation results and the expected mean field
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theory is observed. On the contrary, violating detailed bal-
ance by placing particles in contact after the dissociation
(stars) leads to an overestimation of pbound and the simula-
tion results cannot be reconciled with the mean field the-
ory. Although reducing the timestep from �t = 0.01 ns to
�t = 0.001ns leads to a modest improvement for the simula-
tion results with contact dissociation, no further improvement
is observed when decreasing the timestep further. This shows
that detailed balance is essential in the dissociation step for
the agreement between simulation results and macroscopic
theory. These findings agree with those obtained by Morelli
and ten Wolde who performed a similar simulation to test their
algorithm.50

In Fig. 5(b), we verify that our algorithm indeed obeys
detailed balance by comparing the radial distribution of par-
ticles before a reaction (circles) and after dissociation (stars)
for two different association rates. Irrespective of the choice
of ka we observe the same radial distribution before reaction
and after dissociation and thus our algorithm satisfies detailed
balance for this quasi-one-dimensional case. In the inset of
Fig. 5(b), we show a histogram of the distance between
two dissociating particles after the “pseudo-diffusive” motion
constraint to V � without the additional, unconstrained move
step of the two particles. Here we see that we are indeed able
to generate a uniform distribution within V � by exploiting the
symmetry of the diffusion propagator as the histogram of the
simulated positions agrees very well with the expected uni-
form distribution.

2. Patchy particles

After verifying that our algorithm reproduces the ex-
pected results for spherically reactive particles, we will now
investigate the effect of anisotropic reactivity and show that
our generalized definition of the reactive volume enables us
to compare our simulation results with the mean field theory,
which is the same as for spherically reactive particles. Here
we consider the same setup as in the previous part with one
particle of type A and NB particles of type B in a periodic box
(RA = RB = 1 nm and Rp, A = Rp, B = 1.1 nm). This time, how-
ever, both particles are equipped with a polar patch (θp = π /4)
allowing only for an association of two particles if the patches
are sufficiently aligned with the ctc-vector of the proteins
(Eq. (4)). In this case, the reactive volume reduces to V �

= 0.23 nm3 according to Eq. (16). Given the reactive volume
V � and the association rate ka = 10 ns−1, we again choose
kd in such a way that Keq = V . The comparison between the
simulation and mean field theory is shown in Fig. 6. By using
the appropriate scaling with the generalized volume V � for the
patchy particles, we observe perfect agreement of the mean
field results from Eq. (18) (black line) with the simulation re-
sults when placing the particles according to the proposed de-
tailed balance algorithm (circles). When placing the particles
in contact (alignment of patch orientation with ctc-vector and
radial contact), we drastically overestimate the bound prob-
ability (stars). Compared to the spherical case (Fig. 5), this
overestimation of pbound is much stronger. Thus, in the case
of localized reactivity it is even more important to carefully
consider the relative position and orientation of dissociating
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FIG. 6. Equilibrium bound probabilities for patchy particles. The probability
of one A particle being bound to a B particle is shown as a function of the
number of B particles according to Eq. (18) (black line) for Keq = Vbox. The
mean field theory is independent of the specific particle details. The following
parameters have been used for the simulations: RA = RB = 1 nm, Rp, A = Rp, B

= 1.1 nm, θp, A = θp, B = π /4 leading to V � ≈= 0.23 nm3 (Eq. (16)). For
a given ka = 10 ns−1 the dissociation rate kd is chosen so that V � ka

kd
= Vbox

= 8000 nm3. Circles show the results of our algorithm for various timesteps,
while stars correspond to simulations in which detailed balance is violated
by placing particles in contact and with perfect alignment of the patches after
dissociation.

proteins. Moreover, our results confirm the relation between
microscopic rates and the macroscopic equilibrium constant
given in Eq. (13).

In Fig. 7, we again show the distribution of the rela-
tive position and orientation of two particles equipped with
a polar patch before a reaction and after dissociation. Here
φ corresponds to the angle between the orientation vectors
of the patches and r is the distance between the centers
of the two particles. Due to the symmetry of the particles
around the z-axis these two parameters provide a good de-
scription of the relevant configuration space. The normalized
probability distribution p(r, φ)/(4πr2 × 2πsin(φ)) is shown
for two microscopic association rates ka = 0.1 ns−1 (Fig. 7
upper part) and ka = 10 ns−1 (Fig. 7 lower part) at a time
resolution of �t = 0.01 ns−1. In the left part of Fig. 7,
the distribution before reaction is shown, while in the right
part the corresponding distribution after dissociation is de-
picted. As expected the distribution has its maximum for par-
ticles in contact and anti-parallel aligned patch orientations
(r = 2.0 nm and φ = π ). Although the distributions fluctu-
ate more for a smaller association constant (Figs. 7(a) and
7(b)), as can be seen by looking at the contour lines, very
good agreement between the distribution before association
and after dissociation is observed for both association param-
eters. This shows that our algorithm maintains detailed bal-
ance in this case of non-spherical reactivity. Changing the
association rate by two orders in magnitude does not affect
the distributions suggesting that our algorithm works well for
a large spectrum of microscopic parameters. This first ex-
ample of non-spherically reactive particles shows that it is
essential to appropriately scale the macroscopic parameters
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FIG. 7. Histograms of the particle positions before reaction and after dis-
sociation as a function of the relative distance r and the angle between the
orientations of the two patches φ. This histogram has been weighted by the
generalized bin volume (4πr2 dr × 2πsin (φ)dφ). Several contour lines are
shown for better comparability. In (a) and (c), the distribution of particle po-
sitions before a reaction is shown for ka = 0.1 ns−1 and ka = 10 ns−1, respec-
tively. In (b) and (d), the corresponding distributions of particle positions after
dissociation is shown. The distributions have been recorded with a timestep
resolution of �t = 0.01 ns.

using the concept of a generalized reactive volume in config-
uration space. Moreover, careful consideration of the relative
position and orientation of the dissociating particle is neces-
sary to obtain quantitative agreement between BD simulations
and mean field theory or experimental results.

C. Beyond bimolecular reaction: Assembly
of a pentameric ring

In this section, we analyze the assembly of a pentameric
ring structure consisting of 5 proteins (Fig. 8(b)) as an exam-
ple of an assembly process involving more than two partners.
As elementary building blocks we consider spherical proteins

FIG. 8. Simulation of the assembly of a pentameric ring structure. (a) Ele-
mentary spherical building block of radius R = 1 nm for the pentameric ring
equipped with two patches. The angle between the centers of the patches is
determined by the desired ring structure. Each patch has an opening angle of
θp = π /5 and a radius of Rp = 1.1 nm. (b) Fully assembled ring structure.
(c) Simulation snapshot of a typical box containing 500 proteins.

of radius R = 1 nm, each equipped with two reactive patches
(Fig. 8(a)). The patches are centered at the origin of the pro-
tein and both have a radius of Rp = 1.1 nm and an opening
angle of θp = π /5. The geometry of the ring is reflected in
the different orientation vectors �o associated with each patch,
and the relative position and orientation of the proteins are
encoded in the bond structure.

Here we develop a rate equation approach based on a
set of ordinary differential equations (ODEs) to describe the
changes in concentration of the different fragments sizes. We
demonstrate how the macroscopic reaction rates can be calcu-
lated from the microscopic reaction parameters and diffusive
properties of the intermediates. The parameter free compari-
son of our simulation results with the rate equation predictions
shows excellent agreement. This demonstrates that we are in-
deed able to predict macroscopic reaction rates from our sim-
ulations taking into account changes in diffusive properties
of the assembly intermediates as well as steric effects arising
during the assembly process.

1. Macroscopic rates

In Eq. (7), the reaction rates k+ and k− are given in the
case of a bimolecular reaction. We now specify the macro-
scopic rates k

i,j
+ and k

i,j
− for the reaction between two ring

fragments with i and j proteins. These rates are given by

k
i,j
+ =

k̃
i,j
+︷ ︸︸ ︷

k
i,j

D ka

k
i,j

D,b + ka

(
1 − 1

2
δi,j

)
, (19)

k
i,j
− = k

i,j

D,bkd

k
i,j

D,b + ka︸ ︷︷ ︸
k̃

i,j
−

(2 − δi,j ). (20)

Here k
i,j
+ describes the association of two ring fragments of

size i and j. As the diffusive properties and the accessible
reaction volume change with the size of the fragments k

i,j
+

is different for different combination of fragments, albeit the
microscopic reaction rate ka remains constant. For the reac-
tion of identical particles the macroscopic rate is reduced by
a prefactor of 1/2 compared to the simulation rate ka. This re-
flects the fact that for reactions of identical components (A +
A → C) the observed macroscopic rate is by a factor of 1/2
smaller than the rate used in the simulation due to the number
of collisions being proportional to NA(NA − 1)/2!.47, 52 k

i,j
− de-

scribes the macroscopic dissociation rate of a cluster of size i
+ j into two ring fragments of size i and j, respectively. To de-
termine the macroscopic reaction rates given in Eqs. (19) and
(20) we need to calculate the diffusive on- and off-rates k

i,j

D

and k
i,j

D,b = k
i,j

D /V �
i,j which change for different combination

of fragments. Here V �
i,j is the configuration volume associated

with the reaction of two fragments of size i and j.
The reactive volume for two different fragment configu-

rations i and j can be calculated by MC sampling as has been
described in Eq. (17). The resulting volumes V �

i,j for two frag-
ments of size i and j are shown in Table I. For the reaction of
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TABLE I. Generalized reactive volumes V �
i,j in nm3 for the encounter of

different ring fragments calculated by MC sampling according to Eq. (17)
and analytically according to Eq. (16) for V �

1,1, respectively.

Size 1 2 3 4

1 0.40 0.40 0.40 0.24
2 0.40 0.40 0.36 . . .
3 0.40 0.36 . . . . . .
4 0.24 . . . . . . . . .

two monomers the reactive volume V �
1,1 can also be evalu-

ated by using Eq. (16) for the encounter of one specific pair
of patches. Taking into account the multiplicity of bond in-
teractions 22 results in a total encounter volume of V �

11 = 0.4
nm3. While fragments not combining into a full ring (i + j
< 5) have the same configuration volume as the monomeric
fragments, the configuration volume for fragments that can
combine into a full ring is reduced. This reflects the fact that,
independent of the particle geometry, the encounter volume
and thus the number of configurations in this volume remains
unchanged, unless parts of the reactive volume become steri-
cally blocked, which is the case for fragments that can assem-
ble into the full ring structure. Moreover, for these fragments
some configurations with a simultaneous overlap of differ-
ent patch combinations exist. As the encounter volumes for
different patch combinations are not disjoint in this case, the
total encounter volume is smaller than the sum of the sub-
volumes. These effects are naturally included in our simu-
lation algorithm and for the simulations only knowledge of
the reduced volume for the basic building blocks V �

1,1 is re-
quired. However, in order to compare our simulation results to
a macroscopic rate equation approach, we need to determine
the changes in the encounter volumes for different assembly
intermediates.

Moreover, in order to capture the reaction kinetics with
the above defined rates, we need to determine the diffusive
on-rates k

i,j

D . In order to calculate the diffusive on-rate k
i,j

D , we
follow a scheme which was originally proposed by Zhou.39

Here, two ring fragments of size i and j are initially placed in
a random configuration in encounter (e.g., a random configu-
ration within V �

i,j is chosen). Starting from this configuration
the two fragments are propagated diffusively within our sim-
ulation framework. If the two fragments form an encounter,
they can react with the probability ka�t. In this case the run is
terminated. By recording the survival probability Si, j(t) (the
fraction of runs which survive until time t) k

i,j

D can be esti-
mated according to Eq. (14) with κ

i,j
a = kaV

�
i,j . In order to

calculate Si, j(t → ∞) we use a microscopic reaction rate of
ka = 1 ns−1 and an adaptive timestep scheme with a mini-
mum timestep of �tmin = 0.01 ns which ensures that all steric
collision and encounters are detected on the resolution of the
minimum timestep.39 The diffusive off-rate for the decay of
a fragment into two smaller fragments of size i and j is given
by k

i,j

D,b = k
i,j

D /V �
i,j . The absolute values for the different ring

fragments are given in Table II. As fragments with (i + j)
> 5 cannot combine with each other due to steric collisions,
the diffusive on-rate in this case is k

i,j

D = 0.

TABLE II. Diffusive on-rates kD for different ring fragments in nm3/ns.
The rates have been calculated from the survival probabilities of fragments
starting in a encounter according to the algorithm proposed by Zhou39 with a
minimum timestep resolution of �t = 0.01ns.

Size 1 2 3 4

1 3.29 2.69 2.15 1.17
2 2.69 2.03 1.52 . . .
3 2.15 1.52 . . . . . .
4 1.17 . . . . . . . . .

2. Macroscopic rate equation approach

After having defined the macroscopic reaction rates for
the association and dissociation of different ring fragments
(Eqs. (19) and (20)) we will now introduce a system of ODEs
to describe the changes in concentration ci of a ring frag-
ment of size i. This description assumes that the system is
homogeneous and well mixed at all times. Stochastic fluctua-
tions arising from the finite number of proteins are neglected.
While for ring fragments containing less than 5 proteins only
one state exists, two states exist for the full ring: an open ring
with 4 bonds and a closed ring with 5 bonds. The closed ring
can be considered as an internal state as the last bond forma-
tion in our framework does not involve any diffusion and it is
connected to the open state by the internal association rate
kintra
a (see Eq. (15)). The concentration of the open state is

denoted by c5, while the concentration of the closed state is
denoted by c�

5. The changes in concentration for a ring con-
sisting of N proteins can be described by the following set of
ODEs:

ċi = −
N−i∑
l=1

k
i,l
+ (1 + δi,l)cicl −

i−1∑
l=1

l≤i−l

k
l,i−l
− ci − kintra

a δi,NcN

+
i−1∑
l=1

l≤i−l

k
l,i−l
+ clci−l +

N−i∑
l=1

k
i,l
− (1 + δi,l)cl+i + Nδi,Nkdc

�
N

(21)

= −
N−i∑
l=1

k̃
i,l
+ cicl −

i−1∑
l=1

k̃
l,i−l
− ci − kintra

a δi,NcN

+ 1

2

i−1∑
l=1

k̃
l,i−l
+ clci−l + 2

N−i∑
l=1

k̃
i,l
− cl+i + Nδi,Nkdc

�
N (22)

ċ�
N = − Nkdc

�
N + kintra

a cN . (23)

In our case N = 5. Equation (21) shows the different processes
which lead to a change in the concentration of a fragment con-
taining i proteins. The first three terms lead to a decrease in
concentration. The first term describes the change in concen-
tration due to the reaction of a fragment of size i with another
fragment of size l. If i = l, a twofold decrease in concentra-
tion ci is observed. The second term describes the change in
concentration due to the decay of a fragment of size i into two
fragments of size l and i − l. To prevent the double counting of
dissociation events the constraint l ≤ i − l for the summation
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is used here. In the third term, the internal bond formation
from the open to the closed state is described. Similarly in the
last three terms all contributions which lead to an increase in
concentration ci due to association and dissociation processes
are described. In Eq. (23), the dynamics of the closed pen-
tameric ring state is separately described. In the derivation of
Eqs. (22) from (21) the symmetry of the matrices k

i,l
± = k

l,i
±

has been exploited. The above described set of ODEs obeys
mass conservation (

∑
i(ci + δi,5c

�
5)i = const.). Thus, one of

the concentrations could be eliminated as it is dependent on
the other concentrations.

3. Comparison between rate equations
and BD simulations

After having defined the macroscopic rate equation ap-
proach for the changes in fragment concentrations in Eq. (22)
we will now compare our BD simulation results to the macro-
scopic rate equation approach. As all macroscopic rates are
fully specified by the microscopic parameters (Eqs. (19) and
(20)), the comparison between the simulation and macro-
scopic theory does not involve any free parameter. For the BD
simulations we randomly position N = 500 single proteins in
a periodic box of size Vbox and record the time-course of the
fragment concentrations. All BD simulations were performed
at a timestep resolution of �t = 0.01 ns and the resulting con-
centrations were averaged over 40 independent trajectories.
For the comparison with the rate equation approach we use
an initial concentration of c0 = c1(t = 0) = N/V . Here V is
the accessible simulation volume which is roughly estimated
from the box volume by V = Vbox − (N − 1)4π (2R)3/3.

In Fig. 9, the evolution of the normalized fragment con-
centrations c̃i = (ci + δi,5c

�
5)i/c0 is shown. The normalized

concentration of a fragment is defined as the concentration ci

weighted by the number of proteins contained in the fragment
and normalized by the initial concentration. The normalized
concentration predicted by the rate equation approach is
shown with solid lines, while the averaged simulation
results are represented by dashed lines. In the left column of
Fig. 9 (Figs. 9(a), 9(c), and 9(e)), a microscopic reaction rate
of ka = 1 ns−1 and a box volume of Vbox = (55 nm)3 are
chosen. As the diffusive off-rates range from k

1,1
D,b ≈ 8.2 ns−1

to k
2,3
D,b ≈ 4.2 ns−1, this assembly process can be con-

sidered as reaction-limited (ka < kD, b). In the case of a
reaction-limited process, the macroscopic off- and
on-rates given in Eqs. (19) and (20) simplify to
k̃

i,j
+ ≈ k

i,j

D /k
i,j

D,bka = V �
i,j ka and k̃

i,j
− ≈ kd . Thus, in this

case the rates only depend on the microscopic reaction
rates and the encounter volume V �

i,j . In the right column
of Fig. 9 (Figs. 9(b), 9(d), and 9(f)) a microscopic asso-
ciation rate of ka = 8 ns−1 is chosen. This 8-fold increase
in the microscopic association rate is compensated by an
8-fold decrease in concentration. In this case the reaction is
strongly affected by diffusion (ka ≥ kD, b) and the macro-
scopic rates crucially depend on the different diffusive on-
and off-rates k

i,j

D and k
i,j

D,b, which vary with the diffusive
properties of the different fragments as can be seen in
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FIG. 9. Comparison of the rate equation approach Eq. (22) (solid lines) and
the BD algorithm (dashed lines). The evolution of the normalized concentra-
tions of the ring fragments c̃i = ici

c0
with c0 = N/V are shown for different

parameters. All simulations were started with N = 500 individual proteins
with a time resolution of �t = 0.01 ns and the simulation results have been
averaged over 40 independent trajectories. The left column corresponds to
reaction-limited assembly with ka = 1 ns−1 and Vbox = (55 nm)3. The right
column corresponds to diffusion-influenced assembly with ka = 8 ns−1 and
Vbox = (110 nm)3 in which the increase in ka is balanced by the decrease in
concentration. In (a) and (b), the result for a reversible reaction with a dis-
sociation rate of kd = 0.0001 ns−1 and without internal bond formation is
(kintra

a = 0.0 ns−1) shown. In (c) and (d), the final ring is additionally stabi-
lized by the formation of an internal bond with rate kintra

a = 0.001 ns−1 (see
Eq. (15)). In (e) and (f), the evolution of the cluster size distribution is shown
for irreversible binding (kd = 0 ns−1).

Table II and a clearly different assembly dynamic is expected.
We will refer to this case as diffusion-influenced assembly.

In Figs. 9(a) and 9(b), the normalized fragment con-
centrations for the assembly with reversible bonds (kd

= 0.0001 ns−1) but without an additional stabilization of the
full ring structure (kintra

a = 0) is shown. Comparing the predic-
tions from the rate equation approach (Eq. (22)) (solid lines)
with the averaged simulation results (dashed lines) we ob-
serve excellent agreement between our simulation results and
the results from the macroscopic rate equation approach in the
reaction-limited regime as well as in the strongly diffusion-
influenced regime. The small deviations between the simula-
tion results and the rate equation approach in Fig. 9(a) can
be explained by our rough estimate for the excluded volume.
This agreement between the two approaches, especially for
the diffusion influenced regime is remarkable and demon-
strates that, by evaluating the relevant diffusive properties of
the fragments, we are indeed able to relate our microscopic re-
action parameters to macroscopic reaction rates that correctly
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reproduce the dynamics of the system. Comparing the equi-
librium distribution of the cluster fragments in Figs. 9(a) and
9(b), we see that indeed the 8-fold decrease in concentration
is balanced by the 8-fold increase in concentration, as it was
expected due to our previous reasoning. However, comparing
the kinetics of assembly we see a clear difference between
Figs. 9(a) and 9(b). In general, the approach towards equi-
librium is slower in Figs. 9(b) than in 9(a). This shows that
we are indeed in a different assembly regime and the change
in concentration is not compensated by the change in ka in
the kinetics of the assembly process. At lower concentration
(Fig. 9(b)) clusters need a longer time to find each other diffu-
sively which is reflected in the slower approach towards equi-
librium.

In Figs. 9(c) and 9(d), the normalized fragment concen-
trations with an additional stabilization of the final ring struc-
ture kintra

a = 10kd = 0.001 ns−1 is shown. As discussed pre-
viously, the internal bond formation can be understood as
an intrinsic process which stabilizes the full ring (Eq. (23)).
The value chosen for the internal association rate corresponds
to a free energy of E ≈ −2.3kBT associated with the bond
formation according to Eq. (15). In Figs. 9(c) and 9(d), the
normalized fragment concentration of the full ring (black
line) is shown irrespective of the number of bonds in the
ring. Comparing the simulation results and the rate equation
approach we again observe very good agreement between
them. Similar to the case without internal bond formation
(Figs. 9(a) and 9(b)), the assembly dynamics at lower con-
centration (Fig. 9(d)) is slower than at higher concentration
(Fig. 9(c)), while the equilibrium steady state remains the
same in both cases. In contrast to the reversible bond for-
mation without additional stabilization of the ring (Figs. 9(c)
and 9(e)) the normalized concentration of the full ring is sig-
nificantly increased by the internal bond formation. Due to
mass conservation the increase in the concentration of the full
ring structure is balanced by a decrease in the concentration
of smaller fragments showing how an additional internal state
can alter the equilibrium cluster size distribution.

Finally, we investigate the assembly dynamics for irre-
versible bond formation (kd = 0 ns−1) for two different mi-
croscopic reaction rates ka corresponding to the regime of
reaction-limited reactions (Fig. 9(e)) and diffusion-influenced
reactions (Fig. 9(f)). Again the simulation results and the rate
equation approach agree remarkably well with each other. By
comparing Figs. 9(e) and 9(f), we again verify that the ap-
proach towards the steady state is much slower in the case of
lower concentration shown in Fig. 9(f). However, in contrast
to the previously discussed reversible bond formation, the
steady state is different in both cases with different fraction
of ring fragments containing 3, 4, and 5 proteins. This reflects
a fundamental difference between the steady state observed
for reversible bond formation and the steady state observed
for irreversible bond formation. In the case of reversible bond
formation the steady state is an equilibrium state in which
dissociation and association events balance each other. This
state only depends on the microscopic reaction rates ka and kD

and the size of the reactive volume V � (Eq. (13)). In contrast
the steady state for irreversible bond formation is a trapped
steady state without any underlying dynamics. In this case of

irreversible bond formation the ring fragments cannot disas-
semble and fragments of size i ≥ 5/2 cannot further assemble
if all smaller fragments have been used up. Thus, in the case
of trapping the final state depends on the kinetics of the as-
sembly. The difference in the two steady states observed in
Figs. 9(e) and 9(f) also shows that the assembly dynamics in
Fig. 9(f) is not only slowed down compared to Fig. 9(e), but
that the different diffusive properties of the cluster fragments
lead to a change in the ratio of the concentration of interme-
diates during the assembly process. In general, larger frag-
ments are diffusing slower than smaller fragments, and hence
the rate for a reaction between two larger fragments is more
strongly affected by diffusion than the reaction rate for two
smaller fragments. In Fig. 9(f), this results in a lower concen-
tration of pentameric rings, as the reaction probability of two
small fragments is less affected by diffusion than the reaction
probability of a smaller and a larger fragment. This leads to
a stronger depletion of small fragments and hence a higher
concentration of trapped ring fragments with 3 or 4 proteins.

IV. CONCLUSION

Biological structures like the actin cytoskeleton13–15 or
the nuclear pore complex7–9 are highly dynamic with their
constituents being continuously exchanged. To understand
the biological functionality of these fascinating systems, a
detailed understanding of the assembly dynamics is crucial.
Moreover, advances in the fabrication of colloidal particles
with directed interactions (“patchy particles”) allow to design
a plethora of differently shaped building blocks with tunable
interactions that can self-assemble into new materials.18–23 To
increase the yield of the desired structures encoded in the lo-
cal particle interactions, kinetic trapping in unfavorable con-
figurations during the assembly process has to be prevented.
Recently, it has been shown that particle interactions during
the assembly process can be actively controlled.24, 25 Thus,
by a state- or time-dependent switching of reactivity the as-
sembly process can be actively steered to reduce kinetic trap-
ping. However, to fully exploit the possibilities of control-
ling the assembly process, a detailed understanding of its full
dynamics with the formation of assembly intermediates is
necessary.

Here we presented a novel simulation approach which
is ideally suited to investigate the dynamics of large pro-
tein assemblies with well-defined architectural properties.
Proteins are represented by (multiple) non-overlapping, hard
spheres equipped with reactive patches. In contrast to most
previous studies on protein assembly,25, 56–63, 66, 67 which rely
on force fields to describe protein interactions, we com-
bine overdamped Brownian motion with the concept of re-
versible, stochastic reactivity for patchy particles. Each clus-
ter is treated as rigid object with its diffusive properties being
evaluated on-the-fly. If the reactive patches of two clusters
form an encounter by force-free diffusive motion, a bond be-
tween the clusters is established with a predefined rate. Local
rules are used to describe the resulting rearrangements, which
are assumed to be very fast on the time scale of the BD simu-
lations. For potential-based simulations, these rearrangements
would proceed due to the corresponding forces, which do not
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exist in our approach. Similar to the association process, the
dissociation process also occurs with a predefined rate. Here
we have derived the rules for the placement of the two part-
ners which are required to satisfy detailed balance.

Together, these rules render our approach very efficient
because complexes formed during the assembly are diffus-
ing as rigid objects (thus reducing the number of degrees
of freedom to be propagated to six) and because interac-
tions are treated locally (as opposed to evaluating potentials).
Nevertheless, the patchy particle approach includes detailed
information on the architecture of protein assemblies, thus
allowing us to study the spatial-temporal dynamics of spe-
cific biological systems of interest. Moreover, we have been
able to show how the microscopic reaction parameters used
in our approach correspond to the macroscopic reaction rates
commonly used to describe the dynamics of the concentration
of assembly intermediates. This allows a direct comparison
between macroscopic, experimentally measurable concentra-
tions and simulation results. To the best of our knowledge,
this is the first time that a BD algorithm combining stochas-
tic reactivity of anisotropic patches with reversible dynamics
that fulfills detailed balance is presented. Testing our algo-
rithm against mean field prediction for the case of bimolec-
ular reactions revealed the importance of satisfying detailed
balance.

As an example for a multi-component cluster, we inves-
tigated the assembly of a pentameric ring. Here we com-
pared our simulation results to a rate equation approach for
the different fragment concentrations. By extracting the dif-
fusive on- and off-rates from our simulations we find excel-
lent agreement between the rate equation approach and our
simulation results even for the case of strongly diffusion-
influenced assembly without any free parameter. We showed
that the assembly dynamics can be significantly changed by
the change in the diffusive properties of the assembly inter-
mediates. In the case of irreversible bond formation the sys-
tem becomes trapped with incompatible ring fragments. In
this case not only the assembly kinetics but also the finally
reached steady state depends on the different diffusive prop-
erties of the assembly intermediates. For complex assembly
geometries trapping is a common motif. Thus, in this case
not only correctly predicted equilibrium structure distribution
of the assembly intermediates is relevant but also the cor-
rectly predicted kinetics of the assembly process as the system
might become trapped before reaching the expected equilib-
rium steady state. By demonstrating how the macroscopic re-
action rates can be calculated from our simulation, we have
developed a framework in which a qualitative prediction of
the changes in the macroscopic reaction rates, based on the
changes of the diffusive properties of the assembly intermedi-
ates, is possible.

Because our approach aims to describe the assem-
bly of large protein structures, the details of individual
bond formations are not resolved within this framework. In
general, the use of local rules requires well-defined target ge-
ometries and the instantaneous local rearrangement accom-
panying stochastic bond formation follows from the assump-
tion that the time scales of assembly and local rearrangements
are well separated. Given the coarse-grained nature of our ap-

proach, the instantaneous rearrangement during binding is a
valid approximation if the encounter volume specifies a nar-
row region around the desired configuration. In the case of
large encounter volumes the assumption of fast and small lo-
cal rearrangements can break down and the use of local rules
needs to be considered with care. In particular, in the case
of higher protein densities or assembly close to a membrane
this can lead to a situation in which physically reasonable
rearrangements are suppressed by our steric rules. In classi-
cal MD or BD simulations with potentials, these rearrange-
ments would be realized due to ensuing mechanical forces.
Typical biological examples for situations which are out of
the scope of our current approach are the bending of a mem-
brane by BAR-proteins,81, 82 the emergence of polymorphic
virus structures83–85 or the assembly of actin networks from
preexisting large fibers.86 In principle, such a situation could
be resolved by using hybrid schemes that interface our ap-
proach with potential-based simulations for local rearrange-
ments. For the time being, however, we focus on the as-
sembly of protein complexes with well-defined architectures,
such as native viruses,87 centrioles,6, 88–90 or actin filaments in
networks growing by incorporation of actin monomers from
solution.14, 86, 91

In the future, our approach can be used to study the
assembly of such complex protein clusters. After we have
successfully verified our approach by comparing averaged
simulation data with macroscopic mean field results, we
now can investigate the stochastic variance inherent to these
self-assembly processes. Our approach is ideally suited to
study the effect of time- or state-dependent changes in reac-
tivity, as has been recently shown in a qualitative study on
the effect on hierarchical assembly in virus capsids.26 More-
over, this approach might also help to design artificial systems
that do not get kinetically trapped in undesired structures. It
can also be coupled with hydrodynamic schemes, in particular
with reactive multi-particle collision dynamics.92
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