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The protein SAS-6 forms dimers, which then self-assemble into rings that are critical for the nine-fold symme-
try of the centriole organelle. It has recently been shown experimentally that the self-assembly of SAS-6 rings
is strongly facilitated on a surface, shifting the reaction equilibrium by four orders of magnitude compared to
the bulk. Moreover, a fraction of non-canonical symmetries (i.e., different from nine) was observed. In order
to understand which aspects of the system are relevant to ensure efficient self-assembly and selection of the
nine-fold symmetry, we have performed Brownian dynamics computer simulation with patchy particles and
then compared our results with experimental ones. Adsorption onto the surface was simulated by a Grand
Canonical Monte Carlo procedure and Random Sequential Adsorption kinetics. Furthermore, self-assembly
was described by Langevin equations with hydrodynamic mobility matrices. We find that as long as the
interaction energies are weak, the assembly kinetics can be described well by the coagulation-fragmentation
equations in the reaction-limited approximation. By contrast, larger interaction energies lead to kinetic trap-
ping and diffusion-limited assembly. We find that selection of nine-fold symmetry requires a small value for
the angular interaction range. These predictions are confirmed by the experimentally observed reaction con-
stant and angle fluctuations. Overall, our simulations suggest that the SAS-6 system works at the crossover
between a relatively weak binding energy that avoids kinetic trapping and a small angular range that favors
the nine-fold symmetry.

I. INTRODUCTION

Proteins are the working horses of biological systems
and their assembly into supramolecular complexes lies at
the heart of nature’s astonishing ability to build struc-
tures with specific functions1,2. Well-known examples
for such functional complexes include the cytoskeleton
made of actin, microtubules and intermediate filaments,
as well as flagella and cilia, clathrin cages, nuclear pore
complexes and viral capsids. For all the above examples,
corresponding mathematical and computational models
have been developed3–5. These models have revealed that
assembly of large protein complexes is a challenging task
due to conflicting requirements. On the one hand, the
function of these complexes usually dictates a desired
target structure, which from a physical point of view has
to be stabilized by a large gain in free energy. On the
other hand, it has been shown that fast assembly driven
by large gains in free energies typically leads to kinetic
trapping and malformed structures, thus rendering the
entire process very inefficient6–8. In the cellular context,
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extrinsic mechanisms of target stabilization might exist,
such as binding of the target structure to other proteins
or post-translational modifications. Yet many important
protein self-assembly reactions have been successfully re-
constituted in vitro with minimal components, demon-
strating that intrinsic mechanisms can be sufficient to
ensure that assembly is both efficient and specific9.
Here we address this central aspect of protein assem-

bly for such a system that has been reconstituted in vitro,
namely assembly of Spindle Assembly Abnormal Protein
6 (SAS-6) into rings. SAS-6 is critical for the formation
of centrioles, which are cylindrical nine-fold symmetric
microtubule-based organelles at the core of centrosomes,
the main microtubule organising centers (MTOCs) of an-
imal cells (Fig. 1a). After cell division, each centrosome
contains a centriole pair. At the G1/S-transition of the
cell cycle, each of the resident centrioles seeds the for-
mation of a nascent centriole orthogonally from a surface
at its proximal end (Fig. 1b). In late G2, the two pairs
migrate to the opposite side of the nucleus, thereafter
forming the poles of the mitotic spindle10. Given its role
in MTOC formation, centrioles are crucial for many es-
sential cellular processes, including cell polarisation, di-
vision and motility11. As might be expected from such
important cellular functions, centriole number misregu-
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lation and structural aberrations have been linked to nu-
merous pathological conditions, including microcephaly,
ciliopathies and cancer12.

Dimers of SAS-6 are the building blocks of the first
structure present in nascent centrioles, namely the so-
called centriolar cartwheel, a nine-fold symmetric ele-
ment formed of a stack of protein rings and peripheral
elements connecting it to the microtubule wall14. The
cartwheel is critical for centriole formation and is instru-
mental in establishing its characteristic nine-fold symme-
try. The presence of SAS-6 is necessary for cartwheel for-
mation; SAS-6 proteins can assemble in vitro into nine-
fold symmetric rings15,16, composed of nine dimers, ex-
actly as in the cartwheel (Fig. 1c). Centrioles of C. rein-
hardtii bearing mutations in CrSAS-6 have symmetries
deviating from the canonical nine-fold, demonstrating
the fundamental role of this protein in contributing to
dictate the structure of the organelle15,17.

At the structural level, SAS-6 is composed of a glob-
ular N-terminal domain and a coiled-coil (CC) domain,
followed by a variable and potentially unstructured C-
terminal moiety (Fig. 1d). The protein dimerizes via
strong interactions among the CC-domains, forming a
homodimer with a globular N-terminal head and a CC-
domain that yields a spoke extending away from the head
domain. The dimers are then able to form larger com-
plexes, including nine-fold symmetrical ring, by means
of weaker yet highly anisotropic interactions between the
N-terminal domains15,16,18.

The dynamics of SAS-6 ring polymerisation has
been visualised and characterised with Photothermal
Off-Resonance Tapping High Speed Atomic Force Mi-
croscopy (PORT-HS-AFM) on mica surfaces. This al-
lowed for the visualisation of single molecule dynamics
with minimally invasive forces, whilst still retaining high
spatial (in the nm range) and temporal (in the second
range) resolution13,19. Combining the PORT-HS-AFM
approach with quantitative image processing, reaction
kinetics and MD-simulations enabled a detailed analy-
sis of the structural and kinetic mechanisms of SAS-6
ring assembly13. Image processing of such data sets is
faciliated by the presence of the long spokes of SAS-6,
which can be used to assign an oligomerization state to
the growing higher order oligomers (Fig. 1e). Plotting
the concentrations of the different intermediates gives a
full kinetic time course of the assembly reaction (Fig. 1f).
These studies showed that SAS-6 self-assembly occurs by
first adsorbing dimers onto the surface; these dimers then
assemble into higher order oligomers (up to ten), includ-
ing closed rings of sizes seven to ten.

It was also shown that the presence of the surface has
a catalytic effect, shifting the equilibrium of the reaction
by four orders of magnitude13. This means that associ-
ation is greatly facilitated on a surface compared to in
solution, an effect that results mainly from the fact that
proteins have a higher encounter probability in two ver-
sus three dimensions. Another important aspect is the
effect of the surface on the structure of the SAS-6 dimers.

MD-simulations showed that SAS-6 oligomers in solution
tend to form a shallow helix, but the surface forces the
complex into a planar structure and thus makes ring clo-
sure possible. Together, these factors help explain why in
a cellular context the nascent centriole is assembled solely
on the surface of the existing centrosome and not in the
cytosol. These results also suggest that SAS-6 rings are
prestressed, which might be important to mechanically
stabilize the centriole. Finally, it should be noted that
the helical structure might contribute to break the rota-
tional symmetry of the centriole.
In order to demonstrate the structural role of the sur-

face in suppressing formation of a helix and stabilizing
rings, all-atom and coarse-grained molecular dynamics
(MD) computer simulations have been used13. However,
this approach cannot access the length and time scales
required to simulate the assembly of entire rings. A stan-
dard approach to this challenge is the use of Brownian
Dynamics (BD) to coarse-grain all fast degrees of freedom
such as collisions with the solvent particles, which then
effectively go into noise terms for the slow degrees of free-
dom. In addition, the protein structure itself is coarse-
grained via suitable models such as patchy particles3,20.
However, even BD might be too computationally costly,
in particular when modelling assembly of protein com-
plexes with many intermediates. One then typically re-
sorts to reaction kinetics (RK), which describe the time
evolution of macroscopic concentrations via ordinary dif-
ferential equations rather than single particles interacting
in time and space. Like for coarse-graining from MD to
BD, coarse-graining from BD to RK requires that one
asks under which conditions this procedure is justified
and under which condition it should be avoided. This
important methodological question is tightly connected
with the biological circumstances under which protein
self-assembly can be efficient due to reversibility, because
only in this case does one expect RK to work well.
Here we address these important questions in the con-

text of SAS-6 ring assembly on a surface as shown
in Fig. 1. In this case, the RK is described by the
coagulation-fragmentation (CF) process, which has been
extensively investigated in applied mathematics and is
widely used for reversible assembly processes in chem-
istry and physics21,22. Adapted to SAS-6 ring assem-
bly with up to ten-rings, which can be either open or
closed, it was possible to fit the solutions of the CF dif-
ferential equations to the PORT-HS-AFM data13. This
was achieved with the reaction-limited version of the CF-
equations, which focuses on the two model parameters
k+ and k−, independently of the sizes of the reacting
oligomers. However, despite its success in describing
the experimentally observed kinetics, the RK-approach
is in principle limited because it does not include the
spatial domain. In particular, it does not account for
the exact nature of adsorption from solution and for the
roles of translational and rotational diffusion on the sur-
face. Thus it is not clear what the limits are of the RK-
approach in this case.
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FIG. 1: (a) Centrosomes are microtubule-organizing centers in animal cells that consist of centrioles. (b) A nascent
centriole grows orthogonally from the surface of a resident centriole. (c) The ninefold symmetry of the centriole

derives from a nonameric ring of SAS-6 dimers. (d) Each dimer has a coiled-coil domain responsible for
homo-dimerization and a N-terminal domain responsible for higher order oligomerization. (e) Snapshot of SAS-6
assembly on a surface as observed by PORT-HS-AFM experiments. Note that for the subsequent image processing

of these experiments, one must use the SAS-6 variant with full spokes, whereas the simulations hereafter are
conducted with shorter spokes. Arrowheads in the inset mark the head (white) and the spoke (green) of one dimer,
respectivley. (f) Time evolution of the concentrations of the differently sized SAS-6 oligomers during ring assembly.
First, SAS-6 dimers are adsorbed onto the surface and then assemble into oligomers up to size ten, including closed
rings from sizes seven to ten. (e) and (f) reproduced under the Creative Commons Attribution 4.0 International

License from13.

In order to test the validity of the RK-model and to
assess the role of the spatial degrees of freedom, one
has to turn to computer simulations in the spatial do-
main, for which BD is most appropriate given the large
size of the system. BD-simulations of patchy parti-
cles have been used before to investigate ring forma-
tion in solution23,24 and have also been applied to the
case of SAS-6 rings25. However, a major limitation of
these previous BD-simulations is the absence of ring size
variability25. Rings such as decamers or octamers, which
deviate from the canonical ninefold symmetry, have been

observed in the PORT-HS-AFM experiments13. Earlier
work on ring formation with patchy particles did not al-
low for such structures and was only concerned with the
stochastic formation of the desired nine-fold symmetri-
cal target structures25,26. In order to allow for ring size
variability, here we opt for a force-based approach previ-
ously used for viral capsid studies6, in which binding oc-
curs via an attractive force resulting from an anisotropic
interaction potential between the binding sites of the pro-
tein. This enables assembly of malformed structures (i.e.,
other than nine-fold) and allows for the evaluation of the
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impact of microscopic parameters, such as the strength
of the interaction or the extent of its anisotropy, on the
relative population of these oligomers.

In order to analyze ring formation on surfaces using the
BD-approach, one not only has to formulate the stochas-
tic equations in two dimensions, but also to include a the-
oretical treatment of dimer adsorption from solution. In
order to achieve quantitative understanding of the SAS-
6 assembly process on a surface with adsorption from
the bulk, we have implemented a grand canonical BD-
procedure for suitably coarse grained interacting SAS-
6 dimers. We decided to model a truncated variant of
the SAS-6 protein containing only six heptad repeats of
the coiled-coil domain, for which the crystal structure
has been solved15 and a coarse-grained computer model
has been developed previously25. This choice allows us
also to focus on the effect of dimer-dimer binding and
to avoid the complications arising from longer spokes.
The shape of the protein is approximated with a finite
collection of spheres, whereas the rapid degrees of free-
dom, such as the collisions with the solvent particles, are
modelled as stochastic noise3. The BD routine is coupled
with a Grand Canonical Monte Carlo (GCMC) algorithm
that accounts for particle exchange with a reservoir. The
reservoir models a bulk solution which is present both in
the PORT-HS-AFM experiments and in a cellular con-
text. The resulting implementation monitors the time
evolution of differently sized complexes and can be com-
pared both to experimental and RK-results. In particu-
lar, this approach allows us to identify the limits of the
RK-approach, that is the CF-equations in the reaction-
limited form, and to investigate if and how the SAS-6
system can strike the balance between reversible assem-
bly and target selection.

II. METHODS

A. Langevin equations and friction matrices

We simulate a two-dimensional fluid contained in a
square box of length L which lies in the xy plane
(Fig. 2a). Proteins in the fluid are able to move and in-
teract among themselves. In addition, the fluid is in con-
tact with an infinitely large protein reservoir with parti-
cle density ρ so that particle exchange via adsorption and
desorption processes is possible. The motion of the par-
ticles in the fluid is described by overdamped Langevin
dynamics, whereas the adsorption process is simulated
via a Grand Canonical Monte Carlo routine.

The trajectory of each protein in the two dimensional
fluid is resolved according to the Langevin equation of
motion in the overdamped limit23,27

~̇x = βD~Fi(~x) + ~G, (1)

where ~x is the coordinate vector of the particle, ~Fi is the
generalized total force arising from protein-protein inter-
actions, ~G is Gaussian noise accounting for rapid degrees

of freedom such as collision with solvent particles, D is
the diffusion matrix and β = 1/kBT . In the two dimen-
sional case the proteins possess three degrees of freedom:
two for their position in the simulation domain, specified
by ~r = (x, y), and one for the orientation angle α. Hence,
all vector quantities in Eq. 1 are three dimensional, and
~x = (~r, α). Similarly, ~F = (fx, fy, τz) contains in-plane
translational forces and an out of plane torque. The dif-
fusion matrix is 3 × 3. If there are N particles on the
surface, the algorithm solves 3N coupled stochastic dif-
ferential equations.
The moments of the Gaussian noise are specified by

the diffusion matrix via the expressions23,27

〈~G〉 = ~0, (2a)

〈~G(t)~G(t′)〉 = 2Dδ(t− t′). (2b)

One therefore requires knowledge of the diffusion matrix
and the interaction forces in order to solve Eq. 1.
The diffusion matrix is naturally defined in the co-

moving frame attached to the protein, also known as
the particle fixed frame (PFF). Although the interac-
tion with the surface changes the diffusion matrix of
molecules in the bulk, we still expect that essential fea-
tures like the relative importance of translation versus
rotation to be similar. The diffusion matrix is therefore
estimated by means of the bead model proposed by de
la Torre and Carrasco28,29 combined with the modified
Kirkwood-Riseman treatment as implemented by de la
Torre and Bloomfield30. This model allows for the com-
putation of the diffusion matrix in the Stokes hydrody-
namic regime for a rigid body composed of N co-moving
spheres. De la Torre implemented these methods in the
HYDRO++ program31 which was here used to compute
the diffusion matrix of SAS-6. In order to do so, the
molecule was coarse-grained with five non-overlapping
spheres (Fig. 2b) following earlier work by Klein25.
The HYDRO++ program yields 36 components in four

matrices of dimension 3× 3 because it considers a three
dimensional molecule in a three dimensional fluid. Since
the algorithm restricts itself to two dimensions, only nine
components out of the 36 entries, corresponding to the
entries of D, are relevant. Moreover, the off-diagonal el-
ements are at least two orders of magnitude smaller than
the diagonal elements, so they can be neglected. The
final diffusion matrix in the PFF is therefore diagonal,
given by

D = diag
(
Dx Dy Dα

)
, (3)

where Dx = 6.621 × 10−7cm2 s−1, Dy = 6.97 ×
10−7cm2 s−1 and Dα = 2.04×106s−1. The full matrix as
predicted by HYDRO++ is reported in the supplemen-
tary material.
Next, the interaction forces are explicitly introduced.

The full coarse grained model in Fig. 2b would be compu-
tationally expensive since one had to check all pairwise
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FIG. 2: (a) The simulated system consists of a two-dimensional fluid contained in a square box of size L with
interacting proteins. The fluid is in contact with a particle reservoir which allows for particle exchange. (b)
Coarse-grained model of a SAS-6 homodimer with six heptad repeats (short spokes) proposed by Klein25,
superimposed with its X-ray structure. This model is used to calculate the diffusion matrix. (c) A second

coarse-grained model with two rather than six beads is used to simulate assembly. In the particle fixed frame, the
y-axis is aligned with the CC-domain. The bigger (red) sphere models the head domain and the smaller (blue)

sphere models the coiled-coil domain. Two patches are placed symmetrically at positions ~p± to act as binding sites,
and the angle γ = 140◦ is set so that perfect alignment of two patch vectors corresponds to the 40◦ angle of a

regular nonagon.

interactions for 5N spheres. Therefore, for the calcu-
lation of interaction forces, SAS-6 is further reduced to
two contacting spheres with two patches as binding sites
(Fig. 2c). The two spheres correspond to the head and
the coiled-coil, respectively, and have corresponding radii
of Rb = 8.5nm and Rt = 3.5nm. A free body diagram of
two interacting proteins is shown in Fig. 3.

Each pair of proteins may experience five types of inter-
action forces: four arising from repulsion between heads
(bb), coiled-coil (tt) and head-coiled-coil (tb and bt), and
an attractive one between patches, which are labelled as
+ or −. For the repulsive interactions, the explicit form
of the potential is given by a Weeks-Chandler-Andersen
function, motivated by studies on viral capsid assembly6

U(rνγij ≤ 21/6σνγ) = 4εr

(σνγ
rνγij

)12

−

(
σνγ
rνγij

)6

+ 1
4

 ,
(4)

and U(rνγij > 21/6σνγ) = 0. In Eq. 4, rνγij = |~r νi − ~r
γ
j |, is

the distance between the spheres i and j, and ν, γ ∈ {b, t}
specify if the sphere corresponds to a coiled-coil or a head.
Additionally, εr defines the strength of the interaction
and σνγ the length scale of the interaction. The potential
is truncated at its minimum, namely at a cutoff distance
cνγ = 21/6σνγ , so that it does not has any attractive part,
but smoothly becomes 0 for larger distances. The total
repulsive force on sphere ν of particle i then reads
~fi,ν = −

∑
j 6=i

∑
γ

∇rν
i
U(rνγij ) ,

=
∑
j 6=i

∑
γ

4εr

[
12σ12

νγ

(rνγij )14 −
6σ6

νγ

(rνγij )8

]
(~rν,i − ~rγ,j).

(5)

The total repulsive force on a protein is then the sum of
the forces in the head and coiled-coil. Furthermore, the
forces on a tail will exert a torque given by

~τi =
∑
j 6=i

~t× ~fi,t . (6)
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FIG. 3: Interactions between a pair of SAS-6 dimers in
the lab frame. They exhibit four types of repulsive
interactions: between heads (bb), coiled-coil (tt) and
heads and coiled-coil (tb and bt). In addition, the

binding sites lead to patch alignment with the canonical
nine-fold symmetry being most favorable. The particle
orientation is measured with respect to the lab frame

via an angle α which defines the orthogonal
transformation to the particle fixed frame.

On the other hand, the attractive interaction between
patches Ua is chosen to be a product of a radial function
u(rij) and an alignment switch function s(θij), again mo-
tivated by viral capsid assembly6

Ua(rij , θij) = u(rij)s(θij), (7)

where rij is the distance between patches. The radial
dependence is given by shifted Lennard Jones potential
truncated at a certain cutoff rc with binding energy εa
and the same length scale as that of body-body repulsive
interaction σbb

u(rij < rc) = 4εa

[(
σbb

rij + cbb

)12
−
(

σbb
rij + cbb

)6
]
− u(rc),

(8)

where cbb = 21/6σbb is the repulsive cutoff for body-body
interaction and rc = 2.5σbb−cbb. Likewise, u(rij ≥ rc) =
0. The constant term u(rc) ensures continuity at r = rc.
Moreover, the angular function is written in terms of a
truncated cosine,

s(θij) = 1
2

(
1 + cos θijπ

θc

)
, θij ≤ θc, (9)

and s(θij ≥ θc) = 0 for a cutoff angle θc. This function
decays monotonously from 1 to 0 between for θ ≤ θc
and then becomes 0 smoothly everywhere else. Con-
sequently, s(θ) acts as a selector that restricts possible
binding partners to those which deviate from perfect
alignment at most by an angle θc, thus accounting for
bonding anisotropy. Graphs for the interaction poten-
tials are provided in the supplementary material.

When computing the attractive force field, it is impor-
tant to distinguish between the + and − patches; in the
PORT-HS-AFM-experiments, one only observes bonding

between the patches of different labels, leading to ring ge-
ometries. Bonding between patches of equal labels would
lead to zig-zag configurations which are observed to be
only short-lived experimentally, so they are not taken
into account in our simulations.
The force on the + patch of the i-th particle is given

by

~fi,+= −
∑
j 6=i
∇r+

i
Ua,

=
∑
j 6=i

4εas(θ−ij)r̂
−
ij

[
12σ12

bb(
r−ij + cbb

)13 −
6σ6

bb(
r−ij + cbb

)7
]
,

(10)

where r−ij = |~r+
i − ~r

−
j | is the distance to the − patch of

the j-th particle, r̂−ij is the unit vector connecting these
patches and θ−ij is the bond angle, which is calculated as

θ±ij = arccos
(
−~p+,i · ~p−,j

|p|2

)
= arccos(−p̂+,j · p̂−,i), (11)

where p̂ = ~p/|p| denotes unitary vectors. The − super-
scripts on the right hand side of Eq. 10 are chosen to
remind one that only interactions with patches of that
label have to be computed for a + patch. The force for
the − patch is given by the same equation, but with
flipped labels.
Attractive interactions will also exert a torque on the

particles, given by

~τi,+ = −
∑
j 6=i

~p+
i ×∇p+

i
Ua ,

=
∑
j 6=i

(~p+
i × ~fj,−) + 2εaπ

θc
sgn

([
p̂+
i × p̂

−
j

]
z

)
sin θijπ

θc
ẑ,

(12)

for a + patch, where sgn is the sign function.
Now that the explicit forms of the interaction forces

and diffusion matrix are known, the Langevin equations
of motion may be integrated. However, the diffusion ma-
trix in Eq. 3 is defined in the PFF. This diagonal form of
the matrix is advantageous, as it allows for efficient vec-
torization in the code and the factoring of the distribution
of the components of ~G = (Gx, Gy, Gα) into a product
of single variable distributions. Nonetheless, the goal of
the routine is to calculate protein positions and orienta-
tions in a lab frame at rest, whereas the PFF rotates with
each individual protein. Therefore, a rotation operator in
the xy plane R(α) is needed to transform between these
frames, where α quantifies the particle orientation in the
lab frame as shown in Fig. 3. This rotation only trans-
forms the first two in-plane components. The Langevin
equation for the velocity in the lab frame denoted by ~̇x ′
is given by

~̇x ′ = R(α)(βD~Fi(~x) + ~G), (13)
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where the components of all unprimed quantities are
measured in the PFF. Eq. 13 is solved numerically us-
ing a forward Euler integrator with periodic boundary
conditions and minimum distance convention. The dis-
cretization of the differential equation results in a finite
time step ∆t. This discrete time step impacts the second
moment of the probability density of ~G, which now reads

〈~G(∆t)~G(∆t)〉 = 2D∆t. (14)

A time step of 25ps is chosen because it gives a good
compromise between the diffusion and interaction force
length scales while allowing for the observation of the
system evolution in acceptable computational time. Thus
far, the simulation of SAS-6 self assembly is possible for
a constant, non-zero number of dimers. Next, we couple
the simulation with a protein reservoir with the aid of a
Grand Canonical Monte Carlo routine.

B. Grand canonical Monte Carlo scheme

To simulate the adsorption process on a surface, a
Grand Canonical Monte Carlo algorithm is implemented.
The algorithm is based on the equilibrium marginal prob-
ability distribution P (N,~sN ) of finding N adsorbed par-
ticles at rescaled positions ~sN = ~xN/L, which is given by
the Boltzmann factor in the Grand Canonical ensemble

P (N,~sN ) = SN

ZΛ2NN !e
βµN−βU(~sN ), (15)

where µ is the chemical potential, U(~xN ) is the total
potential energy of the adsorbed particles, Z is the nor-
malizing partition function, S = L2 is the area of the
square and Λ is the thermal de Broglie wavelength for a
particle of mass m,

Λ =
√
βh2

2πm, (16)

where h is Planck’s constant. The Λ2N factor in the de-
nominator of Eq. 15 comes from tracing out the momenta
of all the particles from the full Boltzmann distribution.
Similarly, the SN factor appears when rescaling the po-
sitions as a fraction of the box length L, so the proba-
bility density must be multiplied by the Jacobian of the
transformation in order to preserve the measure of the
probability space.

This equilibrium distribution allows for the computa-
tion of transition amplitudes k(N,N + 1) from a state
with N particles to another with N + 1 adsorbed par-
ticles. In order to reach the correct probability density
given by Eq. 15, these transitions must obey detailed
balance32, so

k(N,N + 1)
k(N + 1, N) = P (N + 1, ~sN+1)

P (N,~sN ) = SΛ−2

N + 1e
βµ−β∆UN ,

(17)

where ∆UN = U(~sN+1)− U(~sN ) is the potential energy
difference arising from the additional particle. A similar
expression may be derived for a single particle desorption
by replacing N → N − 1. Once this ratio is specified, a
Metropolis Hastings type algorithm is implemented32, so
the transition probabilities are

PN→N+1 = min
(

1, k(N,N + 1)
k(N + 1, N)

)
= min

(
1, SΛ−2

N + 1e
βµ−β∆UN

)
,

(18a)

PN→N−1 = min
(

1, k(N,N − 1)
k(N − 1, N)

)
= min

(
1, N

SΛ−2 e
β∆UN−βµ

)
.

(18b)
In an adsorption event, the particle is created at a ran-
dom position, and in the case of desorption an existing
particle is selected at random. The algorithm may there-
fore be summarized in the following steps32:

1: Choose a random position where particle creation is
proposed, or select a random adsorbed particle
whose annihilation is attempted.

2: Calculate the interaction energy difference of this
event ∆UN .

3: Calculate acceptance probability Pa according to
Eq. 18a for adsorption and Eq. 18b for desorption.

4: Draw a number z from the uniform distribution
U(0, 1) and accept the event if z < Pa.

In order to implement this algorithm, two quantities
must be specified: the chemical potential µ and the en-
ergy ∆UN . The chemical potential is approximated to
that of an ideal gas, which is given by the Sackur Tetrode
equation,

µ = 1
β

ln ρΛ3, (19)

where ρ is the particle number concentration of the reser-
voir. This approximation is adequate for dilute solutions
of weakly interacting particles, such as SAS-6. Never-
theless, other models for chemical potential are readily
available to simulate adsorption from more realistic bulk
solutions.
The potential energy difference is calculated as the sum

of the pairwise repulsive interactions of all the particles
plus an additional constant V0 term accounting for at-
tractive interactions with the surface,

∆UN =
N∑
i=1

Urint(~ri, ~r0)− V0, (20)

where Urint(~ri, ~r0) is the pairwise repulsive interaction be-
tween particles i and the test particle to be created or
destroyed, which is labelled as the 0 particle without loss
of generality. This interaction potential is the sum of the
previously discussed interactions on coiled-coil and head,
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as given by Eq. 4. The additional V0 term arising from
interactions with the surface is introduced so that adsorp-
tion becomes energetically favourable and dimers in the
bulk are attracted to the surface. In the case of the SAS-
6 experiments on a surface, this term models mainly the
electrostatic interaction between the negatively charged
mica and the dimers suspended in solution. With the ex-
plicit form of the potential, now the algorithm may sim-
ulate fluctuating particle number and adsorption process
in addition to the in-plane protein motion.

C. Adsorption kinetics and RSA

So far no reference to time has been made in the mod-
elling of adsorption. This is understandable since de-
tailed balance only ensures that the right probability
distribution is sampled at equilibrium; how fast the sys-
tem equilibrates is quite a different matter. Defining an
adsorption-related time scale is important because it es-
tablishes how fast adsorption triggers the assembly on
the surface. Therefore, a second time step is introduced
in order to gauge the rate of adsorption onto the sur-
face. This time step, referred to as GCMC time step or
∆tGCMC, is defined as an integer multiple of the original
time step for Brownian dynamics

∆tGCMC = n∆t, (21)

so that both an adsorption and a desorption event is com-
puted every n time steps. This allows the user to define
the number of GCMC attempts per unit time. A lower n
means that more GCMC events are attempted in a given
time interval, thus resulting in a higher adsorption.

In order to enable comparison with macroscopic rate
equations, a rate model describing adsorption is required.
The most suitable model for the algorithm is the Ran-
dom Sequential Adsorption or RSA in the limit of low
coverage, which is given by a second order polynomial33,

Ṅt = ki − k2φ+ k3φ
2, (22)

where Nt is the total number of adsorbed particles and
φ = πNtS

−1(R2
b + R2

t ) is the surface coverage. This
explicit form was derived by Schaaf and Talbot33, who
analytically calculated the coefficients k2 and k3 for the
case of hard spheres. In our case, k2 and k3 are treated
as free parameters to be fitted to the simulation results.
ki may be approximated as ki ≈ 1/∆tGCMC as long as
the initial adsorption probability PN0→N0+1 ≈ 1, which
is the case of all simulations. The explicit form of the
adsorption kinetics enables the comparison between the
algorithm and macroscopic rate models, which are intro-
duced next.

D. Coagulation-fragmentation equations for rings

The microscopic simulation is to be compared with
macroscopic reaction kinetics (RK). The dynamics of

protein self-assembly, such as that of SAS-6, are of-
ten described by the coagulation-fragmentation (CF)
equations21,22. Here, we not only incorporate ring
formation13, but also add an additional source term
g(Nt) to incorporate adsorption from a reservoir, to ar-
rive at

Ṅj =
j−1∑
l=1

kl,j−l+ NlNj−l − 2Nj
Nmax−j∑
l=1

kj,l+ Nl + 2
Nmax∑
l=j+1

kl,j− Nl

−
j−1∑
l=1

kl,j− Nj + kj,o

Nmax∑
l=Nmin

N̄jδl,j − kj,c
Nmax∑
l=Nmin

Njδl,j + g(Nt)δ1,j ,

(23)

where 1 ≤ j ≤ Nmax, kj,l+ is the association rate of two
oligomers of sizes j and l into an oligomer of size j + l,
kj,l− is the dissociation rate of a j-mer into a smaller l-
mer and a j − l sized oligomer, Nj is the concentration
of species j, N̄j is the concentration of a closed ring of
size j, Nt is the total number of adsorbed monomers, kj,c
and kj,o are the closing and opening rates of an oligomer
of size j, Nmax is the maximum size of an oligomer and
Nmin is the minimum size of an oligomer that can form
a closed ring. The first two terms are related to coagula-
tion of two oligomers into a larger complex, whereas the
two following terms quantify the fragmentation of larger
structures into smaller complexes. The fourth and fifth
term represent the opening and closure of species, and
the last term represents the incoming flux of monomers
into the surface, and hence it is added to the j = 1 equa-
tion exclusively. For the case of closed species, they are
assumed to be formed only by closure of a previously
existing open species with the same size, so their rate
equations are given by

˙̄Nj = kj,cNj − kj,oN̄j , (24)

where Nmin ≤ j ≤ Nmax. One can show that these equa-
tions do in fact obey mass conservation, so that

Ṅt =
Nmax∑
j=1

j(Ṅj + ˙̄Nj) = g(Nt). (25)

Therefore, one confirms that the term g is a source term
for incoming monomers from the bulk. In the case of
interest g is given by Eq. 22. A closed system may be
described by Eq. 23 with g = 0.
Following Klein23,25, the rate constants kl,j± are overall

rates that result from the interplay of diffusion and re-
action; the reversible association of species A and B into
C occurs in two steps,

A+B
kD−−−⇀↽−−−
kD,r

AB
ka−⇀↽−
kd

C, (26)

where A and B first reach reactive distance via diffusive
motion with rate kD, thus forming a transition state AB.
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Such transition state may then react to form C with rate
ka or it may diffuse back to the reactant species with rate
kD,r. Similarly, C may decay back to AB with rate con-
stant kd. The overall rates of association and dissociation
then reads,

ka,b+ = ka,bD ka

ka,bD,r + ka
, (27a)

kc,a− =
ka,bD,rkd

ka,bD,r + ka
, (27b)

where a, b and c are the respective sizes of A, B and
C. The size dependence of the constants is incorporated
in the diffusive term because diffusion is dependent on
the size of the species. In contrast, the reactions are
mediated by identical binding sites and hence ka and kd
are expected to be size-independent.

The limiting cases of kD,r � ka and kD,r � ka are
known as the diffusion limit and reaction limit, respec-
tively. For the reaction limit, the rates become

ka,b+ = ka,bD
ka,bD,r

ka, (28a)

kc,a− = kd, (28b)

where the dissociation rate has lost its size depen-
dence. Further simplification is achieved by assuming
the forward and backward diffusion rate to be similar,
ka,bD ≈ ka,bD,r, so that the overall association rate also be-
comes independent of size, ka,b+ = ka. Hence, the CF
equations may be written in the reaction-limited approx-
imation as13

Ṅj = k+

j−1∑
l=1

NlNj−l − 2k+Nj

Nmax−j∑
l=1

Nl

+ 2k−
Nmax∑
l=j+1

Nl − k−(j − 1)Nj − kj,c
Nmax∑
l=Nmin

N̄jδl,j

+ kj,o

Nmax∑
l=Nmin

Njδl,j + g(Nt)δ1,j .

(29)

These are the macroscopic equations which will be com-
pared to the results of the BD/GCMC routine. In par-
ticular, the main interest lies in determining the macro-
scopic constants as a function of the microscopic param-
eters k± = k±(εa, θc, ...). This would allow for the quan-
tification of the effect of the microscopic parameters on
the equilibrium state of the system.

III. RESULTS

A. Overview

Representative snapshots of single runs of the simu-
lation are shown in Fig. 4 (a corresponding movie is
provided as supplementary material). In the following
all parameters except the two most central ones, namely
the attractive energy strength εa and the cutoff angle θc,
are kept constant unless otherwise stated and their val-
ues are documented in the supplementary material. The
snapshots qualitatively show the expected behavior of an
assembly process on a surface; as the adsorption crowds
the surface with free monomers (driven by the adsorption
energy V0 that is held fixed at a value of 55kBT to give
realistic concentrations, see below), they are able to in-
teract and assemble into oligomers of increasing size. As
oligomers surpass a certain size, they gain the ability to
close, so that for sufficiently long times one gets closed
rings such as those observed in Fig. 4c and d. In the
following sections, we analyze the kinetics of adsorption
and assembly as well as the effect of the two central mi-
croscopic parameters εa and θc. We finally compare with
experimental data to estimate likely values of εa and θc.

B. Adsorption kinetics

Adsorption is fully specified by two main features: its
steady state, which is intrinsically thermodynamic, and
its kinetics. The former is described by an isotherm,
which relates the final number of adsorbed particles N̄
to the bulk concentration ρ, or equivalently, to the chem-
ical potential µ. A simple isotherm is expected to be a
monotonously increasing function that eventually satu-
rates into a saturation limit where no additional particle
may be added.

One can show that the limiting cases of Eqs. 18 in
steady state coincide with these expectations, as long as
the interaction potential is purely repulsive. Inserting
Eq. 20 into 18, one finds that the variables µ and V0 act
as a combined, single, effective chemical potential µ̄ =
µ+V0. µ̄must fulfill the inequality βµ̄ ≥ ln Λ2/S in order
for at least one particle to be adsorbed on the system in
steady state. For βµ̄ ≈ ln Λ2/S, one finds that N̄ ∝
expβµ̄. For an ideal gas, this reduces to N̄ ∝ ρ expβV0.
In the opposite limit of βµ̄� ln Λ2/S, N̄ saturates, thus
becoming independent of µ̄. More details are given in the
supplementary material. These theoretical observations
are verified by simulating different values of the surface
potential V0 and no assembly (εa = 0). The results are
shown in Fig. 5a and show that saturation occurs when
adsorption energy V0 is larger than around 40kBT .
Regarding the kinetic part, here we implemented Ran-

dom Sequential Adsorption (RSA) kinetics as given by
Eq. 22, which is the limiting case when in-plane diffu-
sion of the molecules is much slower than the adsorption
rate33. Therefore, the condition for RSA is that the dif-
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(a) (b)

(c) (d)

FIG. 4: Snapshots of a simulation run at four subsequent times (a) t1, (b) t2, (c) t3 and (d) t4 for a box of size
L = 170nm. The binding site parameters are relative binding energy εa/εr = 2 and angular range θc = 0.2π. The
diffusion properties are calculated from the five-bead model (shown here in red) and the binding reactions are

simulated with the two-bead model (shown with dots). As the adsorption crowds the domain, oligomerization of
complexes ensues. The smaller complexes are formed first and then over time give rise to larger structures. Rings
exists in (c) and (d). Note that rings show deformations due to flexibility of the head-head binding, but that the

spokes are straight because here we only model the short SAS-6 variant with six heptad repeats.
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(a) (b)

FIG. 5: (a) Adsorption isotherm from an ideal gas reservoir with ρ = 1023m−3 onto a box with L = 170nm. The
average final number of particles in steady state N̄ is plotted against surface potential V0. The simulated isotherm
follows the expected behavior, with an increase given by N̄ ∝ eβV0 followed by saturation. (b) Comparison between

GCMC simulated adsorption with n = 1000 and RSA kinetics with optimized parameters k2 = 0.53ns−1 and
k3 = 1.81ns−1, where excellent agreement is observed. Time is rescaled as t̄ = t/16ns.

fusion time scale tD is much larger than the adsorption
time scale tA, so tD � tA. For the SAS-6 molecules in our
simulations, the diffusion coefficient is D ∼ 10−6cm2s−1

and the nanometric size of the protein l ∼10nm, thus
the diffusion time scale is tD ∼ l2/D ∼ 10−6s. In our
simulations, the adsorption time scale is set through the
GCMC time step in Eq. 21. In order for adsorption to oc-
cur on the same time scale as diffusion, n ∼ tD/∆t ∼ 105.
Hence, each GCMC step would have to be computed
every 105 time steps, thus requiring enormous compu-
tational time and resources to resolve diffusion and as-
sembly. Experimentally, the observed assembly is slower
than the simulated one, because the used hydrodynamic
mobility matrices underestimate the friction with the
substrate, thus the experimental system is likely in the
RSA-limit13. Therefore here we set n = 1000, meaning
that adsorption occurs must faster than in-plane move-
ment, but not so fast that it occurs at any time step. This
leaves sufficient time for rearrangements before adsorp-
tion of the next molecule, but also allows us to simulate
the complete process with diffusion and assembly. Fig. 5b
shows that RSA-kinetics with optimized parameters per-
fectly describe the simulated adsorption process.

C. Assembly kinetics and reaction rates

Simulations were run for 2× 106 time steps for differ-
ent values of the attractive energy strength εa and cutoff
angle θc. The latter is chosen from the set of values
{0.1π, 0.2π, 0.3π, 0.4π}. Since the assembly process will
be mediated by the interplay between repulsion and at-
traction, the attractive energy parameter is varied as a
multiple of the repulsive energy parameter εr that was

kept constant at 5kBT ; the ratio εa/εr is chosen from
the set of possible values {1, 2, 3, 4}. For each combina-
tion of parameters 32 simulations were computed and the
results were then averaged. A list of the parameters is
given in the supplementary material. A first example for
the results for the simulated time evolution of the con-
centrations is shown in Fig. 6. They are qualitatively
similar to the observed kinetics in the PORT-HS-AFM
experiments (compare Fig. 1f). Self-assembly proceeds
in a hierarchical fashion, where small oligomers form first
and are then followed by larger structures. For this par-
ticular combination of parameters, closed rings are only
observed as nonamers.
One major difference between the simulation condi-

tions and the experimental measurements is the time
scale during which assembly occurs: the simulated
oligomerization happens in tens of microseconds, while
the experimentally observed process occurs in minutes.
The explanation is that the diffusion matrix has been cal-
culated for bulk hydrodynamics in water and did not take
into account the effect of surface adhesion. The striking
similarity between the simulated and observed behavior
suggests that the main effect of the surface here is to dra-
matically slow down the timescale, but does not change
the relative importance of the different sub-processes. We
note that in general it is challenging to improve on the
hydrodynamic model, because the details of the interac-
tion with the surface are not known.
We next turn to the reaction rates and analyze the

concentration profiles to the CF equations in the reaction
limited approximation, as given by Eq. 29. The parame-
ters k± and ko,c are optimized by minimizing the average
relative square error between the simulated concentra-
tions and the numerical solution of Eq. 29. Such mini-
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FIG. 6: Concentrations for oligomers of different sizes
as a function of rescaled time (t̄ = t/16ns) for

parameters εa/εr = 2 and θc = 0.1π in a box of size
L =170nm. The time evolution is qualitatively similar
to the observations in the PORT-HS-AFM experiments,
where assembly occurs in a similar hierarchical fashion.
The "c" label represents closed structures, which were

observed to be nonamers exclusively for this
combination of parameters.

mization was done on a case by case basis because each
combination of parameters (εa, θc) resulted in unique con-
centration profiles with different minimum closing size
Nmin and maximum oligomer size Nmax; fitting by brute
force all the curves to a single combination of Nmin and
Nmax would be non-physical and lead to poor estimation
of the rate parameters. A full recollection of the fitting
results is found in supplementary material.

In Fig. 7 we compare the results of our computer simu-
lations with the numerical solution of the CF-equations.
For an energy ratio of εa/εr = 1 (Fig. 7a), the attrac-
tive potential is too weak to stabilize large oligomers.
As a consequence, the majority of monomers remain un-
bound at the end of the simulation, and only oligomers
no larger than tetramers are able to assemble in appre-
ciable quantites. This is reflected in the CF-equations
by setting Nmax = 4 and neglecting all terms related to
closed structures. Moreover, an increase in the angle pa-
rameter (Fig. 7b) favors association of oligomers by am-
plifying the angular range of the attractive potential, so
all the concentration curves are shifted upwards, except
for the monomers. This effect is nevertheless insignifi-
cant, as most monomers remain free even for the largest
cutoff θc = 0.4π. The angular cutoff therefore plays a
secondary role at this energy range.

In contrast, for εa/εr = 2 (Fig. 7c and d) full assembly
is observed, so Nmax = 9. Higher order structures such as
decamers, which assemble in limited quantities, are there-
fore neglected in the CF-equations. As seen in Figs. 7c
(θc = 0.1π) versus 7d (θc = 0.3π), the system is much
more sensitive to the angular cutoff θc for εa/εr = 2. Not
only does this parameter affect the interplay between dis-
sociation and association, it also mediates the survival or

extinction of entire populations of closed oligomers. For a
restrictive choice of θc = 0.1π the formation of malformed
structures is suppressed at all times. It follows that the
minimum closed size must be set Nmin = 9 in order for
the CF equations to properly describe the dynamics. A
more permissive angular cutoff such as θc = 0.3π allows
greater angular deviations and so malformed rings such
as octamers become possible. Hence, the minimum closed
ring is Nmin = 8, and this is also the case for θc = 0.2π
and θc = 0.4π.
In Fig. 8 we compare simulations and CF-equations for

higher values of the energy ratio, namely εa/εr = 3 and 4.
These two energies show similar dynamics, so the param-
eters Nmax and Nmin are solely determined by the angle
cutoff θc. For the lowest value of θc, only closed nonamers
were observed, so Nmax = 9 and Nmin = 9. However, no
open nonamers are observed in significant quantities; the
closure of the nonamer has become instantaneous. Any
oligomer with nine proteins will immediately form a ring,
so the transient open species is short lived. This is a
limiting case of the CF equations, where k9,c/k9,o � 1.
Instantaneous closure is already visible in Fig. 7c for an
energy ratio of 2. The CF equations overestimate the
concentration of the open nonamers, suggesting that the
closure rate is faster than estimated. Microscopically,
this occurs because the combination of a strong attrac-
tive potential and a narrow angular range result in a stiff
bond which hardly deforms from its equilibrium angle
φeq = 40◦. The interior angles of any nonamer will not
deviate significantly from those of a perfect nonagon, so
any nine-sized complex will immediately close. This fact
may be captured in the CF equations by eliminating the
terms of closure and opening of nonamers, and replac-
ing the open concentration with its closed counterpart
N9 → N̄9 in the remaining equations.
For larger cutoff values, the formation of nine-sized

rings is severely suppressed and malformed structures
become dominant. The octamer has become the closed
species with the largest relative population. In the
CF equations, the predominant species is implicitly de-
termined by Nmax; in a system where association is
favourable, oligomers will keep coagulating into larger
structures until they stop at Nmax. It follows that
Nmax = 8 for θc ≥ 0.2π, which was the choice with
the better fit. Furthermore, no significant quantities of
smaller sized complexes are observed for θc = 0.2π and
θc = 0.3π, so Nmin = 8. However, closed heptamers be-
come important for θc = 0.4π, so Nmin = 7. For all cases
the closure of rings is approximated as instantaneous.

The main observation in Fig. 8 is that, compared to
lower energy ratios, the CF equations are no longer able
to describe the time evolution of the system for εa/εr ≥ 3.
In all cases the coagulation fragmentation equations pre-
dict a faster than observed depletion of free monomers
and small sized oligomers. The discrepancies are partic-
ularly evident for increasing θc; in this case, the popula-
tion of closed octamers is overestimated at all times, and
larger structures such as the closed nonamer and decamer
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(a)

(c) (d)

(b)

FIG. 7: Concentration of oligomers of different sizes in a box of size L = 170nm as a function of rescaled time
(t̄ = t/16ns) for (a) θc = 0.1π and εa/εr = 1, (b) θc = 0.4π and εa/εr = 1, (c) θc = 0.1π and εa/εr = 2 and (d)
θc = 0.3π and εa/εr = 2. The results of the simulations, the light colored curves, are compared to the numerical
solution of the CF-equations, the darker overlaid lines, with optimized parameters k±. The label "c" indicates a

closed species. Decamers in Fig. (d), as well as pentamers and hexamers in Fig. (b), are shown but not considered
in the CF comparison. Species with concentrations below N = 0.3 are considered negligible and thus not shown.

could not be accounted for in the best fit. This suggests
that the reaction-limited approximation is no longer valid
for high values for the attractive energy parameter, and
that this effect is further increased by a large cutoff an-
gle. Once the interaction has become sufficiently strong
such that bonding occurs each time the reactive distance
is reached, the system becomes diffusion-limited.

D. Efficiency and selectivity

In order to qualitatively assess the effect of these mi-
croscopic parameters on the state of the system at the
end of the simulation, two metrics are defined: the final
fraction of monomers that are bound to a closed species
(efficiency) and the population of the biologically desired
closed nonamers relative to the population of all closed
complexes (selectivity). The former is given by the bound
fraction ξ and the latter is the selectivity of the nonamer

S9, which are mathematically defined as

ξ = 1
Nt

Nm∑
j=Nmin

jN̄j , (30a)

S9 = N̄9∑Nm
j=Nmin

N̄j
, (30b)

where Nt is the total number of monomers on the sur-
face, N̄j is the number of rings with j proteins, Nmin
is the minimum closing size and Nm is the maximum
observed size of the closed oligomers. The first metric
quantifies how efficient is the formation of closed struc-
tures compared to intermediate open structures, whereas
the second parameter measures how selective the system
is for the formation of closed nonamers in comparison to
rings of different sizes.
Our results for efficiency and selectivity are shown

in Fig. 9a and b, respectively. Increasing θc and εa
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(b)(a)

(c) (d)

FIG. 8: Concentration of oligomers of different sizes in a box of size L = 170nm as a function of rescaled time
(t̄ = t/16ns) for (a) θc = 0.1π and εa/εr = 3, (b) θc = 0.2π and εa/εr = 4, (c) θc = 0.3π and εa/εr = 4, and (d)
θc = 0.4π and εa/εr = 3. The results of the algorithm, the light colored curves, are compared to the numerical

solution to the CF equations, the darker overlaid lines, with optimized parameters k±. Light colored curves without
a darker counterpart were neglected in the CF comparison. For θc = 0.2π and 0.3π only octamers are included as
closing species in the CF comparison, whereas for θc = 0.4π closed heptamers are also included. Species with

concentrations below N = 0.3 are considered negligible and thus not shown.

leads to a more numerous population of closed struc-
tures and a higher fraction of monomers bound to a ring
(Fig. 9a). This is understandable from a physical per-
spective: higher values of εa lead to a deeper potential
well, so dissociation of complexes becomes unlikely and
the formation of larger, closed structure is facilitated. In
addition, larger values of θc increase the number of avail-
able bonding candidates, given that monomers within a
larger span of relative orientations will experience an at-
tractive potential, and so association is expedited.

However, the larger bound fraction comes at the ex-
pense of a higher relative population of malformed com-
plexes (Fig. 9b). For larger values of the attractive
strength and the angular cutoff, nonamers only consti-
tute 10%-25% of the total number of closed complexes
and must be neglected completely in order to obtain a
proper fit of the CF equations. In contrast, for the low-
est value of θc = 0.1π nonamers compose more than
95% of all closed complexes. Such a sharp difference

in nonamer assembly has two underlying reasons. The
first one has to do with the angular cutoff θc. An in-
crease of this parameter results in larger deviations from
perfect alignment, corresponding to a nonagon, so that
malformed structure become possible. This is why the
most restrictive value of θc = 0.1π results in the high-
est observed selectivities. The second, and somewhat
more subtle reason, has to do with the attractive energy
strength. A malformed structure may, in principle, form
a desired nonamer by breaking bonds and bonding with
additional oligomers, if it has less than nine proteins, or
fragmenting into smaller complexes if it has more. These
processes should be thermodynamically desired because
the nine protein ring is by construction the minimum en-
ergy configuration. However, the step of bond breaking
is key for such process to happen; bond formation must
be reversible. If the potential well is too high, as it is
the case of energy ratios εa/εr = 3 and 4, bond break-
ing is unlikely and any malformed structure will remain
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FIG. 9: (a) Efficiency as measured by the fraction of monomers ξ which are bound in a closed complex. Higher
values of εa/εr and θc result in a large fraction of monomers bound to a ring, at the expense of the formation of
malformed structures. (b) Selectivity as measured by the relative population S9 of closed complexes that exhibit
nine-fold symmetry. Larger values of the angular cutoff θc lead to the formation of malformed structures and thus

decrease S9. For energy ratio εa/εr = 1, no closed rings were observed.

intact, even if there exists a lower energy configuration.
This phenomenon is known in the literature as kinetic
trapping and it explains why the energy ratio εa/εr = 2
is less prone to the formation of malformed structures in
comparison to its higher counterparts. An energy ratio
of 2 is sufficiently low for bond reversibility and thus the
nonamer formation is favoured. Energy ratios of 3 and
4, by contrast, are in a regime were kinetic trapping is
dominant, and thus they exhibit much lower selectivites
to the nonamer formation.

E. Comparison with experiments

The estimated parameters k± allow for the quantifica-
tion of the dissociation constant KD, defined as,

KD = k−
k+

. (31)

The dissociation constant is an experimentally measur-
able quantity of the thermodynamic balance between dis-
sociation and association. The results from our simula-
tions are shown in Fig. 10a. We see that lnKD exhibits
a rough linear decay with energy ratio εa/εr in the range
εa/εr ≤ 3. Furthermore, the slope seems to be unaffected
by the angular cutoff θc, so that it only influences the in-
tercept with the vertical axis. These are the expected
features of a thermodynamic equilibrium constant that
follows an Arrhenius-type equation

KD ∝ f(θc)e
−Ea
kBT , (32)

where Ea is the free activation energy of the reaction
and f(θc) is the steric factor accounting for bonding
anisotropy. Beyond εa/εr = 3 the dissociation constant
saturates, confirming that the system is now diffusion
limited; any further increase in the attractive energy pa-
rameter will no longer decrease the equilibrium constant
as the slowest step is related to diffusive motion and not
to the chemical assembly. The estimation of KD in the
high energy range would require going beyond the re-
action limited approximation of the CF equations and
consider rates of diffusion, which would inevitably lead
to size dependent rate constants ki,j± .
Experimentally, Banterle obtained KD = 79µm−2 for

oligomerization on a surface13, corresponding to a value
of 2.28 for our box size of 170nm (dashed line in Fig. 10a).
One sees that our simulations give similar values between
εa/εr = 2 and 3 (depending on θc). This is also the regime
in which assembly already gives many closed complexes
(in contrast to εa/εr = 1, where one mainly gets small
oligomers). At the same time, this is also the regime in
which ring opening and closure still occur, and in which
the CF-equations still work, as also observed by Banterle.
This suggests that this is the range which corresponds to
the experiments.
This conclusion also agrees with the selectivities ex-

perimentally observed by Hilbert17, where 43 % of the
closed structures are nonamers. In Fig. 9b, one ob-
serves a sharp decrease between 99% and 20% between
0.1π ≤ θc < 0.2π for εa/εr = 3, so 43% should lie some-
where in between. From these considerations we conclude
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FIG. 10: (a) Dissociation constant KD as a function of energy ratio εa/εr and cutoff angle θc. For εa/εr ≤ 3, the
dissociation constant follows roughly an exponential decay with a preexponential factor determined by the angular
parameter. The dashed blue line indicates the experimental KD on mica as reported by Banterle13. (b) Bond angle
standard deviation of a single bond as a function of θc and εa. To lowest order, the angular fluctuations of a bonded
pair are proportional to the ratio θc/

√
εa, something which is confimed by the simulations. The red star labels the

experimental standard deviation of 4◦reported by Banterle13 for a tetramer, which corresponds to
θc
√
kBT/εa ≈ 0.0493π.

that realistic parameter values for the PORT-HS-AFM
experiments should lie in the range 0.1π ≤ θc < 0.2π and
2 < εa/εr ≤ 3.

To better constrain the experimentally relevant pa-
rameter values, we finally consider the fluctuations of
the bond angles. One can approximate the bond angle
dynamics by a harmonic oscillator by expanding Eq. 9
to lowest order around the minimum. In the presence
of Gaussian noise, this becomes an Ornstein Uhlenbeck
stochastic process, whose steady state probability distri-
bution is a Gaussian with a variance σ2 that is inversely
proportional to the potential strength (the repulsive po-
tential strength εr is not relevant in this context):

σ2 = 2kBTθ2
c

π2εa
. (33)

We simulated a single bond for different combinations
of εa and θc and confirmed that the simulations do
indeed follow Eq. 33 (Fig. 10b). The bounds for εa
and θc suggested above lead to a theoretical interval
of 0.0258π ≈ 0.1π/

√
15 ≤ θc

√
kBT/εa ≤ 0.2π/

√
10 ≈

0.0632π. This matches the experimental value reported
by Banterle13 of a standard deviation of 4◦for a tetramer
(dashed line in Fig. 10b). The experimental result corre-
sponds to θc

√
kBT/εa = σπ/

√
2 ≈ 0.05π, thus validating

the fact that the microscopic parameters are within the
proposed range. A reasonable combination that repro-
duces the observed variance would be εa/εr = 2.2 and
θc = π2√22/90 ≈ 0.164π.

IV. DISCUSSION

Here we have developed and implemented a
GCMC/BD algorithm for adsorption and 2D ring

self-assembly of patchy particles representing SAS-6
dimers. Our BD-approach allows us to simulate the
whole assembly process and at the same time to also
study the effect of microscopic parameters like diffusion
and rate constants. In contrast to earlier BD-simulations
for SAS-6 ring assembly in solution25, which modeled
the patches by their geometrical effect and not by
potentials as done here, our approach allows us to
explore the formation of malformed closed complexes.
The importance of this feature has become evident by
the PORT-HS-AFM experiments that revealed that
besides the expected nine-rings, also seven, eight and
ten rings can form, revealing a high degree of confor-
mational plasticity in the SAS-6 system. By varying
the microscopic binding parameters εa and θc, we can
predict the frequency of these different structures.
Our computer simulations also allowed us to study
transitions between the diffusion and reaction limits,
the role of bond anisotropy and the effect of kinetic
trapping. Furthermore, the simulations provide a hint
towards surface induced energy reduction of association
reaction, presumably by restricting the ability of the
oligomers to bend. These observations might help
elucidate the assembly of the centriole in a cellular
context, as well as the role of the cartwheel structure in
the biological function of the centriole and the reason
for its evolutionary conservation.

The main findings of our simulations may be summa-
rized as follows: in general the model is able to qual-
itatively reproduce the time evolution of oligomer con-
centration as observed in PORT-HS-AFM experiments.
For low energy ratios εa/εr ≤ 2, the system is well de-
scribed by the CF equations in the reaction limit approx-
imation. In contrast, higher energy ratios εa/εr ≥ 3 no
longer agree with this regime, as the strong attractive
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potential causes the system to become diffusion-limited.
Regarding the equilibrium state, we find that the ener-
gies and angular cutoffs mediate the interplay between
bound fraction and selectivity, which behave mutually
exclusively (Fig. 11a). Lower energy ratios and angular
parameters result in high selectivity of the nonamer due
to highly anisotropic bonding and reversibility, at the
expense of lower bound fractions. Conversely, higher en-
ergy ratios and angular parameters preclude dissociation
and widen the range of the attractive potential, thus at-
taining large bound monomer fraction at the cost of large
relative population of malformed structures. Our quanti-
tative comparison between simulations and experiments
suggest that the SAS-6 system is positioned at the sweet
spot where it can achieve both high efficiency (through
relative weak binding energies) and high selectivity for
the nine-fold symmetry (through a small angular range).
To further validate this conclusion, in Fig. 11b we plot
the mixed target function

L = 1− 1
2(1− ξ)2 − 1

2(1− S9)2 (34)

as a function of energy ratio and cutoff angle, using the
data shown in Fig. 9. This mixed target function treats
the two features on the same footing and uses the fact
that both are optimal at values of 1. Indeed in Fig. 11b
we see a clear maximum close to 1 for the model parame-
ters estimated from experiments (marked with green out-
line).

A major limitation of our model is that it does not
predict the correct time scale for assembly as observed
in the PORT-HS-AFM experiments. In the simulations,
this timescale is microseconds, as determined by the vis-
cosity of water and bulk hydrodynamics. In the exper-
iments, it is minutes, as determined by the interactions
of the proteins with the mica surface. This dramatic
slowdown can be explained by several factors, including
electrostatic interactions with patches on the mica, topo-
graphical barriers and the high effective viscosity of water
in small spaces (as known from lubrication analysis). In
the future, the hydrodynamic model could be updated
by a more realistic one, e.g. by adapting the Frenkel-
Kontorova-Tomlinson model for nanoscale friction34. At
the current stage, however, we do not have sufficient in-
formation to define a suitable model for this aspect. Yet
we note that apart from the time scale, our simulations
give very similar results as the experiments, suggesting
that the relative importance of the different sub-processes
is not changed by the interactions with the surface.

An interesting direction for further research will be to
analyze the influence of the spoke length on the assem-
bly process. The encounter of two proteins is possible by
either diffusive motion of proteins on the surface or by
adsorption of a protein near an already existing protein.
Both of these effects are hindered by a larger protein;
friction increases with increasing size, as illustrated by
Stokes equation D ∼ 1/r. Hence, the diffusive motion
should be restricted for larger proteins and so the en-

counter of two proteins happens at a slower rate. Further-
more, rotational diffusion would also suffer a reduction,
which would further decrease the association rate given
the anisotropy of the bonding. Additionally, a larger pro-
tein occupies a larger area on the surface, so the overall
rate of adsorption also decreases because there is an aug-
mented fraction of exclusion area per protein. However,
from the cellular point of view, it is important that the
cartwheel is sufficiently large to seed the microtubule part
of the centriole, thus a large spoke length is required. A
solution to this problem might be some degree of flexi-
bility in the coiled-coil that could have evolved a specific
disruption of its heptad repeat. Such flexibility could be
complemented by strain in the ring; together these el-
ements might be important to build up the large-scale
structure of the centriole35.

Our simulations demonstrate that in the case of SAS-
6 self-assembly, efficiency of the assembly process and
nonamer selectivity cannot be fully achieved at the same
time; tuning the parameters to increase either inevitably
leads to the decrease of the other. This is consistent
with findings of in vitro experiments of SAS-6 on mica17,
where free monomers were observed in negligible quan-
tities and 43% of the closed structures were nonamers.
However, the picture seems to be different in a cellular
context, where high bound fractions and high selectiv-
ity to the nonamer were observed35. Such discrepancy
suggests that in cells additional mechanisms exists to
correct malformed structures. A proposed mechanism
is the binding of additional proteins to SAS-6 dimers. In
particular, the proteins Plk4 and STIL have been found
to cooperate with SAS-6 at the onset of centriole as-
sembly by focusing the SAS-6 oligomers on the resident
centriole35. It is hypothesized that the interactions be-
tween Plk4, STIL and SAS-6 is the reason behind finely
tuned ring formation. An important role is also played
by Bld10p/Cep135, which links the cartwheel to the mi-
crotubule triplets36. In principle, the BD-framework es-
tablished here can also be used to achieve a better un-
derstanding of the function of these proteins in the as-
sembly process; by including them in the simulation,
one may learn about their potential role in correcting
malformed structures, stacking the SAS-6 oligomers into
the cartwheel and connecting them to the microtubules.
Consequently, the hereby developed routine may also
shed light on how these proteins cooperate in cells in
the construction of one of the key eukaryotic organelles.

SUPPLEMENTARY MATERIAL

The supplementary material contains four supplemen-
tary figures, three supplementary tables and one movie
corresponding to the simulation snapshots from Fig. 4.



Accepted to J. Chem. Phys. 10.1063/5.0135349

Adsorption and self-assembly of SAS-6 rings on a surface 18

8

9

10

9

10

9

Efficiency

Selectivity

(a) (b)

FIG. 11: (a) SAS-6 oligomerization is a balancing act between bonding efficiency and selectivity; either efficiency of
closed complex formation is favoured at the cost of having malformed structures, or the selectivity of nonamer
formation is favoured at the cost of efficiency. (b) SAS-6 seems to function at the sweet spot between these two

regimes as validated quantitatively by the mixed target function defined in Eq. 34, which is maximal at the model
parameter values estimated from experiments (marked with green outline).

ACKNOWLEDGMENTS

We acknowledge funding through the Max Planck
School Matter to Life, supported by the German Fed-
eral Ministry of Education and Research (BMBF) in col-
laboration with the Max Planck Society; and by the
Heidelberg-Karlsruhe Cluster of Excellence 3DMM2O,
supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under the Excel-
lence Strategy (EXC 2082/1-390761711). USS is a mem-
ber of the Interdisciplinary Center for Scientific Com-
puting (IWR) at Heidelberg. We thank Falko Ziebert,
Svenja de Buhr, Frauke Gräter and Camilo Aponte for
stimulating discussions.

CONFLICT OF INTEREST

The authors have no conflicts to disclose.

DATA AVAILABILITY STATEMENT

The source code for our simulations is avail-
able on GitHub at https://github.com/sgomezmelo/
Brownian-Dynamics.

1C. V. Robinson, A. Sali, and W. Baumeister, “The molecular
sociology of the cell,” Nature 450, 973–982 (2007).

2J. A. Marsh and S. A. Teichmann, “Structure, Dynam-
ics, Assembly, and Evolution of Protein Complexes,” An-
nual Review of Biochemistry 84, 551–575 (2015), _eprint:
https://doi.org/10.1146/annurev-biochem-060614-034142.

3J. J. McManus, P. Charbonneau, E. Zaccarelli, and N. Ash-
erie, “The physics of protein self-assembly,” Current Opinion in
Colloid & Interface Science 22, 73–79 (2016).

4A. E. Hafner, J. Krausser, and A. Šarić, “Minimal coarse-grained
models for molecular self-organisation in biology,” Current Opin-
ion in Structural Biology 58, 43–52 (2019).

5M. F. Hagan and G. M. Grason, “Equilibrium mechanisms of
self-limiting assembly,” Reviews of Modern Physics 93 (2021),
10.1103/revmodphys.93.025008.

6M. F. Hagan and D. Chandler, “Dynamic pathways for viral cap-
sid assembly,” Biophysical Journal 91, 42–54 (2006).

7J. E. Baschek, H. C. R. Klein, and U. S. Schwarz, “Stochastic
dynamics of virus capsid formation: direct versus hierarchical
self-assembly,” BMC Biophysics 5, 22 (2012).

8J. D. Perlmutter and M. F. Hagan, “Mechanisms of Virus As-
sembly,” Annual Review of Physical Chemistry 66, 217–239
(2015), _eprint: https://doi.org/10.1146/annurev-physchem-
040214-121637.

9H. Jia and P. Schwille, “Bottom-up synthetic biology: reconstitu-
tion in space and time,” Current Opinion in Biotechnology Phar-
maceutical Biotechnology Chemical Biotechnology, 60, 179–187
(2019).

10J. Fu, I. M. Hagan, and D. M. Glover, “The centrosome and its
duplication cycle,” Cold Spring Harbor Perspectives in Biology
7, a015800 (2015).

11J. Loncarek and M. Bettencourt-Dias, “Building the right cen-
triole for each cell type,” Journal of Cell Biology 217, 823–835
(2017).

12E. A. Nigg and J. W. Raff, “Centrioles, centrosomes, and cilia in
health and disease,” Cell 139, 663–678 (2009).

13N. Banterle, A. P. Nievergelt, S. de Buhr, G. N. Hatzopoulos,
C. Brillard, S. Andany, T. Hübscher, F. A. Sorgenfrei, U. S.
Schwarz, F. Gräter, G. E. Fantner, and P. Gönczy, “Kinetic and
structural roles for the surface in guiding SAS-6 self-assembly
to direct centriole architecture,” Nature Communications 12
(2021), 10.1038/s41467-021-26329-1.

14P. Guichard, V. Hamel, and P. Gönczy, “The rise of the
cartwheel: Seeding the centriole organelle,” BioEssays 40,
1700241 (2018).



Accepted to J. Chem. Phys. 10.1063/5.0135349

Adsorption and self-assembly of SAS-6 rings on a surface 19

15D. Kitagawa, I. Vakonakis, N. Olieric, M. Hilbert, D. Keller,
V. Olieric, M. Bortfeld, M. C. Erat, I. Flückiger, P. Gönczy, and
M. O. Steinmetz, “Structural basis of the 9-fold symmetry of
centrioles,” Cell 144, 364–375 (2011).

16M. van Breugel, M. Hirono, A. Andreeva, H. aki Yanagisawa,
S. Yamaguchi, Y. Nakazawa, N. Morgner, M. Petrovich, I.-O.
Ebong, C. V. Robinson, C. M. Johnson, D. Veprintsev, and
B. Zuber, “Structures of SAS-6 suggest its organization in cen-
trioles,” Science 331, 1196–1199 (2011).

17M. Hilbert, A. Noga, D. Frey, V. Hamel, P. Guichard, S. H. W.
Kraatz, M. Pfreundschuh, S. Hosner, I. Flückiger, R. Jaussi,
M. M. Wieser, K. M. Thieltges, X. Deupi, D. J. Müller, R. A.
Kammerer, P. Gönczy, M. Hirono, and M. O. Steinmetz, “SAS-6
engineering reveals interdependence between cartwheel and mi-
crotubules in determining centriole architecture,” Nature Cell Bi-
ology 18, 393–403 (2016).

18M. Hilbert, M. C. Erat, V. Hachet, P. Guichard, I. D. Blank,
I. Fluckiger, L. Slater, E. D. Lowe, G. N. Hatzopoulos, M. O.
Steinmetz, P. Gönczy, and I. Vakonakis, “Caenorhabditis ele-
gans centriolar protein SAS-6 forms a spiral that is consistent
with imparting a ninefold symmetry,” Proceedings of the Na-
tional Academy of Sciences 110, 11373–11378 (2013).

19A. P. Nievergelt, N. Banterle, S. H. Andany, P. Gönczy, and
G. E. Fantner, “High-speed photothermal off-resonance atomic
force microscopy reveals assembly routes of centriolar scaffold
protein SAS-6,” Nature Nanotechnology 13, 696–701 (2018).

20M. G. Saunders and G. A. Voth, “Coarse-graining of multiprotein
assemblies,” Current Opinion in Structural Biology 22, 144–150
(2012).

21J. A. D. Wattis, “An introduction to mathematical models
of coagulation–fragmentation processes: A discrete determin-
istic mean-field approach,” Physica D: Nonlinear Phenomena
Coagulation-fragmentation Processes, 222, 1–20 (2006).

22F. P. da Costa, “Mathematical Aspects of Coagulation-
Fragmentation Equations,” in Mathematics of Energy and Cli-
mate Change, CIM Series in Mathematical Sciences, edited by J.-
P. Bourguignon, R. Jeltsch, A. A. Pinto, and M. Viana (Springer
International Publishing, Cham, 2015) pp. 83–162.

23H. C. R. Klein and U. S. Schwarz, “Studying protein assem-
bly with reversible Brownian dynamics of patchy particles,” The
Journal of Chemical Physics 140, 184112 (2014).

24M. J. del Razo, M. Dibak, C. Schütte, and F. Noé, “Multi-
scale molecular kinetics by coupling Markov state models and
reaction-diffusion dynamics,” The Journal of Chemical Physics
155, 124109 (2021), publisher: American Institute of Physics.

25H. C. R. Klein, P. Guichard, V. Hamel, P. Gönczy, and U. S.
Schwarz, “Computational support for a scaffolding mechanism of
centriole assembly,” Scientific Reports 6, 1–9 (2016), number: 1
Publisher: Nature Publishing Group.

26C. Fröhner and F. Noé, “Reversible interacting-particle reaction
dynamics,” The Journal of Physical Chemistry B 122, 11240–
11250 (2018).

27J. Schluttig, D. Alamanova, V. Helms, and U. S. Schwarz, “Dy-
namics of protein-protein encounter: A langevin equation ap-
proach with reaction patches,” The Journal of Chemical Physics
129, 155106 (2008).

28J. M. G. Bernal and J. G. D. L. Torre, “Transport properties
and hydrodynamic centers of rigid macromolecules with arbitrary
shapes,” Biopolymers 19, 751–766 (1980).

29B. Carrasco and J. G. de la Torre, “Improved hydrodynamic in-
teraction in macromolecular bead models,” The Journal of Chem-
ical Physics 111, 4817–4826 (1999).

30J. G. D. L. Torre and V. A. Bloomfield, “Hydrodynamic prop-
erties of macromolecular complexes. i. translation,” Biopolymers
16, 1747–1763 (1977).

31J. G. de la Torre, G. del Rio Echenique, and A. Ortega, “Im-
proved calculation of rotational diffusion and intrinsic viscosity of
bead models for macromolecules and nanoparticles,” The Journal
of Physical Chemistry B 111, 955–961 (2007).

32D. Frenkel, “Advanced Monte Carlo Techniques,” in Computer
Simulation in Chemical Physics (Springer Netherlands, 1993) pp.
93–152.

33P. Schaaf and J. Talbot, “Surface exclusion effects in adsorp-
tion processes,” The Journal of Chemical Physics 91, 4401–4409
(1989).

34A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, and E. Tosatti,
“Colloquium: Modeling friction: From nanoscale to mesoscale,”
Reviews of Modern Physics 85, 529–552 (2013).

35N. Banterle and P. Gönczy, “Centriole biogenesis: From identi-
fying the characters to understanding the plot,” Annual Review
of Cell and Developmental Biology 33, 23–49 (2017).

36A. Noga, M. Horii, Y. Goto, K. Toyooka, T. Ishikawa, and M. Hi-
rono, “Bld10p/Cep135 determines the number of triplets in the
centriole independently of the cartwheel,” The EMBO Journal
41, e104582 (2022), publisher: John Wiley & Sons, Ltd.

37J. Nygren, R. A. Adelman, M. Myakishev-Rempel, G. Sun, J. Li,
and Y. Zhao, “Centrosome as a micro-electronic generator in live
cell,” Biosystems 197, 104210 (2020).

38B. Widom, “Random sequential addition of hard spheres to a
volume,” The Journal of Chemical Physics 44, 3888–3894 (1966).

39A. B. et al., “UniProt: the universal protein knowledgebase in
2021,” Nucleic Acids Research 49, D480–D489 (2020).

40W.-C. Yueh, “Eigenvalues of several tridiagonal matrices.” Ap-
plied Mathematics E-Notes [electronic only] 5, 66–74 (2005).

41D. Frenkel, Understanding molecular simulation : from algo-
rithms to applications (Academic Press, San Diego, 2002).

42D. Pastré, O. Piétrement, S. Fusil, F. Landousy, J. Jeusset, M.-
O. David, L. Hamon, E. L. Cam, and A. Zozime, “Adsorption
of DNA to mica mediated by divalent counterions: A theoreti-
cal and experimental study,” Biophysical Journal 85, 2507–2518
(2003).

43W. Im, S. Seefeld, and B. Roux, “A grand canonical monte
carlo–brownian dynamics algorithm for simulating ion channels,”
Biophysical Journal 79, 788–801 (2000).

44C. W. Gardiner, Handbook of stochastic methods for physics,
chemistry, and the natural sciences (Springer, Berlin New York,
2004).

45S. Friedberg, Linear algebra (Pearson Education, Upper Saddle
River, N.J, 2003).

46R. Qiao, G. Cabral, M. M. Lettman, A. Dammermann, and
G. Dong, “SAS-6 coiled-coil structure and interaction with SAS-5
suggest a regulatory mechanism inC. eleganscentriole assembly,”
The EMBO Journal 31, 4334–4347 (2012).

47M. A. Cottee, J. W. Raff, S. M. Lea, and H. Roque, “SAS-
6 oligomerization: the key to the centriole?” Nature Chemical
Biology 7, 650–653 (2011).

48P. Guichard, V. Hachet, N. Majubu, A. Neves, D. Demurtas,
N. Olieric, I. Fluckiger, A. Yamada, K. Kihara, Y. Nishida,
S. Moriya, M. O. Steinmetz, Y. Hongoh, and P. Gönczy, “Native
architecture of the centriole proximal region reveals features un-
derlying its 9-fold radial symmetry,” Current Biology 23, 1620–
1628 (2013).

49P. Gönczy, “Towards a molecular architecture of centriole assem-
bly,” Nature Reviews Molecular Cell Biology 13, 425–435 (2012).

50D. Sehnal, S. Bittrich, M. Deshpande, R. Svobodová, K. Berka,
V. Bazgier, S. Velankar, S. K. Burley, J. Koča, and A. S. Rose,
“Mol viewer: Modern web app for 3d visualization and analy-
sis of large biomolecular structures,” Nucleic Acids Research 49,
W431–W437 (2021).

51S. Pusara, P. Yamin, W. Wenzel, M. Krstić, and M. Kozlowska,
“A coarse-grained xDLVO model for colloidal protein–protein
interactions,” Physical Chemistry Chemical Physics 23, 12780–
12794 (2021).

52G. S. Ayton and G. A. Voth, “Systematic multiscale simulation
of membrane protein systems,” Current Opinion in Structural
Biology 19, 138–144 (2009).

53T. Murtola, A. Bunker, I. Vattulainen, M. Deserno, and M. Kart-
tunen, “Multiscale modeling of emergent materials: biological
and soft matter,” Physical Chemistry Chemical Physics 11, 1869



Accepted to J. Chem. Phys. 10.1063/5.0135349

Adsorption and self-assembly of SAS-6 rings on a surface 20

(2009).
54P. Hadley, “1-D Chain of atoms,” Available at http://lampx.

tugraz.at/~hadley/ss1/phonons/1d/1dphonons.php, molecular
and Solid State Physics Lecture Notes. TU Graz.

55S. L. Prosser and L. Pelletier, “Mitotic spindle assembly in ani-
mal cells: a fine balancing act,” Nature Reviews Molecular Cell
Biology 18, 187–201 (2017).

56National Human Genome Research Institute, “The centrosome.”
Available at https://www.genome.gov/genetics-glossary/
Centrosome.

57M. Reinhardt, N. J. Bruce, D. B. Kokh, and R. C. Wade, “Brow-
nian dynamics simulations of proteins in the presence of surfaces:

Long-range electrostatics and mean-field hydrodynamics,” Jour-
nal of Chemical Theory and Computation 17, 3510–3524 (2021).

58A. Goldman, R. Cox, and H. Brenner, “Slow viscous motion of
a sphere parallel to a plane wall—i motion through a quiescent
fluid,” Chemical Engineering Science 22, 637–651 (1967).

59C. Arquint and E. A. Nigg, “The PLK4–STIL–SAS-6 module at
the core of centriole duplication,” Biochemical Society Transac-
tions 44, 1253–1263 (2016).

60P. Gönczy and G. N. Hatzopoulos, “Centriole assembly at a
glance,” Journal of Cell Science 132 (2019), 10.1242/jcs.228833.



Accepted to J. Chem. Phys. 10.1063/5.0135349



Accepted to J. Chem. Phys. 10.1063/5.0135349

Adsorption

2D fluid simulation space

Free particle in bulk

Adsorbed particle

Bulk

Desorption

Pairwise interaction assembly

L

p+

t

γ

p-

y

x

(a) (b)

(c)



Accepted to J. Chem. Phys. 10.1063/5.0135349 fbtfbt

ftb

fbb fbb

fttftt

fa

ftb

θij

x'
α

y'



Accepted to J. Chem. Phys. 10.1063/5.0135349(a) (b)

(c) (d)



Accepted to J. Chem. Phys. 10.1063/5.0135349(a) (b)



Accepted to J. Chem. Phys.
        10.1063/5.0135349

0 1000 2000 3000
t

0.1

1

10

N
1
2
3
4
5
6
7
8
9
9 c



Accepted to J. Chem. Phys. 10.1063/5.0135349(a)

(c) (d)

(b)



Accepted to J. Chem. Phys. 10.1063/5.0135349(b)(a)

(c) (d)



Accepted to J. Chem. Phys. 10.1063/5.0135349(a) (b)



Accepted to J. Chem. Phys. 10.1063/5.0135349(a) (b)



Accepted to J. Chem. Phys. 10.1063/5.0135349

8

9

10

9

10

9

Efficiency

Selectivity

(a) (b)


