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Experimental and computational analyses reveal
that environmental restrictions shape HIV-1 spread
in 3D cultures
Andrea Imle 1,8, Peter Kumberger2,11, Nikolas D. Schnellbächer3,11, Jana Fehr2,9,

Paola Carrillo-Bustamante 2,10, Janez Ales4, Philip Schmidt4, Christian Ritter5, William J. Godinez5,

Barbara Müller6, Karl Rohr5, Fred A. Hamprecht4, Ulrich S. Schwarz3, Frederik Graw2 & Oliver T. Fackler 1,7

Pathogens face varying microenvironments in vivo, but suitable experimental systems and

analysis tools to dissect how three-dimensional (3D) tissue environments impact pathogen

spread are lacking. Here we develop an Integrative method to Study Pathogen spread by

Experiment and Computation within Tissue-like 3D cultures (INSPECT-3D), combining

quantification of pathogen replication with imaging to study single-cell and cell population

dynamics. We apply INSPECT-3D to analyze HIV-1 spread between primary human CD4 T-

lymphocytes using collagen as tissue-like 3D-scaffold. Measurements of virus replication,

infectivity, diffusion, cellular motility and interactions are combined by mathematical analyses

into an integrated spatial infection model to estimate parameters governing HIV-1 spread.

This reveals that environmental restrictions limit infection by cell-free virions but promote

cell-associated HIV-1 transmission. Experimental validation identifies cell motility and density

as essential determinants of efficacy and mode of HIV-1 spread in 3D. INSPECT-3D repre-

sents an adaptable method for quantitative time-resolved analyses of 3D pathogen spread.
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In molecular biology, reconstituting complex machinery by
assembling its different components to a functional unit
in vitro serves as ultimate proof for the achievement of

overarching understanding. Intense efforts in all the life sciences
aim at gaining similarly comprehensive insight into complex
physiological processes involving large numbers of heterogenous
cells and tissues. Building on knowledge derived from in vivo
analyses, one approach is to use ex vivo tissue explants as phy-
siological surrogates1. Since organotypic cultures often remain
largely refractory to experimental manipulation of tissue organi-
zation and composition, parallel and complementary efforts aim
at reconstituting complex physiology by assembly of components
ex vivo2. These novel culture systems allow studying physiological
processes at the molecular, single-cell and cell population level.
Dissecting the contribution of individual processes on different
complexity levels to the overall dynamics requires a systems level
understanding of the factors involved. Mathematical and com-
putational models have proven indispensable for connecting
experimental data that are generally limited in spatial and/or
temporal resolution in order to reveal and quantify physiological
dynamics within multicellular systems. These approaches are
intensively developed and applied in, e.g., cancer and immunol-
ogy research3,4, but have been much less adopted by other areas
such as infectious disease research.

Pathogen spread in the infected host is a particular complex
example for multifaceted interactions that can, depending on the
balance between key parameters, result in disease or asympto-
matic host control. Particularly for obligate intracellular patho-
gens such as viruses, but also cell-associated stages of many
bacteria and parasites, intrinsic host cell behavior and local tissue
environment likely present important determinants for the effi-
cacy of pathogen spread. However, little information is available
on such environment–pathogen interactions. In the case of
human immunodeficiency virus type 1 (HIV-1), many molecular
aspects governing replication in isolated target cells, as well as
innate and adaptive immune mechanisms of the host and viral
evasion mechanisms have been elucidated5. In contrast, little is
known about (i) the impact the 3D environment exerts on these
processes in different physiological target tissues and (ii) whether
and how the virus adapts its replication and transmission stra-
tegies to such varying environments6. HIV-1 spread was initially
thought to occur mostly via cell-free virus particles. More
recently, it was revealed in in vitro cell culture models that cell-
associated transmission modes via physical contact between
infected donor and uninfected target cells are more efficient7–11.
For cell-associated transmission, donor and target cells typically
engage in a close cell–cell contact referred to as virological
synapses (VS) for the polarized release of virus particles12. How
tissue environments impact on virus spread and the modes of
viral transmission remains to be established.

These gaps in our understanding of fundamental principles
governing HIV-1 spread in the host reflect the difficulty to dissect
physiological mechanisms in currently available experimental
systems or from clinical data. Studies in HIV-1 patient cohorts or
experimental infection of continuously improving animal models
or target tissue explants allow establishing correlations to char-
acterize important determinants of pathogenesis6,13. However,
key parameters such as cell density or biophysical properties and
composition of target tissue remain largely refractory to experi-
mental control or modification. On the other hand, standard two-
dimensional (2D), monotypic cell culture systems offer experi-
mental control of many parameters but lack tissue heterogeneity
and organization. For example, such experimental systems
neglect that CD4 T cells are highly motile in vivo14, and do not
allow assessing the impact of HIV-induced reduction of T cell
motility on infection spread15–17. In addition, gravity rapidly

converts standard suspension cultures of CD4 T cells into
monolayers with dense cell packing. Within the concept of cell-
associated HIV-1 transmission, culturing cells in such high
density likely overrides the requirement for motility of donor and
target cells to form cell–cell contacts for virus transmission.
Importantly, T-cell motility is also the main reason why obser-
vations of successful transfer of viral material between motile cells
could not be coupled to analyzing whether this transfer leads to
productive infection: by the time viral gene expression in the
target cell can be detected, donor and target cells have moved
away from the disassembled VS, precluding identification of the
causative contact11,17,18.

To overcome these experimental barriers for studying patho-
gen spread in physiological conditions we introduce here
INSPECT-3D, an Integrative method to Study Pathogen spread
by Experiment and Computation in Tissue-like 3D cultures, and
apply its stepwise protocol to the analysis of HIV-1 spread
(Fig. 1a). We establish 3D collagen matrices as a synthetic and
tunable experimental system for analyzing HIV-1 spread ex vivo
in primary human CD4 T lymphocytes within a defined 3D
environment (step 1). Experimental quantification of critical
parameters over 3 weeks characterizes virus spread on the level of
the bulk cultures (step 2), as well as individual pathogen (step 3)
and cell dynamics (step 5) by single particle and cell tracking.
Since the complexity of relevant parameters defining the spread of
infection precludes their comprehensive experimental analysis,
the experimental data is used to parametrize mathematical
models describing population dynamics (step 4) and single-cell
motility (step 6). Combining both models into an integrated
spatial infection model (step 7) allows predicting previously
unrecognized key parameters governing HIV-1 spread, such as
cell-contact requirements and target cell motility, which are
validated experimentally (step 8). Applying INSPECT-3D to
HIV-1 replication in 3D collagen cultures of T lymphocytes
reveals that the 3D environment restricts infection with cell-free
HIV-1 but promotes the formation of long-lasting cell contacts
for transmission of cell-associated HIV-1. In addition, these
analyses provide a quantitative, time-resolved understanding of
the infection dynamics. The approach is vital for gaining insight
into pathogen spread in multicellular systems and is adaptable to
a broad range of viral, bacterial, and parasitic pathogens.

Results
Ex vivo 3D cultures for HIV-1 spread in primary CD4 T cells.
As a first step toward investigating HIV-1 spread in tissue-like
environments (step 1, Fig. 1a), we established cultures of human
CD4 T lymphocytes in a 3D matrix in which individual experi-
mental parameters can be controlled and compared with standard
suspension culture conditions. Collagen was used as 3D matrix
because of the following characteristics: Collagen I is the most
abundant fibrous protein in healthy interstitial tissue19 and can be
polymerized into matrices of different densities. Collagen cultures
are well-established to study T lymphocyte motility and function
in 3D20,21 but are not frequently used in infectious disease
research. These cultures are amenable to live-cell imaging15,22,23

and provide a scaffold for T-cell migration, but—based on the
spacing of filaments—should not hinder diffusion of cell-free
HIV-1 particles. Moreover, collagen can be dissolved by col-
lagenase to retrieve cells for phenotypic characterization24,25.

Human peripheral blood mononuclear cells (PBMCs) from
healthy blood donors were activated by a combination of PHA
and anti-CD3 antibody (see Methods) to result in ~95% primary
human CD3 T cells of which typically 72–76% were CD4 T cells
and 18–22% were CD8 T cells. The amount of CD8 T cells
present in the culture served as overall indicator of cell health and
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enabled to monitor CD8 T-cell expansion which is also observed
during acute and chronic HIV-1 infection in patients26,27. These
cultures were infected with either wild-type HIV-1 NL4.3 or with
the replication-competent HIV-1 variant NL4.3DispYFP (Sup-
plementary Fig. 1a). The latter encodes for all viral proteins and
in addition expresses membrane-associated EYFP at the surface
of virus producing cells. Sorting of infected cells via DispYFP
using antibody-coupled magnetic beads turned out to be more
efficient than other tags and can be achieved without the need for
operating specialized equipment such as cell sorters under
elevated biosafety conditions (Fig. 1b, Supplementary Fig. 1a,
b). First round infected and uninfected cells were mixed in
defined amount and ratio, and cultured in suspension or
embedded in 3D collagen at a density of 1×105 cells per 100 μl

(Fig. 1b). While culturing T cells in suspension leads to high cell
density at the bottom of the culture dish, embedding the same
number of cells in 3D collagen resulted in well-defined cell
spacing. Under these 3D culture conditions, cells remained viable
for up to 3 weeks (Supplementary Fig. 1c). Analysis of the cell
culture supernatant and matrix allowed for quantification of virus
production over time, and cells could be re-isolated from the
collagen matrix for phenotypic characterization of cell and virus
populations (e.g., determination of relative and absolute numbers
of specific cell populations by flow cytometry) (Fig. 1c, see gating
strategy in Supplementary Fig. 1d). In addition, the good optical
properties of collagen allow for quantification of virus diffusion,
cell migration, as well as formation of cell–cell contacts between
infected and differentially labeled donor and uninfected target
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Fig. 1 INSPECT-3D workflow, experimental system and population analysis of pathogen spread in 3D collagen. a Schematic workflow depicting the different
steps of INSPECT-3D. Step 1: Establishment of a 3D culture system (here: primary human CD4 T lymphocytes in collagen to study HIV-1). Steps 2 and 3:
Generation of quantitative and kinetic data on pathogen spread on the population level (step 2) and on the level of single pathogens (step 3). Step 4: Use
quantitative and time-resolved information from steps 2 and 3 to parametrize a model based on ordinary differential equations (ODE) describing the
kinetics of pathogen spread. Step 5: Generation of quantitative and kinetic data on cell motility and contact parameters. Step 6: Use quantitative and time-
resolved information from step 5 to generate a cellular Potts model describing cell motility. Step 7: Combine both modeling approaches (steps 4 and 7) into
an in silico integrated spatial infection model. Step 8: Experimental validation of predictions from the in silico integrated spatial infection model. Infected
cells: green, target cells: red, virus: green asterisks, CD8 cells: purple, newly infected cells in eclipse phase: orange. b Schematic overview of experimental
procedure of PBMC isolation, activation, infection and set up of long-term infection cultures or short-term imaging. Infected T cells (green) can be
separated from uninfected T cells (red) by MACS sorting of cells infected with the HIV-1 variant NL4.3Disp.YFP. c Schematic overview of the parameters
that can be quantified by INSPECT-3D. Depicted in the top panel are schematic views of 2D suspension and 3D collagen cultures with uninfected and
infected cells in red and green, respectively. Asterisks: virus. The middle panel shows a wide-field micrograph of cell density and arrangement, the lower
panel a still image from a movie of a 3D culture with uninfected (red, PKH26 stained) and infected (green, PKH67 stained) cells. Scale bars: 40 µm. d–f
HIV-1 spread in suspension or collagen. d Virus concentration in supernatants determined by SG-PERT. e Percentage of infected (p24+) CD4 T cells
determined by flow cytometry. f T cell depletion expressed as residual CD4 T cells relative to the respective T20 control, which was set to 100% (dashed
line). Mean and standard deviation from parallel triplicate infections of cells from the same donors are shown
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cells by live-cell microscopy. The analysis of pathogen spread in
3D collagen cultures therefore provides quantitative information
on the entire cell and pathogen population, but also at the level of
single cells and pathogens (Fig. 1a, c).

3D culturing affects HIV-1 spread kinetics. Quantification of
HIV-1 replication on the level of the bulk culture (step 2, Fig. 1a)
indicated robust virus replication and active viral spread char-
acterized by continuous production of virus particles (Fig. 1d).
Virus replication was compared with cultures treated with the
HIV-1 fusion inhibitor T20 from day 0 to limit virus production
to cells that were infected during the initial round of infection.
Replication kinetics in collagen were markedly delayed relative to
suspension, reached similar maximum titers 1 week later (Fig. 1d,
Supplementary Fig. 2a), and showed overall reduced virus repli-
cation (Supplementary Fig. 2b). The delayed replication kinetics
in 3D collagen was reflected in a delayed increase in infected CD4
T cells (Fig. 1e, Fig. S1 Supplementary Fig. 2c), was associated
with a moderate reduction in overall infection in most donors
(Supplementary Fig. 2d), and resulted in markedly delayed CD4
T-cell depletion with less pronounced overall loss of CD4 T cells
over the course of the experiment (Fig. 1f, Supplementary Fig. 2e).
The delay of HIV-1 spread by the 3D environment was not
caused by a general impairment of T cell permissivity to HIV-1
infection, as cells cultured in collagen were even slightly more
susceptible to HIV-1 infection than cells in parallel suspension
cultures (Supplementary Fig. 2f–h). 3D collagen environments
thus strongly affect the kinetics of HIV-1 spread.

HIV-1 particle diffusion and infectivity in 3D collagen. In
search for explanations of the delay in HIV-1 spread in 3D col-
lagen we developed approaches to address if 3D collagen affects
the availability of cell-free virus particles for infection (step 3,
Fig. 1a). Since infection of target cells by cell-free virus requires
their diffusion in the culture, we first determined the diffusion
properties of fluorescently labeled HIV-1 particles (pcHIVGFP or
pcHIVmcherry) in medium (suspension) or upon incorporation
into 3D collagen (Fig. 2a) by spinning disc confocal microscopy.
Images were subjected to automated probabilistic particle track-
ing, resulting in trajectories of individual HIV-1 particles that
were used for mean square displacement (MSD) analysis. Sub-
sequent curve fitting revealed the ability of HIV-1 particles to
diffuse in 3D collagen without accumulation at, e.g., collagen
fibers and quantified viral diffusion (Fig. 2a, b)28. Normal diffu-
sion was observed for virions in suspension (linear MSD curve,
diffusion exponent α= 1.03) and the obtained diffusion coeffi-
cient D= 3.18 μm² s−1 was comparable to theoretical expecta-
tions based on the used media conditions (D= 4.38 μm² s−1,
Stokes–Einstein equation for virions of 150 nm diameter at 37 °C
in water) (Fig. 2c, d). We typically started our experiments with
5% (1 out of 20) infected donor cells and hence considered how
much time virions spend to reach the 19 nearest neighbors of a
virus producing cell. Based on the determined diffusion rate, this
would require about 2.2 min in the dense packing of suspension
cultures (Fig. 2e). In collagen, however, diffusion occurred at
reduced rates (anomalous diffusion exponent α= 0.86, Fig. 2c, d)
and indicated a pattern of subdiffusion, which is typical for solute
transport in porous media29. Considering the cell spacing in 3D
collagen, diffusion of virions from a producer cell to the 19
nearest neighbors would require almost 1 day (22.6 h). Based on
the half-life of HIV-1 particle infectivity of 17.9 h30, this would be
associated with 58% loss of infectivity (Fig. 2e). In addition,
single-particle tracking revealed that within an observation time
of 5 min considerably more viral particles underwent transient
phases of low mobility in collagen than in suspension (7.4% of all

particles in collagen compared with 1.08% in suspension, Fig. 2f).
Since we did neither observe long-lasting virion–collagen inter-
actions resulting in decoration of collagen fibers nor aggregation
of virions, these phases of low virion mobility likely represent
transient contacts with collagen fibers. Considering these frequent
immobilization events detected within this short observation
window, it can be assumed that within the infectivity half-life of
17.9 h, virtually all particles will encounter collagen fibers.
Although such physical contact with collagen fibers did not alter
the half-life of RT activity (Supplementary Fig. 3a), collagen
severely compromised the infectivity of HIV-1 particles, both for
virus produced and virus directly embedded within the matrix
(14.0+/−13.6% and 6.7+/−2.9%, respectively, relative to sus-
pension at 100% relative infectivity, Fig. 2g). Finally, virus pro-
duction as determined by released RT activity was significantly
reduced in collagen compared with suspension cultures (41.3
+/−18.9% relative to suspension, Supplementary Fig. 3b).
Together, these results revealed that a 3D collagen environment
reduces virion diffusion rates and restricts particle infectivity as
well as production. 3D environments can thus pose a significant
barrier to cell-free HIV-1 infection.

HIV-1 spread in 3D collagen of different densities. To better
dissect the impact of different environments on HIV-1 spread, we
further exploited the versatility of collagen as matrix for ex vivo
culture systems and compared matrices with different collagen
concentrations and crosslinking that display high or low con-
finement (dense and loose collagen), and hence represent a range
of heterogeneous tissues. These 3D cultures do not reflect the
precise heterogeneity and architecture of a specific target tissue.
However, T-cell density and migration speeds are reminiscent of
non-lymphoid peripheral, mucosal tissue31,32. Surprisingly, we
found that loose collagen was more restrictive to HIV-1 spread
than dense collagen and allowed only for an initial increase in the
production of virus particles that remained at a moderate basal
level (Fig. 3a, b, see Supplementary Fig. 4a and 4b for viral
replication curves including mock and T20 controls and statistical
analysis of results obtained from 10 experiments with individual
donors, respectively). This moderate efficacy of virus replication
in loose relative to dense collagen was paralleled by low levels of
productively infected cells (Fig. 3b) and only subtle depletion of
CD4 T cells (Fig. 3c).

A mathematical model to analyze HIV-1 spread in 3D collagen.
The results above revealed that 3D environments shape the effi-
cacy and dynamics of virus spread and individual virion infec-
tivity. However, limitations in either spatial resolution
(population-based measurements, step 2, Fig. 1a) or temporal
extent (imaging, step 3, Fig. 1a) impair the direct and simulta-
neous experimental assessment of the relative contribution of
individual parameters, such as cell-free and cell-associated viral
transmission, to the overall infection dynamics. Overcoming these
limitations, mathematical models can provide a systematic and
quantitative understanding of the interactive processes within
such multicellular systems and represent a tool to quantify para-
meters that are not directly experimentally accessible (step 4,
Fig. 1a). We therefore conducted in-depth mathematical modeling
of virus spread kinetics in suspension and 3D collagen to disen-
tangle the effects of replication efficacy, cell motility and contact
times on the infection dynamics. Particularly we determined to
which extent cell-free and cell-associated viral transmission modes
are influenced by the specific environments. Extending previous
standard models for viral dynamics (reviewed in ref. 33), we
developed a kinetic mathematical model based on ordinary dif-
ferential equations (ODE-model) that describes the dynamics of
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CD8 cells, uninfected and infected CD4 cells, as well as the con-
centration of viral particles and their production by infected cells
(Fig. 3d). In particular, our mathematical model discriminated
infection by cell-free and cell-associated viral transmission30,34,
distinguished between viral concentrations in matrix and super-
natant, and additionally accounted for an “adaptation phase”
characterized by delayed proliferation that cells experience after
transfer into their environment. Using a stepwise approach by
combining our mathematical model with additionally obtained
experimental data (see Methods), we were able to reliably quantify
the parameters describing cellular turnover and infection kinetics
within the different environments (Table 1).

Specifically, our model explains the observed dynamics for all
different components measured, including amounts of infected
as well as total CD4 T cells, CD8 T cells and virus titers in the
cell culture supernatant and the matrix (Fig. 3e, Supplementary
Fig. 5a, b). We found that the different environments neither
affect the proliferation of CD4 target cells (λSCD4= 0.60 [0.36,
1.02] d−1 vs. λLCD4= 0.78 [0.36, 1.29] d−1 vs. λDCD4= 0.59
[0.32, 0.89] d−1), nor the rate at which infected cells die (δSI=

0.42 [0.40, 0.44] d−1 vs. δLI= 0.48 [0.46, 0.50] d−1 vs. δDI=
0.52 [0.51, 0.56] d−1

, numbers in brackets represent 95%-
confidence intervals of estimates) (see Table 1). All three
environments have a similar maximum capacity for total CD3
T cells (ΤSC= 3.11 [2.72, 3.56] × 105 cells well−1 vs. ΤLC= 3.53
[2.80, 4.52] × 105 cells well−1 vs. ΤDC= 4.28 [3.15, 6.37] × 105

cells well−1). Thus, the high depletion of CD4 T cells in
suspension cultures is compensated by a higher proliferation
rate of CD8 cells in this environment (λSCD8= 1.13 [0.74, 1.74]
d−1 vs. λLCD8= 0.58 [0.24, 1.01] d−1 vs. λDCD8= 0.29 [0.12,
0.56] d−1). Importantly, our model robustly inferred the
contribution of cell-free and cell-associated infections to viral
spread in suspension and 3D cultures (Fig. 3f, g). In suspension,
virus spread was found to be mainly driven by cell-free
infection, since no contribution of cell-associated infection was
required to explain the experimental data (Fig. 3f, g). In
contrast, HIV-1 spread in collagen relied to a large extent on
cell-associated modes of virus transmission with a maximum of
only 22% [possible range between 0.0% and 27.0%] and 37%
[possible range from 0.0% to 44.2%] of infections resulting
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Fig. 2 Step 3: 3D collagen limits HIV-1 particle diffusion and infectivity. a Representative confocal micrograph of fluorescent viral particles in media or
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from cell-free transmission in loose and dense collagen,
respectively (numbers in brackets define the 95%-confidence
intervals of estimates). The probability for infection of cells by
cell-associated transmission is estimated to be more than ~7-
and ~4-fold higher in loose and dense collagen, respectively,
compared with suspension (Supplementary Fig. 5c). Our kinetic
model thus indicated that 3D environments exert strong
selection pressures toward the use of cell-associated modes of
HIV-1 transmission.

Single-cell motility and contact analysis. The kinetic mathe-
matical model indicated a comparable or even slightly higher
contribution of cell–cell transmission in loose than in dense
collagen cultures and cell-free infectivity was equally impaired by
dense and loose collagen. The slower virus spread observed in
loose collagen therefore suggested that cell–cell transmission is
particularly inefficient under this culture condition. Due to
the spacing between donor and target cells in 3D, cell motility
is a prerequisite for cell-associated virus spread in these 3D
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environments. Understanding the kinetics of virus spread in 3D
hence required analyzing cell motility and cell–cell interactions at
the single-cell level. We therefore employed live-cell wide-field
microscopy to analyze the motility of infected and uninfected
cells in 3D (step 5, Fig. 1a). In dense collagen (Fig. 4a), elevated
constriction confined cell motility that resulted in frequent
turning and moderate cell speeds (Fig. 4b–d). Consistent with
previous observations in vitro and in vivo15–17,35, HIV-1 infec-
tion impaired T-cell migration leading to reduced cell velocities
(mock: 5.6+/−2.0 μmmin−1, HIV-1: 43.2% reduction in cell
speed to 3.2+/−1.6 μmmin−1, Fig. 4d, Supplementary Movie 1)
and longer arrest phases (Fig. 4e). In comparison, lower con-
striction in loose collagen (Fig. 4f) allowed for overall enhanced
cell migration, resulting in more even and extended migration
tracks (Fig. 4g, h). Overall migration was also faster (mock: 8.9

+/−3.8 μmmin−1, HIV-1: 31.6% reduction to 6.1+/−4.07 μm
min−1, Fig. 4i), since cells underwent less arrest phases than in
dense collagen (Fig. 4j, compare 24.7+/−28.4% in loose to 34.9
+/−28.5% for mock cells in dense collagen, Fig. 4e, Supple-
mentary Movie 2). With a 2.1- and 2.5-fold increase in arrest
coefficient for dense and loose collagen, respectively, the reduc-
tion of T-cell motility by HIV-1 infection was comparable for
both collagen densities (Fig. 4e, j). However, less constriction in
loose collagen resulted in overall higher migration efficiencies for
both infected and uninfected cells.

As cell-associated transmission was identified to dominate
HIV-1 spread, live-cell imaging was used to investigate cell–cell
contact formation. Green and red cell dyes were used to label
HIV-1 infected and uninfected T cells, respectively, and to
monitor cell contacts between both cell types after mixing.

Fig. 3 Step 4: Mathematical ODE-model reveals predominant cell–cell spread of HIV-1 in 3D culture. a–c Cells from a representative donor showing HIV-1
spread in suspension, dense and loose collagen over time. a Virus concentrations determined from supernatants by SG-PERT. b Absolute numbers of
infected CD4 cells as determined by FACS using counting beads. c T-cell depletion expressed as residual CD4 T cells relative to the respective T20 control,
which was set to 100% (dashed line). Mean and standard deviation from parallel triplicate infections of cells from the same donors are shown. d Schematic
of the mathematical model describing the infection dynamics within the ex vivo cultures. Target cells (T) that proliferate at rate λ and die at rate δCD4 can
become infected (INP) by free infectious virus (Vi) at rate βf or by contact with infectious cells (I) at rate βc. After remaining in a non-productive infected
state for an average duration of 1/κI, infected cells start producing virions at a constant rate ρ and thereby become infectious. Only a fraction of these
particles, fi, is considered to be infectious, losing infectivity (Vn) at rate ci. Virions are lost from the culture by either disintegrating with a viral clearance rate
cV or by diffusion to the supernatant (VS) at rate κV. Furthermore, we consider non-permissive refractory CD4 T cells (Tref) and CD8 T cells that interfere
with target cell proliferation (see Methods for a detailed description and the corresponding mathematical equations). e Model predictions for the infection
dynamics within the different environments. The experimental data indicating the mean (black dots) and individual measurements (open black circles) of
three repeats, as well as the best fit (solid red line) of the mathematical model given in (d) are shown. Red shaded areas indicate the 95%-prediction bands
of model predictions. Note that the repeated drops in virus titer reflect the time points of medium change. f Predicted contribution of cell-free infections to
total infections for suspension (blue), dense (brown), and loose collagen (orange) over time using the best fit shown in (e). g Corresponding confidence
intervals for estimates of the proportion of cell-free infections three weeks post infection with the prediction of the best fit shown as white circle

Table 1 Estimates for the parameters of the mathematical ODE-model describing HIV-1 infection kinetics within the different
environments

Parameter Description Unit Suspension 3D Collagen

Loose Dense

λCD8 Proliferation of CD8 cells after
adaptation phase

day−1 1.13 [0.74, 1.74] 0.58 [0.24, 1.01] 0.29 [0.12, 0.56]

λCD4 Proliferation of CD4 cells after
adaptation phase

day−1 0.60 [0.36, 1.02] 0.78 [0.36, 1.29] 0.59 [0.32, 0.89]

TC Max. capacity for CD3 T cells ×105 cells well−1 3.11 [2.72, 3.56] 3.53 [2.80, 4.52] 4.28 [3.15, 6.37]
δCD8 Net-death rate of CD8 cells during

adaptation phase
day−1 0.07 [0, 0.19] 0.11 [0, 0.23] 0.08 [0, 0.19]

δCD4 Net-death rate of CD4 cells during
adaptation phase

day−1 0.03 [0, 0.11] 0.23 [0.05, 0.39] 0.25 [0.09, 0.38]

I0 Initial fraction of non-productively
infected cells in T20x2 experiment

1 0.17 [0.10, 0.23]

ρ Viral production rate ×104 RT (cell × day)−1 1.02 [0.80, 1.38] 0.48 [0.37, 0.66] 0.43 [0.32, 0.61]
δI Death rate of infected cells day−1 0.42 [0.40, 0.44] 0.48 [0.46, 0.50] 0.52 [0.51, 0.56]
κV Viral diffusion rate from culture to

supernatant
day−1 0.72 [0.55, 0.95] 0.13 [0.10, 0.17] 0.15 [0.11, 0.19]

I0 Initial fraction of non-productively
infected cells in WT experiment

×10−2 3.3 [1.7, 4.8]

V0 Initial fraction of infectious virus in
WT experiment

1 4.4 × 10−8 [0, fi= 10−3]

Tref,0 Initial fraction of refractory cells in
WT experiment

1 0.10 [0.0074, 0.12]

βf Cell-free infection rate ×10−5 (RT × day)−1 2.3 [0, 3.0]
βc Cell-to-cell infection rate ×10−5 (cell × day)−1 1 × 10−6 [0, 7.0] 4.3 [3.6, 5.4] 1.7 [1.4, 2.6]
λr Proliferation rate of refractory cells day−1 0.22 [0.16, 0.29] 0.78 [0.77, λCD4= 0.78] 0.49 [0.45, 0.52]

The schematic of the model is depicted in Fig. 3d, and the model and fitting procedure is explained in detail in Methods. Numbers in brackets represent 95%-confidence intervals for parameter estimates
obtained by profile likelihood analysis
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Fig. 4 Step 5: Motility analysis in different collagen densities. Cell migration analysis. Mock CD4 T cells and purified HIV-1 infected cells were stained with
red and green PKH cell dyes, respectively, mixed and embedded in loose or dense collagen. Cells were imaged every 30 s, segmented and tracked for 60
min. a, f Maximum projection of 10 µm stacks of confocal reflection microscopy showing lymphocytes in a compact collagen meshwork of dense collagen
(a) and in a fibrillary structure in loose collagen (f). Scale bar 10 µm. b, c, g, h Trackplots of mock infected and infected CD4 cells in dense and loose
collagen. The inset shows a zoom-out to visualize the maximal extent of the longest tracks. The analyzed cell number is indicated by n. d, i Mean
instantaneous velocity of motile cells (faster than 2 µmmin−1 as minimum velocity marked by gray bar). e, j Arrest coefficient of all cells indicating the
fraction of track lengths displaying arrest (<2 µmmin−1). Absolute numbers of cells analyzed are indicated below the boxes. Box and whiskers in Tukey
style with mean values indicated by circles are shown. k Workflow for advanced segmentation and tracking. From left to right: Wide-field image from live
microscopy, overlay with segmentation result as computed using Ilastik, manual track correction with Image J plugin MaMut. See Methods for details. l In
case one cell was detected by multiple spots, these were joined to compute a convex hull used for contact analysis. See Methods for details.m Definition of
contact based on overlapping cell shapes as approximated by convex hulls
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Analyzing contact parameters in a quantitative manner required
the implementation of customized advanced segmentation and
tracking algorithms in Ilastik with subsequent manual track
correction with the Image J plugin MaMut (Fig. 4k). Cell tracking
resulted in cell trajectories with potentially multiple circular spots
per cell and per time point. The true cell contour was then
approximated by the convex hull of all spots of a given cell
(Fig. 4l), such that the cell shape could be followed over time.
Cell–cell contacts were then detected as overlapping cells, which
were identified by mutually overlapping convex hulls (exemplary
illustrated in Fig. 4m for a red target cell in contact with a green
infected cell. See Methods for details on the contact analysis). As
expected, faster migration in loose collagen resulted in a higher
frequency of cell–cell contacts for both uninfected target (target)
and infected donor (donor) cells than observed in dense collagen
(Fig. 5a–c). However, cell contacts between donor and target cells
in dense collagen occurred more frequently within very compact
and stable aggregates, while contacts were more dynamic and
short-lived in loose collagen (Fig. 5a, c, d, Supplementary
Movie 3). Formation of stable cell–cell contacts (arbitrarily
defined as lasting at least 7 min) was approximately three times
more frequent between donor and target cells than between two
target cells in both collagen environments (Fig. 5d). Importantly,
such stable donor-target cell contacts were over three times more
frequent in dense than in loose collagen (Fig. 5d) and donor-
target cell contacts lasting for at least 10 min were observed

exclusively in dense collagen (Supplementary Fig. 6a). For
contacts between two target cells, the cumulative cell-contact
duration was similar between loose and dense collagen with only
a minority of cells engaged in cell–cell contacts for more than
20% of the observation period (Supplementary Fig. 6b). Shorter
contact duration was therefore compensated by a higher partner
frequency in loose collagen. While a similar pattern was observed
for donor-target cell contacts in loose collagen, >30% of donor
cells were in contact with target cells for more than 30% of the
observation period (Supplementary Fig. 6c). This resulted in a
2.4-fold higher cumulative contact duration between donor and
target cells in dense collagen than in loose collagen (Supplemen-
tary Fig. 6d). Live-cell imaging and individual cell tracking thus
revealed that fast migration in loose collagen is associated with
short contact duration and that more efficient virus spread in
dense collagen is associated with extended contact duration
between donor and target cells.

An in silico integrated spatial model for HIV-1 spread.
Determining how single-cell motilities and contact kinetics
obtained from time-restricted live-cell imaging relate to overall
population dynamics requires an integrative method that is able
to examine multicellular dynamics over long time periods.
Computational models that follow the collective dynamics of
individual cells provide such a framework. We developed a cel-
lular Potts model (CPM) that provides a computational
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Fig. 5 Step 5: Cell contact analysis in different collagen densities. Contact analysis of target CD4 T cells in co-culture with HIV-1 infected donor cells. Mock
CD4 T cells and purified HIV-1 infected cells were stained with red and green PKH cell dyes, respectively, mixed and embedded in loose or dense collagen.
Cells were imaged every 30 s, segmented and tracked for 60min. a Still images of supplementary movie 3 recorded at the indicated times. Green: HIV-1
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cells with other cells in dense and loose collagen. Numbers indicate absolute cell number. The graph shows boxplots with Tukey style whiskers, circles
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simulation of cell motion accounting for biophysical properties of
individual cell types3,36 (step 6, Fig. 1a). In contrast to the kinetic
ODE-model developed above, the CPM allows us to directly
simulate cell-associated virus transmission between cells migrat-
ing in collagen matrices by reflecting the spatial details of indi-
vidual cell migration and contact dynamics. As loose collagen
conditions were most restrictive to infection, we recapitulated
these conditions by using an automated parallelized computing
method to adapt the CPM to the experimentally observed motility
characteristics of infected and uninfected cells obtained from
time-lapse imaging (Fig. 6a, Supplementary Movie 4). The
obtained parameterization closely mimicked important para-
meters of motility of individual cells, such as cell velocity, arrest
and MSD (Fig. 6b–d). Moreover, corroborating the appropriate-
ness of the obtained parameterization, the CPM adjustment
resulted in simulated rates of partner encounters for uninfected
and infected cells (Fig. 6e) and percentages of long-lasting con-
tacts between infected and uninfected cells (3.4% (sim) vs. 3.1%
(exp) of all contacts) (Fig. 6f) that were in good agreement with

our experimental data. To investigate the influence of various
cell-contact requirements on the long-term infection dynamics,
the CPM adjusted to the individual cell motility characteristics
could now be extended to recapitulate the experimental infection
assays. To this end, we incorporated a cell–cell infection process
into our CPM and accounted for the particular processes and
rates deduced by our kinetic ODE-modeling approach (Table 1).
These parameters included an estimated viral eclipse phase in
which cell-associated transfer from infected to target cells does
not yet occur and cell proliferation rates, as well as a maximal cell
density that can be reached in the culture system (culture capa-
city) (see Methods for the specific details of recapitulating
experimental conditions). Following this approach allowed us to
assemble dynamic and time-resolved information from
population-based and single-cell measurements in an integrative
spatial infection model to dissect the dynamics of pathogen
spread (step 7, Fig. 1a). Within this model we could vary the
minimal contact duration required for productive cell–cell virus
transmission from donor to target cell and extrapolate infection
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kinetics. These analyses predicted that loose collagen conditions
would be well permissive to HIV-1 spread if productive infection
would only require 15 min. This suggested that (i) longer lasting
cell contacts are required for productive HIV transmission and
thus (ii) only a fraction of contacts defined above as long-lasting
(more than 7 min) lead to productive infection of target cells.
Expanding the minimal contact duration required for productive
HIV transmission to 25 min approximated experimental infection
kinetics (Fig. 6g). Thus, our computational procedures identified
~25min as the lower threshold for the duration of cell–cell
contacts leading to productive HIV-1 transmission in 3D
collagen.

Experimental validation of the in silico infection model. If
faithfully reflecting the dynamic processes governing pathogen
spread in 3D, the integrative spatial infection model should
predict important parameters that govern the spread of infection
(step 8, Fig. 1a). To test this, we sought to dissect the relevance of
cell density on virus spread and simulated cell–cell interactions
using a constant amount of infected cells mixed with a 2-, 5- and
10-fold increased number of uninfected target cells (Fig. 7a). As
expected, increased target cell densities were generally predicted
to expand the time that infected donor cells spend in contact with
uninfected target cells, as contacts become more frequent
(Fig. 7b–d). A two-fold higher target cell concentration only led
to moderate changes in the contact characteristics. In contrast, a
five-fold higher number of target cells substantially increased the
cumulative time an infected cell spent in contact (average
cumulative contact time per infected cell per hour: 16.3 min or
27% of the time (1×); 21.4 min/36% (2×); 38.3 min/64% (5×))
(Fig. 7c) as well as the frequency of different partners that are
detected during this time period (Fig. 7b, d). Although the frac-
tion of long-lasting contacts between infected and uninfected cells
was predicted to be unaltered by this fivefold increase in target
cell density (Fig. 7e), simulating the long-term infection dynamics
for different multiplicities of target cells suggested that under
these conditions, HIV-1 spreads efficiently in loose collagen
(Supplementary Fig. 7a, b). Substantially higher target cell con-
centrations (10×) leading to densely packed environments even
increased this efficiency by additionally affecting cell contact
characteristics (Fig. 7d, e). These results suggested that limited
average durations of individual donor-target cell contacts can be
compensated by an enhanced frequency of cell–cell contacts. To
test this assumption experimentally, we compared the infection
dynamics within suspension (Fig. 7f–i) and loose collagen
(Fig. 7j–m) using the standard and fivefold higher concentration
of target cells (data with T20 and mock controls plotted to
compare suspension vs. collagen at the same target cell multi-
plicity in Supplementary Fig. 7c–j). In suspension, virus pro-
duction over time (Fig. 7g), the percentage of infected cells
(Fig. 7h) and CD4 T-cell depletion (Fig. 7i) followed the same
dynamics for both cell densities, indicating that the target cell
concentration does not affect efficient viral spread in suspension.
In contrast, enhancing target cell density in loose collagen, and
thus creating an environment that is reminiscent of local T cell
accumulation at foci of SIV infection within the macaque vaginal
mucosa37, increased the abundance of infected cells (Fig. 7l). As
predicted by the CPM, this increase in target cell density induced
efficient virus spread that was significantly enhanced compared
with the basal replication observed at lower cell density as
assessed by virus production (Fig. 7k) and CD4 T-cell depletion
(Fig. 7m). This experimental validation of the integrative spatial
infection model underscores that by applying the full INSPECT-
3D analysis, quantitative and time-resolved understanding was
achieved of key parameters that govern HIV-1 spread in tissue-

like microenvironments. Together, these results establish envir-
onmental impact on cell-associated modes of HIV-1 transmission
and cell density as central determinants of virus spread in 3D
cultures.

Discussion
Studying pathogen spread in complex cell systems to understand
the factors determining the observed dynamics requires an inte-
grative approach combining experimental observations from
different complexities and resolutions with imaging and com-
putational analyses. Here we introduce INSPECT-3D as a method
for the quantitative analysis and mechanistic dissection of
pathogen spread in tissue-like 3D cultures. As a first element, 3D
cultures of primary human CD4 T cells are introduced as syn-
thetic ex vivo model system to quantitatively study pathogen
spread in well-defined and tunable microenvironments of varying
characteristics. This culture system provides experimental control
over a wide range of parameters including cell vs. matrix density
and cell migration speeds. Furthermore, it allows quantitative and
time-resolved analysis of pathogen diffusion, infectivity and
replication dynamics, live-cell imaging of cell motility and
cell–cell interactions, as well as phenotypic characterization of
donor and target cells. INSPECT-3D thus yields quantitative and
time-resolved information on single cell/pathogen as well as the
population level. To facilitate the analysis of these complex
imaging datasets, advanced image segmentation and tracking
represents a second essential element of INSPECT-3D. Finally,
mathematical modeling is fundamental to process these complex
experimental datasets to quantify parameters that are not
experimentally accessible and to disentangle the influence of
many independent processes on the complex dynamics of
pathogen spread. These mathematical analyses are required to
connect the individual observations from different spatial and
temporal resolution within an integrative framework to get a
systematic and quantitative understanding of the processes
involved in pathogen spread. As a third element of INSPECT-3D,
we therefore performed iterative cycles of mathematical analyses
and experiments to identify and quantify key parameters gov-
erning virus spread efficacy (Fig. 1a). Combined analyses of live-
cell imaging data and measurements of long-term infection
dynamics with mathematical models allowed addressing the
infection dynamics at a cell population level. In combination with
the spatially-resolved description of individual cell dynamics, we
were able to generate an integrated in silico spatial HIV-1
infection model, which allowed assessing the impact of motility
and interaction patterns of individual cells on virus spread.

Herein, we customized INSPECT-3D to the analysis of HIV-1
spread in 3D cultures of primary human T lymphocytes, but this
approach will be a rich resource for the entire infectious disease
community. Considering the profound impact of the 3D envir-
onment on virus spread, culturing T lymphocytes in 3D collagen
should be considered as a novel and easy to implement standard
culture system for ex vivo replication studies of HIV-1 but also
any other lymphocyte-tropic pathogen. The experimental part of
INSPECT-3D can readily be applied to other important T-cell
tropic pathogens including viruses (e.g., measles virus38, human
T-cell leukemia virus39, dengue virus40, and vaccinia virus41) or
parasites (e.g., Toxoplasma gondii)42. Adaptation to B cell-tropic
pathogens such as murine leukemia virus43 or Epstein-Barr
virus44, including antigen-presenting cell such as dendritic cells
or macrophages to allow studying, e.g., intracellular bacteria (e.g.,
Listeria, Salmonella45), or studies of co-infections with multiple
lymphotropic pathogens only requires minor modifications in the
cell purification protocol. Since penetration through the dense
collagenous tumor interstitium has been found limiting for
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therapeutic success of oncolytic adenoviruses46 and cancer cells
have more plasticity in 3D than in 2D, INSPECT-3D can also be
applied to optimize such intervention strategies. For these
applications, the mathematical models developed here need to be
adapted to the pathogen-specific replication and transmission
characteristics.

We aimed at establishing and quantitatively characterizing a
3D culture system amenable to experimental variation of key
parameters for studying HIV-1 spread in a tissue-like environ-
ment. As in any reconstitution attempt of complex biological
processes, this prototype model system does not recapitulate all
aspects relevant to HIV-1 spread in an infected individual as it
lacks, e.g., adaptive and cellular immune responses with their
corresponding cytokine milieus, does not reflect the precise tissue
architecture and cell heterogeneity/density characteristic for
individual target organs, and relies on non-physiological activa-
tion stimuli to render CD4 T cells permissive to HIV-1 infection.
In addition to expanding the pathogen portfolio subjected to
INSPECT-3D analysis, future efforts will therefore focus on
sequentially incorporating more aspects of in vivo physiology
(e.g., antigen-presenting cells to deliver virus concomitant with

antigen-mediated activation of CD4 T cells) in this ex vivo 3D
culture model. The precise steps required to enhance the com-
plexity of this 3D ex vivo model will depend on the nature of the
target tissue to be simulated, warranting independent efforts to
develop surrogates, e.g., mucosal or lymphoid tissue. These
developments will be paralleled by enhanced imaging approaches
to track cell motility and interaction in 3D as well as corre-
sponding computational efforts to model these more complex
scenarios to faithfully reconstitute pathogen spread in distinct
target organs ex vivo and in silico.

Despite these differences to in vivo physiology, this new
ex vivo 3D culture system recapitulated the motility speeds of
CD4 T lymphocytes and their reduction upon HIV-1 infection
observed in humanized mice17. This allowed us for the first time
to take into account the impact of cell motility on the efficacy of
HIV-1 spread and provided important new insights into the
mechanisms that govern HIV-1 spread in a 3D environment
that are likely important for virus spread in vivo. Most impor-
tantly, our analysis revealed a potent influence of the 3D
environment itself as it suppressed the infectivity of cell-free
HIV-1 particles and posed significant barriers to virion diffusion
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Fig. 7 Step 8: Experimental validation of model prediction shows dependency of HIV spread on target cell concentrations in loose collagen. a Snapshots of
in silico spatial infection model simulations for loose collagen (gray) using a constant number of infected donor cells (green) mixed with varying
concentrations (1×–10×) of uninfected CD4 target cells (red) and CD8 cells (purple). b Contact diagram for simulated donor cells with target cells in loose
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contacts (>7min) between infected and target cells from 10 independent simulations. f–m Experimental data for comparison of the infection dynamics in
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cells. Scale bar of representative bright-field images: 40 µm. g, k Virus concentrations determined from supernatants by SG-PERT. h, l Percentage of
infected (p24+) CD4 T cells determined by flow cytometry. i,m T cell depletion as residual CD4 T cells relative to respective T20 control, which was set to
100% (black dashed line). Mean and standard deviation from parallel triplicate infections of cells from the same donors are shown
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as well as cell motility. The current view on barriers to HIV-1
spread in infected individuals is primarily focused on cellular,
adaptive, and cell-intrinsic mechanisms5,47. Our results suggest
that extracellular microenvironments can pose similar restric-
tions to virus spread. This interference does not require
pathogen recognition or adaptive immune responses but is an
intrinsic physical property of the extracellular matrix, for which
we propose the term environmental restriction. Since cell-free
infection is markedly impaired by the environmental restriction
in 3D cultures, HIV-1 spread depends to much larger extend on
cell-associated transmission. The latter transmission mode is
promoted by dense 3D environments that induce long-lasting
cell–cell contacts and possibly select for virus variants with
efficient cell–cell transmission properties. While the molecular
mechanisms underlying the restriction to cell-free and promo-
tion of cell-associated infection remain to be established, our
results suggest that infection by cell-free HIV-1 particles is only
a minor contributor to virus dissemination in the infected host
and imply that cell-associated modes of HIV-1 transmission
largely predominate in tissue. The predominant use of cell-
associated transmission would explain how blocking the exit of
CD4 T cells from lymph nodes interferes with HIV-1 spread17

and the micro-anatomical clustering of virus variants in
humanized mice18. Finally, these analyses also revealed two
novel key characteristics of HIV-1 cell–cell transmission in 3D:
(i) individual cell–cell contacts need to last at least 25 min for
productive transfer of HIV-1 to target cells and (ii) increasing
the target cell density is sufficient to drive HIV-1 replication in a
3D environment in which elevated cell motility precludes for-
mation of a sufficient number of long-lasting cell–cell contacts.
Live cell imaging revealed transfer of HIV-1 proteins from
donor to target cells for an average time of ~60 min, including
shorter transfer periods of 20 min11,18,48, but could not define
whether such transfer events result in productive target cell
infection. Our results reveal such relative short cell–cell contacts
to be indeed sufficient for productive virus transmission. This
has important implications for the conditions at which HIV-1
can efficiently spread in tissue: While 3D environments facilitate
cell-associated virion transfer by restricting cell-free infection,
environment-determined parameters can also have negative
effects on HIV-1 cell–cell transmission. Elevated cell migration
speeds such as in loose relative to dense collagen may reduce the
efficacy of cell-associated HIV-1 transmission, possibly reflect-
ing that arrest for VS formation43 is more difficult for highly
motile cells. Of note, increasing target cell density restored
HIV-1 spread in loose collagen by increasing the total number
of permissive cell–cell contacts, thus generating a critical
population size of infected cells sufficient for infection spread.
This requirement for optimized matrix and target cell density
for HIV-1 spread in tissue is consistent with the elevated T cell
density in SIV infected foci observed in vivo37. In addition, the
lack of sufficiently long permissive contacts could be compen-
sated for by a series of shorter cell–cell contacts. This scenario
resembles the mechanism of triggering T-cell receptor signaling
at the immunological synapse, which occurs in the context of a
long-lasting, stable synapses formed by stationary cells or via
repeated short interactions of motile cells (kinapse)49,50. In
analogy to the immunological kinapse, sequential interactions
between the same target and one or more donor cells (vir-
ological kinapse) may result in expanded cumulative contact
duration required for productive HIV-1 transmission. The
benefit of such virological kinapses may be the sequential
accumulation of sufficient virus material without requiring full
motility arrest. In addition, initial waves of transmitted virions
might saturate target cell restriction factors to facilitate infection
by particles transmitted via subsequent contacts.

This proof-of-concept study illustrates the usefulness of engi-
neered 3D environments coupled to mathematical modeling to
further our understanding of pathogen spread dynamics in the
infected host and to enable the dissection of underlying
mechanisms. Applied to HIV-1 spread in CD4 T cells, their use
revealed (i) the motility of donor and target cells as important
parameters governing the efficacy of HIV-1 spread in 3D, (ii)
tissue-like microenvironments as important regulator of mode
and efficacy of HIV-1 spread, and (iii) allowed to gain a quan-
titative and spatio-temporal understanding of HIV-1 spread
dynamics in 3D. INSPECT-3D provides the infectious disease
community with a framework to exploit the full potential of
ex vivo tissue engineering for the analysis of pathogen spread.

Methods
Cell lines. HEK293T cells (ATCC, CRL-3216) and TZM-bl indicator cells (NIH
AIDS repository51, Cat# 8129; RRID: CVCL_B478) were maintained at 37 °C with
5% CO2 in DMEM medium supplemented with 10% fetal calf serum (FCS) and 1%
penicillin/streptomycin (Gibco). OKT3 hybridoma cells (ATCC, CRL-8001) were
maintained in IMDM (ATCC) supplemented with 20% heat-inactivated FCS and
1% penicillin/streptomycin. Cells were passaged every 2–3 days at 70% confluency.

Primary human T cell isolation and culture. Human peripheral blood mono-
nuclear cells (PBMC) were isolated from buffy coats from healthy individuals, as
anonymously provided by the Heidelberg University Hospital Blood Bank in
accordance with regulations of the ethics committee of the Medical Faculty of
Heidelberg University. Cells were purified by Ficoll gradient centrifugation and
washed in PBS. For activation, PBMC were split into three fractions that were
individually stimulated with 0.5 μg ml−1 PHA, 5 μg ml−1 PHA and surface-
immobilized anti-CD3 mAb (OKT3 hybridoma supernatant) for 72 h at 3 × 106

cells per ml in RPMI 1640 supplemented with 10% FCS and 1% penicillin/strep-
tomycin (Gibco), all in the presence of 10 Uml−1 IL-2. Subsequently, cells were
pooled in high-IL-2 medium (10 ng ml−1) and subjected to spin-infection. This
procedure resulted in ~95% of CD3 T lymphocytes with typically 70–80% CD4
T cells and 20–30% CD8 T cells. For infection with sortable HIV-1 NL4.3.Disp.
YFP, three donors were pooled and depleted of CD8 cells according to manu-
facturer’s protocol (Miltenyi Biotec) prior to activation.

Viruses. Virus stocks of replication-competent HIV-1 strains (pNL4.3 SF2 Nef,
pNL4.3.Disp.YFP) were prepared from transient transfection of 25 μg plasmid
DNA into HEK239T cells (subconfluent 15 cm dish) with JetPei (50 μl, Peqlab) or
linear polyethyleneimine (PEI, 142 μl of 1 mgml−1, Sigma Aldrich). For single-
round HIV-1 (pNL4.3 Δenv VSV-G), 22 μg of pNL4.3 Δenv and 3 μg of VSV-G
were used. Two to three days after transfection, supernatants were harvested, fil-
tered (0.45 μm), concentrated via ultracentrifugation through a 20% (w/w) sucrose
cushion, gently suspended in PBS, and stored in aliquots at −80 °C. All virus
preparations were handled in a Biosafety Level 3 (BSL-3) containment laboratory
in accordance with proper BSL-3 safety procedures.

Virus cloning. The proviral plasmid coding for sortable HIV-1, pNL4.3IRES.
Display.YFP (pNL4.3Disp.YFP), is based on pNL4.3IRES.eGFP52. Briefly, eGFP
was replaced with Display.YFP based on pDisplay Vector (Catalog No. V660-20,
Invitrogen) using NcoI and XmaI. While the sortable tag (Display.YFP) allows
isolation of infected cells (see below), it is lost after multiple rounds of infection.

Virus titer quantification by SG-PERT. One step PCR-enhanced reverse tran-
scriptase assay (SG-PERT) was used as a sensitive quantification tool for HIV virus
titers and was performed as previously described53.

Briefly, concentrated virus stocks were first diluted 1:100 in PBS, whereas
culture supernatants were directly lysed in 2× lysis buffer (50 mM KCl, 100 mM
Tris-HCl pH 7.4, 40% glycerol, 0.25% Triton X-100) supplemented with 40 mU per
μl RNase Inhibitor for 10 min at room temperature. Lysed virus samples were
diluted 1:10 in dilution buffer (5 mM (NH4)2SO4, 20 mM KCl, 20 mM Tris-HCl
pH 8). Ten microliters of diluted virus sample and 10 μl of a serial dilution of virus
standard (HEK293T cell supernatant of pCHIV at 5.088 × 109 pU per μl) were
mixed with 10 μl 2× reaction buffer (1× dilution buffer, 10 mM MgCl2, 2× BSA,
400 μM each dATP, dTTP, dGTP, dCTP, 1 pmol each RT forward and reverse
primer, 8 ng MS2 RNA, SYBR Green 1:10,000) supplemented with 0.5 U of GoTaq
Hotstart Polymerase. RT-PCR reactions were performed and read in a real-time
PCR detector (CFX 96, Biorad) using the following program: (1) 42 °C for 20 min;
(2) 95 °C for 2 min; (3) 95 °C for 5 s; (4) 60 °C for 5 s; (5) 72 °C for 15 s; 80 °C for
7 s; repeat 3–6 for 40 cycles, (7) melting curve. Primer sequences were the
following: RT fwd primer: TCCTGCTCAACTTCCTGTCGAG, RT rev primer:
CACAGGTCAAACCTCCTAGGAATG.
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Infectivity assay using TZM-bl reporter cells. Subconfluent TZM-bl cells were
infected with serial dilutions of virus stocks or virus containing culture super-
natant. After 48–72 h, cells were fixed with 3% PFA/PBS and incubated with β-Gal
supplemented with 200 μg ml−1 X-Gal for subsequent counting of blue cells.
Relative infectivity was calculated by dividing the infectivity by the used RT activity
as determined by SG-PERT (see above).

Spin-infection of primary T cells. Activated PBMC (2 × 105 cells well−1) were
resuspended with concentrated virus yielding 2 × 104 blue cell units (MOI= 0.1) in
a final volume of 50 μl in a 96-well plate (U-bottom or V-bottom) in the presence
of 4 μg ml−1 Polybrene. Plates were centrifuged at 2000 rpm for 90 min at 37 °C
and transferred to the incubator for 4–6 h. Polybrene was washed out and cells
were cultured for 72 h in RPMI medium supplemented with 10 ng ml−1 IL-2 before
analysis or setting up of collagen cultures.

Sorting of NL4.3.Disp.YFP infected human T cells. Activated and CD8-depleted
PBMC were sorted 72 h post infection with pNL4.Disp.YFP. Cells were resus-
pended in cold MACS buffer (PBS, 2 mM EDTA, 0.5% inactivated FCS) and mixed
with anti-GFP beads (1:30, Miltenyi Biotec, 130-091-125) for 15 min in the
refrigerator. Unbound beads were removed by centrifugation and infected cells
were purified twice using MS columns within an OctoMACS magnet (both Mil-
tenyi Biotec) according to the manufacturer’s instructions. Isolation efficiency was
monitored by flow cytometry on samples collected during isolation. Typically, this
procedure yielded 90–96% positive cells after the second magnetic column.

Flow cytometry. To compare infection kinetics and depletion in collagen and
suspension cultures, cultures were first treated with collagenase I (100 U, Wor-
thington) for 30min at 37 °C to yield cell suspensions. Cells were washed in PBS
and stained with fixable viability dye 450 (eBioscience, 1:1000 in PBS) for 30min at
4 °C, were washed in MACS buffer (PBS, 2 mM EDTA, 0.5% inactivated FCS) and
subsequently stained with anti-CD8-PE Vio770 (1:100, Miltenyi Biotec, 130-096-
556) and anti-CD3-PE (1:100, biolegend, 317308) for 30min at 4 °C. After washing,
cells were fixed in 3% PFA/PBS for 90 min. To detect intracellular p24, cells were
permeabilized and stained with anti-p24-FITC (1:100 KC57 Beckmann Coulter,
6604665) in 0.1% Triton-X-100/PBS for 30min at 4 °C. Cells were washed in MACS
buffer and for absolute cell quantification cell counting beads (biolegend) were
added prior to analysis with a FACSVerse (BD) and FlowJo software (Tree Star).
CD4 T cells were identified as CD3 positive/CD8 negative cells. Relative depletion
was calculated by correlating the frequency of CD4 T cells in the respective sample
to the frequency of CD4 T cells in T20 controls, which was set to 100%.

Proliferation assay by PKH26 dye dilution. For proliferation assays in parallel to
infection kinetic experiments, a fraction of cells was stained with PKH26 in Diluent
C (both Sigma Aldrich), according to manufacturer’s instructions (2.5 × 107 cells in
a total volume of 4 ml Diluent C with 2 μM PKH26 for 2 min at room tempera-
ture). Labeling reaction was stopped by adding equal volumes of heat-inactivated
FCS for 1 min, followed by centrifugation and further washing steps in serum
containing medium. Cells were then cultured in suspension or collagen for 0, 2, 4,
and 7 days. At these time points cells were processed for flow cytometry (viability
dye, CD8 PE-Vio770, CD3 PE, no permeabilization, see above), fixed and analyzed
with FACSVerse. The sample at day 0 served to verify uniform labeling and to
identify the parent population. Generations were modeled using ModFit LT (Verity
Software).

Generation of 3D collagen gels. Cell-containing (1 × 105 cells per 100 μl gel)
collagen gels were prepared as described22. Dense collagen gels (3.3–4.6 mgml−1)
were prepared by mixing highly concentrated rat tail collagen I (BD) with
bicarbonate-buffered MEM on ice (15 μl 10× MEM, 17 μl 7.5% NaHCO3 (both
Gibco) and 120 μl rat collagen I). This buffered collagen was mixed 1:1 with cells
(2 × 106 cells per ml media, yielding a final concentration of 1×105 cells per 100 μl
gel), was transferred to 96 wells (100 μl well−1) for long-term cultures or ibidi
angiogenesis slides (10 μl well−1) for microscopy and allowed to polymerize within
30 min at 37 °C. Loose collagen gels (1.6 mg ml−1) were prepared correspondingly
by mixing 750 μl bovine collagen I (PureColl, Nutacon) with bicarbonate-buffered
Mem (50 μl 7.5% NaHCO3 and 100 μl 10× MEM) and combining it 2:1 with cells
(3 × 106 cells per ml media, yielding again a final concentration of 1 × 105 cells per
100 μl gel mix) and allowed to pre-polymerize at 37 °C for 5 min depending on the
volume used. The collagen-cell mix was transferred to the respective well format
and allowed to polymerize at 37 °C within 30–45 min. Polymerized gels were
overlaid with pre-warmed medium (RPMI 1640, FCS, PenStrep, 10 ng ml−1 IL-2).
Where indicated, both gels and this supernatant were further supplemented with
fusion inhibitor T20 (100 μM, Roche).

Confocal reflection microscopy of collagen gels. Collagen matrix architecture
was visualized by confocal reflection microscopy using the 488 nm laser and ×40 oil
immersion objective of a Leica TCS SP5 microscope. A 10 μm stack of optical
sections (z-stack) was acquired in 0.5 μm slices, which were subjected to maximum
projections using the LAS AF software.

Virus diffusion in 3D collagen. Fluorescent viral particles (HIVGFP or HIVmcherry)
generated by co-transfection of HEK293T cells with pCHIV and pCHIVEGFP or
pCHIVmCherry54 were incorporated into loose or dense collagen or suspended in
medium. Movement of viral particles was recorded by a spinning disc microscope
(Ultra-View ERS-6 spinning disc confocal microscope, Perkin Elmer) at 37 °C at
maximum speed (200 ms) for 5 min and was automatically tracked (see below).

Virus particle tracking and motility analysis. Automatic tracking of multiple
fluorescent HIV-1 particles was performed using a probabilistic particle tracking
approach which is based on Bayesian filtering and probabilistic data association55.
This approach exploits multiple measurements and combines Kalman filtering with
particle filtering. For particle detection, a Laplacian-of-Gaussian filter was used.
The tracking method yields trajectories of individual HIV-1 particles.

Based on the computed trajectories, the motility of HIV-1 particles under
different 3D collagen conditions and suspension was analyzed and the motion type
was determined. We performed a mean square displacement (MSD) analysis56.
MSD was computed as a function of the time interval Δt for each trajectory of a
tracked HIV-1 particle with a minimum time duration of 0.8 s (corresponding to
five time steps). The MSD functions for all trajectories under one condition were
averaged. An anomalous diffusion model MSD ¼ 4ΓΔtα was fitted to the calculated
MSD values which yielded the anomalous diffusion exponent α and the transport
coefficient Γ μm2 s�α½ �56. We used MSD values from 0s � Δt � 7s. The motion was
classified into confined diffusion (α ≤ 0.1), obstructed diffusion (0.1 < α < 0.9), and
normal diffusion (α ≥ 0.9)57. We also fitted the normal diffusion model
MSD ¼ 4ΓΔt56 to the MSD values to determine the diffusion coefficient D= Γ
[μm2s−1].

In addition, based on the tracking result, events of particle interaction with the
collagen structure were identified (sticking events). For all tracked HIV-1 particles
the velocities were computed and represented in a velocity histogram. From the
histogram we determined a velocity threshold of vTh ¼ 1:0 μm s�1 to distinguish
different subpopulations. The interaction time of an HIV-1 particle with the
collagen structure was calculated as the time duration for which a particle yielded
velocities below vTh. For a consistent comparison of interaction times between
different collagen conditions, we considered trajectories with a time duration of up
to 15 s (corresponding to 76 time steps).

Live-cell imaging in 3D collagen. Cells infected with HIV-1 NL4.3DispYFP were
purified by magnetic isolation as described above. Control CD4 cells from unin-
fected cultures were purified correspondingly with anti-CD4 magnetic beads
(Miltenyi Biotec, 130-045-101). Infected and uninfected cells were either embedded
separately in collagen or were stained with PKH cell dyes as for proliferation assays
to enable distinction between infected (green, PKH67) and target cells (red,
PKH26) in cocultures. Cells within collagen gels were monitored in angiogenesis
slides (ibidi) using bright field, and for stained cells, green and red channels of an
inverse light microscope (×10 objective, Nikon Ti-E), equipped with climatisation
control maintaining 37 °C and 5% CO2 (Perkin Elmer). For the duration of up to
3 h, micrographs were taken in 30 s to 1 min intervals.

Cell segmentation and tracking. To obtain cell trajectories we applied the
tracking-by-detection method available in ilastik58. In this tracking-by-detection
method, the cells need to be segmented first. To do so, we employ a convolutional
neural network to predict foreground probabilities for each pixel. More specifically,
we use a U-net59 in its standard configuration using four stages of pooling to
downsample, pixel replication for upscaling, skip connections, dropout in the
convolutional layers, ReLU activation functions and batch normalization. We
trained it to use the three available channels as input, using 10 manually annotated
images as ground truth. Training data were augmented by applying elastic trans-
formations. We ran 129 epochs of training until the loss seemed to have converged,
and the resulting weights are employed to predict the foreground probability of all
frames in all videos. The cell segmentation hypotheses are then given as connected
components after thresholding these foreground probabilities.

Cell trajectories are reconstructed by finding the most probable configuration of
a graphical model spanning the whole video60 where detections are assigned to
detections in adjacent frames. To deal with occasional segmentation errors, where
two seemingly overlapping cells are falsely combined in a single segment, the used
tracking model allows for detections to be shared between multiple object tracks.
Local evidence about these merged detections is injected into the model via an
object count classifier that predicts the number of objects contained in every
segment based on intensity and shape features computed from raw data and
segmentation. The object count classifier itself was trained by manually annotating
a few instances of single cells and mergers of different sizes on two datasets, and
then applied to all videos. By solving an integer linear program, we find the globally
most probable configuration of how many cells are contained in every segment and
where they move in consecutive frames. In a post-processing step, any merged
detections are split using a Gaussian mixture model, with the number of
components given by inference in the probabilistic graphical model.

The tracking results are then exported to the ImageJ-plugin MaMuT61 for
manual corrections of the tracks, where also cell identity (infected if green, not-
infected if red) is manually annotated.
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Track analysis. Cell segmentation, automated tracking and subsequent manual
track correction in the ImageJ-plugin MaMuT can for some tracks result in the
identification of multiple spots per cell and time frame. Therefore, we first calcu-
lated center-of-mass coordinates. Based on this data we calculate the instantaneous
cell velocity, the fraction of mobile cells, the arrest coefficient (between 0 and 1 for
a cell which is mobile or immobile for all time steps, respectively), the confinement
ratio, the mean turning angle, and the mean squared displacement (MSD)3. As a
threshold to classify cells as mobile, we used 2 μmmin−1 instantaneous velocity, as
a well-accepted threshold in the field of lymphocyte migration62. To identify
cell–cell contacts, we computed the convex hull as an estimator for the cell contour
for each cell track at each time point. A cell–cell contact is then defined by mutually
overlapping convex hulls at a given time point. From these data we then extracted
contact frequency (fraction of time spent in contact with another cell) and partner
frequency (how many different cells are contacted per time). Since the cells migrate
in 3D collagen environments, but we record only a 2D projection as a single plane
in wide-field microscopy, we filtered out false positive cell–cell contacts that are
displaced in z-direction. We tried various approaches and found the difference
between maximal intensity values of cells to be a good discriminator to detect such
false positives. The threshold for this difference was manually evaluated and
contacts exceeding this threshold were excluded as false positive contacts from
further analysis.

Modeling of cell proliferation and infection dynamics. We used a stepwise
approach to analyze the experimental data for determining the contribution of cell-
free and cell-associated transmission to viral spread in the different environments.
Mathematical models of increased complexity based on ordinary differential
equations (ODE) were combined with corresponding experimental measurements
in order to quantify cell proliferation, viral turnover, and the infection dynamics.

Quantifying T-cell proliferation in uninfected cultures. Transferred CD8, TCD8,
and CD4, TCD4, positive T cells are assumed to die with rates δCD8 and δCD4,
respectively, and to undergo competing proliferation with maximal proliferation
rates λCD8 and λCD4 until a total capacity of Tc cells is reached. In addition, an
adaptation phase, τ, which was fixed to 2.5 days, was included that accounts for the
time transferred cells need to adapt to their new environments at the start of each
experiment. During this time cells are lost according to their corresponding death
rates. T-cell dynamics within the different environments can then be described by
the following system of ordinary differential equations:

dTCD8
dt ¼ λCD8TCD8 1� TCD8þTCD4

Tc

� �
� δCD8TCD8

dT
dt ¼ λCD4T 1� TCD8þTCD4

Tc

� �
� δCD4T

with λCD8 ¼ λCD4 ¼ 0 for t< τ:

For parameter estimation, obtained T cell counts at day 0 were used as initial
conditions.

Quantification of virus dynamics under T20 treatment. We used a model
accounting for non-productively, INP, and productively infected cells, IP, virus in
culture, Vc, and the supernatant, Vs, to describe virus dynamics after T20 treat-
ment. As treatment by T20 is assumed to block any new infections, non-
productively infected cells either die at the same rate as uninfected cells, δCD4, or
turn into productively infected cells with rate κI. Productively infected cells are
assumed to have an average productive life span of 1/δI and release new virions into
the culture with a viral production rate ρ. Virions diffuse to the supernatant with a
diffusion rate κv and are cleared from the system at rate cv, which is fixed to cv=
0.44 day−1 to correspond to the half-life of RT activity of 38 h as evaluated
experimentally. With this, infection dynamics after T20 treatment is then described
by the following system of differential equations:

dJ
dt ¼ �κI J � δCD4J

dI
dt ¼ κI J � δI I

dVc
dt ¼ ρI � cvVv � κvVc

dVs
dt ¼ κvVc � cvVs

For parameter estimation, δCD4 was fixed to the best estimate for the death rate
of uninfected CD4 cells from the experiment in the absence of infection, and κI was
set to 1.39 day−1 corresponding to a half-life of cells in eclipse phase of 12 h. To
account for the change of media in collagen environments, viral concentration in
the supernatant was set to 0 at day 2, 4, 7, 9, 11, 14, 16, and 18. As change of media
leads to mixing in liquid environments, viral concentration in culture and
supernatant was halved at days of media change in the suspension environment.
This leads to the frequent drops observed in the predicted viral concentration in
Fig. 3e and is required to estimate a single cell-free transmission rate βf across
different environments by accounting for the differing viral concentrations before
and after media change.

Experimental measurements for productively infected cells and virus in culture
and supernatant at day 0 were taken as initial conditions. As non-productively
infected cells cannot be detected by FACS-analysis, a proportion of non-infected
target cells was estimated across all environments to define the initial concentration

of non-productively infected cells. Infected cell counts after day 9 were not
considered in the analysis, as cell numbers were indistinguishable from background
levels determined from the proliferation data.

Mathematical model for the complete infection dynamics. With the previous
assumptions and descriptions, the complete mathematical model describing cell
proliferation and infection dynamics for the co-transfer experiments of infected
and uninfected cells (ODE-model) is given by

dTCD8

dt
¼ λCD8TCD8 1� TCD8 þ T þ Tref þ J þ I

Tc

� �
� δCD8TCD8

dTref

dt
¼ λrefTref 1� TCD8 þ T þ Tref þ J þ I

Tc

� �
� δCD4Tref

dT
dt

¼ λCD4T þ λCD4 � λrefð ÞTrefð Þ 1� TCD8 þ T þ Tref þ J þ I
Tc

� �
� βf TVi � βcTI � δCD4T

dJ
dt

¼ βf TVi þ βcTI � κI J � δCD4J

dI
dt

¼ κI J � δI I

dVi

dt
¼ fiρI � ciVi � cvVi � κvVi

dVn

dt
¼ ð1� fiÞρI þ ciVi � cvVn � κvVn

dVs

dt
¼ κvðVi þ VnÞ � cvVs

Here, CD8 cells, TCD8, and an additional population of refractory cells, Tref,
cannot get infected, but affect the proliferation capacity of target cells. The
proliferation of target cells is determined based on the proliferation of refractory
cells, λref, and the expansion rate of the total CD4 population, λCD4. In addition, we
distinguish between infectious, and non-infectious virus in the culture, with only a
fraction, fi, of virus produced by productively infected cells being infectious.
Furthermore, infectious virus loses its infectivity with rate ci, which is fixed such
that the half-life of infectious virus is 17.9 h63. To account for the two different
transmission modes, activated CD4 cells can get infected either proportional to the
concentration of infectious virus in the culture, Vi, with rate βf (cell-free
transmission) or proportional to the number of productively infected cells, I, at rate
βc accounting for cell–cell transmission.

The model was fitted to estimate βc and λref for each of the different
environments. In addition, one transmission rate for cell-free infections, βf, was
estimated across all environments where βf was reduced to 14% in collagen
compared with suspension as evaluated experimentally (Fig. 2g). All other
parameters were defined as described above or obtained from the previous analyses
quantifying T-cell proliferation and virus dynamics during T20 treatment.
Measurements for CD8, target and productively infected cells, as well as viral
concentrations at day 0 were taken as initial conditions. As before, the initial
proportion of non-infected target cells and refractory cells, as well as the
proportion of infectious virus was estimated across all environments, as these
values could not be measured.

Parameter estimation. All models were fitted to the data using the optim-function
in the R-language of statistical computing64. To avoid bias in parameter estimates
due to reduced recovery of cells from collagen environments (only 55% of cells
compared with suspension are recovered), cell counts from collagen cultures were
normalized by multiplying each measurement by a factor of 1.8. Models were fitted
to the mean values of three independent experiments to diminish experimental
variance in the data using a maximum likelihood estimator that assumed normally
distributed errors. The experimental variance in the data was neglected and a
relative measurement error was estimated for T cells and viral load. Parameter
identifiability was assessed based on a profile likelihood approach65.

Cellular Potts model. To simulate migrating cells in a 2D collagen environment,
reflecting live-cell imaging videos, a cellular Potts model (CPM) formalism was
applied using the software Morpheus66. The CPM models cellular behavior in a
grid-based environment with several connected grid sites defining a single cell36.
Each cell is characterized by a specific cell type, τ, and a unique identifier, σ, as well
as its grid position defined by the coordinates u and v. Movement of cells is guided
by stochastic membrane fluctuations that can result in a shift in position if a global
energy function H is minimized67. This global energy function H, termed
Hamiltonian, consists of a term describing the sum over all surface energies J, as
well as volume and perimeter constraints per cell. The surface energy J (also
denoted as J-value) is defined by the adhesion of each cell to its surrounding cell
types or media. The surface energy of each cell is multiplied with the term
(1 − δσu ;σv ), where δ defines the Kronecker-delta (δσu ;σv = 1 if σu= σv and 0
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otherwise) to consider only interactions between different cells. Volume and
perimeter constraints ensure that cells try to maintain their size. The constraints
are defined by the squared difference between the current cell volume or perimeter
(aσ, pσ) and the target cell volume or perimeter (Aσ, Pσ), respectively. The terms are
multiplied by a Lagrange multiplier λ, determining the strength of the constraint68.
The formula for H therefore results as

H ¼
X
u;v

JτðσuÞ;τðσvÞð1� δσu ;σv Þ þ
X
σ

λAreaðaσ � AσÞ2 þ
X
σ

λPerimeterðpσ � PσÞ2

To simulate cell motility, at each simulation step a grid site within the 2D lattice
is chosen at random. For this selected grid site, one of the eight neighboring grid
sites not belonging to the same cell is chosen at random for a possible shift in
position. If the shift decreases the global energy, the site is copied to this random
position36, otherwise the copy attempt is accepted with the Boltzmann probability
of e�ΔH=T . Thereby, the parameter T defines the membrane fluctuation amplitude
of cells for exploring the neighborhood. Target and infected cells are assumed to be
motile with both cell types following persistent motion. Persistence is characterized
by the stability to keep the direction of movement and a memory of this direction
(direction-update interval), meaning each cell is more likely to follow a path close
to its current direction. Persistent motion is implemented into the CPM by
extending ΔH by ΔH′ ¼ ΔH� μcosðαÞ; with α being the angle between the target
and considered direction3. Therefore, a copy attempt to a new lattice site is likely to
be accepted if α is small.

Simulation environment and default parameters. We simulate a total area of
800 × 800 μm2 with each grid site of the lattice having a length of 1 μm. Each grid
point in the lattice is surrounded by eight neighbors, following Moore-neighbor
conditions. In addition, we assume periodic boundary conditions with cells leaving
at one side of the grid reentering at the opposite side. Our simulation distinguishes
between infected and uninfected T cells, collagen particles and free space. T cells
were defined with a target area of AT= 100 μm2 and a connectivity constraint69

that prevents cells from breaking apart. While infected and uninfected T cells were
considered as being motile, collagen particles were implemented motionless but
deformable. For loose collagen simulations, we used a total number of 14,400
collagen particles with a target area of AC= 20 μm2 and a target perimeter of PC=
0.2 μm. The energy between collagen particles (JCC) collagen and medium (JCM)
and in medium (JMM) was set to 0 to allow the formation of collagen structures68.

In our simulations, one simulation step corresponds to 1 s in real time. Cell
positions and cell-to-cell contacts were recorded every 30 s according to the frame
rate used for live-cell imaging. A cell-to-cell contact is registered when two adjacent
cells share one lattice site. For each simulation, an initial phase of 200 s is run
before measurements are taken to allow the system to reach steady conditions.

Parameterizing cell motility. To parameterize the motility of infected and
uninfected cells in our CPM, we adjusted our model based on measurements from
the time-lapse image analysis following both cell types for 1 h in loose collagen
environments. We used the computational parallelization and high-performance
approach “pyABC”4,70 to automatically adjust simulation parameters to experi-
mental data. The computational pipeline overcomes the problem of statistical
interference for parameter fitting in stochastic multi-scale models by using a
parallel approximate Bayesian computation sequential Monte Carlo (pABC-SMC)
algorithm4. The pyABC workflow tests multiple parameter sets in parallel by
subsequently minimizing distance measurements between experimental and
simulated data. To this end, each simulation is evaluated using the R Motilitylab
package (http://www.motilitylab.net) to calculate the mean square displacement,
the velocity, mean turning angle, straightness and arrest coefficient of each infected
or uninfected cell (see above for the calculation of these quantities). The distance
between simulations and in vitro measurements was then determined based on a
weighted sum of least-squares for these quantities. To account for differences in
measurement scales of velocity, mean turning angle, straightness and arrest coef-
ficient, we calculated the coefficient of variance, which gives a standardized var-
iance with the ratio between standard error and mean. The squared distance of
coefficients of variance between experimental and simulated data was added to the
least-square distance, di, for each quantity i resulting in the distance measure

di ¼
ðμi � uÞ2

σ2
þ σ i

μi
� s
u

� �2

Here, μi and σi are the mean and standard deviation, respectively, of the
experimental data, and u and s the corresponding values of the simulations. The
total sum of least-squares defining the distance between simulated and
experimental data is then given by

dSim�Exp ¼ 0:01 ´ dMSD þ dspeed þ dMTA þ dstraight þ darrest

The weighting factor of 0.01 for the MSD distance was chosen to ensure that all
different quantities were weighted equally. Because the MSD can reach values from
0 to 105 μm2 s−1, the calculated distances for this quantity become large at later
time points, rendering the contribution of all other motility measurements to the
total distance negligible. The obtained parameter sets resulting in the smallest
distance between experimental and simulated cellular motilities are shown in
Supplementary Table 1.

In silico spatial infection model. To analyze long-term infection courses and
investigate cell-to-cell transmission on a single-cell level, we extended our CPM by
including the processes of infection, viral replication, cell proliferation, and death
parameterized with values obtained by our ODE-model. Infection was imple-
mented allowing cell-to-cell transmission from infected to uninfected target cells.
An infectious cell-to-cell contact was defined by a minimal contact duration, Dmin,
between the two cells. The contact duration, D, between two cells increases
incrementally as long as the contact is not broken. A contact is considered as
broken if no lattice site is shared between two cells, resetting D= 0. If D >Dmin, an
infection event was triggered. Upon infection, the newly infected cell entered an
eclipse phase for on average 1/κI= 17.3 h to account for viral integration and
replication, in which the cell keeps the target cell motility characteristics and is not
yet productively infectious. At the end of this phase, the cell turns into an infected
cell with the ability to infect other target cells. Here, we studied a multiple infection
model, i.e., with an infected cell able to infect several CD4 target cells simulta-
neously if a minimal contact duration between the cells is fulfilled. To match the
experimental conditions, we additionally considered a population of CD8 T cells in
the simulations that followed the same motility characteristics as uninfected CD4
T cells, as well as a fraction of refractory CD4 T cells. Accounting for cellular
turnover, both cell populations are considered to proliferate and die during the
time-course of a simulation. As before, we assume density dependent proliferation
of CD4 and CD8 T cells with the actual proliferation rates calculated at each time
step by

λ�X ¼ λX 1� N
C

� �

Here, λX defines the maximal proliferation of the specific cell type, N the actual
total number of cells in the grid, and C the carrying capacity of the grid in number
of cells. Given loose collagen conditions and using the standard cell concentration,
the simulated grid can hold a maximum of C= 1200 cells with still 37.5% free
space, which is comparable with values obtained by confocal reflection microscopy.
At each time step, for each cell a division event is then determined with probability
1� e�λX . We assume that infected CD4 T cells do not divide, and that cell division
only occurs after an initial adaptation phase. Similar to cell proliferation, the
probability of a cell to die is calculated at each time step by 1� e�δX , with δX
defining the constant death rate of the corresponding cell population, i.e., infected
CD4, refractory, and uninfected CD4 and CD8. Cells in eclipse phase are assumed
to keep the same death rate as uninfected CD4 cells. For our simulations, we used
the rates for cell proliferation (λCD4= 0.78 d−1, λCD8= 0.58 d−1) and death (δCD4
= 0.23 d−1, δI= 0.48 d−1, δCD8= 0.11 d−1), as well as the duration of the
adaptation phase (τ= 2.5 days), as determined by our analyses (see Table 1 in the
main text).

Considered cell concentrations and simulation structures. To adapt cell
motility characteristics and to compare cell-to-cell contacts between simulated and
experimental data, we simulated the dynamics using 150 uninfected and infected
cells each, resulting in 50% free space as observed in the in vitro experiments. Cells
were followed for 1 h with cell positions and cell-to-cell contacts recorded every 30
s, which corresponds to the frame rate used in the experiments. The infection
process was neglected for these analyses.

With the obtained parameterization for the motility of infected and uninfected
cells, the spread of infection was simulated for a total of 18 days. As a standard
concentration, we used a total number of 300 cells comprising 57 (19%) CD8
T cells and 243 (81%) CD4 T cells, with 15 of these cells being infected which
corresponds to the conditions in the experiments. According to our previous
estimates based on our mathematical model, roughly 10% of the initial CD4 T cells
(23 cells) were implemented to be refractory T cells not able to become infected.
Experimentally, we observed a maximal fourfold increase of total cell numbers in
the collagen cultures. Therefore, the carrying capacity in our simulations given the
standard concentration was set to C= 1200 cells. Supplementary Table 2 shows the
corresponding cell numbers for the individual cell populations used in the
simulations considering 2-, 5-, or 10-fold higher cell concentrations at the
beginning. As the maximal fold increase of the total cell population in a culture is
regulated by the proliferation capacity of individual cells, the availability of
nutrition in the media, as well as the spatial limitations of the culture, we assumed a
saturated increase of the carrying capacity for increasing initial cell numbers.

Quantification and statistical analysis. Statistical analysis was performed using
GraphPad Prism. Statistical tests used are stated in the figure legends where they
appear. Statistical significance of parametrically or not normally distributed data-
sets was analyzed by Student’s t test or Mann–Whitney U test, respectively. ns: not
significant; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the article, in
supplementary files, and upon reasonable request from the corresponding author.
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Code availability
Segmentation was based on a U-Net59 trained to the specific data set with the original
architecture available at https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/.
The complete code for conservation tracking60 including a structured learning workflow
is available open source at http://ilastik.org. The ODE-model and CPM were developed
using the open source software R (ref. 64) and Morpheus (ref. 66, https://imc.zih.tu-
dresden.de/wiki/morpheus/), respectively. All aspects concerning the specific protocols
and the parameterizations for the mathematical models are defined within the text and
Methods (see e.g., Table 1, Supplementary Tables 1 and 2). All individual software codes
are available upon reasonable request from the authors.
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