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Abstract
Many viruses rely on the self-assembly of their capsids to protect and transport their genomicmate-
rial. Formany viral systems, in particular for human viruses like hepatitis B, adeno or human immu-
nodeficiency virus, that lead to persistent infections, capsomeres are continuously produced in the
cytoplasmof the host cell while completed capsids exit the cell for a new round of infection.Herewe
use coarse-grained Brownian dynamics simulations of a generic patchy particlemodel to elucidate the
role of the dynamic supply of capsomeres for the reversible self-assembly of empty T1 icosahedral
virus capsids.We find that for high rates of capsomere influx only a narrow range of bond strengths
exists for which a steady state of continuous capsid production is possible. For bond strengths smaller
and larger than this optimal value, the reaction volume becomes crowded by small and large inter-
mediates, respectively. For lower rates of capsomere influx a broader range of bond strengths exists for
which a steady state of continuous capsid production is established, although now the production rate
of capsids is smaller. Thus our simulations suggest that the importance of an optimal bond strength
for viral capsid assembly typical for in vitro conditions can be reduced by the dynamic influx of cap-
someres in a cellular environment.

1. Introduction

Viruses are experts on the inner working of cells and
their investigation has contributed strongly to our
understanding of the physical principles at work in
biological systems. In particular, the study of viruses
has demonstrated the amazing power of biological
self-assembly in an experimentally and theoretically
accessible system. In their physiological context,
viruses rely on the molecular machinery of their host
to reproduce both their genomic material and the
protein capsid usually encapsulating it [1, 2]. Typically
the capsid is assembled frommany copies of only a few
different capsid proteins and shows icosahedral or
helical symmetry [3–7]. The elementary assembly
blocks for the assembly of a capsid are termed
capsomeres. They can either consist of single capsid
proteins or of preassembled sets of capsid proteins.
For many viruses the formation of the capsid can be
reproduced in vitro [8, 9]. The dynamics of in vitro
assembly has been analyzed using light and small-

angle x-ray scattering techniques [10–13]. While
capsid assembly of viruses with single-stranded geno-
mic material often requires the presence of the
genomic material as an ‘electrostatic glue’ [1, 14], this
is typically not possible for double-stranded genomic
material due to its larger bending stiffness. These
viruses typically assemble their capsid without the
genomic material, which is then inserted into the
capsid by amotor [1, 15].

Despite the plethora of known capsid structures
[16], the dynamic assembly process of the virus shell is
still far from being fully understood. As experimental
possibilities for detailed monitoring of the assembly
dynamics are limited, modeling can significantly help
to increase our understanding of the mechanisms that
govern the assembly process. In the past various tech-
niques ranging from coarse-grained molecular
dynamics or Brownian dynamics simulations [17–25]
through Monte Carlo simulations [26–28] and dis-
crete stochastic approaches [29–33] to thermo-
dynamic descriptions [10, 34–36] have been used to
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elucidate different aspects of the assembly process. For
example, the influence of capsomere shape [19, 24] or
the emergence of polymorphic structures [37–39]
have been investigated with such theoretical approa-
ches. The different techniques used to study virus cap-
sid assembly have been recently reviewed by
Hagan [40].

Several studies have shown that the successful
assembly of complete capsids starting from a fixed
number of assembly subunits requires intermediate
(or even optimal) bond strengths
[20, 22, 23, 25, 28, 35, 36, 41, 42]. At low bond
strengths (or high temperature) the formation of large
clusters is suppressed. At high bond strengths (or low
temperature), by contrast, the simultaneous forma-
tion of stable assembly intermediates, which cannot
recombine into complete capsids, or the formation of
large, misassembled structures with non-native bind-
ing interactions can prevent the formation of com-
plete capsids. In this case the system becomes
kinetically trapped.

While in vitro studies and computer simulations
usually work with a finite initial number of capsome-
res that are increasingly used up during the capsid
assembly process, in the physiological context of the
cell the capsomeres are produced in a continuous fash-
ion. In a recent stochastic simulation study, it has been
shown for the case of genome-stabilized capsids (as for
example for the bacteriophage MS2) that this ‘protein
ramp’ can make virus assembly very robust against
kinetic trapping [43]. While bacteriophages typically
kill the host cell to start a new round of infection,
many animal and plant viruses tend to follow strate-
gies that keep the host cell alive at least for a certain
period of time. This is especially true for human viru-
ses such as hepatitis B virus (HBV), human adeno
virus or human immunodeficiency virus (HIV),
which lead to persistent infections. Recently the role of
dynamic protein supply for viral capsid assembly has
been studied from a systems level perspective using a
kinetic gene expression model with exponential

protein production and a master equation for capsid
assembly [44]. However, the effect of continuous pro-
tein production has not been studied yet in a spatial
model. For empty capsid assembly, it has been shown
earlier with Brownian dynamics that steady states exist
in which the removal of large clusters is balanced by
the reinsertion of the corresponding monomers [42].
However, the effect of the capsomere supply rate on
these steady states has not been studied yet.

Inspired by the notion of continuous virus pro-
duction, we use coarse-grained Brownian dynamics
simulations to investigate the assembly of empty T1
capsids in the presence of a dynamic capsomere sup-
ply. In order to avoid crowding of the reaction volume
by large clusters and motivated by the exit of com-
pleted virions from the cell by budding or exocytosis
[45–48], capsids are removed from the simulation in
the moment that they are completed. Our simulations
suggest that there exists a certain range of bond
strengths in which the influx of new capsomeres is
balanced by capsid removal. This steady-state region is
surrounded by parameter regions in which successful
capsid assembly is prohibited by crowding of the reac-
tion volume; depending on influx rate and bond
strength, crowding is observed either with small or
large intermediates. Our main result is that the favor-
able region for continuous virus production becomes
larger for lower influx rates. Our work identifies essen-
tial limits of viral self-assembly in a dynamic context
and suggests that bond strength has to be less fine-
tuned in a cellular context than in in vitro experiments.

2.Methods

To investigate the effect of a continuous influx of
capsomeres on virus assembly, we use an efficient
coarse-grained Brownian dynamics approach, which
has previously been used to study the effect of
reactivity switching during the assembly process [25].
Here we consider a T1 capsid which is composed of 60
identical capsomeres [7]. Each capsomere is described

Figure 1. Schematic illustration of our simulations. Capsomeres are randomly inserted into the simulation volumewith a rateki while
completed capsids are removed immediately (including the intermediates theymight contain inside). This simplemodelmimics the
situation in human cells with persistent infections inwhich capsomeres are continuously produced by translation and completed
capsids leave by budding or exocytosis.

2

Phys. Biol. 12 (2015) 016014 MABoettcher et al



by a hard sphere which is equipped with spherical
patches (see figure 1). The spatial arrangement of the
patches reflects the capsid geometry according to the
local rules scheme developed by Berger et al [17, 49].
All assembly intermediates formed during the assem-
bly process are treated as rigid objects and are
propagated according to their translational and rota-
tional diffusive properties [50, 51], which are evalu-
ated on-the-fly upon their formation [51, 52].

If an overlap between two complementary patches
is realized by diffusion, a bond is formed with the
probability Δ= ≪P k t 1react a . This bond can be estab-
lished either between two unconnected clusters (inter-
bond) or in an already connected cluster (intra-bond).
Otherwise we only consider one type of bond to keep
the number of parameters small.We assume that bond
formation is achieved by strong local forces such that
this process is very fast on the time scale of our simula-
tions. Therefore upon formation of an inter-bond, the
clusters instantaneously assume the correct relative
position and orientation for the assembly of the capsid
unless the necessary reorientation results in a steric
overlap either between the two merging clusters or
with other clusters. We note that our approach based
on patchy particles and local rules does not allow us to
study the formation of aberrant clusters with non-
native interactions [20, 22, 42]. Because we do not
consider any forces, our approach also does not allow
us to investigate strained capsids, as possible in mole-
cular dynamics or Brownian dynamics simulations
with potentials.

In order to study reversible dynamics, every exist-
ing bond can also dissociate with the probability

Δ= ≪P k t 1dissoc d . If bond dissociation results in two
unconnected clusters, they are positioned relative to
each other according to a computational scheme
which ensures detailed balance in order to prevent
additional, non-physical driving forces for the self-
assembly [53].

Intra-bond formation in an already connected
cluster leads to an additional stabilization of the cluster
as closed loops are formed, in which every capsomere
is connected to at least two neighboring capsomeres.
For such a loop structure to break apart it is necessary
that all bonds have to be in the open state simulta-
neously. The formation/dissociation of an intra-bond
does not affect the structure of the complex. The
energy gain by bond formation is related to the micro-
scopy rates by = −E k T k kln ( )B a d , where kB is the
Boltzmann constant [53].

To study the effect of a continuous supply of cap-
someres on the assembly dynamics, we introduce the
influx rateki.We place a new capsomere in the simula-
tion volume in each time step with the probability

Δ= ≪p k t 1in i . Position and orientation of the new
capsomere are randomly chosen with the constraint
that no steric overlap with existing clusters is created.
Inspired by virus exit strategies like budding or

exocytosis, which in principle can lead to a steady state
of virus production, complete capsids are removed
immediately upon formation together with all inter-
mediates inside the capsid (compare figure 1). This
removal rule is based on the assumption that complete
capsids are muchmore stable than partially assembled
capsids and that cellular mechanisms exist that are
exploited by the virus to leave the cell. We note that
our model does neither incorporate any details of the
production mechanism nor any details of the exit
mechanism, but is kept as simple as possible in order
to investigate the underlying physical principles of the
assembly process in such a dynamic setup. For the
same reason we focus on the assembly of T1 virus cap-
sids and assume all bonds to be identical.

For the following it is helpful to introduce the con-
cept of dimensionless bond strength ks, which is
defined by the ratio of themicroscopic association rate
ka and themicroscopic dissociation rate kd:

=k k k . (1)s a d

Note that bond strength is similar to, but different
from the equilibrium association constant Keq for a
bimolecular reaction, because it is defined by the ratio
of microscopic rates (with the physical dimension 1/s)
rather than by the ratio of a macroscopic association
rate constant kon (with physical dimension 1/(sM))
and a macroscopic dissociation rate koff (with physical
dimension 1/s). For the reaction between two clusters
(without any closed loops) = ⋆K V keq s is related to ks

by the encounter volume ⋆V (with physical dimension
m3) which is defined by all two-particle configurations
of the two clusters with an overlap of complementary
patches [53]. For the case of virus assembly investi-
gated here, ks is not only a measure for the strength of
inter cluster bonds, but also for the stability of closed
loops.

In order to avoid the need to exhaustively scan para-
meter space andmotivated by previous results quantify-
ing the success of assembly as a function of ka and kd
[25], we use a linear relation between dissociation and
association rate = +k mk cd a with = −c 0.0111 ns 1

and = −m 0.0011 to explore the parameter space ran-
ging fromvery strong to veryweak bond strength.When
varying ks from 102 to 105 we explore association and

dissociation rates in the range of ∈ − −k [1 ns , 10 ns ]a
1 1

and ∈ − − −k [10 ns , 0.01 ns ]d
4 1 1 , respectively.

All simulations have been performed at a time
resolution of Δ =t 0.01 ns using periodic boundary
conditions. Capsomeres are modeled as hard spheres
of radius =R 1 nmsteric . Each capsomere is equipped
with three distinct spherical patches reflecting the geo-
metry of the T1 capsid. Each patch has a radius of

=r 0.3 nmpatch with the center of the patch being loca-
ted on the surface of the hard sphere. A bond can only
be established between complementary patches
according to the local rules. The diffusive properties of
all intermediates are represented by their mobility
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matrices which are evaluated at room temperature
=T 293 K using the viscosity of aqueous medium

η = 1 mPas.
Given the typical time and length scales =l 1nm0

and =t 1 ns0 of our simulations, we define the dimen-
sionless length parameter λ = l l0 and the dimension-
less time parameter τ = t t0 in order to simplify the
notation. Furthermore, we introduce the dimension-
less box volume Λ = V lbox 0

3, the dimensionless parti-
cle concentration ρ Λ= N , whereN is the number of
capsomeres in the simulation volume, and the nor-
malized influx rate κ Λ= k t 10i i 0

6 . κi can be under-
stood as the rate of concentration increase due to the
influx of capsomeres. Using the normalized influx rate
κi instead of ki allows us to compare the assembly pro-
cess for different sizes of the simulation volume. Our
simulation volume has a typical linear extension of
30–50 nm, leading to reasonable computing times for
complete capsid assembly.

Considering particles which are equipped with
only one spherical patch we can relate the values of ks

used here to Keq and estimate the speed of the reaction
dynamics for this case. In contrast to the capsomeres
these particles can only form dimers. The encounter
volume for this reaction is ≈⋆V 0.11 nm3 (compare
reference [53] for details on the calculation) and the
equilibrium association constants Keq range from 6.6

to × −6.6 10 M3 1 for the values of bond strength used
here ( ⩽ ⩽k10 102

s
5). Thus our simulations proceed

at a relatively high concentration in themM-range.
In order to estimate the influence of the patch size

for the speed of the reaction, we use an algorithm
developed by Zhou and coworkers [54, 55] with which
the diffusive association rate constant kD can be esti-
mated based on the survival probability of two clusters
starting in an encounter [53]. For the dimerization we

estimate ≈ × − −k 6.25 10 M sD
8 1 1. The diffusive dis-

sociation rate constant then follows as = ⋆k k VD,b D .
Depending on the values of the microscopic reaction
rate ka the macroscopic association rate constant

= ++k k k k k( )D a a D,b is in the range of ×6.0 107–

× − −3.21 10 M s8 1 1. For lower values of +k the reaction
can be considered as reaction-limited ( <k ka D,b)
while for higher values of +k the assembly is equally
influenced by reaction and diffusion ( ≈k ka D,b) [56].
Although bimolecular reactions in this range of mac-
roscopic association rate constants +k are typically
considered diffusion-limited [57], the relatively large
patch sizes used here allow for rapid formation of the
diffusive encounter so that the reactions in our simula-
tions are at least partly reaction-limited according to
the classification scheme by Eigen [56]. The macro-
scopic dissociation rate = +−k k k k k( )D,b d a D,b ran-

ges from ×4.8 104 to × −9.0 10 s6 1, which is
approximately the same range as for the microscopic
dissociation rate.

It is instructive to compare the reaction rate con-
stants and equilibrium constants for dimerization
used in our simulations to the rates inferred byXie et al
[58] with a non-spatial model from published light-
scattering data of the in vitro assembly of HBV virus
[10], cowpea chlorotic mottle virus (CCMV) [11] and
human papillomavirus [12].We first note that Xie et al
consider closed loops as being infinitely stable which
allows for capsid assembly at lower concentrations
than in our case. Nevertheless we find that for HBV
and CCMV, our equilibrium association constants are
well within the range reported by Xie et al, while our
association rate constants are larger by two orders of
magnitude. In this context, we note that the use of high
concentrations and enhanced assembly dynamics is a
common limitation of particle-based simulations of
capsid assembly [20, 23, 25, 59, 60].

In our setup, concentrations are not fixed, but
arise from the dynamic influx. In practice, capsomere
and capsid production rates can vary widely for differ-
ent viruses and different host systems. For influenza
virus, for example, a production rate of 104 virions
over 10 h has been reported after start of viral protein
translation [61]. For HIV, in contrast, only 800 virions
are produced over 8 h after start of viral protein trans-
lation [62]. Similar variations also exist for the tran-
scription and translation rates. As we will see below,
our capsid production rate is of the order of 108 vir-
ions per hour in a small reaction volume because we
consider a small generic virus with only 60 identical
components, relatively high influx rates and acceler-
ated dynamics.

3. Results

First we qualitatively characterize typical responses of
our simulation setup at different bond strengths. For
this purpose the time course of the total number of

Figure 2.Evolution of the total number of capsomeres placed
inside and removed from the simulation volume. The black,
solid line depicts the number of capsomeres placed inside the
simulation volumewith κ = 2.593i . The red, dashed lines
show individual trajectories of the number of capsomeres
which are removed from the simulation volume due to capsid
completion for a bond strength of =k 1179s , resulting in a
steady state. The blue, dotted lines show individual trajec-
tories of removed capsomeres for a bond strength of

=k 8483s at which crowding occurs.

4

Phys. Biol. 12 (2015) 016014 MABoettcher et al



capsomeres placed inside and removed from the
simulation volume is shown in figure 2 for two
different values of ks and a normalized influx rate of
κ = 2.593i (a movie for the inital stages of capsid
assembly is provided as supplementary movie S1
(stacks.iop.org/pb/12/016014/mmedia)). The number
of capsomeres placed inside the simulation volume
(black, solid line) shows the expected linear increase
defined by the influx rate. For the low bond strength of

=k 1179s (red, dashed lines) two individual trajec-
tories are shown. For these trajectories we see that after
an initial lag phase without capsid completion (the
length of the lag phase depends strongly on the rate of
capsomere influx and the established concentration in
the simulation volume ( − ×0.5 2.0 10 ns4 )) a steady
state with constant capsomere concentration is estab-
lished in which capsomere influx and capsid removal
balance each other (a movie for the steady state is
provided as supplementary movie S2 (stacks.iop.org/
pb/12/016014/mmedia)).

For the higher bond strength of =k 8483s (blue,
dotted lines) the trajectories behave very differently.
After the initial lag phase the rate of capsomere
removal due to capsid completion is almost compen-
sating the capsomere influx for a certain period of time
until the rate of capsid completion drastically slows
down. The time point at which this slow-down in cap-
sid production is observed strongly varies between dif-
ferent trajectories. Once capsid completion has started
to slow down, the concentration in the simulation
volume quickly increases due to the influx of further
capsomeres and the simulation volume eventually
becomes crowded. If the volume fraction of the simu-
lation which is occupied by capsomeres is too large,
further assembly is prohibited. For the following we
therefore introduce a crowding-threshold. This
threshold is reached when 35% of the simulation
volume is occupied by capsomeres and trajectories
reaching this threshold are aborted. The chosen
threshold is much larger than the highest steady-state

concentration established in our simulations and a
trajectory reaching this high concentration will cer-
tainly lead to a full stop of assembly.

We now systematically investigate the assembly
process as a function of bond strength ks and normal-
ized influx rate κi. In our dynamic setup the rate of
capsid production is prescribed by the influx of cap-
someres and hence cannot be used as ameasure for the
quality of the assembly process. Instead we measure
the ability of the assembly process to compensate the
influx of new capsomeres. As can be seen for the case
of a steady state in figure 2 the concentration in the
simulation volume linearly increases until a steady
concentration is reached at which the assembly of full
capsids compensates the influx of new monomers.
Thus, for a driven system with a continuous influx of
capsomeres the concentration established in the simu-
lation volume for a given κi is a measure for the effi-
ciency of the assembly process: the lower the
established concentration, the higher the efficiency
(ability of the assembly process to compensate the
influx).

In figures 3(a) and (b) the average capsomere con-
centration ρ during our simulations is shown for two
different simulation volumes, respectively. Here only
those parameter combinations are shown for which a
steady state is established in all trajectories during the
simulation time. If no steady state is established (X),
the average concentration does not provide a valid
measure for the efficiency of the assembly process as
the concentration in trajectories showing crowding
rapidly increases until they are finally aborted. Hence
for parameter combinations where at least one trajec-
tory shows crowding we instead quantify the ability of
the assembly process to compensate the influx of new
capsomeres by the fraction of crowded trajectories φ:
the higher the crowding fraction is the smaller the abil-
ity of the assembly process to compensate the influx of
new capsomeres. This is shown in figures 3(c) and (d)
for the two different simulation volumes, respectively.

Figure 3.Phase diagramswith the different assembly regimes for different simulation volumes. (a) and (b) show the averaged
capsomere concentration ρ as a function of influx rate κi and bond strengthks for a simulation volume of Λ = 27 0001 and
Λ = 42 8752 , respectively. (c) and (d) show the fraction of trajectories which became crowded during the simulation time as a
function of κi andks for a simulation volume of Λ1 and Λ2, respectively. Each data point is obtained from16 independent trajectories
using a simulation time of τ = 10sim

6.
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In general, we see from figures 3(a) and (b) that for
every value of κi used here the lowest concentration is

found at intermediate bond strengths of ≈k 10s
3. This

is similar to assembly under static conditions where
intermediate bond strengths show the largest yield of
full capsids. Moreover, a minimum bond strength of
around ×2 102 is necessary for any assembly to occur.
Below this threshold in bond strength the simulation
volume becomes crowded almost independent of the
normalized influx rate κi.

For high normalized influx rates we see that only a
narrow range of intermediate bond strengths exists for
which a steady state is established in our simulations in
all trajectories, and the steady-state concentration
even at optimal ks is very high. Here the simulation
volume does not only become crowded for very small
ks, but a distinct crowding regime exists at high ks.
Thus, in the case of a high forcing of the system due to
a rapid influx of capsomeres (corresponding to a fast
production of capsids) establishing a steady state
requires an optimal bond strength.

By decreasing the normalized influx rate of cap-
someres (lower forcing of the system) the average con-
centration established in the simulation volume also
decreases (figures 3(a) and (b)) as there is more time
for the assembly to proceed in between the addition of
new capsomeres. Interestingly, the crowding regime at
high bond strengths shrinks with decreasing κi

(figures 3(c) and (d)), and for κ = 1.111i a broad range
of ks (also extending to very high ks) exists for which a
steady state of capsid production is observed. This is a
clear difference between the dynamically driven sys-
tem analyzed here and static systems with a fixed

capsomere concentration. While in the static case
kinetic trapping would prevent any capsid assembly at
high values of ks, the continuous influx of new cap-
someres reduces the requirement for an optimal bond
strength and successful assembly is possible even at
very highks.

As κi has been normalized by the simulation
volume and can be understood as the rate of increase
in concentration due to the influx of capsomeres, one
expects our findings to be independent of the system
size. Comparing the average concentration ρ in the
smaller simulation volume (figure 3(a)) and in the lar-
ger volume (figure 3(b)) we indeed see that the average
concentrations are almost identical in both cases if the
rate of capsomere influx is appropriately scaled. This
allows for a volume independent comparison of the
effect of a dynamic influx of capsomeres on the assem-
bly process. On the contrary, the crowding tendency
especially at high bond strengths and high values of κi

is reduced in the larger simulation volume
(figure 3(d)) when compared to the smaller simula-
tion volume (figure 3(c)). Thus the crowding ten-
dency depends on the system size in a non-trivial
manner and reflects the stochastic nature of the
crowding process with fluctuations being reduced in
larger systems aswill be discussed in detail below.

In order to further characterize the different
regimes, individual trajectories of the time evolution
of the capsomere concentration ρ for three different
bond strengths with κ = 2.592i and Λ = 27 000 are
shown in figures 4(a)–(c) (the lower row shows corre-
sponding simulation snapshots). Figure 4(a) shows
the evolution of ρ of independent trajectories for

Figure 4.Time evolution of the capsomere concentration for different assembly regimes (κ = 2.592i , Λ = 27 000). For each of the
different regimes one representative snapshot is shown in the lower row,with size-dependent color coding. Simulation data for (a)
assemblywithout crowding at intermediate bond strength =k 1179s , (b) assemblywith crowding at low bond strength =k 164s , and
(c) assemblywith crowding at high bond strength =k 8483s . The dashed black line represents the crowding limit at which trajectories
are aborted.
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intermediate bond strength =k 1179s . Here no
crowding of the simulation volume occurs and a
steady state is established in all simulations. After an
initial phase with an increase in ρ a constant con-
centration is established in all simulations and indivi-
dual trajectories stochastically fluctuate around this
constant concentration. Thus, the average concentra-
tion in this case can indeed be used to characterize the
system.

In figure 4(b) the time evolution of ρ for low bond
strength =k 164s is shown. In this case the bond
strength is below theminimumks needed for assembly
of larger clusters, and the concentration in all trajec-
tories linearly increases with simulation time leading
to an almost deterministic abortion of the simulations
due to crowding.

In figure 4(c) the evolution of concentration is
shown for high bond strength =k 8483s . This case
corresponds to crowding of the simulation volume at
high bond strengths ks and high normalized influx rate
κi. Compared to the almost deterministic crowding
process at very low bond strengths (figure 4(b)), we see
that the crowding characteristic for this case is funda-
mentally different as now crowding of the simulation
volume occurs stochastically. In all trajectories shown
in figure 4(c) a very high, quasi-constant concentra-
tion is established for a certain period of time until the
system stochastically reaches an unfavorable config-
uration. Once such a configuration is reached, the for-
mation of further capsids is hindered. This leads to an
increase in concentration, which further slows down
capsid production presumably due to steric collisions
during the reaction process, and the system then
quickly becomes crowded with large capsid inter-
mediates due to the addition of new capsomeres.

A similar crowding characteristic is observed at
high κi for bond strengths ( ≈k 268.0s ) which are
slightly above the threshold in ks necessary for any
capsid assembly. In this case again capsid completion
can balance capsomere influx for a certain period of
time until the simulation volume quickly becomes
crowded albeit in this case with a high fraction of small
clusters.

In general, stochastic crowding of the simulation
volume requires a very high concentration of cap-
someres. In this case the realization of an unfavorable
configuration hinders capsid assembly for a certain
time and the influx of new capsomeres leads to a fur-
ther increase in concentration which in turn hinders
further assembly due to steric collisions. Thus, once a
certain concentration is surpassed in our simulations
the simulation volume inevitably becomes crowded as
the assembly process cannot compensate the influx of
new capsomeres. The observation that the crowding
process is triggered stochastically by the realization of
an unfavorable configuration of the system agrees well
with the previous observation that the stochastic
crowding tendency decreases with system size (com-
pare figures 3(c) and (d)). For a larger system the

relative fluctuations in concentration decrease and the
probability that an unfavorable configuration of the
whole system is realized is reduced.

In order to further analyze the mechanisms lead-
ing to crowding we compare the relative population of
cluster sizes = ×p f k Nk k for different cases. Here fk
is the number of clusters of size k andN the total num-
ber of capsomeres in our simulation volume. Thus pk
is the probability that an arbitrarily chosen capsomere
is part of a k-sized intermediate. In figure 5 pk is shown
for different bond strengths and a normalized influx
rate of κ = 2.593i on a logarithmic scale. Here pk has
been first averaged over the whole simulation time of a
trajectory and subsequently over 16 independent
trajectories.

For the intermediate bond strengths for which no
crowding is observed (red, solid lines) small and large
cluster sizes dominate. This is in agreement with pre-
vious observations characterizing successful assembly
from a fixed concentration of capsomeres [19, 34] and
indicates that in this regime successful assembly pro-
ceeds by the addition of small clusters to only a few lar-
ger, stable assembly intermediates. For crowded runs
at very low bond strengths (green, dashed lines) only
small cluster sizes are populated and no capsid com-
pletion is observed. This explains the quasi-determi-
nistic increase in concentration shown in figure 4(b).
For crowded runs at very high bond strengths (blue,
dashed and dotted lines) the relative population at
large cluster sizes strongly resembles the relative popu-
lation without crowding. In contrast the population of
small cluster sizes is strongly reduced for the crowded
runs while the population of intermediate cluster sizes
( ≈k 10) is increased. This shows that in this case new
capsomeres are quickly absorbed by existing clusters
and the system becomes eventually crowded with
intermediate and large capsid fragments. Interestingly

Figure 5.Relative population of different cluster sizes pk for
κ = 2.593i and different values ofks as a function of the
cluster size. The red, solid lines correspond to bond strengths
without any crowding of the simulation volume
( ⩽ ⩽k439 1931s ). The blue, dashed and dotted lines and the
green, dashed lines correspond to bond strengths where all
trajectories showed crowding at high ( ⩾k 8483s ) or at low
bond strengths ( =k 100s and =k 164s ), respectively.
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the quick depletion of single capsomeres has pre-
viously been identified as characteristic for kinetic
trapping during capsid assembly [25, 35, 36, 41]. This
shows that kinetic trapping and box crowding at high
bond strengths are strongly connected phenomena.

As we have seen, crowding effects are essential to
understand capsid assembly, but until now we only
have considered self-crowding by viral components.
In the cell, crowding will be established also by other
crowders and therefore lower (more physiological)
concentrations of viral components are expected to be
sufficient to result in similar effects as described here.
In order to test the validity of our findings in the pre-
sence of additional, non-specific macromolecular
crowders, we have used our dynamic simulation setup
with non-reactive crowders. To this end we place a
total of 600 spherical crowders inside a simulation
volume of size Λ = 27 0001 . These crowders have the
same radius as the capsomeres, however, they do not
participate in any reactions (no patches). In the simu-
lation volume we now have a total concentration of
ρ ρ ρ= +total crowder with the concentration of crow-
ders ρcrowder being kept constant throughout the simu-
lations. This implies that any crowder found inside a
complete capsid is placed back into the simulation
volume. The upper (red) histogram in figure 6 shows
the dependence of the average concentration ρ
observed during our simulations on the bond strength
ks for a normalized influx rate of κ = 0.185i . Again ρ is
only shown for those values of ks for which a steady-
state was established in all trajectories during the
simulation time. The lower (blue) histogram depicts
the fraction of crowded runs φ for different bond
strengths. In addition a representative snapshot of the
assembly system including the additional crowding
agents is shown in figure 6. Comparing the depen-
dence of ρ on the bond strength ks, we see the same
qualitative behavior with additional crowders

(figure 6) and without crowders (figure 3). In both
cases assembly is most efficient at intermediate bond
strengths. Furthermore in figure 6 we again observe
two regions (at very low and very high bond strength)
in which the simulation volume becomes too crowded
for a steady state to be established in all trajectories.
This is similar to the two self-crowding regions
observed in figure 3 at high normalized rates of cap-
somere influx. However, the normalized influx rate of
capsomeres used in figure 6 is smaller than those used
in figure 3. This suggests that, although the qualitative
dependence remains the same, it is more difficult to
establish a steady-state virus production in already
pre-crowded environments and lower rates of influx
are required in this case.

After having analyzed the different mechanisms
which prevent a steady state from being established,
we now focus on small normalized influx rates. As can
be seen in figures 3(a) and (b) a steady state with con-
tinuous capsid production is established even for very
high bond strengths if the normalized influx rate is
small enough. This suggests that a gradual influx of
capsomeres can prevent or at least reduce kinetic
trapping.

In order to verify that dynamic capsomere influx
indeed reduces the requirement of an optimal bond
strength we compare the yield of capsids for two dif-
ferent setups: a static setup initially starting with

=N 10000 capsomeres and a dynamic setup in which
a total of 1000 capsomeres is placed in the simulation
volumewith a certain rate. In both cases complete cap-
sids are considered to be stable and are taken out of the
simulation volume. In figure 7 the yield of full capsids
after a simulation time of τ = 10sim

7 is shown as a
function of the bond strength ks. The blue histogram
shows the yield in the static case while the red histo-
grams show the yield when gradually placing new

Figure 6.Averaged capsomere concentration ρ and fraction of crowded trajectoriesφ as a function of bond strengthks for a
normalized capsomere influx rate of κ = 0.185i when placing 600 additional, non-specific crowders inside a simulation volume of size
Λ = 27 0001 . Each data point is obtained from16 independent trajectories using a total simulation time of τ = ×6 10sim

5. On the
right a representative simulation snapshot is shown for =k 1179s andwith size-dependent color coding of the capsid fragments. The
additional crowders are colored in gray.
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monomers into the simulation volume with a normal-
ized influx rate of κ = 0.24i (light red) and κ = 0.08i

(dark red).
At low bond strengths ( ⩽k 720s ) the yield in the

static case is slightly higher than in the dynamic case.
Thus, for small bond strengths it is beneficial if a larger
number of capsomeres is available throughout the
whole simulation time. In the case of optimal bond
strengths ( = −k 1179 1931s ) no difference between
the two setups is observed as assembly at these bond
strengths proceeds quickly, and almost all simulations
show the maximum yield of 16 capsids within the
simulation time.

When further increasing the bond strength we see,
however, that the yield in the static case quickly drops
and no complete capsids are observed above

=k 8483.s In this case kinetic trapping completely
prevents the formation of capsids. For the dynamic
case, in contrast, we still observe considerable yield of
capsids above =k 8483s with the yield being higher
for the lower normalized influx rate used. This indeed
shows that a dynamic setup with a gradual supply of
capsomeres reduces the selectivity for an optimal bond
strength and makes the assembly process more robust
and less vulnerable against kinetic trapping.

4. Conclusion

The assembly of the viral protein shell, the capsid,
from elementary assembly units (capsomeres) is a key
step during the replication of most viruses. The
assembly process needs to be sufficiently robust to
guarantee the successful formation of the capsid in the
dynamic environment of the host cell. While for test

tube experiments on capsid assembly the material
available for the assembly process remains constant, in
the cellular environment the elementary building
blocks for the assembly process are continuously
produced by the biomolecular machinery of the
cell [43].

Here we have investigated the role of a dynamic
supply of capsomeres and the removal of complete
capsids for the assembly of empty T1 virus capsids by
using a minimal spatial model based on coarse-
grained Brownian dynamics simulations. It has been
shown earlier that such a setup can result in a steady
state with capsomere influx being balanced by capsid
completion [42]. Our simulations reveal that for very
high rates of capsomere influx the assembly process is
only able to compensate the influx of new capsomeres
in a narrow range of intermediate bond strengths
while outside this range the simulation volume
becomes crowded. At lower bond strengths the forma-
tion of larger clusters is prohibited and the simulation
volume becomes crowded almost deterministically
with small clusters. At higher bond strengths, in con-
trast, the simulation volume becomes crowded with
large, incompatible assembly intermediates. This
crowding process is triggered stochastically by the for-
mation of an unfavorable configuration of the system.
While crowding of the simulation volume at very low
bond strengths is nearly independent of the influx rate
of capsomeres, the crowding regime at high bond
strengths vanishes for a slower influx of capsomeres.
Thus, for smaller rates of capsomere influx a steady
state with continuous capsid production is established
even for very high bond strengths.

Recently Smith et al [63] combined aGillespie type
of approach with Green’s function reaction dynamics
simulations to infer the effect of additional macro-
molecular crowders on virus capsid assembly. Here we
have considered this important aspect in a fully spatial
context. When placing non-reactive macromolecular
crowding agents inside our simulation volume, we
observe the same trends with regard to bond strength
(optimal assembly at intermediate bond strength and
crowding of our simulation volume at high and low
bond strength). In the case of extra crowding, our
simulations require the use of lower rates of cap-
somere influx in order to establish a continuous pro-
duction of complete capsids, thus bringing our
simulations closer to the physiological situation.

Comparing the yield of complete capsids under
static conditions with a fixed concentration to the
yield of complete capsids when gradually increasing
the concentration, we demonstrated that the vulner-
ability of the assembly process to kinetic trapping can
be significantly reduced if the concentration of cap-
someres is dynamically increased. This conclusion
agrees with the recent finding of a discrete stochastic
simulation for genome-stabilized virus assembly that a
linear increase in protein concentration dramatically
increases the robustness against kinetic trapping [43].

Figure 7.Comparison of capsid yield for afixed initial
capsomere concentration and for a continuous influx of
capsomeres. Here the yield of complete capsids in a simula-
tion volume of Λ = 125 000 is shown as a function of the
bond strengthks after a simulation time of τ = 10sim

7. The
blue histogram shows the yieldwhen initially placing 1000
capsomeres in the simulation volume. The red histograms on
the other hand show the yield of capsids when gradually
increasing the number of capsomeres from zerowith a rate of
κ = 0.24i (light red) and κ = 0.08i (dark red), respectively,
until a total of 1000 capsomeres is reached. The yield has been
averaged over 16 different runs.
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To rationalize these results, it is helpful to think of
assembly in terms of a free energy landscape (similar
to transition networks in protein folding [64, 65]). In
the picture of the free energy landscape a kinetically
trapped assembly process has reached a stable local
minimum that prevents the formation of the desired
minimum energy configuration. At high bond
strengths and high concentrations the free energy
landscape of the assembly process is very rough, and
trapping in a local minimum is thus very likely. The
gradual influx of new assembly material can be under-
stood as a tilting of the free energy landscape. Thus, by
continuously providing new capsomeres the assembly
process can be guided toward the global minimum
corresponding to the formation of full capsids and the
dynamic capsomere supply prevents the system from
becoming trapped in a localminimumconfiguration.

As discussed before in our simulations we use
enhanced assembly dynamics and relatively large
influx rates to achieve reasonable computing times for
our particle-based simulations of empty capsid assem-
bly. Thus our simulations include the full effect of dif-
fusional encounters and excluded volume
interactions. Our simulations suggest that qualita-
tively similar results are to be expected for lower rates
of capsomere influx, which we use when accounting
for the presence of additional macromolecular crow-
ders. However, further progress in this direction needs
algorithmic advances, including the use of GPU-code
and analytical or resampling techniques to speed up
simulation times [66–69]. Such advances then would
allow us to also address more complicated virus archi-
tectures with different bond types, virus misfits, gen-
ome-assisted assembly and the interplay between virus
assembly and gene expression.

Although our simulations are performed with
enhanced assembly dynamics and high rates of cap-
someres influx, we believe that our findings have
strong implications for the assembly process of virus
shells under (dynamic) in vivo conditions. In parti-
cular our simulations suggest that kinetic trapping,
which is often thought of as a major limitation pre-
venting the successful assembly of complete capsids
under (static) in vitro conditions, might only play a
minor role in vivo if the supply of new capsomeres by
the host cell is slow enough. Although assembly is still
most efficient at intermediate bond strength, a
dynamic supply of capsomeres should allow for robust
self-assembly in a wide range of bond strengths with-
out the need for additional helper proteins or scaf-
folds. This finding is compatible with the results by
Dykeman et al [43] and Hagan et al [42] using differ-
ent setups. Moreover, our dynamic, particle-based
simulations show that self-crowding of the simulation
volume can prevent steady-state capsid assembly at
high rates of capsomere influx and high bond
strengths.

Our simulations suggest that in the presence of
other macromolecular crowders the effect of self-

crowding due to the continuous production of cap-
someres might occur for much lower rates of cap-
somere influx (and also lower capsomer
concentrations). Here further investigations are
necessary to clarify the relevance of this regime for
in vivo capsid assembly. One way to test our predic-
tions is to use in vitro experiments. The setup studied
in our simulations could be experimentally realized
using a microfluidic device that allows to control cap-
somere influx. At the same time, the bond strength
might be controlled by changing temperature or ionic
conditions. Capsid removal could be implemented
simply by sedimentation [42], by filtering or by
boundaries that are sticky to completed capsids. For
such a setup, we expect that the yield of full capsids at
high bond strengths (low temperatures) depends on
the rate of concentration increase. In particular,
decreasing the rate of capsomere influx should result
in a higher yield of full capsids.

As the assembly of a simple icosahedral capsid
can be considered as a paradigm for protein assem-
blies [70] or artificial assembly systems in general
[71, 72], our findings also apply for other complex
assembly structures. While recent advances in the
design of artificial assembly from colloidal particles
have aimed at a dynamic control of the inter-particle
interactions [73, 74] to increase the yield of the
desired target structure, our simulations strongly
suggest that a dynamic control of the material avail-
able for the assembly process can further help to
increase the yield of the desired structure in artificial
self-assembly systems. In these systems the effect of
self-crowding discussed in our manuscript might
also play an important role, depending on the rate of
supply of new assembly material and the accessible
assembly volume.
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