
Supporting Text
L-selectin mediated leukocyte tethering in shear flow is controled

by multiple contacts and cytoskeletal anchorage facilitating fast rebinding events

Ulrich S. Schwarz and Ronen Alon

Model

We consider a cluster with a constant number N of
parallel bonds under constant force F . At any time t, i
bonds are closed and N − i bonds are open (0 ≤ i ≤ N).
Closed bonds are assumed to rupture according to the
Bell equation [1]:

koff = k0e
F/Fb . (1)

For convenience, we introduce dimensionless variables:
dimensionless time τ = k0t, dimensionless dissociation
rate koff/k0, and dimensionless force f = F/Fb. The i
closed bonds are assumed to share force f equally, that
is, each closed bond is subject to force f/i. Thus the
dimensionless dissociation rate is ef/i. As long as the
receptors are held in proximity to the ligands, rebind-
ing of open bonds can occur. Therefore we assume that
single open bonds rebind with the force-independent as-
sociation rate kon. The dimensionless rebinding rate is
defined as γ = kon/k0.

The stochastic dynamics of the bond cluster can be
described by a one-step Master equation [2]

dpi
dτ

= ri+1pi+1 + gi−1pi−1 − [ri + gi]pi , (2)

where pi(τ) is the probability that i closed bonds are
present at time τ . The reverse and forward rates between
the different states i follow from the single molecule rates
as

ri = ief/i , gi = γ(N − i) . (3)

Once the completely dissociated state i = 0 is reached,
the cell will be carried away by shear flow and the cluster
cannot regain stability. This corresponds to an absorbing
boundary at i = 0, which can be implemented by setting
r0 = g0 = 0. Cluster lifetime T is identified with the
mean time to reach the absorbing state i = 0.

Lifetime of two-bonded cluster

For a cluster with two bonds, N = 2, cluster lifetime
T can be calculated exactly in the following way. At
τ = 0, the cluster starts with the initial condition i = 2.
Next it moves to state i = 1 with probability 1, after the
mean time 1/r2. From there, it rebinds to state i = 2
with probability wR = g1/(r1 + g1) or dissociates with
probability wD = r1/(r1 + g1). The mean time for this
part is 1/(r1 + g1). Thus after two steps, the system

has reached state i = 0 with probability wD or returned
to state i = 2 with probability wR, with wD + wR =
1. In detail, the probabilities and mean times for both
processes are

wD =
ef

ef + γ
, tD =

1
2ef/2

+
1

ef + γ
, (4)

wR =
γ

ef + γ
, tR = tD . (5)

Different paths to dissociation differ only in the number
of rebinding events j to state i = 2:

wj = wDw
j
R, tj = tD + jtR . (6)

We first check normalization:
∞∑
j=0

wj = wD
1

1− wR
= 1 (7)

and then calculate cluster lifetime:

T =
∞∑
j=0

tjwj = tD + tRwD

∞∑
j=0

jwjR (8)

= tD + tRwD
wR

(1− wR)2
=

tD
1− wR

(9)

=
1
2

(
e−f/2 + 2e−f + γe−3f/2

)
. (10)

This formula is given in dimensional form as Eq. 1 in the
main text.

Cluster size versus rebinding

For arbitrary cluster size N , cluster lifetime T can be
obtained from the adjoint Master equation [2, 3]. In the
case of vanishing force, f = 0, the solution can also be
found by using Laplace transforms [2]:

T =
1

(1 + γ)

(
N∑
i=1

(
N

i

)
γi

i
+

1
i

)
. (11)

For γ = 0, this equation reduces to

T =
N∑
i=1

1
i

= HN , (12)

where HN are the harmonic numbers. An expansion for
large N gives

HN = Γ + lnN +
1

2N
+O(

1
N2

) . (13)
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Here Γ = 0.577 is the Euler constant. This formula is
rather good already for small values of N . Eq. (12) is
easy to understand: for γ = 0, dissociation is simply a
sequence of Poisson decays with mean times 1/ri = 1/i.
The overall mean time for dissociation is the sum of the
mean times of the subprocesses. We conclude that for
vanishing rebinding, T grows only weakly (logarithmi-
cally) with N , and very large cluster sizes are required
to achieve long lifetimes [4, 5]. Therefore rebinding is
essential to achieve stabilization for small cluster sizes.

Effect of finite loading rate

Loading and dissociation of single L-selectin bonds oc-
cur on the same time scale. As a cell is captured from
shear flow and comes to a stop, force rises from cero and
plateaus at a finite value. We model the initial rise as lin-
ear, with loading rate r. Therefore f = µτ until time τ0,
followed by constant loading f = f0, where µ = r/k0Fb
is dimensionless loading rate. Because µ = f0/τ0, there
are only two independent parameters, τ0 and f0. The
mean lifetime can be calculated in the usual way [5, 6].
We find

T =
e

1
µ

µ

(
E(

1
µ

)− E(
eµτ0

µ
) +

µ

ef0
e−

eµτ0
µ

)
, (14)

where E(x) is the exponential integral. For τ0 → 0,
we find the result for constant loading, T = 1/ef0 .
For τ0 → ∞, we find the result for linear loading,
T = e1/µE(1/µ)/µ [5]. Eq. (14) is used in the section on
single bond loading and for the plot of the dash-dotted
line in Fig. 3.

Simulations

In the presence of diffusion with diffusion constant D,
the single-molecule association rate becomes a function
of time t that has passed since unbinding. In this paper,

we use the approximation

kon(t) = kon

(
1− e−s

2/4Dt
)
, (15)

where s is the capture radius. Because analytical solu-
tions are intractable in this case, the Master equation,
Eq. (2), has to be solved numerically. The standard
methods to do so are Monte Carlo simulations. Unfortu-
nately, the Gillespie algorithm for exact stochastic sim-
ulations [7] cannot be used in this case, because it does
not track the identity of different bonds [8]. Therefore,
we simulate the Master equation by discretizing time τ
in small steps ∆τ . For each time step, random numbers
are drawn to decide how the system evolves according
to the rates defined for the different processes. In de-
tail, in the time interval [τ, τ + ∆τ ], each closed bond
has the probability ef/i∆τ to rupture, and each open
bond has the probability γ(1 − e−k/(γτ))∆τ to rebind.
Here k = kons

2/4D is the dimensionless ratio of the
time-scales set by diffusion and rebinding. Our model
for stochastic cluster dynamics was implemented in the
programming environment MATLAB (The MathWorks
Inc., Natick, Mass.). A typical run simulates 5, 000 teth-
ers (larger tether numbers give better statistics for long
time behavior, but similar results), each comprising N
bonds. Results from different runs are binned into his-
tograms for the number of tethers dissociating in the time
interval [τ, τ + ∆τ ]. In Fig. 4, we plot the natural loga-
rithm of the fraction of tethers that last longer than di-
mensional time t as a function of t, as is common for the
analysis of experimental data. The slope of this curve is
identified with the dissociation rate. Although this pro-
cedure involves numerical integration of the probability
distribution for dissociation and therefore leads to loss
of information, its smoothing effect is essential to obtain
reliable estimates for the dissociation rate in the presence
of noisy data. In Fig. 4 Inset, the dissociation rates ob-
tained in this way are plotted as function of shear rate
(that is force) and diffusion constant (which determines
the dimensionless parameter k).
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