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Linear Stability Analysis of the Reduced Rate Equation Approach. In
the rate equation approach, the number of filament ends in the
branching region with angles between θ and θ þ dθ is given by
Nðθ; tÞdθ. By integrating this equation stepwise over finite-sized
angle bins, we obtain a finite number of coupled ordinary differ-
ential equations describing the temporal behavior of the filament
number in every angle bin:

N θ̄ ¼
Z

θ̄þΔθ∕2

θ̄−Δθ∕2
Nðθ0; tÞdθ0 [S1]

with mean angle θ̄ and width Δθ. For a numerical solution, we
typically choose 360 angle bins. For analytical progress, we reduce
the number of equations by choosing a large bin with a size of
Δθ ¼ 35°, that is, half of the Arp2/3 branching angle. In addition
we assume that branching is restricted to pairs of angle bins with a
relative angle difference of 70°, that the rate according to which
filaments grow out of the branching region is given by the rate for
the mean angle of the corresponding bin kgrðθ̄Þ, and that the
branching of filaments with jθj > 87.5° can be neglected as they
grow out of the branching region sufficiently quickly. We then
arrive at a system of five differential equations:

∂N−70°

∂t
¼ 1

2
k̂bN0° − ðkc þ kgrð70°ÞÞN−70° [S2]

∂N−35°

∂t
¼ 1

2
k̂bNþ35° − ðkc þ kgrð35°ÞÞN−35° [S3]

∂N0°

∂t
¼ 1

2
k̂bðN−70° þ Nþ70°Þ − kcN0° [S4]

∂Nþ35°

∂t
¼ 1

2
k̂bN−35° − ðkc þ kgrð35°ÞÞNþ35° [S5]

∂Nþ70°

∂t
¼ 1

2
k̂bN0° − ðkc þ kgrð70°ÞÞNþ70°; [S6]

with

k̂b ¼
kb

Wtot
¼ kb

N−70° þ N−35° þ N0° þ Nþ35° þ Nþ70°
:

Due to the symmetry around 0°, only three of these equations are
independent.

To identify and analyze the stationary states of Eqs. S2–S6, we
are solving ∂N θ̄∕∂t ¼ 0 for all θ̄. If we take into account only the
physically meaningful subspace of nonnegative filament numbers,
two steady-state solutions emerge. The first solution,

Nss35
−70° ¼ 0; Nss35

−35° ¼ kb
1

4ðkc þ kgrð35°ÞÞ
; Nss35

0° ¼ 0;

Nss35
þ35° ¼ kb

1

4ðkc þ kgrð35°ÞÞ
; Nss35

þ70° ¼ 0; [S7]

represents a dominant �35° orientation distribution in the steady
state (ss35) while the second solution,

Nss70
−70° ¼ kb

kc þ kgrð70°Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kcðkc þ kgrð70°ÞÞ

q
2ðk2grð70°Þ − k2cÞ

; Nss70
−35° ¼ 0;

Nss70
0° ¼ kb

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcþkgrð70°Þ

2kc

q
kc − kgrð70°Þ

; Nss70
þ35° ¼ 0;

Nss70
þ70° ¼ kb

kc þ kgrð70°Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kcðkc þ kgrð70°ÞÞ

q
2ðk2grð70°Þ − k2cÞ

; [S8]

corresponds to the competing þ70∕0∕ − 70° pattern (ss70).
In order to investigate how the stability of these fixed points

depends on model parameters, we use linear stability analysis.
For this purpose, the eigenvalues λi of the Jacobi matrix of the
nonlinear system (Eqs. S2–S6) at the positions of the fixed points
Nss35 (solution S7) and Nss70 (solution S8) have to be calculated.
Starting with ss35, the eigenvalues of the Jacobi matrix read

λss351 ¼ −ðkc þ kgrð35°ÞÞ [S9]

λss352 ¼ −2ðkc þ kgrð35°ÞÞ [S10]

λss353 ¼ −ðkc þ kgrð70°ÞÞ [S11]

λss354 ¼ −
1

2
ð2kc þ kgrð70°Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðkc þ kgrð35°ÞÞ2 þ k2grð70°Þ

q
Þ

[S12]

λss355 ¼ −
1

2
ð2kc þ kgrð70°Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðkc þ kgrð35°ÞÞ2 þ k2grð70°Þ

q
Þ:

[S13]

Note that the branching rate kb does not appear in the eigenva-
lues and therefore has no influence on the stability of the steady
state. This means we have to determine for which sets of
parameters kc, kgrð35°Þ, and kgrð70°Þ all eigenvalues are strictly
negative, because for these sets the fixed point Nss35 is asympto-
tically stable. However, the two parameters kgrð35°Þ and kgrð70°Þ
are not independent, but rather both of them are determined by
the bulk velocity of the network vnw as given in Eq. 3 of the main
text. If we omit the ill-defined cases kc ¼ kgrð35°Þ ¼ 0 and
kc ¼ kgrð70°Þ ¼ 0, the first four eigenvalues λss351 –λss354 are strictly
negative for all possible (nonnegative) values for the parameters.
The last eigenvalue λss355 , however, changes its sign when the
relation

kgrð70°Þ ¼
k2c þ 4kckgrð35°Þ þ 2k2grð35°Þ

kc
[S14]

is satisfied.
Although the expressions for some of the eigenvalues of the

ss70 solution are rather complicated, it can be shown that in this
case also only one eigenvalue

λss705 ¼ −kc − kgrð35°Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcðkc þ kgrð70°ÞÞ

2

r
[S15]
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changes its sign, whereas all the others are strictly negative in the
parameter range mentioned before. The sign of λss705 changes un-
der the same condition as we have found before for λss355

(Eq. S14). However, both eigenvalues λss355 and λss705 hold opposite
signs whenever they do not vanish. Therefore we can conclude
that for the whole parameter range (apart from the subset where
Eq. S14 is exactly satisfied), either the ss35 steady state is asymp-
totically stable and the ss70 solution is a saddle, or vice versa.

Next we analyze for which bulk network velocities vnw Eq. S14
is fulfilled. If we start at small vnw such that the critical angle is
θc ≥ 70° and only filaments with a larger orientation angle than θc
are growing out of the branching region, we get from Eq. 3 of the
main text kgrð70°Þ ¼ kgrð35°Þ ¼ 0 and Eq. S14 is never fulfilled
(for kc > 0). For increasing network speed, 35° ≤ θc < 70° (i.e.,
kgrð70°Þ > 0∧kgrð35°Þ ¼ 0), we obtain a single solution for vnw
that satisfies Eq. S14,

vnw ¼ 1

2
dbrkc þ vfil cosð70°Þ; for 35° ≤ θc < 70°: [S16]

Once the network velocity has reached the value where the cri-
tical angle θc < 35° (i.e., kgrð70°Þ > kgrð35°Þ > 0), two solutions
emerge:

vnw1;2 ¼
1

8
ð−3kcdbr þ 8vfil cosð35°ÞÞ

� 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcdbrðkcdbr þ 16vfil cosð35°Þ − 16vfil cosð70°ÞÞ

p
;

for θc < 35. [S17]

Due to the restrictions on the critical angle, solution [S16] is valid
for network bulk velocities vfil cosð35°Þ ≥ vnw > vfil cosð70°Þ,
whereas solution [S17] holds in the domain vnw > vfil cosð35°Þ.
This restriction is never fulfilled by the negative square root in
Eq. S17, and so we can neglect this solution in the following.
A phase diagram showing the separate regions in which either
ss35 is asymptotically stable and ss70 is a saddle or vice versa
is given in Fig. 2A of the main text. There the constants were cho-
sen such that filament barbed ends grow with a velocity vfil of one
actin monomer increment δfil per unit time step and the width of
the branching region dbr equals 2δfil.

So far, we have seen that the system, starting in close proximity
of the stable fixed point, will eventually end up in this state. We
now have to also treat the saddle point. Although this point is
repelling in a single dimension (given by the eigenvector of the
positive eigenvalue), there is also a four-dimensional subspace
(the remaining four eigenvectors) of initial conditions attracted
to this state in its neighborhood. In the following it will be specified
which initial conditions exactly are still converging to the saddle.

Let us assume we are in the parameter range in which the ss35
is a node while the ss70 solution is a saddle point. If we evaluate
the subspace spanned by the four eigenvectors ~vss70i with negative
eigenvalues at the saddle, they have the form

~vss701 ¼

1

0

0

0

−1

0
BBBBBBB@

1
CCCCCCCA
; ~vss702 ¼

0

1

0

−1

0

0
BBBBBBB@

1
CCCCCCCA
; ~vss703 ¼

1

0

a

0

1

0
BBBBBBB@

1
CCCCCCCA
;

~vss704 ¼

1

0

b

0

1

0
BBBBBBB@

1
CCCCCCCA
; [S18]

where a and b are constants depending on the parameters. Here
we can see that the eigenvectors ~vss701 , ~vss703 , and ~vss704 span the
three-dimensional subspace where the N�35° fiber population
vanishes. As the two different orientation distributions are not
coupled via branching in this model, this is a trivial case. From
initial conditions where there are no fibers in the N�35° orienta-
tion bins, this steady state can never be reached. The remaining
eigenvector ~vss702 however spans a subspace only featuring non-
physical (negative) fiber numbers in exactly one bin. Therefore
we can conclude that initial conditions of positive fiber numbers
in all bins will in general not approach this saddle point in the
system.

A similar reasoning applies for parameters for which the ss35
fixed point is unstable. Again we can write down the eigenvectors
of the negative eigenvalues, i.e., the subspace that is attracted to
the saddle in its vicinity

~vss351 ¼

0

1

0

1

0

0
BBBBBBB@

1
CCCCCCCA
; ~vss352 ¼

0

−1

0

1

0

0
BBBBBBB@

1
CCCCCCCA
; ~vss353 ¼

−1

0

0

0

1

0
BBBBBBB@

1
CCCCCCCA
;

~vss354 ¼

1

a

b

a

1

0
BBBBBBB@

1
CCCCCCCA
; [S19]

where a is again some constant depending on the parameters, and
b is given by

b ¼
kgrð70°Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðkc þ kgrð35°ÞÞ2 þ kgrð70°Þ2

q
2ðkc þ kgrð35°ÞÞ

: [S20]

As b < 0 for all relevant sets of parameters, we can conclude
again that the vectors ~vss351 and ~vss352 span the trivial subspace
where no fibers are in the N�70° and N0° orientation bins and
the remaining vectors ~vss353 and ~vss354 span a subspace in which
at least one fiber number is negative. Therefore here again all
physically meaningful conditions in the vicinity of the saddle point
will be repelled.

In the phase diagram shown in Fig. 2A of the main article, the
�35 pattern vanishes at large capping rate. This feature of the
reduced rate equation model follows from the assumption that
filaments with an orientation larger than 87.5° do not branch.
As the capping rate increases, the angle-dependent outgrowth
term favoring persistence of filaments with small angles becomes
less important and the −70∕0∕70 pattern is favored because it
involves more angle bins. As the full rate equation model and
the stochastic network growth model do not share this assump-
tion, they do not predict the elimination of the �35 pattern for
large capping rate.

Analysis of the Order Parameter for Different Branching and Capping
Rates. Fig. S1A shows the evolution of the order parameter

O ¼ N0° − N35°

N0° þ N35°
¼ ½−1;þ1� [S21]

for different values of the branching and capping rates as ob-
tained from the numerical solution of the model equations with
360 angle bins and for quasistationary changes in network velocity
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vnw. The three curves for constant capping rate kc ¼ 0.05 but
different values for the branching rate kb collapse, indicating that
the order parameter is independent of the branching rate, as
predicted from analytical stability analysis of the simplified model
in section Linear Stability Analysis of the Reduced Rate Equation
Approach of this SI. However, when the capping rate kc is
increased over three orders of magnitude, the clear distinction
between the two different phases vanishes. In Fig. S1B, the
two maximum values of the order parameter for the fast and slow
growth phases as well as the minimum value for the medium
growth phase are given for increasing capping rate. The absolute
magnitude of these peak values is rapidly decreasing until the dif-
ferent orientation patterns can not be sufficiently discriminated
anymore. This justifies a posteriori our choice of a small capping
rate kc ¼ 0.05 per unit time for the simulations presented in the
main text. If this value was significantly larger, one could not ob-
serve the characteristic orientation distributions found in electron
micrographs of the leading edge of mobile cells (1–3).

Sensitivity of the Force–Velocity Relation to Parameter Variation. In
the main text, the force–velocity relation is given as the numerical
solution of the coupled Eqs. 1, 5, and 7 in Fig. 3A for the following
choice of model parameters: capping rate kc ¼ 0.05 per filament
and per unit time, branching rate kb ¼ 20 per unit time, and stan-
dard deviation σ ¼ 5° of the branching angle distribution. In the
following, we will analyze how sensitive the calculated force–
velocity relation is to variations in these key parameters.

As discussed in the main text, a change in the branching rate
has no influence on the relative filament number per angle in the
network. Therefore this parameter does not alter the character-
istics of the force–velocity relationship (apart from a rescaling of
the total force, as the total number of filaments carrying force
does change). In Fig. S2, results are shown for different values
of kc and σ. Additionally, two different values for the maximum
angle θfmax

fil
up to which filaments are able to carry the maximum

force fmax
fil ¼ 1 were assumed in the calculations. According to

these results, the hysteresis cycle at the transition from fast to
medium growth phase as well as the relatively flat curve during
the transition from medium to slow growth phase is conserved
over a wide range of parameters. However, for large values of
the standard deviation of the branching angle σ, the capping rate
kc, and the angle θfmax

fil
, the hysteresis cycle vanishes. This behavior

can be understood as the large standard deviation as well as a
large capping rate diminishes the difference in the filament
orientation distribution of the two observed patterns (compare
section Analysis of the Order Parameter for Different Branching
and Capping Rates in this SI). Additionally, a larger θfmax

fil
reduces

the difference in load the two networks are able to carry. How-
ever, a marked difference in the ability to carry load between the
two competing orientation patterns is the essential requirement
for the two prominent features of the force–velocity relation,
namely, the hysteresis cycle and the force-insensitive regime.

An additional feature that can be observed in Fig. S2 is that the
force–velocity curves for different σ cross at a similar value of
force. There exists a simple explanation for this feature: The
crossing is always close to the velocity at which the transition from
medium to slow growth phase takes place. For σ ≥ 5°, the fila-
ment orientation distribution at this velocity is approximately
constant in between −θmax and þθmax, i.e., for all filament angles
that contribute in pushing the load. Therefore, an approximately
equal force can be carried by the networks in this situation. For
σ ¼ 2°, the velocity as a function of force is a flat curve anyway.

Force–Velocity Relation for a Network Elongating as a Brownian
Ratchet. In the main text, we assumed a hypothetical protrusion
efficiency of the network which differentiates the two orientation
patterns sufficiently strongly to result in hysteresis effects. For
comparison, here we also show the results of the force–velocity

curve under the assumption that each filament of the network
elongates as a Brownian ratchet (4, 5). In this model, each fila-
ment grows according to its angle θ and the individual force it
carries f filðθÞ with a velocity

v⊥filðθÞ ¼ vfil cosðθÞ exp
�
−
f filðθÞδfil cosðθÞ

kBT

�
[S22]

perpendicular to the leading edge. In the stationary state, the sys-
tem will share the external force between the filaments in such a
way that all filaments that carry load (θ ≤ θmax) grow with the
same velocity v⊥fil and all others grow slower,

v⊥filðθ ≤ θmaxÞ ¼ vfil cosðθmaxÞ: [S23]

For a given force, this velocity also defines the bulk network
velocity vnw ¼ v⊥filðθ ≤ θmaxÞ. Hence, in the stationary state, the
external force will be distributed over different filament orienta-
tions as

f filðθÞ ¼
kBT

δfil cosðθÞ
ln
�

cosðθÞ
cosðθmaxÞ

�
: [S24]

When the force on the network is increased, so will θmax such that
the force is redistributed and the network will continue to grow at
a slower pace. By iterating Eq. S24 in combination with the net-
work orientation from Eq. 1 of the main text, the corresponding
force–velocity relation is obtained. In this simulation again the
force was changed quasistationary like in the main text. That
means that, after every small change in force, the system had
enough time to approach a stationary state. For numerical stabi-
lity, the stall force of the network was assumed to be located at
the point at which all filaments in the network with an orientation
θ ≤ 89° were not able to carry the external load anymore.

Fig. S3 shows the resulting force–velocity curve. As expected,
the dependence shows a convex decrease over the whole force
range. In this scenario, no significant hysteresis effects could be
observed at any of the two filament orientation transitions. Hence
theprotrusion efficiency obtained by assuming aBrownian-ratchet
mechanism does not sufficiently differentiate between the two
different filament patterns. The protrusion force for proximal net-
work growth velocities above and below each of the two transitions
is weakly but monotonically increasing for decreasing network ve-
locity. Therefore, hysteresis cycles do not emerge and the model
can not explain the experimentally observed anomalies (7, 8).

Physical Values of the Model Parameters. There are three different
rates which can be used to scale time: branching rate kb, capping
rate kc, and growth rate vfil∕δfil. Here we choose the last one. The
basic length scale of actin growth is δfil ¼ 2.7 nm. A typical fila-
ment growth velocity at close to optimal conditions is 1 μm∕s.
Then the growth rate 370 δfil per second. Therefore the branching
rate kb ¼ 20 used in the simulations corresponds to kb ¼ 7; 410
branching events per second in the simulated region of the net-
work. The used capping rate kc ¼ 0.05 corresponds to kc ¼ 18.5
capping events per filament per second.

The results for the force–velocity relation do not depend on the
branching rate as mentioned in the main text. However, the
branching rate determines the total number of filaments in the
network and therefore also the force which it can carry. Forces
in the model are given relative to the constant maximal force
fmax
fil that a filament with orientation θ ≤ 10° is able to carry in
its compression mode dominated regime. For the single filament
buckling force, by which fmax

fil could be approximated, a range from
0.5–50 pN has been reported (6). Using an atomic force micro-
scope, it has been measured that an actin network growing against
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an obstacle stalls at 150� 120 nN for a contact area of about
380 μm2 (7), which gives a stall force density of 0.4 nN∕μm2.

In our rate equation approach, we typically have 150 filaments
within the branching zone close to the leading edge at intermedi-
ate network velocity. For migrating cells, a typical value for the
number of filaments per leading-edge length close to the mem-
brane is 90� 10 μm−1 (3). Dividing by a typical lamellipodium
thickness of 3 μm, we obtain a filament area density of

30 μm−2. Comparing with the 150 filaments in our model, we con-
clude that our model corresponds to a protrusion area of 5 μm2.
The stall force of 91 fmax

fil for the network from simulation then
corresponds to the measured value of 0.4 nN∕μm2 for fmax

fil
around 22 pN, which lies well inside the reported range (6). This
parametrization also implies that the predicted branching rate is
1,482 per second and per μm2 of leading edge.
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Fig. S1. (A) Order parameter O as a function of network velocity vnw. The three curves for kc ¼ 0.05 collapse. The order parameter is independent of the choice
of the branching rate kb, whereas for increasing capping rate kc the differences in the filament orientation patterns diminishes. (B) Peak values of the order
parameter O for the three distinct phases as a function of capping rate kc. For large capping rates the two different orientation patterns cannot be discri-
minated well anymore.
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Movie S1. Stochastic network simulations for which snapshots are shown in Fig. 1 of the main text. The network growth velocity is adjusted by varying the
numberNfront of the most advanced filaments that are not allowed to grow in order of the bulk network to keep up. The branching rate is adjusted to keep the
network density approximately constant, with little effect on the filament orientation patterns. The parameter Nfront is increased and thus the network growth
velocity is decreased in three steps to yield network configurations in the fast, medium, and slow growth phases, corresponding to Fig. 1 A–C of the main text.
The movie shows that the orientation patterns change as a function of network growth velocity as described in the main text. Although the intermediate
growth phase corresponds to a �35 pattern, the fast and slow growth phases correspond to a þ70∕0∕ − 70 pattern.

Movie S1 (AVI)
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