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aInstitute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany; bBioQuant–Center for Quantitative Biology, Heidelberg University,
69120 Heidelberg, Germany; and cTheoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany

Edited by Alan S. Perelson, Los Alamos National Laboratory, Los Alamos, NM, and accepted by Editorial Board Member Herbert Levine August 11, 2021
(received for review February 26, 2021)

In multicellular organisms, antiviral defense mechanisms evoke a
reliable collective immune response despite the noisy nature of
biochemical communication between tissue cells. A molecular hub
of this response, the interferon I receptor (IFNAR), discriminates
between ligand types by their affinity regardless of concentra-
tion. To understand how ligand type can be decoded robustly by a
single receptor, we frame ligand discrimination as an information-
theoretic problem and systematically compare the major classes
of receptor architectures: allosteric, homodimerizing, and het-
erodimerizing. We demonstrate that asymmetric heterodimers
achieve the best discrimination power over the entire physio-
logical range of local ligand concentrations. This design enables
sensing of ligand presence and type, and it buffers against mod-
erate concentration fluctuations. In addition, receptor turnover,
which drives the receptor system out of thermodynamic equi-
librium, allows alignment of activation points for ligands of
different affinities and thereby makes ligand discrimination prac-
tically independent of concentration. IFNAR exhibits this optimal
architecture, and our findings thus suggest that this special-
ized receptor can robustly decode digital messages carried by its
different ligands.

immune response | signal transduction | information theory |
cell–cell communication | robust sensing

T issue cells communicate through a wide variety of chemical
signals including hormones, growth factors, and cytokines.

To elicit a response, incoming signals must first cross the mem-
brane of a receiving cell, typically activating a membrane recep-
tor. This initial step in signal transduction is decisive because
intracellular pathways may process, amplify, and integrate sig-
nals (1–3), but cannot recover information lost at the receptor
stage (4–6). Membrane receptor systems often already inte-
grate, filter, and shape signals, exploiting nonlinear activation
(7) or temporal (8–10) and spatiotemporal activation dynamics
(11, 12). This suggests that information processing at the mem-
brane enables cells to transmit relevant signals but reject noise,
establishing a robust communication channel. Understanding
the information-theoretic properties of receptor systems (13–15)
is instrumental for clarifying the biological function of signaling
pathways.

Here, we consider the problem of ligand discrimination, where
the relevant signal is the type of ligand present in the cellular
environment, rather than its concentration. We focus on mem-
brane receptors mediating cell-to-cell communication, motivated
by the phenomenon of affinity sensing in the type I interferon
(IFN) cytokine receptor system. Cells infected by virus can alert
neighboring cells by secreting IFN, to which these respond by
antiviral or antiproliferative behavior. In humans, 17 different
type I IFN ligands are known (13 IFNα subtypes and IFNβ, ε,
κ, and ω), which bind to a single dimeric receptor (IFNAR) with
widely varying affinities (16–18). The evolutionary advantages of
this diversity are not fully understood. It has been a puzzling find-
ing that different IFN types elicit different cellular responses,
effectively multiplexing (19) different signals through the shared

pathway component IFNAR, in a way that is independent of
concentration: IFNβ can inhibit cell proliferation while saturat-
ing concentrations of a lower-affinity IFN variant cannot (20).
Several possible mechanisms for affinity sensing have been pro-
posed, including effects of downstream gene expression feedback
(16), bistability (21), corralling of receptors on the membrane
(22), and the kinetics of dimer-receptor activation (23). A related
and widely studied topic is foreign vs. self-peptide discrimi-
nation in adaptive immunity (24–28). It has been predicted
theoretically and shown experimentally that signaling path-
ways operating by kinetic-proofreading schemes downstream of
receptors can read out the dwell times of ligands to optimally
separate multiple self and foreign antigens in heterogeneous
environments (29–32).

Here, we ask what generic features enable a cytokine recep-
tor system to discriminate between ligand types directly at the
membrane, overcoming the challenges of a tissue environment
where local ligand concentrations can vary over several orders of
magnitude (33). To address the question quantitatively, we for-
mulate the combined tasks of detecting the presence of ligands
and discriminating between different ligands as an information-
processing problem and compare the respective performance
of the three most important membrane receptor architectures.
We find that single-unit receptors, which transmit informa-
tion across the membrane by an allosteric mechanism, cannot
reliably discriminate ligand type. Receptors that transmit infor-
mation by ligand-induced oligomerization, however, can enable
ligand discrimination. While homodimerizing receptors resolve
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ligand presence and type only in well-controlled environments,
heterodimerizing receptors discriminate ligands very robustly,
through efficient buffering of concentration fluctuations. Finally,
active turnover of receptors can improve performance fur-
ther by independently setting activation point and level of the
response curve. IFNAR combines all these features and there-
fore appears to have evolved an optimal solution for robust
ligand discrimination at the cell membrane.

Results
Ligand Discrimination as an Information-Processing Task. Fig. 1A
schematically depicts the situation of interest. Upon viral infec-
tion, single cells in the tissue produce cytokines that are subject
to diffusion and degradation in the tissue. Receiving cells sense
different cytokines through a shared receptor system and elicit
an intracellular response in the form of phosphorylated read-
out molecules. For type I interferon, the receptor is IFNAR and
the readout molecules are phosphorylated STAT (pSTAT) tran-
scription factors. Adopting the perspective of information theory
(34–36), we view ligand discrimination as an inference prob-
lem to be solved by the cell: Given the number of intracellular
readout molecules, determine if extracellular ligand is present and
decide on its type. To formalize this notion, we characterize the
receptor input by a random variable x with values {α,β,∅}, cor-
responding to steady states with presence of ligand of type α, β
or no ligand, respectively. In particular, the option x =∅ allows
us to address sensing ligand presence regardless of type. Dis-
crimination of true signal from subthreshold or unspecific ligand
is an essential requirement for any receptor system and hence
is a constitutive feature of our theory. As receptor output, we
take the fluctuating intracellular number n of activated read-
out molecules. The performance of a receptor system regard-

ing this inference problem is measured in bits by the mutual
information:

I = I [p(x ,n)] =

〈
log2

p(x ,n)

p(x )p(n)

〉
=

〈
log2

p(n|x )∑
x p(n|x )p(x )

〉
,

[1]

which is the average reduction in uncertainty about the input
x when the output n is known. Angled brackets indicate aver-
ages over the joint distribution p(x ,n). By the data processing
inequality (4), the information available after further process-
ing downstream, for example by pSTAT dimers binding to
distinct classes of regulatory sites on DNA (20), is bounded
by Eq. 1. Thus, I quantifies the ability of a cell with input–
output relation p(n|x ) to adapt to the environment x char-
acterized by p(x ). We call I the discrimination power of the
system. I could be measured experimentally by targeted induc-
tion of ligand secretion from sparse producer cells followed
by flow cytometry of tissue cells for phosphorylated readout
molecules (32, 37).

In order to calculate the discrimination power I for different
receptor architectures of interest, we track the flow of informa-
tion by a sequence of probability distributions as shown in Fig.
1B. First, we decompose the input distribution as follows:

p(x ) =

{
1− pπ x =∅
pπpτ (x ) x ∈{α,β}

, [2]

which assigns probability pπ to ligand being present, and if
so, pτ (α) to type α and pτ (β) = 1− pτ (α) to type β. The
discrimination power decomposes accordingly,

I = Iπ + pπIτ , [3]

BA

Fig. 1. Signal processing by membrane receptors. (A) From Top to Bottom: Viral infection leads to cytokine secretion by infected host cells. Extracellular
environments with ligand α, β, or subthreshold ligand (∅) are sensed by receptors at the membrane of receiving cells. Activated receptors phosphorylate
readout molecules, which effect appropriate cellular responses. (B) Probability distributions involved in the signaling processing depicted in A: Probabilities
of ligand environments; ligand concentration distribution for a given environment; average receptor activation depending on receptor architecture; distri-
bution of activated readout molecules for given receptor activation; and finally, the distributions of activated readout molecules that determine how well
the shared receptor can discriminate between different ligands. Overall system performance is quantified by mutual information I, which is measured in bits
and in our context is interpreted as discrimination power.
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where Iπ is the information contained in n about ligand pres-
ence and Iτ , the information in n about ligand type (SI Appendix,
section 1). As is biologically plausible, for good discrimination
power a system needs to both detect ligand and distinguish
the ligand types, a requirement that would not be captured by
measuring performance as the concentration range over which
activation levels are different, known as absolute discrimination
window (27).

To proceed, we require a specific input distribution. As a par-
simonious choice, we allow equal chances of ligand being absent
or present, and of types α and β: pπ = pτ (α) = 1/2 (Fig. 1B).
Because Iπ and Iτ reflect binary inputs, the total discrimina-
tion power is then limited to I ≤ 1.5 bits. Alternative scenarios
of rare inflammation (pπ < 1/2) and unequal ligand abundances
(pτ (β)< 1/2) can also be treated (Discussion).

The input–output relation p(n|x ) decomposes according to
the stages of information propagation in the system (Fig. 1B):

p(n|x ) =

∫
p(n|L, x )p(L|x )dL. [4]

Here, p(L|x ) is the distribution of the ligand concentration L
for given ligand type, discussed in the following subsection. The
distribution p(n|L, x ) of activated readout molecules is a prop-
erty of the receiving cell, determined by the activation curve and
by molecular noise. The activation curve is the fraction fx (L) of
activated receptors for given ligand type x =α,β; it depends on
the receptor architecture as discussed below. Activated receptors
phosphorylate intracellular readout molecules at a rate propor-
tional to f = fx (L), which entails molecular readout noise. We
choose a simple Poisson form:

p(n|f ) = e−n̄f (n̄f )n/n!, [5]

which is valid in a linear regime with weakly phosphorylated
readout molecules; the readout number n̄ is the mean number of
phosphorylated readout molecules at full activation, which sets
the level of intrinsic molecular noise in the receptor system (SI
Appendix, section 1). Other sources of noise in a receptor system
include cell-to-cell variability of receptor numbers and molecu-
lar noise in receptor activation. Here, we consider constitutively
expressed receptors with unimodal distributions, which allows us
to summarily treat additional noise sources by adjusting n̄ (Dis-
cussion). From activation curve and noise model, we calculate the
transfer functions by Eq. 5 as p(n|L, x ) = p(n|fx (L)) for each lig-
and, and finally, the non-Poissonian output distributions via Eq.
4. From Eq. 1, we then obtain the desired mutual information I
as depicted in Fig. 1B.

Distributions of Local Cytokine Concentration. In a typical early-
stage viral infection, a small percentage of infected cells produce
and secrete inflammatory cytokines, which are consumed by a
majority of receiving cells (Fig. 1A). Cytokine production, trans-
port, and degradation result in a steady state where producer
cells are surrounded by domains of elevated ligand concentration
of size ν' 100 µm (38), termed cytokine niches (Fig. 1B) (37,
39). In the simplest model, cytokines spread diffusively and are
degraded with a linear rate, so that the cytokine concentration
decays exponentially with increasing distance to the producer. As
a result, local cytokine concentrations L experienced by receiv-
ing cells vary widely, depending on the distance to producers
and intervening degradation in the tissue. The stationary spa-
tial ligand profiles uniquely determine the distribution p(L|x ) of
concentrations experienced by a receiving cell sampled uniformly
from the tissue (SI Appendix, section 2). In one spatial dimension,
the exact result is the scale-free distribution:

p(L|x ) = [log(Lhi/Llo)]−1L−1. [6]

This expression remains a good approximation in two and three
dimensions, and we note in passing that this result is also the
scale-invariant noninformative prior (40) with L as scale param-
eter. The upper limit Lhi is attained in the immediate vicinity of
producer cells; the lower limit Llo is set by the average spacing 2σ
of producers. In early inflammation, when signaling is crucial but
producers are sparse, producer neighborhoods are much larger
than cytokine niches (σ>ν), so the fold-concentration range
Lhi/Llo = exp(σ/ν) can become very large. We conclude that
diffusion and degradation in a tissue generically lead to broad
scale-free concentration distributions at receiving cells.

Based on these considerations, we model the ligand concen-
tration distribution p(L|x ) in presence of either ligand by Eq. 6
with Llo≡Lthr, where the lower concentration limit is the natu-
ral threshold concentration for detection of ligand by a receptor
system (cf. Fig. 1B, red/blue). We set a fixed value Lthr = 10 pM,
which is comparable to the detection threshold found exper-
imentally in the IFN system (41). We then vary Lhi over the
range 102Lthr− 106Lthr; this corresponds to an average spacing
between producing cells of 2σ' 9ν− 28ν, respectively. These
ranges reflect the fact that physiologically relevant cytokine
concentration distributions span many orders of magnitude.

Absence of ligand (x =∅) is represented by placing producer
cells of bothα and β outside the relevant tissue region, producing
concentration distributions given by Eq. 6, but this time limited
to variable subthreshold ligand concentrations by setting Lhi≡
Lthr and Llo≡ 10−8Lthr (cf. Fig. 1B, gray). Nonspecific binding of
other ligands is not represented explicitly but would result in a
similar baseline of spurious low-level activation.

Receptor Architecture Shapes Response Curves. With the help of
the information-theoretic framework introduced above, we now
systematically compare the most important classes of cytokine
receptor architectures. We first recall how receptor architecture
determines the steady-state dose–response of receptor activa-
tion and begin with receptors that use allosteric transmission
as shown in Fig. 2A. In allosteric transmission, a ligand-induced
extracellular conformational change is propagated to a cytosolic
effector domain, where it modifies enzymatic rates. The receptor
functions as a single unit, whether it exists as a monomer [e.g.,
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the G-protein–coupled receptors β2AR and CXCR1 (42)] or as
a preformed oligomer [e.g., CXCR2 (42) and other chemokine
receptors (43)]. In the simplest implementation, the receptor R
is (in)active whenever ligand L is (un)bound, corresponding to
the scheme R + L
RL. With excess of free ligand, the equilib-
rium fraction f of active receptors RL then follows the standard
hyperbolic activation curve f (L)≡ RL

RL+R
= L

K+L
shown in Fig.

2B, where R and RL denote the number of inactive and active
receptor complexes, respectively. Varying the dissociation con-
stant K simply shifts the curve in log-concentration space (44)
(SI Appendix, section 3), so that weakly binding ligand can always
saturate the receptors when L�K . This feature persists when
lateral allostery between subunits makes binding cooperative (45,
46); we therefore do not consider cooperativity below.

Second, a large class of receptors including the type I and type
II cytokine receptor families are activated via ligand-induced
oligomerization (47). Here, ligand binding induces cross-linking
of receptor subunits in the membrane, followed by cytoso-
lic receptor cross-activation and downstream signaling (48).
Although it can occur in conjunction with allosteric transmission
(49–54), in the following we consider pure oligomerization for
clarity. The simplest variant is homodimerization as depicted in
Fig. 2C, where a symmetric bivalent ligand first binds from bulk
solution, R + L
RL with dissociation constant KB , and then
receptors cross-link in the membrane via the ligand, RL + R

RLR = C with dissociation constant KX . For a given total num-
ber of receptor monomers 2R0 = 2C +R +RL, the equilibrium
fraction of activated receptors f =C/R0 is obtained as follows
(23, 44, 55, 56) (SI Appendix, section 3):

f (L) =F (∆)≡ 1−
(√

∆2 + 2∆−∆
)

; ∆ =
KX

2R0

(2L+KB )2

4LKB
,

[7]

where the auxiliary function F decreases from 1 to 0. The activa-
tion curves Eq. 7 are bell-shaped and symmetric on a log-ligand
concentration scale as shown in Fig. 2D. After reaching a peak,

fmax = f (KB/2) =F (KX /R0), [8]

activation decreases at high ligand concentrations as scarce
free R prevent ternary complex formation (57). Because fmax

decreases with increasing KX , weakly cross-linking ligands fail
to fully activate the receptor at any concentration (49, 58),
suggesting that homodimerizing systems could improve ligand
discrimination over allosteric transmission. Fig. 2D also shows
that the curves form a one-parameter family with deactivation
point approaching Ldeact =R0/(2λ). This feature is a conse-
quence of the assumption that all ligand–receptor complexes
share a common binding mode (49), which implies that the bind-
ing length scale λ=KX /KB = const . is independent of ligand
affinity (SI Appendix, section 3). Indeed, IFNAR–IFN cocom-
plex structures are structurally similar (17, 58), and we find λ'
5 nm across IFNα variants with a range of affinities (59–62) (SI
Appendix, Table S1). We impose a fixed receptor density R0 =
1 µm−2 (17) throughout, which gives a limiting half-deactivation
point Ldeact = 166 nM. Within the family high peak activation
fmax requires early activation, which suggests that simultaneous
sensing of ligand presence and type may be limited.

Finally, type I, type II, and immunoglobulin-like cytokine
receptors comprise multiple chains that bind ligand with differ-
ent affinities (see, e.g., ref. 57). In particular, the ligand affinity
of IFNAR2 is about 1,000-fold higher than that of IFNAR1 (41,
58). As depicted in Fig. 2E, we therefore consider a ligand with
two distinct binding sites, each of which binds a cognate receptor
chain, Ri + L
RiL for i = 1, 2. The active complex C = R1LR2

is then formed by cross-linking R1 + R2L
C and vice versa.
There are now four dissociation constants, KB

i ,KX
i . For 1:1

C

A

D

E

G

F

H

B

Fig. 3. Optimal ligand discrimination in basic receptor architectures. (A)
Parameter space of readout noise and ligand concentration fluctuations
with parameter points for example cases I–IV. (B) Definition of four paradig-
matic test cases. (C) Optimal activation curves for allosteric receptors.
Ligands are separated in case I but equal affinities for ligands are optimal in
cases II and III. (D) Readout distributions corresponding to B. Case I, ligands
α and β are separated but α overlaps with no ligand (∅). II and III, ligands
α and β superimpose (dashed curves) but are separated from ∅, indicating
pure presence sensing. (E) Optimal activation curves for homodimerizing
receptors. (F) Readout distributions corresponding to D. Case I, α and β are
separated, but α overlaps with ∅. IV, pure presence sensing. (G) Optimal
activation curves for heterodimerizing receptors. (H) Readout distributions
corresponding to F. Case I, α, β, and ∅ are well separated. IV, all distri-
butions are distinct but still overlap somewhat due to readout noise and
deactivation at high concentration. Optimal parameter values are detailed
in SI Appendix, Table S5.

4 of 8 | PNAS
https://doi.org/10.1073/pnas.2103939118

Binder et al.
Optimal ligand discrimination by asymmetric dimerization and turnover of interferon receptors

D
ow

nl
oa

de
d 

at
 U

ni
ve

rs
ita

et
sb

ib
lio

th
ek

 o
n 

S
ep

te
m

be
r 

10
, 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103939118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103939118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103939118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103939118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103939118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103939118/-/DCSupplemental
https://doi.org/10.1073/pnas.2103939118


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

stoichiometry of receptor chains (17), i.e., Ri +RiL+C =R0,
one obtains the activated fraction f =C/R0 as follows (63) (SI
Appendix, section 3):

f (L) =F (∆̃), where ∆̃ =
KX

1

R0

(L+KB
1 )(L+KB

2 )

2LKB
1

. [9]

Detailed balance requires KX
1 /K

B
1 =KX

2 /K
B
2 =λ, so that

the activation curves are controlled by the two parameters
KB

1 and KB
2 . As shown in Fig. 2F, they are symmetric in

log-concentration about a maximum:

fmax = f

(√
KB

1 KB
2

)
=F

(
1

2

[√
KX

1 /R0 +
√

KX
2 /R0

]2)
,

[10]

which shows that to obtain full activation, both affinities have
to be high. The activation curves show pronounced plateaus at
tunable activation, which suggests they may help discrimination
by concentration buffering. Half-deactivation is unchanged at
Ldeact, consistent with the IFN system (61).

Robust Ligand Discrimination Requires Asymmetric Dimerization of
Receptors. We are now in a position to calculate the central
quantity of our theory, namely, the mutual information or dis-
crimination power I as defined in Eq. 1. To compare the perfor-
mance achievable with each of the three architectures, in each
case we optimize I with respect to the model parameters. We
consider conditions of increasing difficulty, by varying the range
of concentration fluctuations Lhi/Lthr from 102- to 106-fold and
the readout number n̄ from 1,500 to 10, see Fig. 3A. We highlight
four paradigmatic cases labeled I–IV as detailed in Fig. 3B. Case
I is a relatively easy task as it has low readout noise and a narrow
ligand range. In cases II and III, ligand range and readout noise
are increased, respectively. Case IV is the most challenging, with
high readout noise and a broad ligand range.

We start again with allosteric transmission (cf. Fig. 2 A and B)
and optimize I with respect to the dissociation constants for the
two ligands: Imax = maxKα,Kβ I [p(n, x )]. The results are shown
in Fig. 3 C and D. For the easy case I, optimal discrimination
results by setting the activation points Kβ and Kα somewhat
below the lower and upper boundaries of the ligand concentra-
tion range (Fig. 3C, case I, red and blue curves, respectively).
Just separating the output distributions p(n|α) and p(n|β) (blue
and red curves) would be better achieved by choosing Kβ as low
and Kα as high as possible within the optimization range; this
would maximize Iτ→ 1.0 bit. However, because Eq. 3 incorpo-
rates presence sensing as part of the receptor performance, for
optimal I also subthreshold ligand p(n|∅) (gray curve) needs to
be distinguished. The best compromise results by allowing more

overlap between ligand α and no ligand, giving Iπ = 0.66 bits,
and less overlap between the ligands, Iτ = 0.97 bits, yielding
Imax = 1.14 bits overall. Increasing Lhi worsens the overlap of
p(n|α) and p(n|∅), reducing Iπ . Eventually, the strategy of sep-
arating p(n|α) and p(n|β) is overtaken by one of equal affinities
Kα =Kβ (Fig. 3 C and D, case II). Only ligand presence is
detected; type information is disregarded entirely (Iτ = 0 bits),
which limits the performance to Imax < 1 bit. When decreasing
the readout number n̄ , the readout distributions become nois-
ier (Fig. 3 C and D, case III). This creates a tiling problem:
Separating p(n|α) and p(n|β) necessarily increases the overlap
of p(n|α) and p(n|∅). Optimal ligand discrimination is again
achieved by equal affinities for both ligands.

To assess discrimination power of homodimerizing receptors,
we optimize I with respect to KB

α and KB
β (cf. Fig. 2 C and D

and Eq. 7). As for allosteric receptors, for low readout noise and
narrow concentration range the ligands α and β can be sepa-
rated (Fig. 3 E and F, case I), but here, high type information
Iτ = 0.97 bits is achieved through different peak activation lev-
els of β and α. Presence information Iπ = 0.73 bits is limited
by the early activation of ligand β required for a high peak.
When Lhi is increased beyond the deactivation point Ldeact,
high concentrations of either ligand can deactivate the recep-
tors. The resulting additional overlap of readout distributions
impedes accurate type sensing. Increasing also the noise level
aggravates the tiling problem. Performance degrades severely,
and type sensing is completely abandoned (Fig. 3E, case IV).

Finally, to assess the improvement in discrimination afforded
by activation plateaus in heterodimerizing receptors, we optimize
the discrimination power I with respect to KB

1,α,KB
2,α,KB

1,β ,KB
2,β

(cf. Fig. 2 E and F and Eq. 9). As expected, in the easy case of
low concentration range and low noise, the output distributions
for α, β and ∅ are separated well, with Imax = 1.42 bits result-
ing from perfect type sensing (Iτ = 1.00 bits) and good presence
sensing (Iπ = 0.92 bits) (Fig. 3 G and H, case I). When chal-
lenging the system by broad concentration range and high noise,
broader output distributions overlap (Fig. 3 G and H, case IV),
reducing the discrimination power to Imax = 0.99 bits.

Fig. 4 summarizes the overall discrimination power of the
three considered receptor architectures. Allosteric transmission
can achieve some discrimination power by prioritizing type sens-
ing as long as the noise level is low and concentrations are
well controlled (Fig. 4 A and B, Upper Left region). Otherwise,
least information is lost by redundantly sensing ligand presence,
entirely foregoing type sensing (Fig. 4 A and B, Lower Right).
We conclude that allosteric transmission with readout of the
activated fraction f cannot achieve robust ligand discrimina-
tion. Discrimination with allosteric receptors requires readout
of ligand dwell-times by nonequilibrium postprocessing. Homod-
imerizing systems separate ligand types based on their peak
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Fig. 4. Discrimination power vs. concentration range and readout number. (A) Pure presence sensing is optimal below the solid line Iτ = 0. (B) Allosteric
receptors achieve type sensing only in a regime of low readout noise and well-controlled concentrations (Upper Left corner). (C) Homodimerizing receptors
moderately improve discrimination power and enlarge the type sensing regime. (D) Heterodimerizing receptors accommodate type sensing even for high
noise and broad concentration ranges. Cases I–IV are as in Fig. 3.
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activation levels in a slightly expanded regime of well-controlled
ligand concentrations and low noise levels (Fig. 4C, Upper Left).
Outside this regime, performance drops and can fall below that
of allosteric receptors, mainly due to false-negative detection at
high concentrations. By contrast, asymmetric binding allows type
sensing even for broad concentration ranges, improving greatly
on the performance of homodimerizing systems (Fig. 4D). Dis-
crimination is still somewhat limited by the constraint that high
activation levels require early activation, by the finite slope of
the activation curves, and by possible deactivation at very high
concentrations.

Receptor Turnover Adjusts Activation and Deactivation Points. We
finally discuss how the nonequilibrium process of receptor
turnover affects the equilibrium ligand discrimination mecha-
nisms considered so far. For allosteric receptors, turnover simply
shifts the activation point, which does not change the response
repertoire and therefore neither helps nor hurts ligand discrimi-
nation (SI Appendix, section 4). However, turnover has a strong
effect in dimerizing systems.

First, consider the homodimerizing system with turnover:

R + L
2kb−−⇀↽−−
ku

RL; RL + R
ka−−⇀↽−−
2kd

C;

R
µ−−⇀↽−−

R0µ
∅; RL

µ−→∅; C
µ−→∅; [11]

where kb,u are binding and unbinding rates per binding site,
ka,d are cross-linking association and dissociation rates per
binding site, µ is the turnover rate, and the supply rate R0µ
ensures an unchanged total receptor surface density R0 in steady
state.

The nonequilibrium steady-state of Eq. 11 is controlled by the
affinity KB and two new timescales τu =µ/ku and τd =µ/kd .
Our analytic result for f (L) (SI Appendix, section 4) shows that
turnover shifts the limiting deactivation point Ldeact = R0

2λ
2+3τu
2+τd

toward higher or lower concentrations for 3kd ≷ ku , respectively,
reflecting a competition of internalization of binary vs. ternary
complexes. The maximal activation fmax =F ([1 + τd/2]KX /R0)
is decreased below the equilibrium value when receptor turnover
is faster than dissociation (cf. Eqs. 7 and 8).

To quantify how the larger design space affects the achiev-
able ligand discrimination power, we optimize I with respect
to KB , ku and kd for ligand α and β, respectively. We fix the
turnover rate µ= 10−3s−1, typical for cytokine receptors (64,
65) (SI Appendix, section 5). Homodimerizing receptors with
turnover resolve some ligand-type information even for broad
ligand concentration fluctuations and high noise (Fig. 5 A and
B, first row). Performance generally improves over the equilib-
rium homodimerizing but not the equilibrium heterodimerizing
system (Fig. 5C; cf. Fig. 4 C and D). The improvement is mainly
due to the ability of the system to align activation points of weak
and strong ligands, reducing ligand presence ambiguity.

Combining turnover and asymmetric binding by repeating Eq.
11 for each Ri , one obtains an architecture that closely resem-
bles the IFNAR system. The response curves are now controlled
by a total of six parameters: KB

i , τu,i , τd,i defined as above, for
each receptor chain i = 1, 2. The optimized activation curves now
exhibit broad plateaus at both high and low activation levels,
activation points aligned at the threshold Lthr, and deactiva-
tion points beyond Lmax (Fig. 5A, second row). This effectively
reduces output overlap between α and β (Fig. 5B) by buffer-
ing concentration fluctuations (Iτ = 0.83 bits, Iπ = 0.79 bits, I =
1.21 bits), approaching the performance of the theoretically ideal
step-like response functions (Fig. 5 A and B, third row). The
performance becomes essentially independent of concentration
fluctuations (Fig. 5D).

A B

C D

E

Fig. 5. Ligand discrimination by dimerizing receptors including receptor
turnover. (A) Optimal activation curves. From Top to Bottom: homodimer
case IV; heterodimerizing case IV; ideal step response case IV; IFN: activation
curves of IFNα2 and IFNβ at lower readout noise. (B) Corresponding read-
out distributions. Homodimer, poor separation of α and β; heterodimer and
ideal, excellent separation of α, β and ∅; IFN, good separation at lower
noise. Optimal parameter values are detailed in SI Appendix, Table S5. (C
and D) Optimal discrimination power vs. concentration range and read-
out number (cf. Fig. 4 C and D). Turnover improves performance in the
well-controlled regime for homodimers (C), and in all conditions for het-
erodimers (D). (E) Overall discrimination power of all considered receptor
architectures. Type information Iτ (upper row) and presence information
Iπ (lower row) averaged over the parameter range shown in C and D are
indicated as a fraction of the maximum 1 bit.

Does IFNAR actually exploit the possibilities of its archi-
tecture for ligand discrimination? Literature values of IFNAR
kinetic rates show that IFNs bind chain IFNAR2 with much
higher affinity than IFNAR1, and IFNβ binds both with higher
affinity than IFNα2 (SI Appendix, Table S6). This ordering
agrees with that of our optimal rates for heterodimerizing recep-
tors with turnover (SI Appendix, Table S5). Fig. 5 A and B, last
row, shows activation curves corresponding to the literature rate
values, where optimization was carried out with respect to the
receptor density R0 and the upper cutoff Lhi. Although they
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lack alignment of the activation points, these unmodified acti-
vation curves are similar in shape to our optimal solutions. The
performance is remarkable at Imax = 1.18 bits.

Discussion
Cell-to-cell communication in tissues is challenged by highly
variable local cytokine concentrations at receiving cells. This fun-
damental uncertainty can be circumvented by encoding the signal
digitally in the chemical properties of cytokines rather than pro-
portionally in cytokine concentration. Reliable communication
then rests on the cells’ ability to discriminate between different
ligands in presence of large concentration fluctuations.

Using information theory, here we have quantified how well
receptors discriminate ligands at the membrane. Ligand pres-
ence sensing and type sensing are necessary ingredients for
functional ligand discrimination; while all architectures can sense
ligand presence well (Fig. 5E), we find that readout of bound
fractions of allosteric receptors cannot achieve robust type sens-
ing. Receptor dimerization offers only a partial solution (23)
as concentration fluctuations confound ligand type. Robust type
sensing is achieved only by strongly asymmetric binding of lig-
and to the two receptor chains, rendering receptor activation
both ligand type dependent and concentration independent.
When receptor turnover drives the system out of equilibrium,
the activation curves can come close to a theoretically per-
fect discriminator. The fact that actual biochemical parameters
realized by IFNAR come close to this ideal supports the hypoth-
esis that ligand discrimination is at the core of the biological
function of this system (17). Our results further suggest that
ligand-discriminating receptors should favor an asymmetrically
dimerizing architecture, while single-ligand receptors have no
need for asymmetry. In accordance with this prediction, type I
and type III IFN receptors feature multiple ligands and asym-
metry, whereas type II receptors bind only IFNγ and activate by
homodimerization (66).

Here, we have considered noise arising by readout activation
(Eq. 5), but also ligand–receptor binding from cell-to-cell vari-
ability in receptor and readout molecule numbers will degrade
the signal. We found that when considering only constitutive
genes, the effect of these additional noise sources can be approx-
imated well by an effective readout number n̄ . In particular,
SI Appendix, Fig. S3 shows that typical protein number fluc-
tuations of about 25% have an effect similar to reducing n̄
from 100 to 20.

To arrive at definite results, here we have assumed equal
chances for ligand being absent or present, and of either type.
Alternatively, one could argue that ligands should be present
only in rare situations of acute inflammation, or that the more
potent ligand may occur more rarely than the other. Rare

presence of ligands reduces the contribution from type sens-
ing to Eq. 3, while unequal ligand frequencies reduce the total
information encoded in ligand type. To investigate the implica-
tions, we have reoptimized the discrimination power for these
alternative scenarios (SI Appendix, Fig. S4). Both modifications
cause presence sensing to be preferred over a wider range, but
heterodimerizing receptors can still accommodate type sensing;
the corresponding optimal response functions remain essen-
tially unchanged. Thus, a balance of presence and type sensing
emerges as a generic feature of ligand discrimination. Our the-
ory may be further refined to account for the relative value of
certain bits of information compared to others; for instance,
some rarely occurring ligands may nevertheless be essential
for survival. Assignment of fitness values to certain ligands
using the tools of decision theory remains an interesting open
question.

Ligand-induced oligomerization may occur in combination
with other mechanisms for ligand discrimination. Nonequi-
librium dwell-time sensing via modified kinetic proofreading
schemes is known to mediate ligand specificity in T cells (28,
32) and could contribute to sensing also in dimerizing systems
via nonequilibrium receptor phosphorylation kinetics. Dynami-
cal features of the downstream response such as slow negative
feedback via USP18 (17, 18) may further improve ligand discrim-
ination. Finally, in a tissue context, ligands are unlikely to always
occur one type at a time. The interaction of multiple ligands at
once leads to combinatorial responses including antagonism (31)
and signal integration (67). In particular, ratiometric responses
are unaffected by concentration fluctuations and thus may pro-
vide cells with a robust parallelized digital signaling channel.
We expect that information-theoretic methods as used here will
prove useful in elucidating the specific advantages of membrane
receptor architectures and, eventually, full pathways.

Methods
We estimated the maximal discrimination power Eq. 1 achievable by each
considered receptor architecture using Dual Annealing (68) as implemented
in Scipy 1.5.0 (69). Parameter ranges for dissociation constants and on-rates
and fixed values for receptor density, activation threshold, and diffusivity
were fixed based on typical ranges in the IFN system and biophysical con-
straints (17, 41, 44, 59–62, 64, 65). For further details, see SI Appendix,
section 5.

Data Availability. All study data are included in the article and/or supporting
information.
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