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Supporting Information Text

1. Information theoretic framework for ligand discrimination

A. Decomposing ligand discrimination power according to ligand presence and type. The performance
for sensing of ligand presence and type is measured by the mutual information

I = I[p(x, n)] =
〈

log2
p(n|x)∑

x p(n|x)p(x)

〉
, [1]

as stated in the main text. In the following we derive a decomposition of the information I into partial
informations about ligand presence and ligand type, respectively.

We begin by recalling a decomposition property for the information entropy H[p(i)] = −⟨log2 p(i)⟩, of a
finite probability distribution p(i) ≡ (p(1), . . . , p(d)). Namely,

H[p(i)] = H[(p(1), 1 − p(1))] + (1 − p(1))H[p(i|i > 1)]. [2]

The first term in the decomposition is the entropy of the binary decision i = 1 vs. i > 1. The second term is
the entropy remaining in the case i > 1, weighted with its probability. Applied to the variable x ∈ {α, β,∅},
this relation yields

H[p(x)] = H[(p(∅), 1 − p(∅))] + (1 − p(∅))H[p(x|x ∈ {α, β})]

= H[p(π)] + p(π =1)H[p(τ |π =1)], [3]

where we have introduced new variables π and τ , indicating ligand presence: π(x) = δxα + δxβ , and ligand
type when ligand is present: τ(x) = x when π(x) = 1, respectively.

The basic relation
I[p(x, n)] = H[p(x)] − ⟨H[p(x|n)]⟩, [4]

where the average runs over n, by applying Eq. (3) twice and reordering, then becomes

I[p(x, n)] = H[p(π)] + p(π =1)H[p(τ |π =1)] −
〈
H[p(π|n)] + p(π =1|n)H[p(τ |n, π =1)]

〉
= H[p(π)] − ⟨H[p(π|n)]⟩ + p(π =1)H[p(τ |π =1)] +

〈
p(π =1|n)H[p(τ |n, π =1)]

〉
= I[p(π, n)] + p(π =1)

{
H[p(τ |π =1)] −

∑
n

p(n|π =1)H[p(τ |n, π =1)]
}

= I[p(π, n)] + p(π =1)I[p(τ, n|π =1)]. [5]

We conclude that the ligand discrimination power can be written as a weighted sum of two terms,
I = Iπ + pπIτ . The presence information Iπ = I[p(π, n)] quantifies the performance of detection of any
ligand. The type information Iτ = I[p(τ, n|π =1)] is the performance of ligand type detection when ligand
is in fact present; it enters with a weight pπ =1/2 due to our choice of input distribution.

B. Readout molecules are Poisson distributed. In most signal transduction pathways, activated receptor
complexes C are read out by phosphorylation of intracellular signaling molecules M. The rate of phosphory-
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lation is proportional to the number of activated complexes, which for fixed total receptor number R0 is
proportional to the activated receptor fraction f . Assuming constitutive dephosphorylation, we obtain

M
fωp−−⇀↽−−
ωu

Mp, [6]

where R0 is absorbed in ωp. The master equation for the probability p(n; t) that n out of N readout
molecules are phosphorylated at time t reads

∂p(n; t)
∂t

= fωp(N − n + 1)p(n − 1; t) + ωu(n + 1)p(n + 1; t) − [ωun + fωp(N − n)] p(n; t). [7]

Since we are primarily interested in information transmission at the receptor stage, we neglect possible effects
of readout molecule depletion and consider a linear regime where only a small fraction of readout molecules
are phosphorylated. This corresponds to the limit N → ∞ of a large reservoir of unphosphorylated readout
molecules. Defining an effective phosphorylation rate ω̃p ≡ ωpN , the reactions read

∅
fω̃p−−⇀↽−−
ωu

Mp. [8]

The steady state distribution p(n) of these reactions is well-known to be the Poisson distribution with mean
n̄f (1),

p(n) = (n̄f)n

n! e−n̄f . [9]

Here, the readout number n̄ = ω̃p/ωu is the mean phosphorylated readout molecule number at full activation.

C. Recipe for estimating discrimination power. In this section we give a brief overview on how to estimate
the mutual information for generic response modules:

1. Determine the steady-state activation curves for a given receptor module:

fx(L), x ∈ {α, β,∅}. [10]

f is a function of the ligand concentration L and in general of several other biophysical parameters
such as receptor densities Ri and affinities (see also Sec. 3 and 4).

2. Specify the ligand concentration distributions for all inputs x:

p(L|x), x ∈ {α, β,∅}. [11]

For a discussion on appropriate choices for the ligand concentration distribution see section 2.

3. Specify a readout noise p(n|f). Here, we choose a Poisson distribution

p(n|f) = (n̄f)n

n! e−n̄f . [12]
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4. Compute the input-output relation by using

p(n|x) =
∫

p(n|fx(L))p(L|x)dL. [13]

5. Specify the input distribution p(x). Here, we choose

p(x) =

1/2 x = ∅

1/4 x = α, β
. [14]

6. Finally, calculate the mutual information. Since the input x and the output n are discrete, using
Eq. (1) from the main text, the mutual information can estimated according to

I[p(x, n)] =
∑
x,n

p(x)p(n | x) log
(

p(n | x)∑
x′ p(x′)p(n | x′)

)
. [15]

2. Physiological cytokine distributions

A. Maximum-entropy distribution. Cytokine receptor systems can be exceptionally sensitive, achieving
detection thresholds in the sub-pM range. However, cytokines are released by producing cells in an inflamed
tissue and can therefore reach high concentrations in the µM range locally (2, 3). A model for the cytokine
concentration distribution encompassing tissue cells in our out of inflammation, should then incorporate a
concentration range that is ‘broad, ranging from pM to µM’. In particular, without further information,
no concentration scale other than these approximate limits should be imposed. This implies that the
distribution p(L) should be invariant under rescaling transformations L → αL, except for adjusting the
lower and upper bounds of its support, see e.g. (4). The unique such scale-free distribution is

psf(L) =


1

log(Lhi/Llo)
1
L Llo < L < Lhi

0 otherwise
. [16]

Transformed into the space of the log-concentration ℓ ≡ log L, this distribution is constant:

psf(ℓ) =

1/(ℓhi − ℓlo) ℓlo < ℓ < ℓhi

0 otherwise
. [17]

B. Production-diffusion-degradation mechanism. By considering the process of cytokine production,
spreading and degradation, we can perform a more thorough estimate of physiological cytokine distributions.
Cytokines such as interferon are produced by a small subset of activated producer cells; they then spread
effectively diffusively within the tissue until they are degraded, typically by being taken up by receiver cells.
On spatial scales much larger than a cell diameter, the spatial concentration profile thus obeys

∂tL(x⃗, t) = kss(x⃗) + D∆L(x⃗, t) − µL(x⃗, t), [18]
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Fig. S1. Ligand profiles L(r) (a) and concentration distributions p(L) in linear and log-concentration space (b and c, respectively). Dimensionalities d = 1, 2, 3 are
shown in red, orange and blue, respectively. The approximated distribution Eq. (24) outside niches for d = 2 is shown dashed; it differs from the numerical exact
result mainly due to normalization. Note the good agreement of all distributions with the scale-free d = 1 form in the low-concentration regime. Parameter values:
ks = 1, D = 1, ν = 1, rs = 0.02, S = 10.

where the source term s(x⃗) =
∑

i δ(x⃗ − x⃗i) is the local density of producer cells at positions {xi}, ks is the
cytokine production rate per cell, D is the effective diffusion coefficient, and µ the total degradation rate.

In stationary state, this equation predicts that sparse producing cells are surrounded by niches of elevated
cytokine concentration (5) with a characteristic size ν =

√
D/µ.

One-dimensional profiles In one spatial dimension (e.g. a columnar tissue) and for a single producing cell
at x0 = 0, Eq. (18) has the well-known stationary solution

L(x) = ks

2µν
e− |x|

ν . [19]

From the spatial profile L(x) we calculate a cytokine distribution p(L) by randomly selecting a tissue cell
within a region of size S around the producer and determining the distribution of concentration values the
tissue cell is exposed to. That is,

p(L) =
∫ S/2

−S/2

1
S

δ(L(x) − L) dx = 2ν

SL
. [20]

This happens to coincide exactly with the scale-free distribution discussed above,

p(L) = psf(L) with Lhi = ks

2µν
and log Lhi

Llo
= S

2ν
. [21]

In a tissue with multiple producer cells, profiles superimpose, changing the concentration distribution.
However, in the relevant limit of sparse producers of density ρs ≪ 1/ν, we may approximate the cytokine
profile by Eq. (19) relative to the nearest producer. Effectively, we are considering individual, well separated
niches. Then Eq. (21) still holds when setting the spatial range of integration equal to the spacing of
producers, σ ≃ 1/ρs. Of note, the production rate ks only enters in the support, not the shape of the
cytokine distribution.

Two-dimensional profiles In isotropic two-dimensional tissues such as epithelia, cytokines accumulate
around producers in circular niches. The radial part of Eq. (18) for a single producer with radius rs located
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in the center of the polar coordinate chart reads, in stationary state,

µL(r) = D[L′(r)/r + L′′(r)]; with boundary conditions ks + 2πDrsL′(rs) = 0 and L(∞) = 0. [22]

This boundary value problem has a unique solution given in terms of Bessel functions Ki of the second kind,

L(r) = L0K0(r/ν) for r > rs, where L0 = ks

2πD

1
(rs/ν)K1(rs/ν) [23]

is a concentration reached roughly at half the niche radius. The maximum concentration at the producer
is L(rs) ≃ ks/(2πD) log(2ν/rs) ≃ L0 log(2ν/rs) for producers smaller than the niche size. The maximum
concentration diverges for decreasing producer size, which shows that the mechanism of production, diffusion
and degradation can generate very high local cytokine concentrations in two-dimensional niches. The total
amount of ligand in the tissue in stationary state remains at ksν2/D = ks/µ.

Outside niches (r ≫ ν), to leading order, L(r) = L0e−r/ν [(r/ν)−1/2 + O(r/ν)−3/2]. Within this approxi-
mation we can evaluate the concentration distribution for a random tissue cell within a radius S of the
producer, as in Eq. (20). We obtain

p(L) ≃


2

W (2L2
0/L(S)2)−W (2)

W (2L2
0/L2)

1+W (2L2
0/L2)

1
L L(S) < L < L0,

0 otherwise
, [24]

where W denotes the Lambert W function, and we have cut away the small fraction of cells at high
concentrations L > L0 within niches. Outside niches (L ≪ L0), this distribution is approximated by the
limiting form p(L) ∝ L−1.

Together this shows that when producer cells at density ρs ≪ ν−2 are sparse in a two-dimensional tissue,
the vast majority of non-niche tissue cells is subject to a concentration distribution that is again well
approximated by the scale-free distribution: p(L) ≃ psf with Llo ≃ L(ρ−1/2

s ) and Lhi ≃ L0 ≃ ks/(2πD).
Only for the highest concentrations, we expect corrections that lead to some density extending up to L(rs).

Three-dimensional profiles We repeat the calculation for three-dimensional tissues with spherical niches.
The radial part of Eq. (18) now reads

µL(r) = D[2L′(r)/r + L′′(r)]; with boundary conditions ks + 4πDr2
sL′(rs) = 0 and L(∞) = 0. [25]

The solution is

L(r) = L0
e−r/ν

r/ν
for r > rs, where L0 = ks

4πDν

1
(rs/ν + 1)e−rs/ν

. [26]

Again, L0 is attained at around half the niche radius, and the total amount of ligand evaluates to
k/µ. The maximal concentration is L(rs) = L0

e−rs/ν

rs/ν = ks
4πDν

1
rs/ν+(rs/ν)2 . For decreasing producer size,

L0 → ks/(4πDν) and, as in two dimensions, L(rs) diverges, indicating that high local concentrations are
possible around producing cells.

The comparatively simpler form of the ligand profile here allows us to evaluate the concentration
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distribution exactly. The result is similar to the two-dimensional case:

p(L) =


ν

S−rs

W (L0/L)
1+W (L0/L)

1
L L(S) < L < L(rs),

0 otherwise
. [27]

As before, the factor involving the W functions tends towards 1 away from the niches where L ≪ L0. Thus,
when producer cells are sparse at density ρs ≪ ν−3, the concentration distribution is well approximated
by the scale-free distribution: p(L) ≃ psf with Llo ≃ L(ρ−1/3

s ) and Lhi ≃ L0 ≃ ks/(4πDν). Again, some
density extends further up to L(rs).

C. Summary. In one dimension, the production-diffusion-degradation model of cytokine spreading generates
exponential ligand profiles with niches of characteristic size ν set by diffusion coefficient and degradation
rate exclusively. Assuming sparse producers, this leads to a ligand concentration distribution of scale-free
form psf, Eq. (16).

In d = 2 or 3 dimensions, the characteristic niche size remains ν, but within the niche, the ligand profiles
get steeper, reaching high concentrations at the producer cells. These only affect a small fraction ρsνd of
tissue cells. For the vast majority of non-niche cells, the ligand profile shows small corrections to the simple
exponential decay, see Fig. S1a. Consequently, most cells experience a nearly scale-free ligand distribution
ωsf, which extends up to the niche boundary concentration L0. Few cells within a niche experience higher
concentrations; the distribution tapers off as L → L(rs) (Fig. S1bc).

In the main text, we approximate physiological cytokine distributions by the scale-free distribution psf

throughout, since this gives a simple and good approximation for small, sparse producers in any dimension.

3. Equilibrium response curves

In the following we derive expressions for the fraction f of activated receptors as a function of ligand
concentration L,

f(L) = C

Cmax
, [28]

where C(max) denotes the (maximal) concentration of activated receptors C. The fractional response f is
also called binding curve, or equivalently dose response curve.

A. Allosteric transmission. As the simplest receptor-ligand model we consider the reversible binding of a
ligand L to a single-unit transmembrane receptor R, which yields an active ligand-receptor complex C ≡ RL
according to

R + L
kb−⇀↽−
ku

C. [29]
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Here we impose receptor (mass-)conservation, R(t) + C(t) = R0 = const. The equilibrium concentration of
activated receptors then results as

C = R0
L

K + L
, [30]

where K is the equilibrium dissociation constant given by

K = R × L

C
= ku

kb
. [31]

Because Cmax = R0, Eq. (28) gives the response curve by

f(L) = L

K + L
[32]

with half saturation (receptor occupancy) at L = K. Thus, f corresponds to the standard Hill curve with
Hill coefficient n = 1. By rescaling the ligand concentration L by its dissociation constant K, we obtain a
universal binding curve

f(L) = Φ(L/K) with Φ(x) ≡ x

1 + x
, [33]

onto which all binding curves for different ligand affinities collapse.

B. Ligand-independent binding mode in receptor dimerization. Sensing by dimerization involves two types
of ligand-binding reactions: Association of ligand from the bulk solution, R + L ⇌ RL with dissociation
constant KB and cross-linking within the two-dimensional membrane, RL + R ⇌ RLR with dissociation
constant KX . In both (forward) reactions, the same new R · L non-covalent bond is formed, but the binding
free energies are different. We separate the binding free energy into two terms,

∆G = ∆Gbond + ∆Gstruct.

Here, Gbond is the part of the binding free energy that is due to local residue-residue interactions at the
ligand-receptor binding interface, such as the formation of hydrogen bonds, salt bridges or local nonpolar
interactions. By contrast, Gstruct is the binding free energy arising on the scale of the entire molecule; it
contains a conformational internal energy due to overall structural deformations in the complex and the
configurational entropy of the complex partners.

Because configurational entropy loss and overall structural changes are different upon binding from bulk
solution compared to cross-linking, the molecular-scale free energy change differs between the two binding
reactions: ∆∆Gstruct ≡ ∆GB

struct − ∆GX
struct ̸= 0.

We now make the plausible simplifying assumption that the binding mode of ligand and receptor remains
unchanged under all conditions. That is, residue-residue contacts are the same in the RL complex and at
both interfaces of the RLR complex, so that ∆∆Gbond ≡ ∆GB

bond − ∆GX
bond = 0. Furthermore, ligands of

different affinities differ in their local residue-residue contacts but not in the overall structure of the RL
and RLR complexes. Thus, ∆Gbond but not ∆Gstruct depends on ligand type.
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Table S1. Binding length scales λ for the IFN recpetor system

IFN receptor λ(nm) ref.

α2 wt IFNAR1 5.1; 12.2; 4.8; 11.1 (7–10)
IFNAR2 5.6; 18.6 (7, 9)

α2 YNS IFNAR1 5.5 (7)
IFNAR2 4.5 (7)

α2 R144A IFNAR1 22.0; 8.8 (8, 9)
IFNAR2 8.7 (9)

α2 M148A IFNAR1 11.2 (8)
α2 R120E IFNAR1 < 40.0 (10)

The assumption of an unchanged binding mode implies that the length scale λ = KX/KB is a ligand-
independent constant. This follows by observing that with a constant binding mode, ∆∆G = ∆∆Gstruct

is independent of the ligand type. Indeed, using the standard thermodynamic relation for bimolecular
dissociation constants,

K = c0eβ∆G0
,

where β is the inverse thermal energy and the free energy ∆G0 corresponds to the reference concentration
c0, we find

λ = KX

KB
= c0

2deβ∆GX,0

c0
3deβ∆GB,0 = c0

2d

c0
3d

e−β∆∆G0
struct . [34]

We remark that a ligand-independent length scale λ was already invoked in (6) but emphasize that at this
stage it is a plausible assumption, not a thermodynamic identity.

Importantly, in the IFNAR system the assumption of a constant binding mode is supported by exper-
imental data. First, the IFN-IFNAR complexes are structurally highly similar (2), which suggests that
ligand-dependent changes are local. Second, bulk and crosslinking dissociation constants for a range of
IFNα ligands have been measured independently in biochemical experiments; their ratios, Eq. (34) are
found in agreement to within the experimental error, see table S1. For this study we use λ = 5nm.

C. Homodimerization. Next, we look at the binding curve for a homodimerizing receptor system. That is,
we consider the reaction scheme

R + L
2kb−−⇀↽−−
ku

RL, [35a]

RL + R ka−−⇀↽−−
2kd

C, [35b]

where a bivalent ligand L can cross-link two monovalent receptors R to form a ternary receptor complex
C ≡ RLR. The factor of two in Eq. (35a) occurs because a free receptor R can bind either of the two
binding sites from the ligand L and kb corresponds to one binding site. The occurrence of factor two in
Eq. (35b) is due to fact that either bound receptors from C can dissociate. We use KB = ku/kb to denote
the equilibrium dissociation constant for the ligand binding reaction from bulk solution, per ligand binding
site, and KX = kd/ka for the equilibrium dissociation constant of the receptor cross-linking reaction within
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the membrane (X for cross-linking), per binding site. To derive the binding curve we apply the law of mass
action in Eq. (35), which yields

KB = 2R × L

RL
, KX = R × RL

2C
. [36]

Combined with receptor mass conservation, R(t) + RL(t) + 2C(t) = 2R0 = const., this can be written as

R2 +
(

1 + KB

2L

)
KXR − KB

L
KXR0 = 0. [37]

By inserting the positive root of Eq. (37) for R and RL = (2L/KB) R, see Eq. (36), in the receptor
conservation relation we obtain

C = R0
[
1 − (

√
∆2 + 2∆ − ∆)

]
, [38]

where

∆ = KX

R0

(2L + KB)2

8LKB
. [39]

To get the response curve f we note that for the homodimerization scheme Eq. (35) the maximal number
of activate receptors is Cmax = R0. We can then write the fractional binding curve in the following form

f(L) = F (∆) ≡ 1 − (
√

∆2 + 2∆ − ∆). [40]

This result was already obtained by Perelson while studying receptor aggregation by immunoglobulin and
is also termed cross-linking curve (11).

The cross-linking curve from Eq. (40) attains its maximal activation level fmax for a ligand concentration
Lmax = KB/2,

fmax = F (KX/R0). [41]

We note that the position of maximal activation depends on KB, while the maximal activation level fmax is
only a function of the ratio R0/KX . Since Eq. (39) is symmetric in log space with respect to Lmax, i.e.
∆(aLmax) = ∆(a−1Lmax), the activation curve Eq. (40) is also symmetric.

By applying Eq. (34), i.e. assuming λ = KX/KB = const., the maximal activation level and its position
are coupled. Since df/dKB < 0, the response curve Eq. (40) is maximized by vanishing bulk dissociation
constant, resulting in an envelope function

fenvelope(L) = F (Lλ/R0) [42]
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and a global half-deactivation point

Ldeact = R0
2λ

. [43]

D. Heterodimerization. The heterodimerizing receptor scheme consists of two competing dimerization
pathways, which both lead to the formation of an activated receptor complex. Namely, a free ligand can
bind first to receptor chain R1 and then cross-link with R2, or vice versa. The two independent assembly
pathways give rise to the following set of reversible reactions

Ri + L
kb,i−−−−⇀↽−−−−
ku,i

RiL for i = 1, 2 [44a]

Ri + RjL
ka,i−−−−⇀↽−−−−
kd,i

C for (i, j) = (1, 2), (2, 1), [44b]

where we use C ≡ R1LR2 = R2LR1 to denote the active heterodimer complex. Notice, since a receptor Ri

can only bind to one specific binding site of the ligand L, Eq. (44) lacks the factors of two as compared to
the homodimerizing reaction scheme Eq. (35). At equilibrium the concentrations are governed solely by the
four equilibrium dissociation constants

KB
i = ku,i

kb,i
and KX

i = kd,i

ka,i
i = 1, 2. [45]

However, in equilibrium all reactions must balance individually

R1L = R1 × L

KB
1

, R2L = R2 × L

KB
2

, [46a]

R2 × R1L

KX
2

= C = R1 × R2L

KX
1

, [46b]

which shows that the equilibrium constants are constrained by the detailed balance condition

KB
1 KX

2 = KB
2 KX

1 . [47]

In Section B, in the context of homodimerization, we introduced a binding length scale λ which relates
bulk and membrane ligand-binding constants. The arguments presented there carry through for each of the
receptor-binding site pairs. Thus, for each chain Ri individually, λ is independent of ligand binding affinity
to Ri. Eq. (47) shows that in addition, λ is the same for R1 and R2:

λ = KX
1 /KB

1 = KX
2 /KB

2 . [48]

To find the equilibrium binding curve we first note two receptor number conservation laws

Ri(t) + RiL(t) + C(t) = Ri,0 = const. i = 1, 2. [49]
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Combining the conservation laws Eq. (49) with Eq. (46) we find

C = RT

2

[
1 −

(√
∆̃2 + 2∆̃ + 1 − 4R1,0R2,0

R2
T

− ∆̃
)]

, [50]

where we introduced the total receptor concentration RT = R1,0 + R2,0 and defined the dimensionless
shortcut

∆̃ ≡ KX
1

RT

(L + KB
1 )(L + KB

2 )
LKB

1
. [51]

This result was achieved by Perelson studying histamine release by mast cells and basophils (12). Considering
1:1 stoichiometry, i.e. R1,0 = R2,0 ≡ R0, the dose response curve reduces to

f(L) = C

R0
= F (∆̃) [52]

which corresponds to the binding curve for the homodimerizing system Eq. (40), but with ∆̃ in place of ∆.
Setting both receptor surface concentrations equal changes ∆̃ to

∆̃ = KX
1

R0

(L + KB
1 )(L + KB

2 )
2LKB

1
= KX

2
R0

(L + KB
1 )(L + KB

2 )
2LKB

2
, [53]

where the second identity results from the overall symmetry of the two available assembly pathways. As for
the homodimerizing system, it can be shown that Eq. (53), and therefore the activation curve Eq. (52), is
symmetric in log space with respect to Lmax =

√
KB

1 KB
2 .

Like for the homodimerization, the global length scale λ couples fmax = F
(

1
2
[√

KX
1 /R0 +

√
KX

2 /R0
]2)

and Lmax, resulting in an envelope

fenvelope(L) = F
( Lλ

2R0

)
[54]

and a global half-deactivation point

Ldeact = R0
2λ

. [55]

Here, the envelope is attained for vanishing bulk dissociation constants, since df/dKB
i < 0.

The activation curves for all three equilibrium receptor-ligand binding models are summarized in Table
S2. While the single-unit ligand receptor motif is parameterized by a single binding affinity K, the
homodimerizing motif is parameterized by KB, KX , R0 and the heterodimerizing by KB

1 , KB
2 , KX

2 and R0.

E. Symmetric heterodimerization differs from homodimerization. For completeness, we point out a subtle
but real difference. A homodimerizing receptor system consists of monovalent receptors R which can bind
bivalent ligand at either of the binding sites, see Eq. (35). Thus, free ligand and singly bound ligand-receptor
pairs compete for binding to free receptors R. A symmetric heterodimerizing receptor system on the other
hand is a motif according to Eq. (44), where two monovalent receptors with structurally different binding
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Table S2. Dose response curves f for the three equilibrium receptor-ligand binding motifs

receptor topology activation curve f parameters

allosteric f = L/(K + L) K

homodimerizing f = F (∆), ∆ = KX

R0

(2L+KB )2

8LKB KB , KX , R0

heterodimerizing f = F (∆̃), ∆̃ = KX
1

R0

(L+KB
1 )(L+KB

2 )
2LKB

1
KB

1 , KB
2 , KX

1 , R0

While the allosteric response function follows hyperbolic saturation kinetics (monotonic increase), the two dimerization motifs show a biphasic

response, which in log-space has a characteristic bell-shape. F (∆) is defined in Eq. (40) and the result for the heterodimeric case assumes

R1,0 = R2,0 = R0 as before.

symmetric
heterodimer

homodimer

Fig. S2. The activation curve for a homodimer at receptor concentration R0 (blue) compared to a symmetric heterodimer (red) with the same binding affinities and receptor
concentration R0 for each chain. The shift of the heterodimer curve to higher ligand concentrations is not due to the higher total receptor concentration RT = 2R0, as the
homodimer curve at receptor concentration 2R0 (black) shows. Here we used KB = 10nM, KX = 0.2µm−2 and R0 = 10µm−2.

sites, each cognate to one binding site on the ligand, happen to have identical binding kinetics, i.e. KB
1 = KB

2

and KX
1 = KX

2 . Hence, R1L complexes compete only for free R2 chains and not for R1, and vice versa.
Concretely, comparing Eq. (53) where KB

1 = KB
2 with the homodimer Eq. (39), the expressions indeed

differ. As a result, the activation curves also differ between these two cases if all microscopic rates and R0

are kept the same, see Fig. S2. In order to obtain a symmetric heterodimerizing system with an activation
curve that reproduces the homodimerizing curve exactly, one would have to choose KB

i = KB/2, keeping
R0/KX

i = R0/KX the same.

4. Steady-state response curves including receptor turnover

To understand the effect of receptor turnover, we revisit the ligand-receptor systems discussed in Sec. 3,
but now consider the non-equilibrium steady state resulting from receptor turnover. Out of equilibrium,
the activation curves are no longer fully specified by the equilibrium dissociation constants, but instead
depend on the full set of rates, roughly doubling the number of parameters, see table S3. For allosteric and
homodimerizing systems, we provide closed form expressions for the binding curves. In the heterodimerizing
case, binding curves are obtained numerically.

Since there is no evidence for targeted degradation in the IFNAR system, we assume that any membrane
bound species (R, RL, C) is internalized and degraded with a common degradation rate µ. A constant mean
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total receptor number is ensured by reintegration of free receptors R, at rate α:

R
µ−⇀↽−
α

∅, RL µ−→ ∅, C µ−→ ∅. [56]

In steady state, the total surface concentration of a receptor chain is given by the ratio of production and
degradation rate, i.e.

allosteric: R + C

homodimerizing: R + RL

2 + C

heterodimerizing: Ri + RiL + C

 = α

µ
≡ R0. [57]

We set α/µ to equal the receptor concentration R0, so that the non-equilibrium response curves are
consistent with the equilibrium response curves in section 3, in the limit of slow turnover.

A. Turnover shifts allosteric response curves to higher ligand concentration. Combining the reac-
tions Eq. (29) with turnover of receptors Eq. (56), yields a system of ordinary differential equations
(ODEs) for the concentrations,

dR

dt
= −kb R × L + ku C − µ R + α, [58a]

dC

dt
= kb R × L − ku C − µ C. [58b]

Using Eq. (57), the steady-state fraction of activated receptors is given by

f(L) = Φ
( L

K + µ/kb

)
, [59]

where K = ku/kb, see Eq. (31), and Φ(x) is defined in Eq. (33). Comparing with Eq. (32) we see that
the shape of the binding curve is unchanged. Turnover merely shifts the curve in log-concentration space,
corresponding to a higher effective dissociation K + µ/kb.

B. Turnover shifts and skews homodimer response curves. Next, we consider the effect of receptor
turnover on a homodimerizing receptor system, Eq. (35). Incorporating Eq. (56) results in the ODEs

dR

dt
= −2kb L × R + ku RL − ka R × RL + 2kd C − µ R + α, [60a]

dRL

dt
= 2kb L × R − ku RL − ka R × RL + 2kd C − µ RL, [60b]

dC

dt
= ka R × RL − 2kd C − µ C. [60c]

Using Eq. (57), some calculation leads to the steady state activation curve

f(L) = 1 − (
√

∆2
1 + 2∆2 − ∆1) [61]
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where we introduced

∆1 = ∆0 + τu(2L − KB)
(2 + τu)(4L + τuKB) , [62a]

∆2 = ∆0 + τ2
uKB

2(2 + τu)(4L + τuKB) , [62b]

∆0 = KX(2 + τd)
8R0

[KB(2 + τu) + 4L + τuKB]2

KB(2 + τu)(4L + τuKB) , [62c]

as well as dimensionless binding times τu,d, namely

τu,d = µ

ku,d
. [63]

For the limit of no turnover, which corresponds here to τu,d → 0 the result is in agreement with Eq. (40).
Note that the receptor turnover breaks the symmetry of the response curve in log space. The maximal
activation

fmax = F ([1 + τd/2]KX/R0) [64]

in Eq. (61) is reached at

Lmax = KB

2

[
1 + τu

2

(
1 +

√
1 + 4R0

KX (2 + τd)

)]
. [65]

Comparing these results with Eq. (41), receptor turnover decreases the maximal activation and shifts it to
higher concentrations.

Taking into account that all ligand-receptor share a single binding mode, see Eq. (34), maximizing
Eq. (61) with respect to KB, yield the half-deactivation point

Ldeact = R0
2λ

2 + 3τu

2 + τd
. [66]

Comparing Eq. (66) with Eq. (43) illustrates that the turnover can shift the global deactivation point to
higher (lower) concentrations for 3τu > τd (3τu < τd). Intuitively, slow τu means bulk ligand unbinding is
slower relative to turnover, so that in the deactivating regime, excess binary complexes are removed by
turnover, helping activation. Counteracting this effect, slow complex dissociation τd means some active
complexes are removed before reforming. In combination, whether the deactivation point is shifted to higher
(lower) concentration is fully determined by the ratio kd/ku < (>) 3.
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Table S3. Parameters and steady state activation curves of the allosteric, homodimerizing and heterodimerizing
receptor systems including receptor turnover

receptor topology activation curve f parameters

allosteric f = L/[K(1 + τu) + L] K, τu

homodimerizing see Eq. (61) KB , KX , R0, τu, τd

heterodimerizing numerical
KB

1 , KB
2 , KX

2 , R0

τu,1, τu,2, τd,1, τd,2

Dimensionless binding times τu,d are defined as in Eq. (63). For the heterodimer, subscripts i = 1, 2 indicate the receptor chain.

C. Heterodimerization. Incorporating turnover in the heterodimerizing system, Eq. (44), we arrive at

dRi

dt
= −kb,i Ri × L + ku,i RiL − ka,i Ri × RjL + kd,i C − µ Ri + α, [67a]

dRiL

dt
= kb,i Ri × L − ku,i RiL − ka,j Rj × RiL + kd,j C − µ RiL, [67b]

dC

dt
= ka,1 R1 × R2L + ka,2 R2 × R1L − (kd,1 + kd,2) C − µ C, [67c]

where the pair of indices runs over (i, j) = (1, 2), (2, 1) to account for the symmetry of the two assembly
pathways. We have been unable to solve the steady state of Eq. (67) analytically. Therefore, we determine
the response curve numerically. The results of steady state activation curves are summarized in Table S3.

5. Optimizing the ligand discrimination power

In the following we give details on the optimization procedure we used to obtain the reults shown in Figs. 3-5
in the main text and Figs. S3-S4. We optimized the discrimination power I with respect to the equilibrium
dissociation constants KB and in non-equilibrium steady state, additionally with respect to the unbinding
rates ku, kd. We used Dual Annealing (13) as implemented in the function dual_annealing in the package
Scipy 1.5.0 (14).

The allowed parameter ranges and values of fixed parameters are given in Table S4. They are chosen
to reflect the physiological range of the IFN system and basic biophysical constraints, as follows. The
range of the dissociation constants KB = 1 − 107pM corresponds roughly to the biological range of

Table S4. Fixed parameter values and optimization bounds for optimizing the ligand discrimination power I

parameter unit fixed value / optimization range ref.

KB pM 1 − 107 (15)
ku s−1 10−9 − 0.06KB/pM (16)
kd s−1 10−9 − 2 × 10−6λKB/(nm pM) (16)
µ s−1 10−3 (17, 18)
λ nm 5 Table S1
Lthr pM 10 (15)
Llo pM 10−7

R0 µm−2 1 (2)
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IFN binding affinities (15). The upper bound for the unbinding rates is given by the diffusion-limited
binding rate kb ≤ k+ = 4πDs, where D is the sum of the ligand and receptor diffusivities and s is the
encounter radius (19). Using typical upper bounds for D = 103µm2/s and s = 10nm, one arrives at
ku = k+KB = 0.06KB/(pM s) (16). An upper bound for the in-membrane dissociation rate kd can also
be estimated by considering a diffusion-limited association rate ka. Due to the two-dimensional nature of
membrane binding, diffusion-limited rates are not universal, but concentration dependent. We therefore
impose a bulk membrane receptor concentration by fixing the mean free distance 2b of receptors in the
membrane. Then ka is diffusion-limited by ka ≤ k+ = 2πD/ ln(b/s) (16). Here, D is the sum of free and
ligand-bound receptor diffusivities and s is the encounter radius. Using typical values D = 0.1µm2/s,
s = 10nm and b = 100nm (16), we obtain kd = k+KX ≈ 0.3KX µm2

s = 2 × 10−6λKB/(nm pM s). The
maximal lifetimes of both receptor complexes are constrained to ensure numerical stability such that
ku,d ≥ 10−9s−1.

The remaining parameters Lthr, Llo, R0, λ, µ are held at fixed values during optimization, as follows.
The detection threshold Lthr = 10pM is within the range of measured detection thresholds for IFNs (15).
As minimum concentration we choose Llo = 10−7pM, which prevents generating optimal solutions with
inverted responses (receptors are only activated at L < Lthr) or responses where one ligand activates
receptor at any L ≷ Lthr. For the dimerizing receptor system, we additionally impose a fixed receptor
density R0 = 1µm−2 (2) and make the assumption of an unchanged binding mode, implying λ = KX/KB

is a ligand-independent constant given by λ = 5nm, see Sec. 3. In receptor systems with turnover, we
impose a fixed turnover rate µ = 10−3s−1 within the measured range for cytokine receptors (17, 18).

The optimal resulting dissociation constants and/or kinetic rates are given in Table S5. In cases where

Table S5. Dissociation constants and unbinding rates for activation curves shown in Figs. 3 and 5

figure receptor architecture case unit dissociation constants and unbinding rates unit peak activation

Fig. 3C allosteric I pM Kα = 3300, Kβ = 1.6 1 fmax,α = fmax,β = 1.00
II pM Kα = Kβ = 28 1 fmax,α = fmax,β = 1.00
III pM Kα = Kβ = 21 1 fmax,α = fmax,β = 1.00

Fig. 3E homodimer I pM KB
α = 2.0 × 104, KB

β = 960 1 fmax,α = 0.71, fmax,β = 0.93
IV pM KB

α = KB
β = 1.0 × 104 1 fmax,α = fmax,β = 0.78

Fig. 3G heterodimer I pM KB
α,1 = 9.6 × 105, KB

α,2 = 4.2 1 fmax,α = 0.21
KB

β,1 = 3300, KB
β,2 = 1700 1 fmax,β = 0.84

IV pM KB
α,1 = 1.0 × 106, KB

α,2 = 33 1 fmax,α = 0.21
KB

β,1 = 3900, KB
β,2 = 3500 1 fmax,β = 0.81

Fig. 5A homodimer IV pM KB
α = 1.2 × 104, KB

β = 83 1 fmax,α = 0.76, fmax,β = 0.94
with turnover s−1 ku,a = 340, ku,b = 1.5 × 10−4

kd,a = 0.012, kd,b = 8.3 × 10−5

Fig. 5A heterodimer IV pM KB
α,1 = 1.6 × 104, KB

α,2 = 27 1 fmax,α = 0.27
with turnover KB

β,1 = 420, KB
β,2 = 20 1 fmax,β = 0.93

s−1 ku,a,1 = 1.0 × 10−6, ku,a,2 = 0.074
ku,b,1 = 1.0 × 10−6, ku,b,2 = 0.0014

kd,a,1 = 2.6 × 10−5, kd,a,2 = 2.7 × 10−5

kd,b,1 = 4.2 × 10−4, kd,b,2 = 1.0 × 10−6

figure receptor architecture unit receptor density unit ligand range

Fig. 5A IFN µm−2 R0 = 20 1 Lhi/Lthr = 1.2 × 105
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pure presence sensing is optimal, ligands α and β obtain identical kinetic constants. When type sensing
is admitted, the stronger ligand β is (by our convention) the ligand with higher peak activation. Notice
that heterodimers without turnover can yield optimal dissociation constants where the weaker ligand α

shows an earlier activation onset, that is, KB
α,2 < KB

β,2, for instance, in Fig. 3G. This feature is a result of
the need for a broad low-activation plateau for the weaker ligand. In systems with turnover, we always
observe KB

α,2 > KB
β,2. This ranking is in accordance with literature values for IFNα2 and IFNβ affinities,

although measured IFNAR2 affinities differ more strongly. For the IFN activation curve in Fig. 5A,
bottom in the main text, we optimized the discrimination power with respect to the receptor density R0

and the upper cutoff Lhi, see Table S5, bottom. As optimization range we used R0 = 0.1 − 103µm−2 and
Lhi/Lthr = 102 − 106.

The literature values (extracted and converted from (7, 9, 20, 21)) of the kinetic rates used for the IFN
activation curve are summarized in Table S6.

Table S6. Parameter set for IFNα2 and IFNβ

kinetic rate unit IFNα2 IFNβ

kb,1 (Ms)−1 6.7 × 105 5.0 × 105

ku,1 s−1 1.0 1.0 × 10−2

KB
1 nM 1500 20

kb,2 (Ms)−1 2.2 × 106 1.0 × 107

ku,2 s−1 2.0 × 10−2 1.0 × 10−3

KB
2 pM 9100 100

ka,1 µm2s−1 5.48 × 10−2 1.67 × 10−2

kd,1 s−1 0.40 3.3 × 10−3

ka,2 µm2s−1 1.67 × 10−2 1.67 × 10−2

kd,2 s−1 4.4 × 10−3 3.3 × 10−4

6. Molecular noise in receptor activation and cell-to-cell variability in receptor number can be
approximated by adjusting the readout number

All readout distributions shown in the main text (cf. Figs. 3-5 and Fig. S4) correspond to a noise model
(Eq. (5), main) that includes stochastic activation of readout molecules as the only noise source. In the
following we investigate the effect of additional noise sources, namely cell-to-cell variability of receptor
numbers and molecular noise in receptor activation.

A. Cell-to-cell variability in receptor number. Cell populations show heterogeneity in protein composition,
including bimodal and long-tailed protein number distributions. Here we consider only constitutive genes
with unimodal protein number distribution, so that the cell-to-cell variability in receptor numbers can be
approximated well by a Gamma distribution p(r) = βαxα−1e−βr/Γ(α), where r denotes the total number
of receptors (22). To include this noise source, we generalize Eq. (5) (main) by introducing an additional
sum over the total receptor number. The input-output relation p(n|x) (Eq. (4), main) then becomes

p(n|x) =
∫ [∑

r

p
(
n| r

rtot
fx(L)

)
p(r)

]
p(L|x)dL, [68]
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where rtot is the mean total receptor number. Note that in Eq. (4) (main), the total receptor density
R0 was fixed, resulting in a rate of phosphorylation of readout molecules proportional to the activated
receptor fraction f . When considering cell-to-cell variability in receptor number, this assumption is not
valid anymore and correspondingly, the phosphorylation rate is proportional to the number rf of activated
receptors in Eq. (68).

We first investigate how the discrimination power of allosteric receptors is affected by cell-to-cell variability.
As a baseline, we compute the optimal activation curves and corresponding readout distributions as in the
main text, considering only the readout noise for n̄ = 100 and Lhi = 18nM, Fig. S3A. This corresponds to
cases I and III in the main text but with intermediate readout number. We then recalculate the readout
distribution using the unchanged activation curves of Fig. S3A, but this time including cell-to-cell variability
in receptor number, Eq. (68). We assume an average of rtot = 100 receptors and a coefficient of variation of
25% for the receptor number (23), corresponding to parameters α = 16 and β = 0.16 for p(r). As expected,
adding the additional noise term broadens the readout distribution, Fig. S3B, top. Remarkably, comparable
broadening and nearly identical distribution shape can be obtained by reducing the readout number n̄ from
100 to 20, Fig. S3B bottom.

Next, we repeat this procedure for homodimerizing receptors. As Fig. S3CD show, the results confirm
the finding that the cell-to-cell variability can approximated well by reducing the readout number n̄ to 20.
We remark that, for dimerizing receptors, the activated receptor fraction depends on the receptor density
R0. Therefore, Eq. (68), strictly speaking, represents cells of varying size and total protein number but
constant receptor density.

B. Molecular noise in receptor activation. Next, we consider molecular noise in receptor activation as
additional noise source. In order to generalize the noise model (Eq. (5), main) we introduce an additional
sum over the number of activated receptors a. The input-output relation (Eq. (4), main) becomes

p(n|x) =
∫ [rtot∑

a=0
p
(
n| a

rtot

)
p(a|fx(L), rtot)

]
p(L|x)dL, [69]

where p(a|f, rtot) is the probability that a out of rtot receptors are activated for a mean activation of frtot

receptors, which depends on the receptor architecture.

For allosteric receptors, the master equation corresponding to the reaction scheme Eq. (29) results in the
binomial distribution

p(a|f, rtot) =
(

rtot
a

)
fa(1 − f)rtot−a. [70]

To demonstrate the effect of receptor activation noise, we again start with optimal activation curves for
readout noise only, Fig. S3E, and add activation noise by setting rtot = n̄ = 100 in Eqs. (69,70). We
find only a modest effect on the readout distribution, see Fig. S3EF. Increasing the receptor number to
the typical numbers of IFN receptors of a few hundred copies per cell (2) further decreases the effect.
Overall, the effect of receptor activation noise is negligible next to typical amounts of cell-to-cell variability
(cf. Fig. S3B).
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C. Optimal responses including readout noise, activation noise and cell-to-cell variability. We now include
both additional noise sources. As in the main text, we optimize the ligand discrimination power I for
allosteric receptors over the affinities Kα,β, at n̄ = rtot = 100 and Lhi = 18nM, cf. Fig. 3CD. We find that
including the additional noise moves the system to the regime of pure presence sensing, i.e. discrimination
power is optimized by coinciding activation curves with Kα = Kβ, Fig. S3G, top. Nevertheless, a very
similar optimization result is obtained by including only readout noise but with reduced readout number
n̄ = 20, Fig. S3G, bottom. We conclude that pure readout noise provides a convenient effective description
for the relevant noise sources in ligand discrimination and is sufficient at the level of detail of the present
study.
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Fig. S3. Effect of additional noise sources in form of cell-to-cell variability in receptor numbers and molecular noise in receptor activation on the readout distribution. (A) Optimal
activation curves and corresponding readout distributions for allosteric receptors without additional noise source. Case V (like case I and III in main but with intermediate
readout number n̄ = 100), Kα = 4.0nM, Kβ = 3.9pM. (B) Readout distribution corresponding to A. Top, including 25% cell-to-cell variability in receptor numbers
broadens the readout distributions. Bottom, reducing the readout number to n̄ = 20 reproduces a similar effect on the readout distributions. (C) Optimal activation curves and
corresponding readout distributions for homodimerizing receptors. Case V, Kα = 21nM, Kβ = 1.1nM. (D) Readout distribution corresponding to C. Effect of including 25%
cell-to-cell variability in receptor numbers on the readout distributions (top) can be approximated well by reducing the readout number to n̄ = 20 (bottom). (E) same as A. (F)
Readout distributions for allosteric receptors including molecular noise in receptor activation corresponding to E. (G) Optimal activation curves and corresponding readout
distributions for allosteric receptors considering receptor activation noise and 25% cell-to-cell variability (top, Kα = Kβ = 20pM) almost coincide with optimal solutions for
reduced readout number n̄ = 20 (bottom, Kα = Kβ = 21pM). Both results in superimposed ligands α and β (dashed curves) with good separation from ∅, indicating pure
presence sensing. Here we used rtot = 100.
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7. Optimal responses for alternative input distributions

The discrimination power I depends on the chosen input distribution p(x), see Eq. (1) in the main text.
Throughout the main text we chose p(∅) = 2p(α) = 2p(β) = 1/2, which represents equal probabilities
for ligand presence and absence, and for either ligand if present. To explore how the optimal power and
ligand discrimination strategy of receptor systems change with the input distribution, in this subsection
we re-optimize ligand discrimination power with two plausible alternative choices for p(x), corresponding
to rare inflammation and unequal ligand abundances, respectively. The results can be rationalized by
considering the general upper bound for mutual information involving a binary variable (presence or type)
with values i = 1, 2,

I ≤ H[p(i)] = −p(1) log2 p(1) − p(2) log2 p(2). [71]

A. Rare inflammation. When inflammation is a rare occurrence, the probability of ligand being present
decreases, pπ = 1 − p(∅) < 1/2. The upper bound Eq. (71) for presence information Iπ decreases for
smaller pπ. The upper bound for type information Iτ is unaffected, but Iτ occurs with a reduced prefactor
in I = Iπ + pπIτ ; we consider the exemplary cases pπ = 0.25, where I ≤ 1.06 bits and pπ = 0.1, where
I ≤ 0.57 bits. Overall the contribution from type sensing is reduced more strongly, so that lower pπ puts
more importance on achieving good presence sensing compared to type sensing. As a result, the regime
where pure presence sensing is preferred extends to higher readout numbers and/or lower concentration
ranges for allosteric and homodimerizing receptor architectures, compare Figs. S4A1,A2 and S4D1,D2
(pπ = 0.25). For even lower ligand prevalence (pπ = 0.1) the regime extends over the full parameter range
tested, Fig. S4E-G,1-2. By contrast, the heterodimerizing system can reconcile presence and type sensing
also for lower pπ, as activation curves can exploit distinct activation plateaus Fig. S4D3-G3. Note however
that also in the heterodimerizing system, the overlap between output distributions for α and β ligands is
increased due to the lower importance of type sensing, see Fig. S4B3,C3,F3,G3.

B. Unequal ligand abundance. We now consider a scenario where the weaker ligand α occurs more frequently
than the stronger ligand β, which is plausible when a more drastic inflammatory response is required
only in the most extreme circumstances. We keep pπ = 1/2 for simplicity. When pτ (β) < 0.5, the upper
bound Eq. (71) for type information decreases; the upper bound for presence information is unchanged.
Thus, also in the unequal ligands scenario, more importance is placed on achieving good presence sensing
compared to type sensing. Overall, the discrimination power I ≤ 1.41 bits for pτ (β) = 0.25 and I ≤ 1.23 bits
for pτ (β) = 0.1. As expected by these considerations, the optimization of discrimination power with
unequal ligand abundances yields similar results as in the case of rare inflammation. For allosteric and
homodimerizing receptors, the region of pure presence sensing increases towards higher readout numbers
and/or narrower concentration ranges, compare Figs. S4A1,A2 and S4H1,H2 (pτ (β) = 0.25), and eventually
covers the full parameter range, Fig. S4I-K,1-2 (pτ (β) = 0.1). As before, the heterodimerizing system can
reconcile presence and type sensing Fig. S4H3-K3.

Overall, considering rare inflammation or unequal ligand abundance cause presence sensing to be preferred
over a wider range. Heterodimerizing receptors continue to accommodate type sensing and remain superior
to the allosteric and homodimerizing receptors. Within each regime, the optimal activation curves are
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virtually unchanged by the changes in input distribution (Fig. S4BCFGJK, cf. Fig. 3CEG). Thus the main
effect of the input distribution is a redistribution of importance between presence and type sensing, which
does not affect the performance ranking of different receptor architectures.

The optimal resulting dissociation constants and/or kinetic rates are given in Table S7.

Table S7. Dissociation constants for activation curves shown in Fig. S4

figure receptor architecture dissociation constants (pM) peak activation

B1 allosteric Kα = 4000, Kβ = 3.9 fmax,α = fmax,β = 1.00
B2 homodimer KB

α = 3.0 × 104, KB
β = 1400 fmax,α = 0.65, fmax,β = 0.91

B3 heterodimer KB
α,1 = 8.1 × 105, KB

α,2 = 11 fmax,α = 0.24
KB

β,1 = 1600, KB
β,2 = 1400 fmax,β = 0.87

F1 allosteric Kα = Kβ = 22 fmax,α = fmax,β = 1.00
F2 homodimer KB

α = KB
β = 6000 fmax,α = fmax,β = 0.83

F3 heterodimer KB
α,1 = 4.5 × 105, KB

α,2 = 22 fmax,α = 0.33
KB

β,1 = 8700, KB
β,2 = 1500 fmax,β = 0.81

J1 allosteric Kα = Kβ = 17 fmax,α = fmax,β = 1.00
J2 homodimer KB

α = KB
β = 5000 fmax,α = fmax,β = 0.84

J3 heterodimer KB
α,1 = 1.1 × 106, KB

α,2 = 12 fmax,α = 0.20
KB

β,1 = 2100, KB
β,2 = 1600 fmax,β = 0.86
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Fig. S4. Ligand discrimination in allosteric (1), homodimerizing (2) and heterodimerizing (3) receptors for different input distributions. (A) Optimal discrimination power
vs. concentration range and readout number as in Fig. 4B-D. (B) Optimal activation curves for case V. Ligands are separated for all basic receptors. (C) Readout distributions
corresponding to B. Receptor 1 and 2, α and β are separated but α overlaps with ∅. 3, α, β and ∅ are well separated. (DE) Optimal discrimination power vs. concentration
range and readout number for rare inflammation: pπ = 0.25 (D) and pπ = 0.1 (E). (F) Optimal activation curves for rare inflammation. Equal affinities for ligands are optimal
in receptor 1 and 2, but ligands are separated in 3. (G) Readout distributions corresponding to F. Receptor 1 and 2, pure presence sensing. 3, α, β and ∅ are well separated.
(HI) Optimal discrimination power vs. concentration range and readout number for unequal ligand abundance: pτ (β) = 0.25 (H) and pτ (β) = 0.1 (I). (J) Optimal activation
curves for rare inflammation. Equal affinities for ligands are optimal in receptor 1 and 2, but ligands are separated in 3. (K) Readout distributions corresponding to F. Receptor 1
and 2, pure presence sensing. 3, α, β and ∅ are well separated. Optimal parameter values are detailed in Supplementary Table S7.

24 of 26 Patrick Binder, Nikolas D. Schnellbächer, Thomas Höfer, Nils B. Becker and Ulrich S. Schwarz



References

1. C Gardiner, Stochastic methods. (Springer Berlin) Vol. 4, (2009).
2. J Piehler, C Thomas, KC Garcia, G Schreiber, Structural and dynamic determinants of type I interferon

receptor assembly and their functional interpretation. Immunol. reviews 250, 317–34 (2012).
3. G Altan-Bonnet, T Mora, AM Walczak, Quantitative immunology for physicists. Phys. Reports 849,

1–83 (2020).
4. ET Jaynes, GL Bretthorst, Probability Theory: The Logic of Science. (Cambridge University Press,

Cambridge, UK), (2003).
5. A Oyler-Yaniv, et al., A Tunable Diffusion-Consumption Mechanism of Cytokine Propagation Enables

Plasticity in Cell-to-Cell Communication in the Immune System. Immunity 46, 609–620 (2017).
6. S Fathi, CR Nayak, JJ Feld, AG Zilman, Absolute Ligand Discrimination by Dimeric Signaling

Receptors. Biophys. J. 111, 917–920 (2016).
7. F Roder, S Wilmes, CP Richter, J Piehler, Rapid Transfer of Transmembrane Proteins for Single

Molecule Dimerization Assays in Polymer-Supported Membranes. ACS Chem. Biol. 9, 2479–2484
(2014).

8. M Gavutis, S Lata, P Lamken, P Müller, J Piehler, Lateral ligand-receptor interactions on membranes
probed by simultaneous fluorescence-interference detection. Biophys. journal 88, 4289–302 (2005).

9. M Gavutis, E Jaks, P Lamken, J Piehler, Determination of the two-dimensional interaction rate
constants of a cytokine receptor complex. Biophys. journal 90, 3345–55 (2006).

10. S Wilmes, et al., Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon
signaling. The J. Cell Biol. 209, 579–593 (2015).

11. AS Perelson, G Weisbuch, Immunology for physicists. Rev. Mod. Phys. 69, 1219–1268 (1997).
12. AS Perelson, Receptor clustering on a cell surface. II. theory of receptor cross-linking by ligands bearing

two chemically distinct functional groups. Math. Biosci. 49, 87–110 (1980).
13. Y Xiang, DY Sun, W Fan, XG Gong, Generalized simulated annealing algorithm and its application

to the Thomson model. Phys. Lett. A 233, 216 – 220 (1997).
14. P Virtanen, et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat.

Methods 17, 261–272 (2020).
15. TB Lavoie, et al., Binding and activity of all human alpha interferon subtypes. Cytokine 56, 282–289

(2011).
16. DA Lauffenburger, JJ Linderman, Receptors : models for binding, trafficking, and signaling. (Oxford

University Press, New York), (1993).
17. KGS Kumar, et al., Site-specific ubiquitination exposes a linear motif to promote interferon-alpha

receptor endocytosis. J. Cell Biol. 179, 935–950 (2007) Publisher: The Rockefeller University Press.
18. KGS Kumar, et al., Basal Ubiquitin-independent Internalization of Interferon alpha Receptor Is

Prevented by Tyk2-mediated Masking of a Linear Endocytic Motif. The J. Biol. Chem. 283, 18566–
18572 (2008).

19. D Shoup, A Szabo, Role of diffusion in ligand binding to macromolecules and cell-bound receptors.
Biophys. J. 40, 33–39 (1982).

Patrick Binder, Nikolas D. Schnellbächer, Thomas Höfer, Nils B. Becker and Ulrich S. Schwarz 25 of 26



20. C You, et al., Receptor dimer stabilization by hierarchical plasma membrane microcompartments
regulates cytokine signaling. Sci. Adv. 2, 1–13 (2016).

21. E Jaks, M Gavutis, G Uzé, J Martal, J Piehler, Differential receptor subunit affinities of type I
interferons govern differential signal activation. J. molecular biology 366, 525–39 (2007).

22. N Friedman, L Cai, XS Xie, Linking Stochastic Dynamics to Population Distribution: An Analytical
Framework of Gene Expression. Phys. Rev. Lett. 97, 168302 (2006).

23. A Bar-Even, et al., Noise in protein expression scales with natural protein abundance. Nat. Genet. 38,
636–643 (2006).

26 of 26 Patrick Binder, Nikolas D. Schnellbächer, Thomas Höfer, Nils B. Becker and Ulrich S. Schwarz


	Information theoretic framework for ligand discrimination
	Decomposing ligand discrimination power according to ligand presence and type
	Readout molecules are Poisson distributed
	Recipe for estimating discrimination power

	Physiological cytokine distributions
	Maximum-entropy distribution
	Production-diffusion-degradation mechanism
	Summary

	Equilibrium response curves
	Allosteric transmission
	Ligand-independent binding mode in receptor dimerization
	Homodimerization
	Heterodimerization
	Symmetric heterodimerization differs from homodimerization

	Steady-state response curves including receptor turnover
	Turnover shifts allosteric response curves to higher ligand concentration
	Turnover shifts and skews homodimer response curves
	Heterodimerization

	Optimizing the ligand discrimination power
	Molecular noise in receptor activation and cell-to-cell variability in receptor number can be approximated by adjusting the readout number
	Cell-to-cell variability in receptor number
	Molecular noise in receptor activation
	Optimal responses including readout noise, activation noise and cell-to-cell variability

	Optimal responses for alternative input distributions
	Rare inflammation
	Unequal ligand abundance


