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Elastic interactions of active cells with soft materials
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Anchorage-dependent cells collect information on the mechanical properties of the environment through
their contractile machineries and use this information to position and orient themselves. Since the probing
process is anisotropic, cellular force patterns during active mechanosensing can be modeled as anisotropic
force contraction dipoles. Their buildup depends on the mechanical properties of the environment, including
elastic rigidity and prestrain. In a finite sized sample, it also depends on sample geometry and boundary
conditions through image strain fields. We discuss the interactions of active cells with an elastic environment
and compare it to the case of physical force dipoles. Despite marked differences, both cases can be described
in the same theoretical framework. We exactly solve the elastic equations for anisotropic force contraction
dipoles in different geometries~full space, half space, and sphere! and with different boundary conditions.
These results are then used to predict optimal position and orientation of mechanosensing cells in soft material.
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I. INTRODUCTION

Anchorage-dependent cells like fibroblasts in connec
tissue show a remarkable degree of mechanical activity.
first quantitative measurements of cellular traction were p
formed with the elastic substrate method in the early 19
by Harris and co-workers, who found that cells exert mu
larger forces than previously thought@1,2#. During recent
years, the elastic substrate method has been improved
siderably@3,4#. In particular, a new variant involving micro
patterning has been developed, which allows one to res
individual forces exerted at single focal adhesions@5,6#. Fo-
cal adhesionsare mature adhesion contacts based on tra
membrane proteins from the integrin family. Since they co
nect the extracellular matrix and the actin cytoskeleton, t
can transmit internal forces to the environment and exte
forces to the cell. Using micropatterned elastic substrate
was found that fibroblasts typically exert forces of 10 nN
mature focal adhesions@5,6#. Using a bed of flexible micro-
needles, similar values were found for smooth muscle c
@7#. Since adherent cells can have up to hundreds of fo
adhesions, the overall force exerted by the cell can amou
microNewton. The forces exerted by cells on their enviro
ment result from nonequilibrium processes inside the
and are generated by myosin II molecular motors interac
with the actin cytoskeleton. Since typical forces produced
molecular motors are in the picoNewton range@8#, there
must be up to 106 myosin II molecular motors contributing
to overall cell traction.

When Harris and co-workers first discovered these la
forces, they concluded that they are required for the ph
ological function of the specific cell type under conside
ation. For example, fibroblasts are believed to maintain
integrity of connective tissue by mechanically pulling on t
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collagen fibers. Moreover, they are an integral part of
wound contraction process. Harris and co-workers also
ticed that cells react to mechanical changes in their envir
ment caused by traction of other cells. Since cells are kno
to align along topographic features in their environme
~contact guidance!, they suggested that cells react
traction-induced reorganization of collagen fibers. Th
mechanism amounts to a mechanical interaction of cells
has been addressed theoretically in coupled transport e
tions for fiber and cell degrees of freedom@9,10#.

During recent years, the sophisticated use of elastic s
strates has shown that cells also react to purely elastic
tures in their environment, including rigidity, rigidity grad
ents and prestrain@11–13#. It is now generally accepted tha
these effects are related to the special properties of fo
adhesions@14#. In particular, it has been shown that applic
tion of external force leads to growth of focal adhesions a
therefore to strong signaling activity@15–17#. The same ag-
gregation has been found for mature focal adhesions un
internally generated force@5–7#, suggesting that focal adhe
sions act as mechanosensors that convert force into bioch
istry and vice versa. Therefore the mechanical activity
cells is not only related to the physiological function of the
cell type, but is also a general way to collect informati
about the mechanical properties of the environment~active
mechanosensing!. There is strong evidence that this mech
nism is involved in many important physiological situation
including tissue maintenance, wound healing, angiogene
development, and metastasis@18–20#.

The dynamics of focal adhesions is a subject of mu
current research@21#. Anchorage-dependent cells constan
assemble and disassemble focal adhesions, thereby pro
the mechanical properties of their environment. Initial foc
adhesions~focal complexes! are local processes based on i
tegrin clustering. If initial clustering is stabilized by th
properties of the extracellular environment, focal complex
can mature into focal adhesions. In this case, they conne
the actin cytoskeleton and a contractile force pattern bu
-
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up, which is actively generated by myosin II molecular m
tors interacting with the actin cytoskeleton. The minim
configuration of this machinery is a set of two focal adh
sions connected by one bundle of actin filaments~stress fi-
ber!, which leads to a pinchlike force pattern. In condens
matter physics, such an object is known as ananisotropic
force contraction dipole@22#. The concept of force dipole
has been applied before mainly for the description of po
defects in traditional condensed matter systems, includ
hydrogen in metal~e.g., platinum! @23#, atoms adsorbed ont
crystal faces~e.g., argon on gold! @24#, or intercalation com-
pounds~e.g., lithium in graphite! @25#. The concept of force
dipoles has also been used to model active biological
ticles in a fluid environment, e.g., ion pumps@26# and rotary
motors@27# embedded in fluid membranes, or self-propell
particles like swimming bacteria@28#. Recently, we have
suggested to use the concept of force dipoles to model
mechanical activity of cells@29#. Cells in an isotropic envi-
ronment often show isotropic~that is round or stellate! mor-
phologies. However, since the focal adhesion dynamic
local, even in this case there is an anisotropic probing p
cess, that can be modeled by anisotropic force contrac
dipoles. As we will argue below, only an anisotropic probi
process can react to anisotropies in the environment.
anisotropy of focal adhesion dynamics becomes appa
when stress fibers start to orient in one preferential direct
either spontaneously during a period of large mechanical
tivity, or as a response to some external anisotropy, or du
cell locomotion. In this case, cellular dipoles have been m
sured to be of the order ofP'210211J ~this corresponds to
two forces of 200 nN each, separated by a distance
60 mm) @6,30#. In Fig. 1 we show schematic representatio

FIG. 1. Schematic representation of physical and cellular fo
dipoles.~a! Physical case: an intercalated defect deforms the sim
cubic host lattice, thus acting as an isotropic force expansion dip
~b! Cellular case: anchorage-dependent cells probe the mecha
properties of the soft environment through their contractile mach
ery. Actin stress fibers~lines! are contracted by myosin II molecula
motors and are connected to the environment through focal a
sions~dots!. Even if cell morphology is round or stellate, differe
stress fibers probe different directions of space and compete
each other for stabilization of the corresponding focal adhesi
Therefore the probing process can be modeled as anisotropic
contraction dipole.~c! Cell morphology becomes elongated in r
sponse to anisotropic external stimuli, during locomotion or sp
taneously during times of strong mechanical activity. Then m
stress fibers run in parallel and the whole cell appears as an a
tropic force contraction dipole.
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of the physical and cellular cases discussed here.
In order to sense the mechanical properties of their en

ronment, cells can make use of the fact that these prope
modulate the build up of their own force patterns. In th
paper, we focus on the role of stress and strain in the ex
cellular material for cellular decision making in regard
positioning and orienting in a soft environment. In order
calculate how stress and strain are propagated in the env
ment, the extracellular material is modeled using isotro
linear elasticity. This is certainly true for synthetic elas
substrates~usually made from polydimethylsiloxane or poly
acrylamide!. The typical physiological environment fo
anchorage-dependent cells are hydrogels, whose mecha
properties are more difficult to model, in particular due
their viscoelastic and nonlinear behavior. Yet our calculatio
will show that our model has large predictive power also
this case, possibly because elastic deformations of hydro
become encoded in plastic changes that later can be dete
by active mechanosensing in a similar way as persistent e
tic deformations. Given the assumption of isotropic line
elasticity, we can calculate how stress and strain follo
from the force dipoles by solving the elastic equations for
geometry and boundary conditions of interest.

The most critical part of our modeling is the way in whic
physical or cellular force dipoles react to stress and strain
their environment. This subject has been treated extensi
for the case of atomic defects in traditional condensed ma
systems@23–25#. Here defects are usually modeled as is
tropic force expansion dipoles. The equilibrium configur
tion follows by minimizing the sum of the elastic energy
the strained medium and the direct interaction energy
tween force dipole and elastic environment. The first te
represents a restoring force and raises the energy~i.e., its
sign is always positive!, while the second term is a driving
force that reduces the total energy~i.e., its contribution will
always be negative!. The equilibrium configuration will cor-
respond to the minimum of the total energy as a function
position and orientation of the force dipoles, which results
an effective, so-calledelastic interactionbetween the force
dipole and other dipoles, sample boundaries or exte
strain fields. One central result of these studies is that
direct interaction between isotropic force dipoles in an is
tropic elastic material vanishes@22# and that they interac
through a boundary-induced~image! interaction that varies
on the length scale of the sample size~leading tomacro-
scopic modes! @23#. For anisotropic force dipoles, the dire
elastic interaction does not vanish. Recently, we have p
dicted that the competition between direct and image in
actions should lead to hierarchical structure formation, w
the direct interaction leading to structure formation on
length scale set by the elastic constants and similar to tha
electric quadrupoles@29#. We suggested that such a behav
should be expected for artificial or inert cells, that is, f
physical particles with a static force contraction dipole, b
without any internal dynamic or regulatory response.

In contrast to this physical case, the effective behavior
active cells usually follows from dynamic and tightly reg
lated nonequilibrium processes inside the cell. More recen
we have shown that despite this severe complication, i
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ELASTIC INTERACTIONS OF ACTIVE CELLS . . . PHYSICAL REVIEW E 69, 021911 ~2004!
still possible to describe the active response of mechanos
ing cells in an elastic material in the same framework as
physical case@31#. In detail, motivated mainly by recent ex
periments with elastic substrates@11–13#, we have suggeste
that effective cellular behavior can be described as sim
preference for large effective stiffness in the environm
~including both rigidity and tensile prestrain!. Moreover, we
have shown that this principle is equivalent to minimizati
of the energy which the cells have to invest into straining
environment in order to build up the force dipole used
probing the mechanical properties of the environment. O
likely explanation for the observed active behavior of cells
that the buildup of force at focal adhesions is more effici
in a stiff environment. Since this approach allows us to u
the same framework as in the physical case, we were ab
derive elastic interaction laws between cells and their ela
environment which are in good agreement with experime
observations for fibroblasts both on elastic substrates an
hydrogels. In particular, the direct elastic interaction betwe
cells has been predicted to be similar to that of electric
poles, leading to strings of cells@31#.

In this paper, we present a unifying formalism for the
retical models for elastic interactions for both physical for
dipoles and active cells. In particular, we consider inter
tions with external strain fields, sample boundaries or ot
physical force dipoles/cells. Although there are marked c
ceptual differences between the physical and cellular ca
they both require to solve the elastic boundary value prob
to predict the resulting structure formation. Since cells
modeled as anisotropic force dipoles, these calculations
in general more involved than similar calculations for isot
pic force dipoles. Moreover, in contrast to earlier calcu
tions for the physical case, we are interested not only in
effect of free, but also of clamped boundaries, which
known to induce mechanical activity of cells@32#. Our paper
is divided into two parts. In the first part, we discuss t
details of our modeling, in particular, the difference betwe
physical and cellular force dipoles. In the second part,
apply our model to several cases of interest. Here we pre
exact solutions of the elastic equations for anisotropic fo
dipoles in full space, half space, and sphere, and apply t
both to physical and cellular force dipoles. For example,
show that cells are attracted and repelled by clamped
free sample boundaries, respectively. In the case of phys
force dipoles, this behavior is inverted. Our predictions
cells explain many experimental findings reported in the
erature, can be used for rational design of tissue equivale
and show that physical concepts can provide new and im
tant insight into cell biology, provided that they are appli
with adequate modifications.

II. MODELING

A. Force multipoles

In the following, we model a mechanically active cell as
localized force distribution in an elastic medium. In order
describe its mechanical action, we use the concept of a f
multipolar expansion, which has been applied before for
description of point defects in condensed matter syste
02191
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@23–25#. Consider a force distribution localized around t
origin. Then the force multipoles are defined as@22#

Pi 1 , . . . ,i ni5E si 1
•••si n

f i~sW !d3s, ~1!

where f i is the force density andd3s denotes a volume inte
gral. The first order term is the vector of overall forcePi and
the second order term is the force dipolePi j , a tensor of
rank two. For both the cellular and physical situation we a
interested in, we can assume local forces. For pointlike
fects, one can, moreover, assume that the overall force
ishes, because due to Newton’s third law, the forces exe
by the defect on the elastic medium and by the elastic m
dium on the defect have to balance each other~the same
argument applies to point defects in a fluid medium@26–
28#!. For cells, the situation is more complicated, becau
they are at the same time in contact with the elastic ma
and an aqueous medium, thus unbalanced forces might
pear in the elastic matrix, which are balanced by visco
forces in the aqueous medium. However, viscous proce
in the fluid medium decay very rapidly on the time scale
cell movement. Therefore unbalanced forces might occur
short periods of time, e.g., during back retraction of locom
ing cell, but during most of the time, cells can be expected
be in mechanical equilibrium, as suggested by experime
measuring force patterns of both stationary and locomo
cells on elastic substrates@4,6#. Our model for cellular force
patterns can be interpreted as one stress fiber connecting
focal adhesions. Obviously this minimal system obeys m
chanical equilibrium. Then overall force vanishes and
force dipole is the first relevant term in the multipolar expa
sion Eq.~1!.

Force dipoles are classified according to their symme
properties into isotropic dipoles~centers of contraction o
dilation!, anisotropic dipoles without moment and anis
tropic force dipoles with moment@33#. Force dilatation and
force contraction dipoles have only positive and only ne
tive eigenvalues, respectively. For example, in three dim
sions three pairs of juxtaposed forces, one for each coo
nate direction, form an isotropic force dipole, wherePi j
5Pd i j . Such a force dipole describes a spherical inclus
in a simple cubic lattice, see Fig. 1~a! @23#. Applied to two
dimensions, it describes atomic defects adsorbed onto a
strate@24#. An anisotropic force dipole without moment is
nondiagonal, but symmetric tensor. For example, for
couple of juxtaposed forces with a dipole strengthP and an
orientation in directionlW, we can write the force dipole ten
sor asPi j 5Pl̂ i l̂ j . Such dipoles are used below to descri
the probing force patterns of cells, see Figs. 1~b! and 1~c!
@29#. An anisotropic force dipole without moment oriented
the z direction readsPi j 5Pd izd jz and describes, for ex
ample, an atomic defect intercalated in graphite@25#. Finally,
an anisotropic force dipole with an angular moment d
scribes a set of two opposing forcesFW separated by a dis
tancelW oriented arbitrarily with respect toFW , which leads to
Pi j ÞPji . In this paper, we only consider force dipoles wit
out such moments.
1-3
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B. Interaction between physical dipoles and an elastic medium

The elastic medium surrounding a particle can mediate
elastic interaction with other particles, sample boundaries
external strain fields. It is important to note that this effe
requires adirect interaction of the particle with its elasti
environment. In traditional condensed matter systems,
direct interaction is usually a quantum effect~e.g., Born re-
pulsion for defects intercalated into a crystal lattice or v
der Waals attraction for defects adsorbed onto a crystal
tice!. The interaction of a single particle localized atrW with
the elastic medium can be described by an interaction po
tial Vd(rW,uW ), which not only depends on positionrW, but
which also is a functional of the displacement fielduW (rW8) of
the elastic medium. For a fixed particle positionrW, we can
expand the interaction potential with respect to the displa
ment field

Vd~rW,uW !'2E f i~rW1sW !ui~rW1sW !d3s, ~2!

wheref i52dVd /dui uui50 is the force density exerted by th
defect onto the elastic medium in its undeformed refere
state. Here and in the following, summation over repea
indices is always implied. The expansion can be termina
after the linear term because we assume small deformat
or, equivalently, small forces. This linearized interaction p
tential is widely used in the literature on elastic defects
traditional condensed matter materials@23–25#. For later use,
we also note that Eq.~2! can be rewritten in terms of th
force multipoles defined in Eq.~1!, if one makes the assump
tion that the interaction of the defect with the medium
short ranged. Then

Vd~rW,uW !'2 (
n50

`
1

n!
Pi 1 , . . . ,i niui ,i 1 , . . . ,i n

~rW !, ~3!

where indices after the comma denote derivatives of the
placement field with respect to position (ui5]u/]r i). In this
way, all the details of the direct interaction between medi
and defect are subsumed in the defect force pattern and
can study elastic effects in different materials within a co
mon theoretical framework, as long as the two assumpti
of small and localized forces are valid.

The displacements of the elastic medium are controlled
a competition between the direct interaction between de
and medium and the elastic strain energy of the med
under the constraints of adequate boundary conditions.
strain energy is@34#

Ve5
1

2E d3rCi jkl ui j ~rW !ukl~rW !, ~4!

whereui j (rW) is the strain tensor andCi jkl the elastic constan
tensor of the medium. Consider now the general case
an elastic medium subject to loading with defects with
overall volume force densityfW($rWa%,rW)5(a fWa(rW), wherea
numbers the different defects. Then the total energy of
system is
02191
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1

2E d3rCi jkl ui j ~rW !ukl~rW !

2E d3r f i~$rW
a%,rW !ui~rW !2 R dS fi

s~rW !ui~rW !, ~5!

where the first term is the strain energyVe and the second
term the direct interactionVd5(aVd(rWa). The surface force
densityfWs in the third term acts as a Lagrange multiplier th
enforces the boundary conditions at the sample surfacS.
For a fixed defect configuration, the displacementsuW (rW) are
determined fromdVt /duW 50, which defines mechanica
equilibrium

Ci jkl ukl, j~rW !52 f i~$rW
a%,rW !, rW in V, ~6!

and the boundary condition at the surface of the elastic
terial

Ci jkl ukl~rW !nj~rW !5 f i
s~rW !, rW on S, ~7!

wherenW is the outward directed surface normal of the surfa
elementdS. By combining Eq.~6! and Eq.~4!, one finds
Ve5 1

2 *d3r f iui52 1
2 Vd . Therefore the overall energyVt

5Vd1Ve5 1
2 Vd52Ve and the overall energy can be writte

as function of the defect configuration only. In this way, t
direct interactions of the particles with the medium can
rigorously transformed into anindirect interaction between
defects. This also allows the calculation of the interaction
a single defect with a boundary-induced strain field or
external strain field applied at the boundary. The grou
state configuration of elastically interacting defects is o
tained by minimizing total energyVt .

C. Interaction between active cells and an elastic medium

The forces exerted by mechanically active cells on
environment are mainly due to actomyosin contractili
Thus, in contrast to the interaction of physical force dipo
with the elastic medium, where the force can be derived fr
conventional interaction potentials, cellular forces are c
tinuously and actively generated by the cell and involve n
equilibrium processes that are tightly regulated by bioche
cal events inside the cell. Hence, the interactions of c
with an elastic environment are more complicated than
physical defects and there is littlea priori reason why they
should be described by Eq.~2!. Motivated by recent experi-
ments with elastic substrates@11–13#, we have argued before
that despite these complications, a similar description as
the physical case can be employed for the cellular one@31#.
We asked which kind of information a cell can extract fro
its elastic environment using its contractile machinery a
suggested that an appropriate scalar quantity to charact
the environment is the work the cell has to perform in ord
to build up a certain level of force against the elastic en
ronment. Experimental observations suggest that active
behavior amounts to a simple preference for large effec
stiffness, which corresponds to a minimization of this ener
As a simple analog, consider a linear spring. In order to bu
up a certain forceF, the energyW5Kx2/25F2/2K has to
1-4
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be invested into the spring, wherex is displacement andF
5Kx is force at equilibrium. If there is a choice of differen
springs with different spring constantsK, the smallest
amount of energyW to build upF has to be invested into th
spring with the largest value forK. In the case of cells, the
different springs correspond to different directions as pro
by different stress fibers, and on the long run, the cell w
orient in that direction that corresponds to the largest va
of K, possibly because in this direction, the buildup of for
is most efficient. The example of the linear spring can also
used to illustrate the main difference to the physical ca
when the final configuration is determined by the over
energyVt5Kx2/22Fx52F2/2K52W. Thus in contrast
to the case of cellular force dipoles for physical dipoles mi
mal values of stiffnessK are most favorable.

We now explain our reasoning in more detail for the ca
of cells in a three-dimensional environment described
continuum elasticity theory. In order to identify a suitab
analog to the spring constantK, we introduce the concept o
local effective stiffnessof the elastic environment. We defin
this quantity to be the workW required to build up a unit
force in the elastic medium. The deformation workW re-
quired to build up an arbitrary force distributionfW(rW) is given
by

W5E d3r E
0

ui j
fW

Ci jkl ukl~rW !dui j ~rW !, ~8!

which in the absence of external prestrain is equivalent to
energy stored in the elastic medium given in Eq.~4!. Then
integration by parts gives

W52
1

2E d3rui~rW !Ci jkl ukl, j~rW !

1
1

2 R dSnjCi jkl ukl~rW !ui~rW !. ~9!

Applying the mechanical equilibrium conditions of the ela
tic medium, Eqs.~6! and ~7!, yields

W5
1

2E d3rui~rW ! f i~rW !1
1

2 R dSui~rW ! f i
s~rW !. ~10!

In an infinite medium the boundary condition at the surfa
yields a vanishing surface integral. Hence for a force dis
bution centered aroundrW, the volume integral can be turne
into a local expression by using the definitions of Eq.~1!:

W`5
1

2E f i~rW1sW !ui~rW1sW !d3s

5
1

2 (
n50

`
1

n!
Pi 1 , . . . ,i niui ,i 1 , . . . ,i n

~rW !. ~11!

In particular, for a force monopole and a force dipole o
finds W`5 1

2 Piui
`(rW) and W`5 1

2 Pi j ui j
`(rW), respectively,

where uW ` and ui j
` are the displacement and strain tens

fields caused by the respective force multipole in an infin
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homogeneous medium.W` relates the effective stiffness en
countered by a cell to the elastic constants. Since st
scales inversely with elastic constants,W` decreases if the
elastic constants increase. For an elastically anisotropic
dium, W` varies with the direction of force application
which provides an orientational clue for cell orientation. A
we will see below, tensile prestrain or boundary-induced t
sile image strain also leads to an increased effective stiffn
Therefore minimization ofW` corresponds to the exper
mentally observed cellular preference for large effect
stiffness.

D. Isotropic elastic medium

The mechanical equilibrium condition, Eq.~6!, states that
the applied body forcesf i(rW) are balanced by the interna
restoring forcess i j , j (rW), where s i j (rW)5Ci jkl ukl(rW) is the
stress tensor. In the following, we will consider only isotr
pic elastic materials, that is, there are two elastic consta
e.g., the Lame´ coefficientsm and l or Young modulusE
~elastic rigidity! and Poisson ration ~that describes the rela
tive importance of shear and compression modes!. For our
purpose, it is convenient to define a third pair of elastic co
stants,L5l/m and c52m1l5m(21L). Therefore Pois-
son ration5L/2~L11! andn51/2, 1/4, and 0 correspond t
L→`, L51, andL50, respectively. In practice,E will be of
the order of a few kilopascal, which is a typical value f
physiological tissues~simple scaling shows that for a typica
forceF510 nN at focal adhesions, a deformation in the m
crometer range corresponds toE510 kPa). Values for the
Poisson ration are close to 1/2~incompressible medium!
both for synthetic elastic substrates and physiological hyd
gels. However, other values forn might be realized in future
applications, e.g., for artificial tissues or on compliant s
faces of biosensors. For isotropic elasticity, the elastic c
stant tensor of the medium readsCi jkl 5ld i j dkl12md ikd j l
and Eq.~6! is conveniently rewritten using a vector notatio
as

nuW ~rW !1~11L!¹W ¹W •uW ~rW !52
fW~rW !

m
, rW in V, ~12!

which is a linear second order differential equation for t
displacement field and has to be solved with the appropr
boundary conditions.

Since the differential equation, Eq.~12!, is linear, the
superposition principle applies and the boundary va
problem is formally solved by determining the Gree
tensor Gi j (rW,rW8), i.e., the kernel for a pointlike body
force f i(rW)5 f id(rW2rW8). The elastic fields of more compli
cated force distributions can be obtained by convolut
of the Green tensor with the force density, i.e.,ui(rW)
5*Gi j (rW,rW8) f j (rW8)d3r 8. The elastic fields resulting from
force dipoles are obtained by differentiation ofGil , ui(rW)
5Gil ,k(rW,rW8)Pkl andui j (rW)5Gil ,k j(rW,rW8)Pkl . In general, the
determination of Green functions in elasticity theory for
given geometry and boundary condition is rather difficu
since the second term in Eq.~12! couples different compo-
nents of the displacement field. By taking the Laplacian
1-5
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Eq. ~12!, one arrives at the biharmonic equationnnuW 50
for the displacements. Thus, harmonic potential theory is
quently used, for instance, in the stress functionx method
@34# and in the Galerkin-vector approach@35#, in addition to
other methods like expansion ofuW in terms of a suitable
complete basis set of orthonormal functions@36#.

E. External strain

We now consider how a cell establishes a force patter
a prestrained homogeneous medium. The work require
generate a force pattern in the presence of an externally
posed strain tensor fieldui j

e (rW) is given by

W5E d3r E
0

ui j
e

1ui j
fW

Ci jkl ukl~rW !dui j ~rW !

2E d3r E
0

ui j
e

Ci jkl ukl~rW !dui j ~rW !5W`1DWe ~13!

with

DWe5E d3rCi jkl ui j
fW ukl

e ~rW !5 (
n50

`
1

n!
Pi 1 , . . . ,i niui ,i 1 , . . . ,i n

e ~rW !.

~14!

The derivation of Eq.~14! proceeds along the same lines
for Eq. ~11!. In particular, for a single force dipole one ge
DWe5Pi j ui , j

e (rW). Because of contractile cell activity,Pi j has
negative eigenvalues (P,0). Thus, tensile prestrain (ui j

e

.0) decreasesW as does a larger rigidityE and hence is
interpreted by the cell as an increase in effective stiffn
~strain stiffening!. In contrast, compressive prestrain corr
sponds to a decrease in effective stiffness and henc
avoided by the cell.

F. Boundary-induced image strain

We now consider the energy involved to deform an ela
medium in the presence of a sample boundary. In orde
quantify the effect introduced by the boundary, we splitui j

5ui j
`1ui j

b into a contribution arising in an infinite medium
ui j

` and a boundary-induced strain fieldui j
b ~image strain!

that depends on sample geometry and boundary condi
uW ` ensures that the force balance is satisfied everywher
the sample volumeV. However, uW ` will not satisfy the
boundary condition atS that requires one to introduceuW b. In
order to keep the force balance in the sample, the im
displacements have to be homogeneous solutions of Eq.~12!.
Otherwise they can be chosen in such a way that the bo
ary conditions are satisfied. NowW5W`1DWb, whereW`

is the energy of the infinite medium andDWb is the addi-
tional energy due to the boundary effect. For the latter,
have

DWb5
1

2E d3r f i~rW !ui
b~rW !1

1

2 R dS fi
s~rW !ui~rW !, ~15!

which includes both the effects of fixed boundary strain a
fixed boundary forces. In principle, the boundary conditio
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in a physiological context can be very complicated. In o
calculations we will restrict ourselves to two fundamen
reference cases, namely,free boundaries, where the normal
tractions vanish at the boundary, i.e.,f i

s(rW)50, andclamped
boundaries, where the displacements vanish at the bound
i.e., ui(rW)50. We will refer to the former as theNeumann
problemand to the latter as theDirichlet problem. In both
cases, the surface integral in Eq.~15! vanishes. Thus, the
change in effective stiffness induced by a boundary as
countered by a force dipole readsDWb5 1

2 Pi j ui , j
b (rW). In this

way, cells can actively sense not only the presence o
close-by surface, but also its shape and boundary condit

G. Elastic interactions of cells

Strain fields produced by other cells may be large eno
to be detected as external strain by the cell, which gives
to an elastic interaction of cells. Even if cells have initial
isotropic force patterns, they will sense anisotropic strain a
begin to polarize. The change in stiffness encountered b
force patternfW centered aroundrW caused by a second forc
patternfW8 centered atrW8 reads

DWfW fW85E d3s fi~rW1sW !ui~rW1sW !

5E E d3sd3s8 f i~rW1sW !Gi j ~rW1sW,rW81sW8! f j8~rW81sW8!

5 (
n50

`

(
m50

`
1

n!

1

m!
Pi 1 , . . . ,i niGi j ,i 1 , . . . ,i nj 1 , . . . ,j m

3~rW,rW8!Pj 1 , . . . ,j mj8 , ~16!

where the indicesi 1 , . . . ,i n denote derivatives of the Gree
function with respect to the unprimed coordinates a
j 1 , . . . ,j m derivatives with respect to the primed coord
nates. For translationally invariant geometries, for instan
in infinite space,Gi j (rW,rW8)5Gi j (rW2rW8) and derivatives for
j k become equivalent to derivatives for2 i k . As a model for
elastically interacting cells, we consider how identical, sta
anisotropic contraction dipoles organize in a soft medium
order to sense maximal effective stiffness in their enviro
ment. The casen5m51 in Eq.~16! corresponds to the force
dipolar interaction:

DWPP85Pli ui ,l~rW !5Pli Gi j ,lk~rW,rW8!Pk j8 ~17!

and will be discussed in more detail below.

H. Summary modeling section

To summarize the first part of this paper, both physi
defects and active cells respond to elastic deformation
their environment and we suggest that the same mathem
cal formalism can be used to describe both situations. In f
all formulas derived in this section for interactions of ce
with external strain, sample boundaries and other cells
quantified byW describe the corresponding interactions
physical dipoles as quantified byVt , with W and Vt being
1-6
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related to each other simply by a switch in sign. This resu
typical for situations described by energies with quadra
scaling, as explained above for the simple case of a lin
spring. For different situations of interest we found the sa
resultDW5Pi j ui j , whereui j is the strain tensor evaluated
the position of the force dipolePi j . Depending on the situ
ation of interest, this strain tensor can correspond to ex
nally imposed strain, image strain induced by a sam
boundary or strain due to the traction of other force dipol
Our formula shows that cells can sense anisotropies in t
environment only through an anisotropic probing process
the probing process were isotropic,Pi j 5Pd i j , we would
find W5Puii and cells could only sense the scalar quan
uii describing the local relative change in volume, but n
any tensorial quantity like the direction of external strain.

It is important to note that the above equations for act
cells are not interaction potentials in a strict physical sen
Rather these equations try to quantify information that c
can gain by pulling on their environment and show ho
external perturbations result in changes in effective stiffne
The experimental observation that active cells prefer la
effective stiffness in their environment leads to the inter
tion laws for cells given in Eqs.~14!–~16!. In this way, we
can predict cellular self-organization in soft media from
extremum principle in elasticity theory, in excellent agre
ment with experimental results@31#. The structure formation
for physical dipoles follows simply by inverting the sign o
the interaction laws derived for active cells. This case mi
also apply to artificial or inert cells@29#. For biomimetic
systems, one might think of vesicles or nanocapsules wh
contract on adhesion to an elastic environment. For cell
systems, one might think of cells which are deficient in
gard to the experimentally observed dynamic response
normal cells to elastic properties of the environment.

In regard to modeling of active cells, we assume that th
probe their elastic environment through an anisotropic p
cess in which force is of central importance, and that t
process results in a cellular preference for large effec
stiffness in the environment. Although the phenomena
scribed here are closely related to cell morphology and
dynamics of focal adhesions, these aspects are not the su
of the present work. In particular, the magnitudeP of the
cellular force dipole tensor does not enter our predictions
contrast to the positions and orientations represented by
dipole tensorPi j . This reflects the fact that our model fo
cuses on the extracellular properties that can be sensed b
cell. Since we avoid modeling cell morphology and dyna
ics of focal adhesions, we are able to describe the ac
behavior of cells in the same mathematical framework de
oped before to describe physical defects in a deformable
dium. In particular, both cases require the solution of
corresponding elastic boundary value problem given in E
~6! and ~7!. In the following section, we present exact sol
tions for different cases of interest.

III. EXAMPLES OF CELL ORGANIZATION

A. Interaction with external strain

As an example for cell organization in a prestrain
environment, we consider a homogeneously prestrai
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elastic slab with an uniaxial stressp acting along thez
axis. The other faces are traction free, i.e., the str
tensor has only one nonzero componentszz5p. Then the
corresponding strain tensor has only diagonal compon
ui j

e 5p/E$~2n,0,0!,~0,2n,0!,~0,0,1!% independent of position
Contraction of this external strain tensor with the forc
dipole tensorPi j according to Eq.~14! leads to

DWe5
pP

E
@~11n!cos2u2n#, ~18!

whereu is the orientation of the dipole relative to the dire
tion of externally applied strain. Equation~18! applies to
both a cell on the top surface of the strained slab~elastic
substrate! or inside a strained infinite elastic material~hydro-
gel!. For tensile stress (p.0) the cell senses maximal effec
tive stiffness along the direction of stretchu50, thus cells
orient preferentially in the direction of stretch in a pr
strained environment.1 On the other hand, due to lateral co
traction, cells in a precompressed environment (p,0) will
orient perpendicularly to the axis of compression, which i
combined effect of compressive strain avoidance in thz
direction and maximal tensile strain detection in the perp
dicular directions, which will be most pronounced for incom
pressible media~n'1/2!. In contrast, a physical anisotropi
contraction dipole, causing a local contraction of the en
ronment along its axis, is repelled~attracted! by tensile
~compressive! strain, because the negative interaction ene
with the medium is reduced~increased! due to the expansion
~compression! of the environment caused by the extern
field. Physical anisotropic contraction dipoles therefore o
ent in the opposite way as mechanosensing cells with res
to external homogeneous strain.

B. Dipoles on elastic half space

Mechanically active cells adhering to an elastic substr
can interact elastically with each other according to Eq.~16!.
If the thickness of the substrate is much larger than the e
tic displacements on the top surface, it can be modeled
semi-infinite elastic space@6#. The Green function for a force
applied to the surface of a semi-infinite space is given by
well-known Boussinesq solution@34#. Since tangential forces
are expected to be much larger than normal forces,Pi j can
be restricted to thex-y plane. Moreover, the normal displace
ment component contributes very little to the elastic inter
tion and we may use the two-dimensional~2D! Green func-
tion, i.e., only thex- and y-components of the Boussines
solution

Gi j
2D~rW,rW8!5a1H a2d i j 1

RiRj

R2 J 1

R
, ~19!

whererW5rW2rW8 and

a15
L~L12!

4pc~11L!
5

n~11n!

pE
, a25

21L

L
5

12n

n
.

~20!

1In Ref. @31#, tensile stress has been defined with an opposite s
resulting in an opposite sign in Eq. 18!.
1-7
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It is convenient to define the anglesu, u8, and a via the
scalar products cosu5lW•rW, cosu85lW8•rW, and cosa5lW•lW8.
Then the change in effective stiffness encountered by
cell due to the traction of the other is given by

DWPP85a1

PP8

2R3
f ~u,u 8,a! ~21!

with the angular dependence

f ~u,u8,a!53~cos2u1cos2u825 cos2u cos2u82 1
3 !

2~12a2!cos2a23~a223!cosa cosu cosu8.

~22!

Since the displacements of a force-dipole scale;R22, the
strain field scales;R23 with distance, which leads to
long-ranged elastic interaction (WPP8;R23) typical for di-
polar interactions. The complicated angular dependenc
Eq. ~22! results in a highly anisotropic interaction. Note th
for the planar geometry, there are only two independ
angles. Nevertheless here we prefer to write the interac
symmetric in the primed and unprimed coordinates, si
this is favorable for numerical implementations.

DWPP8 has a pronounced minimum for aligned dipol
~u5u85a50!, independent ofn. A contractile cell causes a
local compression of the substrate underneath the cell a
the contraction axis and tensile strain at more distant poi
Hence at distant points maximal strain stiffening occ
along the axis of contraction. A second cell will therefo
upregulate its mechanical activity along the same direct
This scenario constitutes a positive mechanical feedb
loop for cell alignment, since in the aligned configuration t
mechanical activity of one cell upregulates the activity of t
other and vice versa. At low cell densities, a common patt
for the organization of elastically interacting cells will ther
fore be the formation of strings of cells, similar to the case
electric dipoles@37#. Strings might close into rings so tha
each cell is fully activated by its neighbors.

The 2D case for physical dipoles has been discussed
fore for the isotropic case@24#. Then

Vt52Pd l i Gi j ,lk~rW,rW8!P8dk j52PP8Gi j ,i j ~rW,rW8!

5
~21L!2PP8

4p~11L!cR3
. ~23!

Thus, for identical dipoles the interaction is isotropic a
repulsive. The case of anisotropic physical dipoles is
scribed by the negative of Eq.~21!. Then the ground-state
configuration strongly depends on the Poisson ration via the
angular dependence of Eq.~22!. For incompressible media
n51/2 ~L→`!, dipoles arrange with perpendicular orient
tions in a localT configuration. This leads to rather compa
structure formation, with a square lattice pattern at interm
diate and a herringbone pattern at high dipole densities, s
lar to the situation with electric quadrupoles@29#. For highly
compressible media,n→0 ~L→0!, dipoles prefer to align
side by side in a railway tracklike configuration. Forn51/5
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~L52/3!, both states have degenerate energies. Figur
schematically shows the different structures predicted by
analysis.

C. Dipoles in elastic full space

Strain propagation in an elastic 3D infinite medium
described by the Thomson Green function@34#

Gi j
`~rW,rW8!5a1

`H a2
`d i j 1

RiRj

R2 J 1

R
, ~24!

with

a1
`5

11n

8pE~12n!
5

L11

8pc
, a2

`5~324n!5
31L

11L
.

~25!

The most important result for physical dipoles is the fact t
sinceGii

`50, the elastic interaction of isotropic dipoles
3D vanishes@22#. Therefore their interaction is completel
determined by boundary-induced interactions, like for hyd
gen in metal samples of finite size@23#.

For the elastic interaction of two active cells, we find

DWPP85a1
`

PP8

2R3
f `~u,u8,a! ~26!

with the angular functionf `(u,u8,a) given by Eq.~22! by
replacing the constantsa1 and a2 with a1

` and a2
` , respec-

tively. Note that in 3D there are three independent orien
tional degrees of freedom. In Fig. 3 we show a density p
of DWPP8 for dipoles with relative orientationsa50 and
a5p/2 positioned in thex-z plane for two different values
of the Poisson ratio,n50 andn51/2. Like on 2D substrates
cells in a 3D environment encounter a mechanical feedb
loop favoring cell alignment. For two parallel dipoles inz
direction placed along thez axis, we find

DWPP852
~L12!P2

2pc S 1

zD 3

, ~27!

FIG. 2. Different structures arising from elastic interactions
anisotropic force dipoles on top of an elastic half space.~a! Physical
force dipoles for Poisson ration'1/2 locally form aT configura-
tion. The resulting structure formation is compact and similar to
one of electric quadrupoles.~b! Physical force dipoles for Poisso
ratio n'0 align side by side in a railway tracklike configuratio
The crossover between~a! and ~b! occurs atn51/5. ~c! Cellular
force dipoles align in strings, similar to electric dipoles and ind
pendent of the value forn.
1-8
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which yields the optimal configuration independent of t
value forL ~or, equivalently,n!. Again this behavior is simi-
lar to the ones of the electric dipoles@37#. For two parallel
dipoles inz direction placed along thex axis ~railway track
configuration!, we find

DWPP85
~L21!P2

8pc S 1

xD 3

. ~28!

Thus DWPP8 changes sign asL varies through 1~n51/4!.
Finally, in theT configuration, where the first dipole is fixe
in z direction at the origin and the second dipole is position
in thex-y plane oriented perpendicular to thez axis, we find

DWPP852
~L11!P2

4pc S 1

r D 3

, ~29!

which is always positive and yields a globally maxim
DWPP8. Therefore it corresponds to a globally minimalVt

52DWPP8 and theT configuration is the ground state o
two physical anisotropic contraction dipoles, independ
of the value forn. The aggregation of physical dipoles in 3
is more complicated than in 2D, since theT configuration

FIG. 3. Density plots of cellular interaction potentialDWPP8

from Eq.~26! for ~a,b! parallel and~c,d! perpendicular orientations
In ~a,c!, Poisson ration51/2, and in~b,d!, n50. One dipole ori-
ented along thez axis is fixed at the origin, while the other is move
in space. Black denotes areas of attraction and white areas of r
sion. The interaction potential for physical force dipoles simp
differs in sign, thus black and white exchange meaning.~a,b! Inde-
pendent of the value forn, two cells prefer alignment~black region
along z axis!. The interaction in the railway track configuratio
~alongx axis! changes sign atn51/4, when the black cone vanishe
~c,d! TheT configuration is the ground state for physical dipoles
3D independent of the value forn ~white regions alongz and x
axes!. This is different on an elastic half space, in which case
ground state changes from theT to the railway track configuration
for n51/5.
02191
d

t

cannot be continued in 3D without causing frustration. T
leads to the existence of many metastable states.

D. Dipoles in elastic half space

The elastic isotropic half space with a clamped surface
r 350 constitutes a Dirichlet problem with vanishing di
placements at the planar boundary,ui(rW)50 for r 350,
whereas the free surface leads to a Neumann boundary v
problem with vanishing surface tractions,s i j (rW)nj50 for
r 350 with nW 5(0,0,1) being the surface normal. The boun
ary value problem of the semi-infinite space can be sol
using the concept of image singularities. Image approac
are well known from electrostatics; the simplest example
the charge in front of a metal plate. Here, the field due t
charge Q at rW85(r 18 ,r 28 ,r 38) with the boundary atr 350
is equivalent to the field of the charge and an image cha
2Q at rW im8 5(r 18 ,r 28 ,2r 38) without a boundary. In analogy
the displacement field due to a unit force atrW8 close to a
planar surface of a semi-infinite space is equivalent to
superimposed fields of a set of force nuclei placed in a
mogeneous infinite substrate, i.e.,

Gi j ~rW,rW8!5Gi j
`~rW,rW8!1Gi j

im~rW,rW8!, ~30!

whereGi j
` is the Green function in an infinite medium, E

~24!, andGi j
im specifies its image system, which is a sum

functions derived fromGi j
` by differentiation~point images,

i.e., forces and force dipoles! or integration~line images, i.e.,
a line of force nuclei!. Despite its rather simple geometry, th
image system of the elastic half space is rather complica
and consists of up to 15 image nuclei, including point nuc
located atr im8 5(r 18 ,r 28 ,2r 38) and line images running norma
to the surface and extending from2r 38 to infinity. The image
system of the free half space was calculated by Mindlin
ing a Boussinesq-Galerkin representation@35#. The Green
function of the clamped half space has been derived
Phan-Thien applying a Papkovitch-Neuber ansatz, howe
without revealing the image system in detail@38#. Quite re-
cently, Walpole@39# used methods of general harmonic p
tential theory and presented the image system for two joi
half spaces, which includes the clamped or free half spac
limiting cases of infinite or vanishing shear rigidity in one
the joined spaces. Introducing the harmonic function

1

s
5

1

urW2rW im8 u
, ~31!

wheres the distance from the image point, and

F5 ln~r 31r 381s!,

C5~r 31r 38!F2s, ~32!

the image Green tensorGi j
im of the isotropic elastic half spac

reads@39#:

ul-

e
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Gi j
im~rW,rW8!5MGi j

`~rW,rW im8 !1
Jr38~11n!

4pE~12n! H s,i j 322d j 3s,i33

24~12n!d i3F S 1

sD
, j

22d j 3S 1

sD
,3
G J

2
Jr38~122n!~11n!

2pE~12n!
d j 3S 1

sD
,i

2
Jr38

2~11n!

4pE~12n! F S 1

sD
,i j

22d j 3S 1

sD
,i3

G
2

C~122n!~11n!

4pE~12n!
~C ,i j 22d j 3C ,i3!

1
B~11n!

2pE
d j 3F ,i1

B~11n!

2pE
~d i3F , j2d i j F ,3!,

~33!

where the coefficientsM, J, C, andB depend on the bound
ary condition~subscripts: freef, clampedc) and the Poisson
ratio n @39#:

M f5~324n!, Mc521,

Jf521, Jc51/~324n!,

Cf52~12n!, Cc50,

Bf52~122n!, Bc50. ~34!

For a fixedj, each line in Eq.~33! represents thei th compo-
nent of the displacement field of one fundamental strain
clei of an infinite medium. For a free surface, five ima
singularities contribute to a surface tangential or norm
force component. A tangential forcej 51,2 introduces, in the
order of lines of Eq.~33!, three point images~force, double
force with moment and a doublet! and two line images~line
of doublets and line of double forces with moment! @35#. A
normal forcej 53 induces four point images~force, double
force, doublet, center of compression/dilation! and a line of
compression/dilation centers@35#. In a clamped half space
the line images disappear (B5C50) and there are only the
three or four point images for a tangential or normal for
component, respectively. Interestingly, the strength of
higher order point singularities is proportional to the distan
r 38 of the source point from the surface. Hence their relat
contribution to the displacement field with respect to the i
age force increases with increasing distance of the so
force from the surface. Note that forr 38→0, i.e., for a force
acting at a free surface of a semi-infinite space, Eq.~33!
yields the Boussinesq Green function from Eq.~19! for tan-
gentially applied forces and the solution of Cerruti for no
mally applied forces. The dominant terms to the image d
placement field far away from the surface arise from
image force and the line images;1/s, followed by the di-
pole type defects~double force, compression center! ;r 38/s

2

and finally the doublet;r 38
2/s3. The Poisson ration changes
02191
-
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e
e
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e

the relative magnitude of the image singularities with resp
to each other, but does not change their type~i.e., their sign!.
Therefore, strain propagation in the half space is expecte
stay qualitatively similar with varyingn. Changing the
boundary condition from free to clamped, the point imag
flip their sign, which indicates that clamped and free boun
ary will induce qualitatively opposite effects. Indeed, for t
special case of an incompressible medium,n51/2, clamped
and free half space induce the same boundary fields but
opposing signs.

The image displacementsuW b induced by a force dipole
Pi j at rW8 are obtained from Eq.~33! by differentiation with
respect to the primed coordinates. Note that the planar
face atr 350 breaks the translational invariance along thz
axis, which means that differentiation ofGi j

b with respect to
r 3 andr 38 are not equivalent. Since the strength of the dipo
singularities inGi j

im is proportional tor 38 , taking the deriva-
tive with respect to r 38 will lead to dipole images of
r 38-independent strength that are proportional to the dip
strengthP. Therefore, the far field image displacements p
duced by a force dipole in front of a planar surface are do
nated by image dipole terms;1/s2 of strength proportional
to M andJ and additional images derived from the line im
age terms. In Fig. 4 we plotuW b for three different dipole
orientations with respect to the surface normal of a clam
half space for Poisson ration51/2. In this case, all image
displacements point in the opposite direction for a free s
face.

According to Eq.~15!, the change in effective stiffnes
encountered by a force dipolePi j positioned a distancer 38
5d away from the surface is proportional to the induc
image strain at the position of the dipole, i.e.DWb(rW8)
5 1

2 Pi j @]2Gik
im(rW,rW8)/]r j]r l8#PklurW→rW8 . Because of rotationa

symmetry with respect to the surface normal, the surf

FIG. 4. Image fieldsuW b for a contraction dipolePi j positioned at
rW85(0,0,d) in front of a clamped surface of a semi-infinite spa
for Poisson ration51/2. Dipole orientations are~a! u50, ~b!
u5p/4, and~c! u5p/2 with respect to the surface normal. At th
clamped surface the image displacementsuW b balance the displace
mentsuW ` of an infinite space. Inside the sample, they are homo
neous solutions of the elastic equations. The interaction of a dip
with the clamped surface is equivalent to the interaction of
dipole with a set of image singularities placed atrW im8 5(0,0,2d).
For a free surface, the normal tractions vanish and all image
placements change sign. Forn,1/2, there is an additional contribu
tion to uW b derived from line images. However, the interaction
force dipoles with the boundary does not change qualitatively an
is varied.
1-10
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ELASTIC INTERACTIONS OF ACTIVE CELLS . . . PHYSICAL REVIEW E 69, 021911 ~2004!
induced change in effective stiffness sensed by a dipole
pends only on its distanced to the surface and the ang
cosu5nW•lW between dipole orientation and surface norm
We find

DWb~d,u!5
P2

256pEd3
~an1bncos2u1cncos4u!, ~35!

with the coefficients

an
f 5

~11n!@512n~6n21!#

12n
,

an
c52

~11n!@15132n~n21!#

~12n!~324n!
,

bn
f 5

~11n!@2214n~2n29!#

12n
,

bn
c52

~11n!~34132n2272n!

~12v !~324n!
,

cn
f 5

~11n!@13~122n!112n2#

12n
,

cn
c52

~11n!~728n!

~12n!~324n!
, ~36!

being rational function of the Poisson ration. DWb scales
quadratically inP, because the image strain scales linearly
P, in other words, the force dipole interacts with its ow
images. The interaction of the force dipole with the surfac
a long-ranged effect and scales like a dipole-dipole inter
tion potential, that is,;d23. For free and clamped surface
all coefficients in Eq.~36! are positive and negative, respe
tively, irrespective ofn. Therefore, the preferred cell orien
tation close to the surface , i.e., the configurations of minim
DWb, are parallel~u5p/2! and perpendicular~u50! orienta-
tion for free and clamped boundaries, respectively. In Fig
we plot the angular dependence ofDWb for n51/2 andn50.

Since uDWbu;1/d3 increases ifd decreases, the overa
mechanical activity of a cell increases towards a clam
surface (DW,0), but decreases towards a free surfa
(DW.0). Thus we predict that cells preferentially locomo
towards a clamped boundary, but tend to migrate away fr
a free boundary. In general, free and clamped bounda
have always opposite effects. One may think of a clam
~free! surface as the interface between the medium and
imaginary medium of infinite~vanishing! rigidity, which ef-
fectively rigidifies ~softens! the medium towards the bound
ary. Thus for clamped~free! boundary conditions, the ce
senses maximal stiffness towards~away! from the boundary.
For clamped boundaries, mechanical activity of cells is
vored and cells can amplify this effect by adjusting orien
tion. For free boundaries, mechanical activity of cells is d
favored and the orientation response is an aversion respo

For the interaction of a physical dipole with the surfac
we simply have to switch sign in Eq.~35!. Hence, physical
02191
e-
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dipoles are attracted by free surface, and repelled fr
clamped surfaces. A clamped surface prevents the de
from displacing its environment to lower its potential energ
which results in a repulsive interaction. In contrast a fr
surface favors displacements close to the surface since
free surface there exist no internal restoring forces ac
normal to the surface. This results in an attractive interact
of the defect with the surface. SinceVt;P2, the sign ofP
does not matter, i.e., dilation and contraction dipole inter
in the same way with the surface.

E. Dipoles in elastic sphere

As an example for a finite sized sample, we consider
elastic sphere with radiusR. For the elastic sphere, no imag
system has been constructed that solves the elastic boun
value problem and it is not clear whether such an ima
system exists. Nevertheless, the elastic equations for the
tic sphere can be solved analytically by applying an exp
sion in terms of vector spherical harmonics. This approa
has been used by Hirsekorn and Siems@36# to solve the
Neumann problem of an anisotropic force dipole in an ela
sphere with a free boundary. We will follow this approa
also in order to solve the Dirichlet problem of a force dipo
in a clamped sphere. Both results are then used to calcu
the change in effective stiffness encountered by a force
pole in clamped and free spheres, respectively.

Analytical solutions to differential equations for scal
fields in spherical coordinates can be obtained by an exp
sion in terms of spherical harmonics, which form a compl
orthonormal basis set on the unit sphere. In a similar way,
general solution to the equilibrium condition Eq.~12! for the
vector fielduW (rW) can be expressed as a sum over so-ca

FIG. 5. Angular dependence of image interaction with t
boundary,DWb from Eq.~35!, for a cellular force dipole positioned
a distanced away from the surface of an elastic half space, plot
in units of P2/Ed3 and rescaled by 1/256p. Curves above and be
low the u axis correspond to free and clamped boundaries, res
tively. Solid and dashed lines correspond ton51/2 andn50, re-
spectively~all other Poisson ratios yield curves lying in betwe
those shown!. A clamped~free! surface effectively rigidifies~soft-
ens! the medium towards the surface. Hence, irrespective of
value ofn, cells close to a clamped surface prefer to orient perp
dicular (DWb minimal for u50! while cells close to a free surfac
prefer parallel orientation (DWb minimal for u5p/2!.
1-11
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BISCHOFS, SAFRAN, AND SCHWARZ PHYSICAL REVIEW E69, 021911 ~2004!
vector spherical harmonics~VSH!

uW ~r ,V!5(
lm

f lm~r !Y l l 11m
† ~V!1glm~r !Y l l 21m

† ~V!

1hlm~r !Y l lm
† ~V!. ~37!

Vector spherical harmonicsYJLM(V) form a complete ortho-
normal basis set on the unit sphere

E YJLM ~V!YJ8L8M8
†

~V!dV5dJJ8dLL8dMM8 . ~38!

They are the eigenfunctions of the angular momentum
eratorJ of a vector field as spherical harmonicsYlm are the
eigenfunctions of the~orbital! angular momentumL of a
scalar field.J is the vector sumJ5L1S of the orbital mo-
mentumL and the intrinsic spinS. The eigenvectors ofS are
the spherical basis vectorsea :

e6152
1

A2
~ex6ey!, e05ez ~39!

and represent a spinS51 system. SinceJ is an example of
angular momentum addition, one can construct the VSH w
the help of Clebsch-Gordon coefficientsCM2a

l
a
1

M
J @40#

YJlM~V!5(
a

CM2a
l

a
1

M
J YlM 2a~V!ea . ~40!

This implies that for a givenJ there are only three classes
VSH, namely,l 5J,J61, which in retrospective justifies ou
ansatz Eq.~37!.

In order to solve the boundary value problem, we spliuW
again into a contribution in an infinite substrateuW ` and a
boundary induced fielduW b. uW ` is the solution to the inhomo
geneous differential equation Eq.~12! with a body force den-
sity and thus ensures force balance everywhere inside
sample. For a force dipoleP8 located atrW8 the VSH expan-
sion of the displacement fielduW `(rW) reads forr 8,r @36#:

uW `~rW !5
1

c (
lm

Y l l 11m
† ~V!

~2l 11!r 2
Xlm

ab~h8,V8!Pa8
b

2
1

c (
lm

Y l l 21m
† ~V!

~2l 11!r 2
@3l 121~ l 11!L#

3Cm2a
l 21

a
1

m
l Al 22m

ab ~V8!h8 l 22Pa8
b

2
1

c (
lm

Y l lm
† ~V!

r 2
~21L!

3Cm2a
l

a
1

m
l Al 21m

ab ~V8!h8 l 21Pa8
b , ~41!

whereh85r 8/r ,1 and

Alm
ab~V!5A l 11

2l 11
Cm2a

l 11
b
1

l 2a1b
l Ylm2a1b~V!
02191
-

h

he

Blm
ab~V!5A l

2l 11
Cm2a

l 21
b
1

m2a1b
l Ylm2a1b~V!

Xlm
ab~r ,V!52~3l 111 lL!Cm2a

l 11
a
1

m
l Alm

ab~V!r l

1Al ~ l 11!~11L!Cm2a
l 21

a
1

m
l
•$Blm

ab~V!r l

1 1
2 Al 22m

ab ~V!r l 22@~2l 21!2~2l 11!r 2#%.

~42!

Sums over repeated indices are always implied except
Clebsch-Gordon coefficients.Pa8

b is the force dipole tenso
in the spherical basis set given by Eq.~39!. The reciprocal
basis vectors areea5ea

†5(21)ae2a and the metric tensor is
gab5(21)bda,2b . Spherical coordinates transform via th
unitary operatorUa i5(ea•ei) into cartesian coordinates, i.e

Pi j 5Ua iU j
bPb

a . ~43!

In order to satisfy force balance inside the sphere volum
the boundary induced fielduW b must be a homogenous solu
tion to Eq. ~12!. Thus, inserting Eq.~37! into Eq. ~12!, one
obtains a set of differential equations for the radial functio
f lm(r ), glm(r ), and hlm(r ) of the boundary induced field
@36#

05@3l 121~ l 11!L#S f lm9 1
2

r
f lm82

~ l 11!~ l 12!

r 2
f lmD

2Al ~ l 11!~11L!S glm9 2
2l 21

r
glm8

1
~ l 21!~ l 11!

r 2
glmD , ~44!

05~3l 111 lL!S glm9 1
2

r
glm82

l ~ l 21!

r 2
glmD

2Al ~ l 11!~11L!S f lm9 1
~2l 13!

r
f lm81

l ~ l 12!

r 2
f lmD

~45!

05hlm9 1
2

r
hlm82

l ~ l 11!

r 2
hlm . ~46!

The general solution to Eqs.~44!–~46! with a uW b which is
analytic at the sphere origin is@36#

f lm~r !5alm

3l 111 lL

~11L!~2l 13!
r l 11,

glm~r !5alm
1
2 Al ~ l 11!r l 21~r 22R2!1blm

1
2 r l 21,

hlm~r !5clmr l , ~47!
1-12
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ELASTIC INTERACTIONS OF ACTIVE CELLS . . . PHYSICAL REVIEW E 69, 021911 ~2004!
whereR is the radius of the sphere and the remaining c
stantsalm , blm , andclm must be determined by the boun
ary conditions at the sphere surface.

The Dirichlet problem of a clamped sphere yields

uW b~R,V!52uW `~R,V!, ~48!

i.e., the expansion coefficientsalm
c etc. of the boundary in-

duced field can be found by matchinguW ` and uW b at the
sphere surface:

alm
c 52

1

cR3

~2l 13!~11L!

~2l 11!~3l 111 lL!Rl
Xlm

gd~r8,V8!Pg8
d,

blm
c 5

2

cR3

3l 121~ l 11!L

2l 11 S r8

R D l 22

3Cm2g
l 21

g
1

m
l Al 22m

gd ~V8!Pg8
d,

clm
c 5

1

cR3
~21L!S r8

R D l 21

Cm2g
l

g
1

m
l Al 21m

gd ~V8!Pg8
d,

~49!

wherer85r 8/R is the ratio of the distancer 8 of P8 to the
sphere center and the sphere radiusR. For a sphere with a
free surface normal stress has to vanish and the corresp
ing Neumann boundary condition reads

s i j
b S xj

r D
r 5R

52s i j
`S xj

r D
r 5R

. ~50!

To determinealm
f , etc. one first has to calculate the stre

tensors i j
` and then balance the normal stress with the co

sponding boundary induced stresss i j
b at r 5R. The final re-

sult for the expansion coefficients in a free sphere is@36#

alm
f 5

1

cR3

2~11L!~2l 13!~ l 12!

~2l 11!M ~ l !Rl
Xlm

gd~r8,V8!Pg8
d,

blm
f 52

1

cR3

2~ l 21 l 11!1~2l 211!L

~ l 21!~2l 11!
Cm2g

l 21
g
1

m
l S r8

R D l 22

3Al 22m
gd ~V8!Pg8

d,

clm
f 52

1

cR3

~ l 12!~21L!

l 21 S r8

R D l 21

3Cm2g
l

g
1

m
l Al 21m

gd ~V8!Pg8
d, ~51!

with

M ~ l !52~ l 2111 l !1~2l 214l 13!L. ~52!

For both boundary conditions the image displacements s
;1/R2 with the sphere radius and the VSH expansion ofuW b

converges as; l 2(rr8) l . Thus, higherl moments dominate if
the dipole is close to the surface~r8→1!. These are localized
near the surface and decay rapidly towards the sphere ce
02191
-

nd-

s
-

le

ter.

We furthermore see that for a dipole close to the surface
convergence properties of the series expansion are ra
poor and morel terms need to be considered to approxim
the displacement field near the surface. Again clamped
free boundary induce opposing boundary fields as indica
by the opposite signs of the expansion coefficients:
clamped surface decreasesuW to zero at the boundary wherea
a free boundary enhances the displacements at the boun
In Fig. 6 we plot two examples for a deformed elastic sph
with free boundaries under the action of a contraction dipo

In order to calculate the change in effective stiffne
sensed by a contraction dipole atrW8 in an elastic sphere, we
need to contract the gradient-displacement tensor of
boundary induced field with the dipole tensor. This is mo
conveniently done using the spherical representation, i.e

DWb~rW8!5 1
2 Pa

bub
a ,b~rW→r 8,rW8!5 1

2 Pa
b~eb

†
•“ !~ea•ũb!.

~53!

Starting from the ansatz Eq.~37! for uW , ua
b(rW,rW8) can be

derived by applying the gradient formula for spherical h
monics@40#

“F~r !Ylm~V!52A l 11

2l 11S d

dr
2

l

r DF~r !Yll11m~V!

1A l

2l 11S d

dr
1

l 11

r DF~r !Yll21m~V!,

~54!

and furthermore the symmetry relationships of Clebs
Gordon coefficients@40#

Cm1

j 1
m2

j 2
m3

j 3 5~21! j 21m2A2 j 311

2 j 111
C

2m2

j 2
m3

j 3
m1

j 1 ,

Cm1

j 1
m2

j 2
m3

j 3 5~21! j 11 j 22 j 3C
2m1

j 1
2m2

j 2
2m3

j 3 . ~55!

We finally find

FIG. 6. Deformation of an elastic sphere (R51, L52, c51)
with a free surface by a contraction dipole oriented in thez direc-
tion. In ~a! the dipole is placed at the origin,rW5(0,0,0). In~b! the
dipole is placed off-center atrW5(R/4,0,0). The pictures show a cu
through thex-z plane, but it has rotational symmetry only in~a!.
1-13
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ub
a

b~rW,rW8!5(
lm

Rl
alm

11L
X* lm

abS r

R
,VD2~2l 13!r lA* lm

ab~V!

3S bl 12m

2
Cm2a

l 11
a
1

m
l 121cl 11mCm2a

l 11
a
1

m
l 11D .

~56!

Note that them sums overblm and clm run in the intervals
@2 l 22,l 12# and@2 l 21,l 11#, respectively. The boundar
induced change in stiffness sensed by a force dipole in
elastic sphere is then found by inserting the appropriate
pansion coefficientsalm , etc. given in Eqs.~50! and~51! and
contractingua

b with Pa
b5P8 a

b . We may rewriteDWb to
indicate the important scaling laws of the interaction of t
dipole with the sphere surface by

DWb5
P2

ER3
f nS r

R
,u D , ~57!

where r is the distance to the sphere center andu is the
dipole orientation with respect to the surface normal. T
function f n contains the sum over all angular momenta a
does not vary qualitatively asn ~or, equivalently,L) is var-
ied. With regard to cell orientation, we find the same resu
as for the elastic half space: cells will orient parallel~perpen-
dicular! to a free~clamped! surface, respectively. As show
in Fig. 7, we also find a similar result for the effect of di
tance to the surface; for free~clamped! boundary conditions,
a small ~large! distance to the sphere center is more fav
able, since the surface favors~disfavors! mechanical activity.
The new aspect here is the role of the sphere radiusR. Since
uDWu increases whenR decreases, one can effectively r
gidify ~soften! a material with a clamped~free! surface by

FIG. 7. Image interactionDWb from Eq. ~57! between the sur-
face and a cellular force dipole embedded in an elastic spher
radiusR with n51/3, plotted in units ofP2/ER3 as a function of
distancer /R to the sphere surface and rescaled by 15/8. Cur
above and below ther axis correspond to free and clamped boun
ary conditions, respectively. Solid and dashed lines correspon
orientationsu5p/2 andu50 with respect to the surface normal. A
for the half space, optimal cell orientation yieldsu50 ~clamped!
andu5p/2 ~free!, respectively.
02191
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reducing system size. For the interaction of a physical dip
with the surface embedded in an elastic sphere, we o
more obtain the opposite results. Dipoles are attracted~re-
pelled! and orient towards~away from! a free~clamped! sur-
face.

So far we have considered the interaction of a force dip
with the boundary. One may extend our model of cell-c
interactions to cells embedded in finite geometries and st
how their boundaries alter the interaction between cells
an elastic sphere containing many cells, we can separate
contributions to the effective stiffness into a contributio
from the boundary induced field, i.e., a cell-surface inter
tion as discussed above, and a contribution from the ela
fields of other cells embedded in the sphere, i.e., a cell-
interaction term. This contribution is modified with respe
to the interaction term in infinite medium, Eq.~27!, by a
boundary mediated interaction term. The indirect interact
term is given by contracting the dipole tensor of the fi
dipole with the image strain caused by the second dip
The most important result here is that the image term va
on the macroscopic scaleR. For physical dipoles, elastic in
teractions in finite sized geometries have been studied ex
sively, in particular forisotropicdipoles, which do not inter-
act in infinite medium and where the interaction betwe
dipoles is mediated solely via the boundary@23#. By setting
Pa

b5dab our results specialize to the interaction of isotr
pic dipoles in an elastic sphere

DWb~rW,rW8!52Vb~rW,rW8!5( Mlr
l r 8 lYlm* ~V!Ylm~V8!

~58!

with

Ml
f5

PP8

cR3

2~2l 13!~ l 11!~ l 12!

2~ l 21 l 11!1L~2l 214l 13!
, ~59!

Ml
c52

PP8

cR3

2l 13

~ l 11!~11~L13!l !
~60!

for free and clamped boundaries, respectively. These res
can be shown to be identical with the ones for isotropic
poles previously reported in Ref.@23#. Note that the interac-
tion of physical isotropic defects is always attractive~repul-
sive! for isotropic dipoles in a free~clamped! sphere. Due to
the macroscopic interaction range of isotropic physical
poles the indirect interactions lead to structure formation
the macroscopic scale~macroscopic modes!, e.g., in
hydrogen-metal alloys@23#. For anisotropic dipoles the im
age interaction introduces corrections to the direct interac
term, which vary on the macroscopic scale. In Fig. 8 we p
the interaction of two anisotropic dipoles in infinite mediu
and the modified interactions in clamped and free sphe
respectively. For example, the image correction in a f
sphere for two parallelz dipoles ~one placed at the spher
center! along thex axis reads

of

s
-
to
1-14
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DWb~x!5

PP8F ~1121352L1370L21135L3!212~714L!~215L13L3!S x

RD 2G
4~213L!~14119L!pcR3

. ~61!

For L→` ~n51/2!, this becomes

DWb~x!5
PP8

76pmR3 F45248S x

RD 2G . ~62!

For a clamped sphere, we find

DWb~x!5

PP8F2~6861280L124L2!145~11L!~714L!S x

RD 2G
120~712L!pcR3

, ~63!

FIG. 8. Cellular dipole-dipole interactionsDW5DW`1DWb in an elastic sphere~L52! in units ofPP8/cR3 for clamped~dashed gray!
and free~full gray! boundary conditions. Az dipole is fixed atrW5(R/4,0,0). Ax dipole ~a,b,c!, y dipole ~d,e,f!, andz dipole ~g,h,i! is moved
along the coordinate axes. The boundary condition introduces corrections to the interaction in infinite medium~black line! that vary on the
macroscopic scale. The boundary term dominates close to the surface and in some cases introduces new maxima or minima in the
landscape.
po

pic
ant
the
new
d-
ter-
to

es
which for n51/2 becomes

DWc
b~x!5

PP8

20pmR3 F22115S x

RD 2G . ~64!

Again we find that clamped and free surface result in op
site effects. On the microscopic scale~i.e., for small cell-cell
02191
-

distances!, the direct interaction dominates. For macrosco
cell separations, the boundary term introduces signific
contributions that dominate over the direct term close to
surface. For some cases, the boundary can induce
maxima or minima in the dipole-dipole interaction lan
scape. Note that for a full treatment, the dipole-surface in
actions have to be included. In conclusion, in contrast
isotropic dipoles, structure formation of anisotropic dipol
1-15
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is dominated by effects on cellular and elastic scales, wh
result from direct interactions. Since they compete w
boundary induced effects on a macroscopic scale, in gen
we expect hierarchical structures.

F. Summary example section

In the second part of this paper, we applied the gen
formalism from the first part to different situations of inte
est. In general, we found that physical and cellular fo
dipoles interact in opposite ways with each other, exter
strain field or sample boundaries, becauseVt52W. For ex-
ample, physical anisotropic force dipoles on top of thi
elastic films or in infinite elastic material locally prefer theT
configuration~for Poisson ration51/2!, while cellular aniso-
tropic force dipoles align in strings~independent of the value
for n!. The predicted structure formation for physical for
dipoles and active cells is similar to the ones of electric q
drupoles and dipoles, respectively. We also found that in g
eral, free and clamped boundaries will have opposite effe
For example, cellular anisotropic force dipoles are repe
and attracted by free and clamped boundaries, respecti
In the vicinity of these boundaries, they will align in parall
and perpendicular, respectively. In general, all the interac
laws derived here show the universal scalingW
;(P2/El3) f n(u i), wheref is a nontrivial function of Poisson
ratio n and the different anglesu i , which has to be calcu
lated for each situation of interest. Except for the case
external strain, the cellular force pattern interacts with its
~case of boundaries! or with another cellular force patter
~case of elastic interaction of cells!, thereforeW;P2. The
scaling W;1/l 3 is typically for force dipoles. Here the
lengthl can either be distance~e.g., between cell and bound
ary or between two cells! or sample size~in the elastic
sphere!. Finally, W;1/E. Although W decreases with in-
creasing Young modulusE, that is, elastic effects becom
smaller, at the same time mechanical activity of cells usu
increases. For this reason, we expect that there exists a r
of optimal values forE for which the elastic effects in cel
adhesion described here should be most pronounced~possi-
bly aroundE5kPa, the physiological order of magnitude f
cell and tissue stiffness!.

Although our modeling focuses on the role of strain a
stress in the extracellular environment, we also need a m
for the typical force pattern of mechanically active cel
Since the minimal system for contractile activity of adhere
cells is one stress fiber connecting two focal adhesions,
. J
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introduced the concept of force dipoles into the physics
cells @29#. From a technical point of view, this allowed us
make contact to a large body of results on physical fo
dipoles in deformable media. Our theory reproduces kno
results for physical force dipoles, in particular, the elas
image interaction of isotropic force dipoles in an free elas
sphere@23#. The corresponding calculation for anisotrop
dipoles has been done before by Hirsekorn and Siems@36#,
but only for the free surface. Here we extended this calcu
tion to the clamped case. Moreover, in order to predict sin
cell effects, we also calculated the interaction between dip
and surface for both types of boundary condition. In contr
to the elastic sphere for the elastic half space an image
tem for the effect of force monopoles is known@35#. Here we
used the solution given by Walpole@39# and adapted it for
the case of force dipoles.

As reported earlier, our predictions for cell organization
soft media are in excellent agreement with experimental
servations@31#. Our theory not only contributes to a bette
understanding of physiological processes involving mecha
cal activity of cells ~including tissue maintenance, woun
healing, angiogenesis, development, and metastasis!, in the
future it also might be used to predict cell behavior in art
cial tissues, close to implants and on compliant biosens
Moreover, the orientation response of regulated cells as
scribed here might be used to distinguish between hea
and diseased conditions. It is important to note that the m
success of our model results from the fact that we focus
the role of stress and strain in the environment, which allo
us to use the concepts of linear elasticity theory and to m
minimal assumptions about cellular regulation. In the futu
our theory might be complemented by models for cell m
phology and the dynamics of focal adhesions. Moreover,
til now we did not address in detail the issue of structu
formation within large communities of cells, although th
might be of much importance for development, when la
groups of mechanical active cells are known to move in c
cert.
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