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Effect of Poisson Ratio on Cellular Structure Formation
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Mechanically active cells in soft media act as force dipoles. The resulting elastic interactions are long
ranged and favor the formation of strings. We show analytically that due to screening, the effective
interaction between strings decays exponentially, with a decay length determined only by geometry. Both
for disordered and ordered arrangements of cells, we predict novel phase transitions from paraelastic to
ferroelastic and antiferroelastic phases as a function of the Poisson ratio.
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Predicting structure formation and phase behavior from
the microscopic interaction laws is a formidable task in
statistical mechanics, especially if the interaction laws are
long ranged or anisotropic. In biological systems, the
situation is further complicated because interacting com-
ponents are active in the sense that informed by internal
instructions (e.g., genetic programs for cells) and fueled by
energy reservoirs (e.g., ATP), they react to input signals in
a complicated way, which usually does not follow from an
energy functional. Therefore these systems are often de-
scribed by stochastic equations [1,2]. One drawback of this
approach is that typically the stochastic equations have to
be analyzed by numerical rather than analytical methods.
However, for specific systems structure formation of active
particles can be predicted from extremum principles. In
this case, analytical progress might become feasible again,
in particular, if analogies exist to classical systems of
passive particles. One example of this kind might be hydro-
dynamic interactions of active particles like swimming
bacteria [3]. Here this is demonstrated for another ex-
ample, namely, mechanically active cells interacting
through their elastic environment [4,5].

Our starting point is the observation that generation and
propagation of elastic fields for active particles proceed in
a similar way as they do for passive particles like defects in
a host crystal, e.g., hydrogen in metal [6,7]. For a local
force distribution in the absence of external fields, the
overall force (monopole) applied to the elastic medium
vanishes due to Newton’s third law [8]. Therefore each
particle is characterized in leading order of a multipolar
expansion by a force dipole tensor Pij. For many situations
of interest, including cells in soft media, this force dipole
will be anisotropic and can be written as Pij � Pninj,
where ~n is the unit vector describing particle orientation
and P is the force dipolar moment. The perturbation of the
surrounding medium resulting from a force dipole P0

kl
positioned at ~r0 is described by the strain tensor uij�~r� �
@j@0lGik�~r; ~r

0�P0
kl, where summation over repeated indices

is implied and Gij is the Green function for the given
geometry, boundary conditions, and material properties
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of the sample. The strain uij generated by one particle
causes a reaction of another particle leading to elastic
interactions. The essential difference between active and
passive particles is that many cell types respond to strain in
an opposite way as do defects. For defects the interaction
with the environment leads to a linearized potential V �

�Pijuij [6]. For example, an anisotropic defect attracting
the atoms of its host lattice turns away from tensile strain,
in this way enhancing the displacement fields in the me-
dium. In contrast, for mechanically active cells like fibro-
blasts, experimental observations suggest that they adopt
positions and orientations in such a way as to effectively
minimize the scalar quantity W � Pijuij � �V [4,5]. For
tensile strain, this implies that contractile cells actively
align with the external field. Because they pull against it,
they reduce displacement. For fibroblast-like cells, this
behavior might have evolved in the context of wound
healing, when cell traction is required to close wounds.
For a translationally invariant system, the effective inter-
action potential between elastically interacting cells there-
fore follows as

W � Pijuij � �Pij@j@lGik� ~r� ~r0�P0
kl; (1)

where we have used @0lGik � �@lGik. Since G scales as
�1=Er, where r is distance and E an elastic modulus, W
scales as �P2=Er3. Otherwise the structure formation
resulting from Eq. (1) strongly depends on the nontrivial
angular dependance determined by G.

The simplest model for the elastic properties of the
extracellular environment is isotropic linear elasticity.
Thus there are two elastic constants: the Young modulus
E describes the rigidity of the material and the Poisson
ratio � the relative importance of compression and shear.
Its maximal value is � � 1=2 (incompressible material). If
such a material is tensed in one direction, the shear mode
dominates and it contracts in the perpendicular directions
(Poisson effect). For common materials, the minimal value
for the Poisson ratio is � � 0. Then the compression mode
dominates and uniaxial tension does not translate into
lateral contraction. Isotropic linear elasticity is a reason-
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able assumption for the synthetic polymer substrates com-
monly used to study mechanical effects in cell culture
[9,10]. In the following, we therefore use the Boussinesq
Green function for particles exerting tangential forces on
an elastic half-space (that is, translational invariance ap-
plies to two dimensions). Analyzing Eq. (1) then shows
that W has a pronounced minimum for aligned force di-
poles for all possible values of the elastic constants [4,5].
Recently, such alignment of cells in soft media has indeed
been observed experimentally [11,12].

We first consider an infinitely extended string of aligned
force dipoles spaced at equal distance a. An additional
dipole is placed at a horizontal distance x and with a
vertical offset y, compare Fig. 1. To simplify our notation,
we use nondimensional quantities: energy W is rescaled
with P2=Ea3 and length with a. Since the medium is
assumed to be linear, the superposition principle applies
and the effective interaction potential can be found by
summing up all pairwise interactions. For parallel orienta-
tion [Fig. 1(a)], we have

Wk � �@2y
X�1

n��1

�
�1� ��2

�
x2 � �n� y�2�1=2

�
��1� ���n� y�2

�
x2 � �n� y�2�3=2

�
(2)

and for perpendicular orientation [Fig. 1(b)], we have

W? � �@x@y
X�1

n��1

��1� ��x�n� y�

�
x2 � �n� y�2�3=2
: (3)

Equations (2) and (3) can be analyzed further with methods
from complex analysis. Briefly, the Poisson sum formula
�1
n��1f�in� � 1=2i

R
C dz coth��z�f�z� allows us to turn
(b)(a)

a

y
x

FIG. 1. Elastic interactions of cells lead to string formation.
Here we consider the elastic interaction of a string of aligned
dipoles spaced at equal distance a with a single additional force
dipole at horizontal distance x and vertical offset y, both for
(a) parallel and (b) perpendicular orientation.
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the sums into integrals in the complex plane [13]. By
bending the contour C around suitable branch cuts intro-
duced by the singularities of the corresponding f�z� at z �
x� iy, the integral forms of Eqs. (2) and (3) can be
evaluated in the limit of large x:

Wk=? � 8���1� �� cos�2�y�e�2�xgk=?�x� (4)

with

gk�x� � �2�
���
x

p
�

1

�
���
x

p �O�x�3=2�; (5)

g?�x� � 2�
���
x

p
�

1���
x

p �O�x�3=2�: (6)

Thus, despite the long-ranged character of the elastic pair
interaction, the effective interaction between an infinite
string and a single dipole (and a second string, respec-
tively) is short ranged and decays to leading order
�

���
x

p
e�2�x. There is one exception, namely � � 0, when

Wk � e�2�x=
���
x

p
for parallel dipoles and W? � 0 for per-

pendicular dipoles. In dimensional units, the exponential
decay occurs on a length scale � � a=2� set by the dipolar
spacing a only, independent of the elastic constants. As
dipole density increases, the dipolar spacing a and there-
fore also the screening length � decreases.

In practice, strings will be finite. Therefore we now
consider a single dipole with parallel orientation interact-
ing with a finite string of N dipoles aligned along the y axis
and centered around the origin. For simplicity, we further
specify to offset y � 0 and Poisson ratio � � 0. For N�1,
the two dipoles interact via Wk � 1=�x3. For N � 200,
the full interaction potential as obtained by numerical
evaluation of Eq. (2) is shown as solid line in Fig. 2.
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FIG. 2. Interaction Wk between a finite string of N aligned
dipoles and another dipole as a function of distance x for N �
200, offset y � 0 and Poisson ratio � � 0. The solid line is the
numerical evaluation of Eq. (2). The dashed lines are the differ-
ent scaling laws derived in the main text. Inset:Wk for an infinite
string for x < 1, y � 0, and � � 0; 0:2; 0:3; 0:4; 0:5 from top to
bottom.
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FIG. 3. Phase diagram for positionally disordered cells. At low
cell density, an orientationally disordered (paraelastic) phase (p)
prevails. At high cell density, orientational order sets in, with a
nematic stringlike (ferroelastic) phase (f) at low values of
Poisson ratio � and a isotropic ringlike (antiferroelastic)
phase (af) at large values of �. Because we are in two dimen-
sions, " � 0:907.
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Clearly there are different scaling regimes, which can be
explained in the following way. For x > N, the dipoles in
the string cancel each other and the mechanical action of
the string is equivalent to two opposing forces P placed
at N=2. Therefore the string effectively acts like one
dipole of total strength NP and the asymptotic potential
decays with the dipolar power law N=�x3. For 1< x<N,
the string can be assumed to be infinite, but the discrete
spacing between the dipoles can still be neglected. Then
we can use the analogy to the electrostatic problem of an
infinite, homogeneously charged line. Using Gauss’ law
and the fact that the force density vanishes gives that now
the potential Wk has to be constant. The height of this
plateau is fixed by the boundary conditions, that is, in our
case by matching it to the large distance regime at x� N;
therefore Wk � 1=N2. For x � 1, the finite spacing be-
tween the dipoles becomes relevant and the exponential
decay 8�e�2�x=

���
x

p
predicted by Eq. (4) becomes valid.

Finally, for x < 1 the interaction with the string is domi-
nated by interactions with the closest dipole in the string
and Wk crosses over to the dipolar power law 1=�x3.
Figure 2 demonstrates the nice agreement between this
scaling analysis and the full numerical result. While these
four scaling regimes are valid in general, the exact details
are very sensitive to dipole orientation, offset y and Poisson
ratio �. In particular, variations in � can qualitatively alter
the interactions, especially for x < 1, as demonstrated in
the inset of Fig. 2 for an infinite string. In general, for an
infinite string the large distance regime and the height of
the plateau vanish, and we are left with the exponential
decay derived above.

String formation is also known for passive particles,
most prominently for electric dipoles [14,15]. The short-
ranged nature of the effective interaction between strings
due to screening inside the string is well known in this case
[13,16,17], but to our knowledge has not been discussed
before for force dipoles. It has several important implica-
tions for cellular structure formation. First, it suggests that
long-ranged effects do not dominate structure formation at
particle densities sufficiently large as to allow formation of
strings of aligned dipoles. Second, for high particle den-
sities the strong dependence of the string-string interaction
on � suggests that structural changes might occur as a
function of Poisson ratio.

In order to address these issues, we used Monte Carlo
simulations to study cellular structure formation on elastic
substrates as a function of reduced cell density " and
Poisson ratio �. Because cells are supposed to interact
only elastically, a circular exclusion zone was attributed
to each cell and positional degrees of freedom were fixed at
random, thus avoiding cell-cell contact. Experimentally,
this situation might be realized by confining cells to adhe-
sive islands created by microcontact printing on elastic
substrates. We then relaxed the orientational degrees of
freedom using a Gibbs ensemble on W with a small finite
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effective temperature, which can be interpreted as an sto-
chastic element in cellular decision making. Similar pro-
cedures have been used before for modeling cellular
structure formation [18]. Based on our simulations we
predict three different phases. At low density, we always
find many short strings with little correlation. No global
order appears, except when an external field is applied.
Therefore this phase might be termed paraelastic.
Presumably due to the screening effects described above,
this globally disordered phase is stable up to relatively high
densities. At high density and small values of the Poisson
ratio �, spontaneous polarization occurs; that is, the me-
dium is contracted unidirectionally. This situation is remi-
niscent of certain pathological situations when wound
contraction deteriorates into uncontrolled skin contraction
(contracture). The corresponding phase of aligned strings
might be termed ferroelastic and is characterized by a
nonvanishing nematic order parameter S. As � is increased
at high cell density, the nematic order parameter vanishes
again for �c � 0:32; that is, the systems becomes macro-
scopically isotropic again, with a local structure which is
ringlike rather than stringlike. This phase results from the
Poisson effect and might be termed antiferroelastic. In
Fig. 3, we show typical configurations and the phase
transition line to the ferroelastic phase as measured in
simulations by setting S � 0:4.

The important role of the Poisson ratio for cellular
structure formation can also be demonstrated for regular
arrangements of force dipoles. Figure 4 shows six candi-
date structures identified by Monte Carlo simulations for
dipoles on square and hexagonal lattices. To identify opti-
mal structures we calculate the interaction per particle by
evaluating the corresponding lattice sums. For this pur-
pose, we decompose the structures into A and B sublattices
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FIG. 4. Structure formation of cells positioned on square (s)
and hexagonal (h) lattices. Elastic interactions result in a com-
petition between ferroelastic (a,b) and antiferroelastic struc-
tures (c) as a function of Poisson ratio � and lattice geometry.
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of parallel strings, as indicated by gray and white colors.
The main contribution to W originates from interactions
within a string and is given by �2'�3��1� ��, where '�z�
is the Riemann zeta function with '�3� � 1:29. Because
the interaction with adjacent strings decays exponentially
as shown by Eq. (4), the interactions with adjacent strings
are dominated by interactions with the nearest neighbor
strings and the lattice sums converge quickly. The plots in
Fig. 4 show that on hexagonal lattices, a phase transition
from a ferroelastic (h-a,b) to an antiferroelastic structure
(h-c) occurs at �c � 0:32. On square lattices, W decreases
strongly with � for the antiferroelastic structure (s-c).
However, here lattice geometry stabilizes the ferroelastic
phase (s-a) over the whole range of �, such that the ferro-
antiferroelastic transition does not occur. This finding also
implies that on substrates with � � 0:4 cellular structures
might be switched between ferroelastic and antiferroelastic
phases simply by varying the geometry of cell positioning.

In summary, we have shown that elastic interactions of
cells lead to surprising and nontrivial structure formation
as a function of cell density and Poisson ratio. Elastic
substrates appear to be the ideal experimental systems to
test our predictions since they allow us to focus on the
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mechanical aspects of the environment in cell organization.
In traditional systems like polymer gels made from poly-
acrylamide or polydimethylsiloxane, the Poisson ratio usu-
ally is close to 1=2. In order to test our predictions, novel
polymer gels for cell culture are needed which allow us to
tune the value of the Poisson ratio. The typical physiologi-
cal environment of tissue cells are the hydrated polymer
networks of the extracellular matrix and future work has to
show how our results carry over to this situation. In par-
ticular more details of the cellular decision making process
have to be included in this case. It is important to note that
the Poisson ratio of a dehydrated polymer network can be
much smaller than the one of a macroscopic region of a
fully hydrated gel. One therefore might expect that the
effective Poisson ratio relevant for cellular structure for-
mation in hydrogels depends on the way water moves
within the filamentous structure and therefore on the as
yet unknown spatial and temporal scales on which cells
probe this mechanical environment.
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