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The cellular uptake of nanoparticles or viruses requires that the gain of adhesion energy overcomes the
cost of plasma membrane bending. It is well known that this leads to a minimal particle size for uptake.
Using a simple deterministic theory for this process, we first show that, for the same radius and volume,
cylindrical particles should be taken up faster than spherical particles, both for normal and parallel
orientations. We then address stochastic effects, which are expected to be relevant due to small system size,
and show that, now, spherical particles can have a faster uptake because the mean first passage time profits
from the multiplicative noise induced by the spherical geometry. We conclude that stochastic effects are
strongly geometry dependent and may favor spherical shapes during adhesion-driven particle uptake.
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Biological cells constantly communicate with their
environment by relaying signals and material across their
plasma membranes. In particular, cells routinely take up
small particles with sizes on the order of 10–300 nm. This
process is usually driven by receptor-ligand interactions [1]
such that the adhesion energy can overcome the energy
required for membrane bending. It is also exploited by
viruses that have to enter host cells for replication [2]. Due
to the physical nature of this process, cells also take up
artificial nanoparticles of various shapes [3], for which the
uptake may be either intentional or undesired, as in drug
delivery [4] or in the case of microplastics [5], respectively.
Viruses come in many different shapes [6], but the most

paradigmatic and most frequently occurring ones are
spherical and cylindrical [7,8]. Therefore, here, we focus
our discussion on spheres, cylinders, and a combination of
both, as shown in Fig. 1. It is generally believed that the
spherical shape is optimal because it maximizes the volume
to surface ratio and confers high mechanical stability [9].
However, it is less clear which shapes are optimal in regard
to interactions with the membrane [3]. Here, we show that
stochasticity might play an important role in this context.
Due to their small size, viruses are typically covered with

only a few tens of ligands for cell surface receptors [10,11],
and thus stochastic effects are expected to be relevant. For
example, the icosahedral and medium-sized (60–100 nm)
members of the family of reoviruses have only 12 primary
JAM-A-σ1 (junction adhesion molecule) ligands on their
surfaces [12]. Although stochastic effects have been argued
to be essential for the stability of small adhesion clusters
[13,14], particle uptake is usually studied analytically only
with deterministic approaches. Stochastic effects are auto-
matically included in computer simulations with thermo-
stats [15,16], but such approaches do not allow for a
systematic study of the role of noise. Here, we analytically

calculate the first passage times for particle uptake of
various shapes and show that they strongly depend on
geometry. Our main result is that, in contrast to determin-
istic dynamics, stochastic dynamics tends to favor spherical
shapes for uptake.
Deterministic approaches usually start by balancing the

contributions from adhesion and bending. Because adhesion
energy scales with the radius squared, while bending
energy is independent of radius, a minimal size exists
for particle uptake [17]. The most investigated aspect of
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FIG. 1. Uptake of a particle of (a) spherical, (b) normal
cylindrical (rocket mode), (c) spherocylindrical, and (d) parallel
cylindrical shape (submarine mode). In a deterministic model, the
virus is homogeneously covered with ligands adhering to the cell
membrane along the adhesive area Aad. (e) Stochastic uptake of a
virus, for which the surface presents discrete ligands. The virus
particle binds (unbinds) with a forward rate gN (backward rate rN)
to receptors on the cell membrane.
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receptor-mediated uptake is the role of particle shape
[16,18,19]. More detailed approaches include the variational
problem for finding minimal energy shapes [20,21], the role
of receptor diffusion towards the nanoparticle [22,23],
particle deformability [24,25], the physics of the scission
step [26], and the role of the cytoskeleton [11]. In order to
develop a stochastic description, here, we start with a
minimal deterministic model, which we then extend to the
stochastic case.
We assume that ligands to the cellular adhesive receptors

are homogeneously distributed on the viral surface. The
total free energy can be written as [27]

Etotal ¼ −
Z
Aad

WdAþ
Z
Amem

2κH2dAþ σΔA; ð1Þ

where W is the adhesion energy per area, κ is the bending
rigidity, H is the mean curvature, σ is the membrane
tension, and ΔA the excess area due to the deformation
(compared to the flat case). Typical parameter values
are W ¼ 10−1 mJ=m2, κ ¼ 25kBT, and σ ¼ 10−4 N=m
[28,29]. For example, a reovirus has 12 major and 60 minor
ligands [12,30]. With a binding energy of around 15kBT
each, one estimates W ¼ 4.4 × 10−2 mJ=m2 for a homo-
geneous adhesion model.
The two membrane parameters define a typical length

scale of λ ¼ ffiffiffiffiffiffiffiffi
κ=σ

p
≈ 32 nm. As shown schematically in

Fig. 1, we consider a spherical or cylindrical particle of
radius R adhering to the membrane. Then, the bending
energy in Eq. (1) has contributions both from the adhering
(Aad) and free parts (Amem − Aad) of the membrane. It has
been previously shown [18,28,29,31] that the contributions
from the free part can be neglected in two special regimes.
In the loose regime (R ≪ λ), the free membrane can adopt
the shape of a minimal surface, and thus its bending
contribution vanishes. In the tense regime (R ≫ λ), the
free part is essentially flat, and the contribution from the
adhered membrane is much larger than the one from the
free membrane. To arrive at an analytical model, here, we
neglect the contributions from the free membrane also for
the intermediate case.
Equation (1) can now easily be analyzed for the

geometries sketched in Fig. 1, namely, for a sphere (∘)
[Fig. 1(a)], for a cylinder oriented normally to the mem-
brane (⊥) [Fig. 1(b)], for a spherocylinder (∩) [Fig. 1(c)],
and for a cylinder oriented parallel to the membrane (k)
[Fig. 1(d)]. Although it has been shown in coarse-grained
molecular dynamics simulations that spherocylinders might
undergo a dynamical sequence of first lying down and then
standing up [16], the two cylindrical modes considered here
are the paradigmatic configurations encountered during
wrapping [18]. In the case of the normal cylinder, the top
and bottom surfaces are neglected because they do not
contribute to the uptake force. To keep our calculations as
transparent as possible, we neglect them also for the

parallel cylinder. In both cases, we neglect the bending
energies at the kinked edges.
The uptake forces Fup are calculated by taking the

variation of the energy with respect to the opening angle
θ or height z, respectively, and are balanced by the friction
force they experience: Fup ¼ Ffriction [21]. For a spherical
particle, the membrane covered area is a spherical cap of
radius R and opening angle θ, i.e., A∘

ad ¼ 2πR2ð1 − cos θÞ,
cf. Fig. 1(a). The friction force is F∘

friction ¼ η2πR sinðθÞR_θ,
i.e., an effective membrane microviscosity of order η ¼
1 Pa s times the change of the membrane-covered particle
surface. The resulting equation of motion reads

_θ ¼ νup − νσð1 − cos θÞ; ð2Þ

with νw ¼ W=ðRηÞ, νκ ¼ 2κ=ðR3ηÞ, νσ ¼ σ=ðRηÞ, and
νup ¼ νw − νκ. The uptake time can be calculated as [32]

T∘
det ≈

π

νup
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2νσ

νup

q : ð3Þ

Note that it diverges for νup ¼ 2νσ, defining a critical radius
Rcrit, below which uptake is not possible. In the limit of
vanishing σ, we recover the classical result Rcrit ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2κ=W

p
≈ 44 nm [17]. We note that our theory predicts

normal uptake forces of around 10 pN, which agrees well
with results from recent atomic force microscopy experi-
ments [33,34].
Analogous calculations can be performed for the three

cases with cylinders at equal volumes [32]. Figure 2(a)
compares the resulting uptake times. For the normal and
parallel cylinders, we take the same radius as for the sphere
and adjust the aspect ratio. For the spherocylinder, we take
the same aspect ratio as for the cylinders and adjust the
radius. All four geometries show similar behaviors: a
critical radius Rcrit exists, below which uptake is not
possible. The parallel cylinder has half the critical radius
of the sphere because its mean curvature is half as large at
equal radius. Moreover, an optimal radius R� exists at
which the uptake time is minimal [32]. Interestingly, the
critical and optimal values are very close to each other, and
the cylindrical particles are taken up faster than the
spherical ones. The spherocylinder is the slowest case
because, at equal volumes, the aspect ratio is modest and
the spherical part dominates. Figures 2(b) and 2(c) display
the uptake time for a spherical particle as a function of W
and R or σ, respectively, showing that a smaller adhesion
energy has to be compensated for by either a larger radius
or smaller membrane tension. Importantly, in the deter-
ministic case, certain parameter values do not lead to any
uptake.
We now turn to the stochastic variant of our uptake

model [cf. Fig. 1(e)]. For the sphere, we map the mem-
brane-covered area onto the number of bound receptors N
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[32], assuming axial symmetry. Using Eq. (2), we find a
dynamical equation for N through _N ¼ ðdN=dθÞ_θ. From
this discrete equation, a one-step master equation
[35] can then be deduced, with the forward rate
of gN ¼ νwNE and the backward rate of rN ¼
νκNE þ 2νσNEðN − 1Þ=ðNmax − 1Þ, where NEðNÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þ½ðNmax − 1Þ − ðN − 1Þ�p

corresponds to the num-
ber of receptors at the advancing edge.
We first solved the master equation numerically using

the Gillespie algorithm [36] and averaging over 104

trajectories. Figure 3(a) shows the resulting distribution
of uptake times and the results for the number of bound
receptors as a function of time (inset). Clearly, the mean
uptake time is substantially smaller than the uptake time
from the deterministic approach. Figures 3(b) and 3(c)
display the simulated mean uptake times as a function ofW
and R or σ, respectively. When comparing to the deter-
ministic approach, cf. Figs. 2(b) and 2(c), we see that, now,
uptake is possible for any parameter value, although it can
be rather long in regions where the deterministic model

does not allow for uptake. However, the parameter region
with uptake in experimentally accessible uptake times is
strongly increased and now extends below the blue line,
indicating the critical radius Rcrit of the deterministic
model. This expansion of the parameter regime that allows
the process to complete is also known from the stochastic
dynamics of small adhesion clusters [13,14].
We next discuss the interplay between the shape and

stochastic dynamics in analytical detail. For simplicity, we
set the membrane tension to zero in the following (σ ¼ 0).
We approximate the master equation by a Fokker-Planck
equation (FPE) using a Kramers-Moyal expansion [35].
The equivalent stochastic differential equation can be
transformed to angle space using Itô’s lemma [37]

_θ ¼ νup −D
cos θ
sin2θ

þ
ffiffiffiffiffiffiffiffiffi
2D
sin θ

r
ξðtÞ; ð4Þ

where D ¼ ðνw þ νκÞ=ðNmax − 1Þ. The noise ξðtÞ is
assumed to be Gaussian with hξðtÞi ¼ 0 and

(a) (b) (c)

FIG. 2. Deterministic uptake dynamics. (a) Uptake times for sphere (red), normal cylinder (blue), spherocylinder (dashed blue), and
parallel cylinder (green) as functions of radius R at equal particle volume. (b) and (c) Uptake times for a sphere as a function of adhesion
energy W and radius R or membrane tension σ, respectively. In Fig. 2(b), the critical (optimal) radius for spherical uptake is shown in
blue (green). Parameter values (if not varied) are R ¼ 90 nm, W ¼ 4.4 × 10−2 mJ=m2, and σ ¼ 0.9 × 10−5 N=m.

(a) (b) (c)

FIG. 3. Stochastic uptake dynamics for a spherical particle (reovirus with Nmax ¼ 12). (a) Histogram of uptake times with obtained
mean T∘

sim ≈ 16 ms (green line; standard deviation is ≈11 ms) as compared to the deterministic value T∘
det ≈ 96 ms (red line). (Inset)

Two example trajectories (black) of the number of bound receptors as a function of time and the mean number hNsimi obtained from
simulating the master equation (blue). (b) and (c) Mean uptake time T∘

sim as a function ofW and either R or σ. In the dark colored region,
uptake may still occur beyond the used simulation time. In Fig. 2(b), the blue line is the critical radius Rcrit of the deterministic model.
Parameter values are as in Fig. 2.
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hξðtÞξðt0Þi ¼ δðt − t0Þ. From Eq. (4), one can directly read
the drift term (or the corresponding potential) of the
corresponding FPE in angle space and its diffusion coef-
ficientD [32]. Because, for the spherical case, this diffusion
constant depends on the state variable θ, here, we deal with
multiplicative noise.
In marked contrast, for the two cylindrical cases, one

obtains additive noise. For example, for the parallel cylinder,

we find _θk ¼ νkup þ
ffiffiffiffiffiffiffiffiffi
2Dkp

ξðtÞ, where νkup ¼ W=ðηRÞ −
κ=ð2R3ηÞ and Dk ¼ ðνkup þ κ=ðR3ηÞÞπ=ð2ðNmax − 1ÞÞ,
where the latter does not depend on θ because the length
of the moving contact line is constant [32]. The different
quality of the noise suggests that the uptake dynamics change
in a fundamental manner in the different geometries.
The mean uptake times can be obtained analytically by

studying the mean first passage time problem using the
backwards FPE [37,38] with a reflecting (adsorbing)
boundary condition at θ ¼ 0 (θ ¼ π). Neglecting the angle
dependent drift term (because it is large only for the first
and last steps) but keeping the multiplicative noise, the
mean uptake time evaluates to [32]

T∘
mult ¼ T∘

det

�
1 − e−ðνup=DÞI0

�
νup
D

��
< T∘

det; ð5Þ

where I0 is the modified Bessel function of the first kind. In
the limit of small fluctuations compared to the uptake
frequency, we recover the deterministic limit. In the
opposite limit of large fluctuations, the uptake time
approaches T∘

mult ≈ π=D.
For the parallel cylinder, the noise is additive and the

mean uptake time is readily obtained as [32]

Tk
add ¼ Tk

det −
Dk

νk2up

�
1 − exp

�
−
πνkup
Dk

��
< Tk

det; ð6Þ

where Tk
det ¼ π=νkup. In the limit of small fluctuations, one

again recovers the deterministic uptake time, whereas for

large fluctuations, one finds Tk
add ≈ π2=ð2DkÞ. Hence, for

both geometries, the mean uptake time is always smaller
than the deterministic one. In general, fluctuations in small
systems combined with a reflecting boundary should
always decrease the mean first passage time because the
stochastic process profits from the presence of the boun-
dary, whereas the deterministic process does not.
We now consider a particle with R ¼ 180 nm, i.e., in the

region of Fig. 2(a), in which the deterministic uptake
times of the sphere and the parallel cylinder are similar.
Figure 4(a) shows the mean uptake times for different
geometries at equal volume as a function of the number of
receptors. We note that, for the parallel cylinder, it is also
possible to compute the uptake time directly from the

master equation Tk
ana [37]. The agreement between simu-

lations (symbols) and analytical results (lines) is very good
for cylinders and rather good for spheres. For a small
number of receptors (i.e., strong fluctuations), the uptake of
a sphere is faster than the one of a cylinder. We
conclude that the uptake of spherical particles dynamically
benefits from the noise. In fact, using, in Eq. (6), νup and D

instead of νkup and Dk, we find that T∘
mult < T∘

add < T∘
det

always holds.
Although membrane tension could not be treated ana-

lytically, it can be included in the simulations, and we get
the same results: i.e., the uptake times are reduced by
increasing stochasticity. Figure 4(b) shows the mean uptake
times as a function of the dimensionless parameter α ¼
νσ=νup for different Nmax and R ¼ 90 nm. Although
stochasticity is most important for small numbers of
receptors, nevertheless, even for substantial numbers on

(a) (b)

FIG. 4. (a) Geometry-dependent mean uptake times for spheres (red) and parallel cylinders (green) as a function of the maximum
number of receptors. Shown are the analytical results for the deterministic case (solid) and for multiplicative (additive) noise
corresponding to the spherical (cylindrical) geometry (dashed). The results from the simulations of the master equation are shown for the
sphere (cylinder) as symbols. (b) The case with membrane tension can be treated with computer simulations. Shown are the mean uptake
times for a sphere as a function of the dimensionless parameter α ¼ νσ=νup (by varying σ) for two different numbers of receptors and the
deterministic case (diverging at α ¼ 1=2).
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the order of one hundred receptors, the stochastic effects
survive.
In conclusion, we found that the uptake of spherical

particles profits from the presence of noise. Our results
suggest yet another advantage for viruses to be spherical.
Similar effects arising from the interplay of stochastic
dynamics and geometry might also exist for other biologi-
cally relevant first passage problems, e.g., phagocytosis
[39], the closure of transient pores on spherical vesicles
[40], or the fusion of tissue over circular holes [41].
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