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I. BROWNIAN DYNAMICS SIMULATIONS

To achieve reasonable simulation times, we use
particle-based stochastic computer simulations. In con-
trast to molecular dynamics simulations, we do not ex-
plicitly include atomistic details or molecular flexibility.
Protein assemblies continuously react with each other
and form larger or smaller clusters. A given cluster is
treated as a rigid body that translates and rotates in
space under the influence of thermal forces. The con-
figuration of such a cluster can be described by a six-
dimensional vector X containing the information about
the position and orientation of the cluster. Below we use
boldface and vector notations for six-dimensional config-
uration vectors and three-dimensional position vectors,
respectively. The evolution of the configuration of a
cluster is governed by the six-dimensional, overdamped
Langevin equation, which in the force-free case reads [1–
3]:

∂tXt = gt (S1)

with: 〈gt〉 = 0, 〈gtgt′〉 = 2kBTM(Xt)δ(t− t′).

Eq. S1 describes the stochastic change in the position and
orientation of the cluster. Here gt represents Gaussian
white noise with the magnitude of the noise being defined
by the 6× 6-dimensional self-mobility matrix of the rigid
cluster M, which is related to the self-diffusion matrix of
the clusterD by a Boltzmann factor. As clusters continu-
ously grow and shrink due to association and dissociation
events, also the self-diffusive properties of the clusters
change during a simulation. Thus, the self-diffusion ma-
trixD of a cluster is evaluated on-the-fly upon its genera-
tion [3–5]. The dependence of the self-mobility matrix on
the cluster configuration in Eq. S1 reflects the fact that
the self-mobility matrix is only constant in a frame mov-
ing with the cluster. In a frame which is fixed in space
(called the laboratory frame below), it depends on the
orientation of the cluster. Evaluating the change in con-
figuration with respect to a cluster-fixed frame, the self-
mobility matrix of the cluster becomes independent of its
configuration and the noise contribution is purely addi-
tive. In our approach clusters are propagated with a finite
timestep increment ∆t. Hence, we use a time-discretized
version of Eq. S1 and evaluate the change of the con-
figuration of a cluster during the timestep ∆t = t − t0
with respect to a cluster-fixed frame at time t0 which is
denoted by the prime symbol [1–3, 6]:

∆X′ = g(∆t) +O(∆t2) (S2)

with 〈g(∆t)〉 = 0, 〈g(∆t)g(∆t)〉 = 2kBTM∆t.

As Eq. S2 describes the change in configuration of a clus-
ter with respect to a cluster-fixed frame at time t0, we
have to transform the configuration update of the cluster
in the laboratory coordinate system. This is indicated by
the generalized rotation matrix R6, which acts on both,
the position and orientation:

X(t+ ∆t) = X(t) +R6∆X′. (S3)

The details of our update scheme for the orientation co-
ordinates has been described elsewhere [1]. Note that by
considering only the self-diffusion properties of a cluster
we neglect hydrodynamic interactions.

To investigate the effect of a localized scaffold assisting
the formation of complete SAS-6 rings, we model the in-
teraction between the scaffold structure and clusters by
repulsive and attractive forces acting between the scaf-
folding structure and a particular region of the SAS-6
homodimer. In Fig. S1a a schematic drawing of the cylin-
drical and spherical scaffolds used in the simulations is
shown. Each scaffold is defined by an inner core with
radius Rs and surrounded by an attractive layer of width
∆Rs. The attractive force between scaffold and the SAS-
6-6HR homodimers is mediated by two point-like charges
located on the top of the N-term domains (see Fig. S1a).
A charge which is inside the attractive layer ∆Rs ex-
periences a force according to Eq. 2. This force results
in an additional drift term biasing the translational and
rotational motion of the clusters, and the configuration
update for a cluster according to Eq. S2 now reads [1–3]:

∆X′ =MF′(t)∆t+ g(∆t) +O(∆t2). (S4)

In Eq. S4 F′ = (~F ′, ~τ ′) is a generalized force vector which
contains the three-dimensional force and the torque act-

ing on the cluster. As the force ~Fi acting on a particular
“charge” i, located at position ~r ′c,i relative to the cluster,
is evaluated in the laboratory-fixed frame, the general-
ized force F′ acting on the cluster in the cluster-fixed
frame is calculated according to:

~F ′ =
∑
i

R
T
3
~Fi , ~τ ′ =

∑
i

~r ′c,i × ~F ′ , F′ = (~F ′, ~τ ′).

(S5)

Here we sum over all charges of a cluster and RT3 is the
three-dimensional rotation matrix converting between
the laboratory-fixed and cluster-fixed frame.

Similarly to the force acting on the charges, a repul-
sive Lennard-Jones type of force acts on a steric sphere
overlapping with the inner region of the scaffold defined
by the radius Rs (see Fig. 1a). The repulsive force acting
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Figure S 1. (a) Sketch of cylindrical and spherical scaffold with inner radius Rs surrounded by attractive layer of width ∆Rs

together with the SAS-6-6HR model with the charges attracted to the scaffold being shown in blue. In the bottom row a
visualization of the potential with its repulsive and attractive parts is shown. (b) Illustration of an encounter complex between
two homodimers A and B. The encounter is mediated by patch 1 of homodimer A and patch 2 of homodimer B. Patches are
defined by a radius Rp and an angle θ. The orientation vectors ~o reflect the desired nine-fold symmetry and the torsion vectors
ensure that the CC domains are radially pointing outwards.

on a steric sphere of radius Rsteric is given by:

~F/(kBT ) =ls/(Rs −Rs,min) (S6)( Rs −Rs,min
R−Rsteric −Rs,min

)13
~er

In Eq. S6 ls is a dimensionless parameter scaling the
force, ~er is a normal vector pointing toward the center of
the scaffold and Rs,min marks an inner radius at which
the potential becomes infinite. Thus, Rs,min regulates
the steepness of the soft-core repulsion. For the simula-
tions performed here we used ls = 0.1 and Rs,min = 6nm.
These parameters ensure that neither large displacements
during a simulation step due to very high repulsive forc-
ing nor large intrusions of clusters inside the scaffold are
observed. Similarly to the forces acting on the “charges”
(Eq. S5), the resulting force and torque acting on the
whole cluster due to this soft-core repulsion during a mo-
tion step are calculated by summing up all forces and
torques acting on individual steric spheres of the cluster
and rotating them into the cluster-fixed frame.

II. REACTION RATES

Our simulation approach is conceptually based on the
encounter complex scheme in which a reaction is decom-
posed into a two-step process: the diffusive motion of
the reactants A and B until they reach an encounter
state A ·B and the binding step from the encounter state
into the bound complex C (e.g. [7–14]). Considering the
encounter complex as the “watershed” between diffusion
and reaction, a bimolecular reaction can be split accord-

ing to the following reaction scheme:

A+B
k+
⇀↽
k−
C (S7)

A+B
kD⇀↽
kD,b

A ·B
ka⇀↽
kd
C. (S8)

While in Eq. S7 k+ and k− represent the overall kinetic
rate constants of the reaction, in Eq. S8 the binding and
unbinding process is split into a diffusive and reactive
part. The diffusive part is described by the rate constants
kD and kD,b while the reactive part is described by the
reaction rates ka and kd, respectively.

Macroscopically, the reaction scheme in Eq. S8 can be
understood as a system of ordinary differential equations
describing the changes in the concentrations cA,cB ,cA·B
and cC [8]. In this case the encounter complex A ·B rep-
resents a single, intermediate state between the bound
complex C and the free particles A and B. The encounter
complex can either decay into two separated particles A
and B with the first order rate constant kD,b, or it can
react to the bound complex with the first order rate con-
stant ka. Similarly, an encounter is formed by the first
order decay of the complex C with a rate kd or diffu-
sively from the separated A and B particles, which is de-
scribed with the second order rate constant kD. For a 3-
dimensional system kD has physical units of m3s−1 when
considering particle concentrations, or M−1s−1 when con-
sidering molar concentrations. Assuming the concentra-
tion of the encounter complex to be in a steady state,
the following relations between the overall reaction rate
constants used in Eq. S7 and reaction rate constants in
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the encounter picture (Eq S8) can be derived [8]:

k+ =
kDka

ka + kD,b
, k− =

kD,bkd
ka + kD,b

(S9)

⇒ Keq =
k+

k−
=

kD
kD,b

ka
kd

. (S10)

From Eq. S9 we can distinguish between the ex-
treme cases of diffusion-limited and reaction-limited re-
actions [8]. The diffusion-limited case is realized when
ka � kD,b. In this case the forward reaction is purely
determined by diffusion k+ ≈ kD while the reverse re-
action rate becomes k− ≈ kD,bkd/ka. On the contrary,
the reaction is considered to be reaction-limited when
kD,b � ka. In this case the rate constant for the forward
reaction becomes k+ ≈ kDka/kD,b while the overall rate
of the reverse reaction equals the microscopic dissociation
rate k− ≈ kd. Why this case is referred to as reaction-
limited becomes apparent when reconsidering the model
introduced by Collins and Kimball [7]. In this case finite
reactivity between two spherical particles in encounter is
introduced by a radiation boundary condition in which
the rate constant κ (termed k in reference [7]) relates
the concentration at contact to the reactive flux. Com-
paring the escape probabilities in the kinetic and in the
Fokker-Planck picture, Shoup and Szabo [15] suggested
the following relation between κ and the reaction rates
used in Eq. S8: κ = kDka/kD,b. Given this relation it
becomes apparent that in the reaction-limited case the
forward rate constant is determined solely by the reac-
tion from the encounter to the final state k+ ≈ κ.

The basic relations between the microscopic reaction
rates ka and kd, the diffusive reaction rate constants and
the macroscopic equilibrium association constant have
been discussed elsewhere [16]. Based on these consid-
erations an important quantity relating the ratio of the
microscopic reaction rates to the macroscopic equilibrium
association constant is the encounter volume, which is
the region in the two-particle configuration space within
which reactions between clusters are possible. Based on
the patch definition (patch radius Rp, orientation vector
~o) and the torsion vector ~t used to specify the relative ori-
entations in the bound state (see Fig. 1b) the following
set of constraints is used to define an encounter mediated
by the patches i and j of the proteins A and B (which
can belong to a larger cluster):

|~pAi,Bj
| ≤ 2Rp (S11)

acos
( ~pAi,Bj

· ~oAi

|~pAi,Bj
||~oAi

|
)
≤ θ (S12)

acos
(−~pAi,Bj

· ~oBj

|~pAi,Bj ||~oBj |
)
≤ θ (S13)

acos
( (~pAi,Bj

× ~tA) · (~pAi,Bj
× ~tB)

|(~pAi,Bj × ~tA)||(~pAi,Bj × ~tB)|
)
≤ χ. (S14)

Eq. S11 describes a relative proximity criterion for the N-
term domains involved in the binding process. Eq. S12

and Eq. S13 restrict the relative orientation of the two
binding clusters to a certain range around the orienta-
tion defined by the local rules. Furthermore, the tor-
sion constraint defined in Eq. S14 accounts for the non-
globular nature of the SAS-6-6HR homodimers and pre-
vents large-scale reorientation of the CC during the bind-
ing step by requiring sufficient alignment of the CCs with
the planar ring geometry. Based on the constraints given
in Eq. S11-Eq. S14 the size of the encounter volume for
one pair of patches can be calculated according to [16]:

V SAS-6?

Ai,Bj
= V rad

Ai,Bj
V ori
Ai,Bj

V tor
Ai,Bj

(S15)

V rad
Ai,Bj

=
4π

3
((2Rp)3 − (2RN)3) ,

V ori
Ai,Bj

=
1

4
(1− cos(θ))2 , V tor

Ai,Bj
=
χ

π
.

RN is the radius of the spheres for the N-terms. Note that
in comparison to reference [16] the additional term χ/π
reflects the additional constraint given in Eq. S14 and
corresponds to the fraction of configurations for which
the alignment of the projection of the torsion vectors is
smaller than χ.

For a fixed set of patch parameters (Rp, θ, χ) the equi-
librium association constant of a reaction Keq is related
to the ratio of the microscopic reaction rates ka and kd
by the size of the encounter volume. Owing to the fact
that each SAS-6 homodimer has two N-term domains and
that the homodimer is symmetric under rotation of 180◦

around the CC, four different patch combinations exist
which can lead to bond formation between two homod-
imers. Hence the total encounter volume for the reaction
between two homodimers is given by:

V SAS-6?

1,1 = 4V SAS-6?

Ai,Bj
. (S16)

Similarly, taking the four different possible patch combi-
nations for a reaction into account, the equilibrium disso-
ciation constant for two homodimers becomes KSAS-6

d =
(KSAS-6

eq )−1 = KNN
d /4 ≈ 15µM. Finally we have to ac-

count for the different counting of particles in macro-
scopic theories and simulations. Our rate equation ap-
proach takes into account that macroscopic reaction rate
theories consider indistinguishable particles while in our
simulations all particles are distinguishable. As a con-
sequence the macroscopic reaction rate constant for the
reaction between identical particles is reduced by a factor
of 1/2 compared to the reaction rate constant used in our
simulations [16–18]. Thus, as a consequence the macro-
scopically observed equilibrium association constant for
the dimerization of identical particles is only half as large
as the equilibrium association rate constant used in our
simulations. To take this into account, in the following
we always set:

kd =
V SAS-6?

1,1 ka

2KSAS-6
eq

. (S17)

This choice of kd results in the macroscopically expected
equilibrium constant for the dimerization. However, for
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Figure S 2. (a) 2D projection of a simulation volume of size (100nm)3 used to illustrate the coupling mechanism. GCMC moves
are restricted to a distance less than 5nm from the x- and y-boundary (shown by the red line), defining the GCMC subvolume
VGCMC. Gray marks depict the center of newly inserted proteins. The blue box marks an inner region. (b) and (c) show the
comparison of the expected distribution (red) and the observed distribution (blue) of particles in the inner region of the setup
shown in (a) for a reservoir particle concentration of nr = 5 × 10−6nm−3 and nr = 5 × 10−5nm−3, respectively.

non-identical ring fragments this choice might overesti-
mate the binding fraction.

Knowledge of the size of the encounter volume and
the experimentally measured equilibrium constant for N-
term dimerization allows us to specify the ratio of the
microscopic reaction rates so that the resulting equilib-
rium distribution of oligomers for a given concentration
can be predicted based on the previously introduced rate
equation approach [16]. However, in the diffusion-limited
regime the time scale during which oligomerization takes
place depends on the size (and shape) of the encounter
volume as well as on the cluster geometries. Thus in order
to determine the macroscopic rate constants k+ and k−
defined in Eq. S9, the rate constant of the diffusive for-
mation of the encounter kD needs to be evaluated. This
rate constant depends on the shape and diffusive proper-
ties of the clusters involved in the reaction and the size
and shape of the encounter between them. Numerically,
kD can be calculated for two particular clusters based
on a simulation algorithm proposed by Zhou [19]. In
this algorithm the diffusive rate constants kD and kD,b
are evaluated from the survival probability S(t) of two
particles starting in a random encounter configuration
by [13, 19, 20]:

kD = lim
t→∞

κ
S(t)

1− S(t)
, kD,b = kD/V

?. (S18)

In Eq. S18 κ = V ?ka.

III. COUPLING TO A PARTICLE RESERVOIR

Periodic boundaries are commonly used in particle-
based simulations. However, in some cases one is in-
terested to study a specific region embedded in a larger
system. In this case simple periodic boundary conditions
do not apply and the computational costs often prohibit

simulations of a very large system with explicit parti-
cle resolution. This situation is given when investigating
the effect of a cylindrical scaffold. While the scaffold is
localized in the x-y plane, its height spans the whole z-
extension of the simulation volume, and depending on the
strength of the interaction between scaffold and SAS-6
homodimers, many homodimers can accumulate on the
cylindrical surface. Thus, with simple periodic bound-
aries a very large extension of the simulation volume in
x- and y- direction would be required to accommodate
enough homodimers so that the effect of the scaffold at
µM concentrations could be studied without starvation
of the simulation volume. Studying such a large system is
prohibited by the large computational costs of the simu-
lations. Instead we couple our simulation volume to a ho-
modimer reservoir. To couple BD simulation to a reser-
voir, hybrid schemes have been proposed in which the
region explicitly described by BD simulations is coupled
to a region described by density based methods [21–23].
While such an approach provides a mathematically solid
framework to couple BD simulation with a continuous
PDE-type description for point-like particles [23], a rig-
orous generalization to proteins with non-spherical shape
is cumbersome. Thus, instead of using this coupling, we
rely on another approach in which the simulation volume
is coupled to a particle repository using grand canonical
Monte Carlo (GCMC) steps, which are limited to a region
far away from the region of interest [24–26]. This method
can be generalized to extended proteins and clusters in
the limit of dilute concentrations.

The basic idea of GCMC is to consider a random walk
in the number of particles. In general, the probabili-
ties for the creation of a new particle (at a specific po-
sition) or the destruction of an existing particle depend
on the number of particles in the simulation volume and
on their configuration. Following Im et al. [25] we here
derive an expression for the creation or destruction of
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Figure S 3. (a) Model for the encounter between two single
N-term domains. The encounter constraints are the same as
for the full SAS-6 homodimer (Eq. S11-Eq. S14). (b) Diffusive
on-rates based on Eq. S18 for a fixed patch radius Rp = 2.05
as a function of the angular constraints θ = χ. Here a mini-
mum timestep of ∆t = 0.0001ns has been used. The black line
corresponds to the result predicted by the TransComp web-
server for the diffusive on-rate of two N-term domains based
on PDB structure 3Q0Y [28] at physiological salt conditions.

new clusters which is adapted to our purposes. In the
following we consider the chemical potential of an ideal
gas µid = −kBT ln

(
V

Λ(T )3N

)
(compare e.g. reference [27])

as the reference chemical potential, and ∆µ denotes the
difference from the ideal case. Here Λ(T ) is the thermal
wavelength, V volume and N particle number. In the
ideal case the particle concentration nid is related to the
chemical potential by nid = Nid/V = Λ(T )−3eβµid where
β is inverse temperature 1/(kBT ). Given this relation the
grand canonical partition sum can be written as [25, 27]:

Ξ(V, T, µ) =

∞∑
N=0

NN
id

N !

∫
d3Nxe−βW (x,N)eβ∆µN (S19)

with x =
r

V 1/3
.

The probability to find the system in state (x, N) is given
by:

P (x, N)d3Nx =
1

Ξ
× NN

id

N !
e−β(W (x,N)−∆µN)d3Nx. (S20)

From Eq. S20 the ratio of the transition probabilities
governing the creation or destruction of a new particle
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Figure S 4. Cluster population dynamics. Star symbols show
averaged simulation data. Solid lines show the results using
the rate equation approach [16] for the larger encounter vol-
ume (Tab. SIV and Tab. SV). Empty circles show the results
from the rate equation approach using the smaller encounter
volume (Tab. SII and Tab. SIII) when using a rescaled time
tsc = α× t ≈ 123.3 × t.

can be inferred by requiring detailed balance [25]. For
typical concentrations used here the system can be con-
sidered as dilute. In this case Eq. S20 simplifies to the
expected Poisson distribution describing the fluctuation
of proteins in a finite observation volume.

P (N) ≈︸︷︷︸
∆W=∆µ≈0

1

Ξ

〈N〉N

N !
=
〈N〉N

N !
e−〈N〉. (S21)

In Eq. S21 the average number of proteins 〈N〉 = nrV ,
where nr is the particle concentration of the repository
and V is the size of the simulation volume. Requiring
detailed balance we can infer the ratio of the transition
probabilities for particle creation and destruction from
Eq. S21:

P (N)pN→N+1 = P (N + 1)pN+1→N (S22)

⇒ pN→N+1

pN+1→N
=
〈N〉
N + 1

. (S23)

Choosing a normalization of C = N + 1 + 〈N〉 we obtain
the following probabilities for the creation or destruction
of a new particle:

pcreate
N→N+1 =

〈N〉
N + 1 + 〈N〉

(S24)

pdestroy
N→N−1 =

N

N + 〈N〉
. (S25)

As the scaffolding cylinder is localized in the x-y
plane, we specify an inner region of interest (blue box
in Fig. S2a) and restrict the unphysical GCMC moves
to a volume VGCMC far away from this region as has
been previously argued [24–26]. In order not to bias
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Figure S 5. The effect of different stabilization energies for
the final ring structure for an initial homodimer concentration
c = 75µM.

our BD simulations by the exchange dynamics with the
reservoir we require that the exchange with the bulk is
fast, compared to the time needed for a cluster to dif-
fuse through VGCMC. Thus, the time between subse-
quent GCMC steps tGCMC has to fulfill the requirement
tGCMC � L2/D (compare Oberholzer et al. [24]), where
D is the average translational diffusion coefficient of the
cluster and L is the characteristic length scale associated
with VGCMC. Based on the transition probabilities de-
fined in Eq. S24 and Eq. S25, we can now couple our
BD simulation volume to a bulk repository. To this end
we use the following algorithm. In each GCMC move,
either the creation or the destruction of a cluster is at-
tempted with equal probability. The creation of a new
cluster in VGCMC is accepted with probability pcreate

N→N+1
while the destruction of an existing cluster in VGCMC is

accepted with probability pdestroy
N→N−1. In this case the aver-

age number of proteins is given by: 〈N〉 = nrVGCMC. If
the creation of a new cluster is accepted, a random posi-
tion and orientation of the new cluster is chosen with the
requirements that the center of the cluster is located in-
side VGCMC and that no overlap with an existing cluster
occurs. If an overlap is observed, a new position and ori-
entation is chosen. Thus, in contrast to the work by Im et
al. [25], where such an overlap would lead to a rejection
of the complete GCMC step, we do not reject the GCMC
move but instead choose a new position and orientation
for the created protein. In this way the desired concen-
tration of proteins in the simulation volume is established
even when a non-vanishing fraction (dilute limit) of the
simulation volume is occupied by other clusters.

In Fig. S2a, the 2D projection of a simulation volume
of size Vsim = (100nm)3 is shown, which is coupled to
a repository by GCMC steps. For simplicity we here
consider only non-reactive, spherical proteins. A gener-
alization to interacting proteins will be discussed later.
In the setup shown in Fig. S2a, the GCMC steps are
restricted to a region of width L = 5nm from the x-y-
boundary, and gray marks depict the center of the newly

created proteins. In addition, the inner region contain-
ing the scaffold, which is localized in the x-y direction,
is marked in blue. This inner region has a volume of
Vinner = 1/5 × Vsim with the z-extension of the inner
region spanning the full box height. In Fig. S2b and
Fig. S2c, the number of particles observed in the inner
region (blue) is compared to the expected Poisson dis-
tribution (red) for two different particle concentrations.
We see that the number of proteins observed in our simu-
lations agrees well with the expected distribution, albeit
in the simulations the distribution seems to be shifted
to slightly larger values (e.g in Fig. S2c 〈N〉sim = 10.046
instead of the expected 10.0). Despite these very small
deviations, the coupling mechanism presented here is well
suited to study the effect of a localized structure like a
scaffold which is embedded in a large system without the
need to simulate the complete system.

For the coupling to a bulk repository of SAS-6 ho-
modimers one further has to take into account that, de-
pending on the homodimer concentration of the reposi-
tory, a certain fraction of larger oligomers exists in the
bulk and we calculate the equilibrium concentration nr,k
of clusters of size k for a given total homodimer con-
centration nr using the previously defined rate equation
approach (ref. [16]). Thus, in order to take the exis-
tence of higher oligomers in the bulk into account in our
GCMC scheme, we consider each oligomer as an individ-
ual species. During each GCMC step the creation or the
destruction of each of the oligomer species (k = 1, · · · , 9)
is attempted according to Eq. S24 or Eq. S25, respec-
tively, with < Nk >

GCMC= nr,k × VGCMC being the ex-
pected number of oligomers of size k in the GCMC region
VGCMC.

IV. CHOICE OF PATCH PARAMETERS

Due to the lack of experimental knowledge of the speed
of the reaction process, we instead rely on the TransComp
webserver provided by the Zhou group [29–31] to esti-
mate the reaction speed. This webserver is set up to
predict the reaction rate constant from the crystal struc-
ture of a given complex. In order to estimate the re-
action rate constant for the dimerization of individual
N-term complexes, we use part of the crystal structure
with PDB entry 3Q0Y [28] corresponding to one N-term
complex as input for the TransComp webserver. Under
physiological salt conditions a diffusive reaction rate con-

stant of kN,ND ≈ 3 × 105M−1s−1 has been predicted by
the webserver for the two N-term domains with a mild
influence of electrostatics only. However, exchanging the
order in which the chains of the N-term complex are pro-
vided to the webserver results in rather large changes in
the estimated rate constants (by about a factor of 4).
Thus, the value predicted for the reaction rate constant
of the dimerization of two N-terms can only be consid-
ered as a rough estimate which sets the overall time scale
of the assembly process. Nevertheless, here we choose
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Figure S 6. Effect of longer CC domain. (a) Bulk-assembly dynamics for a SAS-6 model with the CC-domain being elongated
to ≈ 50nm for a homodimer concentration of c = 75µM (no internal stabilization, parameter set 1). (b) Number of SAS-6
homodimers targeted to a cylindrical scaffold (parameter set 2 with scaffold as described in the main text) for an interaction
strength of l = 1.875 and a reservoir concentration of cr = 5µM. The red line corresponds to the SAS-6-6HR model with a CC
length LCC ≈ 7nm while the black line shows the number of SAS-6 homodimer targeted to the cylinder when elongating the
CC domain to LCC ≈ 14nm.

our patch parameters accordingly to this estimate and
investigate the effect of oligomer size for the reaction
rate constants. We describe an individual N-term do-
main by a single hard sphere equipped with a reactive
patch whose center coincides with the center of the N-
term domain (see Fig. S3a). The constraints defining an
encounter between two N-term domains are identical to
those used for the full SAS-6 model including the tor-
sional constraint (Eq. S14). Assuming only short ranged
interactions (surface reactivity in the spirit of reactive
boundaries), we choose a patch radius of Rp = 2.05nm,
which is only slightly larger than the radius of the hard
sphere modeling the N-term (RN = 1.979nm).

Additionally we require that θ = χ in order to elim-
inate one further parameter. With this choice we now
vary θ (and simultaneously χ) and determine the dif-
fusive reaction rate constant between two spherical N-
terms according to the algorithm described by Zhou and
coworker [19, 20]. The result is shown in Fig. S3b. Choos-
ing θ = χ = 0.12 rad, we find good agreement between
the expected diffusive rate constant and the one observed
with our patchy sphere model. With this choice of patch
parameters, the encounter volume for the dimerization
reaction between two N-terms is V NN?

= V SAS-6?

Ai,Bj
≈

1.43 × 10−5nm3 (see Eq. S15), and the encounter vol-
ume for the reaction of two complete SAS-6 homodimers
is V SAS-6?

1,1 ≈ 5.7×10−5nm3 (see Eq. S16). Here it has to
be noted that this choice of patch parameters correctly
reproduces the value estimated by the TransComp web-
server, although it is not unique.

Considering that the estimated reaction rate constant
for the dimerization of two N-term complexes is about

four to five orders of magnitude below the Smoluchowski
rate constant for two spheres of similar size and that a
very small timestep is required to appropriately resolve
the small encounter volume, direct simulations of the as-
sembly process are not feasible. Thus, in order to inves-
tigate bulk assembly taking the effect of slower diffusion
of larger oligomers into account, we instead rely on the
previously introduced rate equation approach for the as-
sembly of ring structures [16]. To use this rate equation
approach, the size of the encounter volumes as well as
the diffusive reaction rate constants for all combinations
of ring fragments containing i and j homodimers need
to be determined. While for the reaction of clusters of
size i + j < 9 the encounter volume is the same as for
the reaction of two homodimers, we have to take into ac-
count that for the reaction of clusters with size i+ j = 9
the encounter volume is reduced due to steric collisions
and double encounters between the clusters. The MC
scheme described for this purpose in reference [16] can-
not be applied here to determine the reduction of the ac-
cessible encounter volume for the formation of complete
rings due to the large difference between the box vol-
ume necessary to prevent artifacts (Vbox

>∼ (40nm)3 ≈
6.4 × 104nm3) and the expected encounter volume size
V SAS-6?

i,j ≤ 5.7 × 10−5nm3. In this case more than 109

trials are needed until one encounter is sampled. Here
we circumvent this problem using a slightly different MC
scheme. In particular, we sample only encounter config-
urations between two ring fragments (fulfilling the con-
straints given in Eq. S11- Eq. S14), but we neglect any
steric interactions. Sampling N encounter configurations
we record the fraction of accessible configurations with-
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Figure S 7. Number of SAS-6-6HR homodimers (a) and rela-
tive population p9 of complete SAS-6-6HR rings (b) observed
in steady state as a function of the interaction strength l for
different repository concentrations cr.

out a steric overlap f i,jaccess = (N − N i,j
steric)/N as well

as the fraction of the accessible configurations for which
a simultaneous overlap of two pairs of patches occurs
f i,jdouble = N i,j

double/(N − N i,j
steric). As we know the size

of the encounter volume for the reaction of two homod-
imers (compare Eq. S16), we can infer the reduction of
the encounter volume for larger ring fragments combining
into a complete ring due to steric blocking and overlap-
ping encounter volumes of different patch combinations
by:

V SAS6?

i,j = V SAS-6?

1,1

f i,jaccess − 0.5f i,jaccessf
i,j
double

f1,1
access

. (S26)

The factor of 1/2 reflects the fact that simultaneous dou-
ble encounters between two clusters are not allowed in our
simulations and only one of the encounters is considered.
In the case studied here, f i,jdouble � 1 so that the double-
encounter configurations lead only to a minor reduction
of V SAS-6?

i,j compared to the effect of steric exclusion. The
resulting encounter volumes for the reaction between dif-
ferent SAS-6 ring fragments are given in Tab. SII. Fi-
nally, after having estimated the encounter volumes for
the reaction between different ring fragments we compute
the diffusive reaction rate constant from many short BD
trajectories with a minimum timestep of ∆t = 0.0001ns
each starting with a random encounter configuration of
the two cluster fragments. The diffusive on-rates follow
from Eq. S18 and their dependence on the oligomeriza-
tion state is given in Tab. SIII.

While using the patch parameters estimated by match-

ing the TransComp predictions allows to run short sim-
ulations from which diffusive on-rates used in our rate
equation approach can be inferred, direct simulations of
the whole assembly process are prohibited by the small
size of the encounter volume and the related slow as-
sembly kinetics. Thus, in order to be able to study the
effect of a localized scaffold for the assembly of SAS-
6 rings, we simulate the assembly with enhanced diffu-
sive reaction dynamics by relaxing the constraints defin-
ing an encounter. In particular, we use a patch ra-
dius of Rpenh = 2.15nm and orientational constraints
of θenh = χenh = 0.4rad. This results in larger en-
counter volumes between different ring fragments, which
are given in Tab. SIV. The enlarged encounter volumes
reduce the time needed to establish an encounter. This
is reflected by the diffusive on-rate constants calculated
with the relaxed encounter constraints. The diffusive as-
sociation rate constants are shown in Tab. SV. Com-
paring the relative change in the diffusive on-rate con-
stants for different cluster sizes (ki,jD /k1,1

D ) calculated for
the SAS-6-6HR model with the smaller encounter vol-
umes (Tab. SIII) and the enlarged encounter volumes
(Tab. SV), we see that they are very similar except for
the final step leading to ring closure (i + j = 9). While
the final ring formation step is crucially affected by steric
blocking, the relative reduction of the diffusive on-rate
constants between two smaller fragments (i + j < 9)
is almost independent of the increased encounter vol-
ume and depends only on the size and shape of the two
clusters. Thus, increasing the encounter volume can be
considered as rescaling of time by a factor α ≈ 123.3
which is defined by the ratio of k1,1

D estimated for the
larger and the smaller encounter volume. This can be
seen in Fig. S4 where the evolution of the relative clus-
ter population for the assembly of SAS-6-6HR homod-
imers is shown starting with an initial concentration of
c = 5µM. Here, solid lines show the resulting cluster pop-
ulations observed with our rate equation approach using
the larger encounter volumes (Tab. SIV) and the corre-
sponding rate constants (Tab. SV). Empty circles show
the resulting cluster populations using the smaller en-
counter volumes (Tab. SII) and the corresponding rate
constants (Tab. SIII) when rescaling time (tsc = αt).
Additionally the evolution of the relative cluster popu-
lation observed in direct simulations (∆t = 0.01ns, 30
independent trajectories) starting with 125 SAS-6-6HR
homodimers in a periodic box of size V = 346nm3 is
shown by star symbols. For the simulations and the rate
equation approach with the larger encounter parameters
a microscopic reaction rate of ka = 4ns−1 has been used,
resulting in strongly diffusion-influenced assembly, and
the microscopic dissociation rate constant follows from
Eq. S17. In the case of the smaller encounter volumes,
the microscopic rates are chosen appropriately so that
the assembly is equally diffusion-influenced (the ratio

ka/k
1,1
D,b stays preserved where k1,1

D,b is the diffusive back

reaction rate constant for two single homodimers). From
Fig. S4 one can clearly see that in the case of bulk assem-
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bly enlarging the encounter volume can be considered as
rescaling of time. Moreover, direct simulations of the as-
sembly process are feasible when relaxing the encounter
constraints. As expected, the evolution of the relative
cluster populations observed by direct simulations shows
excellent agreement with the relative cluster distributions
predicted from our rate equation approach.

V. SUPPLEMENTARY MOVIES

Movie 1 shows bulk assembly at homodimer concen-
tration c = 75µM. One clearly sees the variability in
the intermediates structures assembled. Movie 2 shows
assembly around a freely accessible spherical scaffold at
c = 5µM. One sees many intermediates that obstruct
each other. Movie 3 shows assembly around an embedded
spherical scaffold at c = 5µM. One sees how a complete
ring is readily formed.

VI. TABLES

Parameters Set 1 (normal) Set 2 (accelerated)

Rp (nm) 2.05 2.15

θ ,χ (rad) 0.12 0.4

ka (ns−1) 104 4

kd (ns−1) 2.6 × 10−6 1.056 × 10−6

∆t (ns) 0.0001 0.01

Table S I. Simulation parameters. Sets 1 and 2 were used
to simulate bulk assembly and scaffold-assisted assembly, re-
spectively.

Size 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 0.55

2 1 1 1 1 1 1 0.59 -

3 1 1 1 1 1 0.59 - -

4 1 1 1 1 0.62 - - -

5 1 1 1 0.62 - - - -

6 1 1 0.59 - - - - -

7 1 0.59 - - - - - -

8 0.55 - - - - - - -

Table S II. Weight matrix MV for different SAS-6 ring frag-
ments with patch parameters Rp = 2.05nm, θ = χ = 0.12rad.
The encounter volume for a specific fragment combination is
given by V ?

i,j = V ?
1,1M

V
i,j with V ?

1,1 = 5.8 × 10−5nm3 being
the encounter volume for two SAS-6 homodimers calculated
according to Eq. S15 and Eq. S16. The volume reduction for
ring fragments combining into a full ring has been estimated
based on Eq. S26.

Size 1 2 3 4 5 6 7 8

1 1 0.83 0.75 0.71 0.68 0.65 0.62 0.27

2 0.83 0.66 0.59 0.54 0.51 0.48 0.26 -

3 0.75 0.59 0.53 0.48 0.44 0.25 - -

4 0.71 0.54 0.48 0.43 0.25 - - -

5 0.68 0.51 0.44 0.25 - - - -

6 0.65 0.48 0.25 - - - - -

7 0.62 0.26 - - - - - -

8 0.27 - - - - - - -

Table S III. Weight matrix MkD estimated based on the algo-
rithm by Zhou[19, 20] for different ring fragment combinations
of SAS-6-6HR homodimers (shorter CC) with patch param-
eters Rp = 2.05nm, θ = χ = 0.12rad. The diffusive on-rates
for the different ring fragments are given by ki,jD = k1,1D MkD

i,j

with k1,1D = 8.3×10−4nm3ns−1 being the diffusive on-rate for
two SAS-6-6HR homodimers.

Size 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 0.79

2 1 1 1 1 1 1 0.80 -

3 1 1 1 1 1 0.81 - -

4 1 1 1 1 0.79 - - -

5 1 1 1 0.79 - - - -

6 1 1 0.81 - - - - -

7 1 0.80 - - - - - -

8 0.79 - - - - - - -

Table S IV. Weight matrix MV for different SAS-6 ring frag-
ments with enhanced reactivity (Rp = 2.15nm, θ = χ =
0.4rad). The encounter volume for a specific fragment com-
bination is given by V ?

i,j = V ?
1,1M

V
i,j with V ?

1,1 = 0.0585nm3

being the encounter volume for two SAS-6 homodimers cal-
culated according to Eq. S15 and Eq. S16. The volume re-
duction for ring fragments combining into a full ring has been
estimated based on Eq. S26.

Size 1 2 3 4 5 6 7 8

1 1 0.82 0.76 0.72 0.68 0.65 0.62 0.42

2 0.82 0.67 0.61 0.56 0.52 0.49 0.36 -

3 0.76 0.61 0.52 0.48 0.42 0.33 - -

4 0.72 0.56 0.48 0.42 0.31 - - -

5 0.68 0.52 0.42 0.31 - - - -

6 0.65 0.49 0.33 - - - - -

7 0.62 0.36 - - - - - -

8 0.42 - - - - - - -

Table S V. Weight matrix MkD estimated based on the algo-
rithm by Zhou[19, 20] for different ring fragment combinations
of SAS-6-6HR homodimers (shorter CC) with enhanced reac-
tivity (Rp = 2.15nm, θ = χ = 0.4rad). The diffusive on-rates

for the different ring fragments are given by ki,jD = k1,1D MkD
i,j

with k1,1D = 0.102nm3ns−1 being the diffusive on-rate for two
SAS-6-6HR homodimers.
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