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CHAPTER 1

Introduction

Continuum Mechanics describes the movement of matter on a sufficiently large length scale (typically
≥ 100nm) such that it can be considered to be continuously distributed, rather than consisting of discrete
atoms or molecules. The appropriate mathematical concept is that of continuous fields, in particular:

ρ(r, t) mass density field
u(r, t) deformation field
v(r, t) velocity field

Fig. 1.1 shows examples: in (A) we see the deformation field of an elastic solids, and in (B) we see the flow
field around a sphere.

These two examples in fact represent the two major areas into which continuum mechanics is usually
divided: solid mechanics and fluid dynamics. Fig. 1.2 shows how one can further subdivide these fields.
The core of solid mechanics is elasticity theory, but also defects and flow are important. Fluid dynamics is
usually subdivided into flow of incompressible fluids like water (hydrodynamics) and compressible fluids like
air (aerodynamics). In this course we will focus on solid mechanics, in particular on elasticity theory, but
also cover the grey zone to hydrodynamics, namely viscoelasticity. We will begin with a one-dimensional
version and only later turn to the full three-dimensional theory. Despite our focus on elasticity theory,

F

F

x₀x₀′

x₁′

x₁

xₑ
xₑ′

(A)

F
d

F
g

(B)

Figure 1.1.: (A) By deforming an elastic body, in general all points will change their position. By mapping
the original onto the deformed shape, one obtains the deformation field u(r, t). (B) The flow
of a fluid around a sphere is described by a velocity field v(r, t). Both vector fields are depicted
by arrows.
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Hookean Solid Newtonian Fluid

Solid Mechanics Fluid Dynamics

Continuum Mechanics

Imperfections Elasticity Theory Rheology Hydrodynamics Gas Dynamics

defects

fracture

plasticity

processing and
stability of 
materials

             linear
               vs.
          non-linear
       shells & beams

elastic waves

buckling

polymer melts &
solutions, blood, liquid
crystals, glaciers, earth,
etc.

flow of complex fluids: flow of simple liquids: variable density &
temperature

combustion engines,
star formation,
supersonic flights

Maxwell,
Kelvin,
Boltzmann

aerodynamics (cars
& planes),
flow through porous
media (ground water),
atmosphere &
oceans

Navier Equation Navier-Stokes-Equation

Figure 1.2.: Continuum mechanics can be subdivided into many different subdisciplines. Here we focus on
elasticity theory, but also include viscoelasticity and rheology, which is the intersection with
hydrodynamics.

many of the methods we will encounter are also common to fluid dynamics, because in all cases, one deals
with partial differential equations (PDEs) that can be solved e.g. with the finite element method.

Continuum mechanics is a classical field theory like electrodynamics and thus we will use similar concepts,
e.g. Green’s functions. It can be combined with other fundamental parts of physics, e.g. thermodynamics
(if temperature, heat, work and entropy are important) or electrodynamics (if electric and/or magnetic
fields exist). Such combined theories are often called multiphysics. Important applications for continuum
mechanics are in engineering, biophysics, materials science (including biomaterials), environmental sciences
and astrophysics. A very modern branch is active systems, where movement results from local energy
sources.



CHAPTER 2

Linear viscoelasticity in 1d

2.1. Motivation

l₀ l

F

F

Continuum mechanics is a field theory for vectors and tensors of rank two. However,
before we develop the three-dimensional theory, we first consider its 1d (scalar)
version. In particular we introduce the concepts of viscoelasticity and the complex
modulus. A typical experiment in this context would be the mechanical test of a
fiber (see the figure on the right). There exist three typical setups for this test:

• Relaxation experiment: one prescribes the deformation and records the force.

• Creep experiment: one prescribes the force and records the deformation.

• Cyclic loading: force is varied in a period manner and one measure phase shift
and amplitude of the deformation.

Fig. 2.1 depicts a relaxation experiment. In a perfect elastic system the force will
follow exactly the stretch profile, whereas in a viscoelastic system, the asymmetry
between loading and unloading leads to a hysteresis cycle. The energy W =

∫
Fdl 6=

0, corresponding to the area of the rectangle, is dissipated as heat and thus presents a possibility to
distinguish between elastic and viscoelastic systems.

Δl

time t

Figure 2.1.: Input

time t

force F

Figure 2.2.: Output

force F

Δl

Figure 2.3.: Hysteresis cycle
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5 2.2 Elastic response

2.2. Elastic response
As the simplest model consider a spring with spring constant k (fig.2.4).
The simplest possible mechanical response to a force is an elastic one: F = k · (l − lo).

F F

k

Figure 2.4.: The response of an elastic spring, characterized by its spring constant k, to an applied force F
is in linear approximation given by Hooke’s Law.

We define:

stretch λ =
l

l0
=

l0 +∆l

l0
(2.1)

strain1 ε =
∆l

l0
(2.2)

Equation 2.2 can be used to define the 1d modulus C which characterizes material properties of the fiber:

F = k ·∆l = (k · l0) · ε ≡ C · ε (2.3)

In a 3d stretch experiment, a force F applied over an area A stretches the material from length l to ∆l.
A linear elastic response implies:

F

A
= E · ∆l

l
(2.4)

where stress σ ≡ F
A and strain ε act as cause and effect

σ = E · ε (2.5)

where E is the so called Young’s modulus or rigidity of the material. From here we find C = E ·A.
Equation 2.5 might be recognized as Hooke’s law conjuring up the image of macroscopic deformation as
the result of the stretching of a large set of microscopic springs corresponding to the elastic elements within
the material.
A dimensional analysis of the quantities in question reveals the following:

[ε] = 1 (2.6)
[C] = [F ] = N, (2.7)

[σ] =
N

m2
= Pa (2.8)

[E] = [σ] = Pa (2.9)

For solid materials the Young’s modulus is typically in the range of GPa, much larger than for soft matter,
e.g. cells with rigidity in the order of 10 kPa.
Stretching the relationship between stress and strain a bit further, we can rewrite Equation 2.5 as

F = (E ·A) · ε = C · ε = (k · l0) · ε (2.10)

⇒ k =
E ·A
l0

(2.11)

where k is considered to be the ’spring constant’ of the material.
1Linear elasticity theory (LET) is an expansion in small ε



6 2.3 Viscous response

l

F

F

A(A) F

ε

C

(B)

Figure 2.5.: (A) Elastic material of length l and cross-sectional area A is stretched by a force F which will
result in a deformation of the material.
(B) Unlike viscoelastic material (compare fig. 2.3) an elastic material shows no hysteresis and
does not dissipate energy.

2.3. Viscous response
Most biological materials show viscoelastic behaviour. In this section we will cast this behaviour in a
one-dimensional mathematical format.

For a viscous element, force results from movement:

F = Cη
1

l

dl

dt
(2.12)

where Cη is the damping coefficient and

D ≡ 1

l

dl

dt
(2.13)

is called the rate of deformation. Recalling the stretch parameter λ = l
l0

(Equation 2.1) and the relation
λ = 1 + ε we can write

D =
1

l

dl

dt
=

1

λ

dλ

dt
=

1

1 + ε
ε̇ ≈ (1− ε)ε̇ ≈ ε̇ (2.14)

for small strain ε � 1 such that
D ≈ ε̇ =

1

l0

dl

dt
(2.15)

and
F = Cη ·D ≈ Cη · ε̇ (2.16)

To perform the experiment correctly for all strain values one has to implement a constant deformation rate
D = const:

⇒ 1

l

dl

dt
=

d ln l

dt
= D = const (2.17)

with solution
l = l0 · eDt (2.18)

subject to the initial conditon l(t = 0) = l0, meaning that the endpoint has to be displaced exponentially
in time in order to maintain a constant deformation rate.



7 2.4 Maxwell model

FF

l(A)

F

ε

C

⋅

η

(B)

Figure 2.6.: (A) A dashpot is a damping device which resists motion via friction and serves as the mechan-
ical equivalent of a viscous fibre.
(B) Response curve

FF

Cη C

Figure 2.7.: Maxwell model: Dashpot and spring in series

2.4. Maxwell model
The Maxwell model is the simplest spring-and-dashpot model for a viscoelastic fluid (it flows on long time
scales). The single elements of the model are given by

Fs = C · εs, Fd = Cη · ε̇d (2.19)

for spring and dashpot respectively. The strains add up to ε

ε = εs + εd (2.20)

implying
ε̇ = ε̇s + ε̇d. (2.21)

The forces in the spring and the dashpot are the same, hence the overall strain rate can be written as

ε̇ = ε̇s + ε̇d =
1

C
Ḟ +

1

Cη
F (2.22)

We consider a relaxation experiment, that is the strain ε is given and the force F has to be calculated:
Multiplying Equation 2.22 with C and rearranging we get an ordinary differential equation (ODE) in F:

Ḟ +
C

Cη
F = Cε̇ (2.23)

Introducing the relaxation time Cη

C ≡ τ we obtain

Ḟ +
1

τ
F = Cε̇ (2.24)

The general solution of the ODE is given by the homogeneous solution and one particular solution F =
Fh + Fp. The homogeneous solution to

Ḟh +
1

τ
Fh = 0 (2.25)
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is given by
Fh = A1 · e−

t
τ , A1 = const (2.26)

and one particular solution to the inhomogeneous equation 2.24 by

Fp = A(t) · e−
t
τ (2.27)

Substitution into Equation 2.24 leads to an expression for A:

dA

dt
= C · e

t
τ · ε̇ (2.28)

hence

A = C ·
t∫

0

dt′ · e
t′
τ · ε̇(t′) (2.29)

subject to the condition that for t < 0 the strain rate vanishes ε̇ ≡ 0.
Likewise imposing F = 0 for t < 0 leads to A1 = 0 and collecting all the pieces we arrive at the integral
solution

F (t) = C ·
t∫

0

dt′ · e−
(t−t′)

τ · ε̇(t′) (2.30)

Example: 1) Strain ramp

For a strain depending linearly on time (compare fig. 2.9) the strain rate is constant ε̇ = const ≡ r.
Equation 2.30 then reduces to

F (t) = C · r · e−
t
τ

t∫
0

dt′ · e
t′
τ (2.31)

= C · r · e−
t
τ · τ · [e

t
τ − 1] (2.32)

= Cη · r · (1− e−
t
τ ) (2.33)

In the case of short times only the spring is extended and the response is linear and elastic (compare
fig. 2.9)

F = Cηr
t

τ
= Crt (2.34)

For long times we have a constant and viscous response

F = Cηr, (2.35)

the spring has a constant extension and the force is dominated by the dashpot.

Example: 2) Relaxation experiment

We keep ε constant starting at time t∗. Then the strain rate is zero for t > t∗

ε̇ = 0 (2.36)

and the force is given by
F = F ∗ · e−

(t−t∗)
τ (2.37)

The spring relaxes back to zero, no energy is stored but dissipated as heat.
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tt*

ε
(A)

r

tt*

F
(B)

ramp relaxation

Figure 2.8.: (A) Strain as a function of time and (B) the force response for the spring-dashpot model.

2.5. Laplace transformation
For the Maxwell model we had to solve the ODE

Ḟ +
1

τ
F = Cε̇ = f(t) (2.38)

for t ≥ 0 and with known initial condition F (0). This can be nicely done with Laplace transforms.

Definition 1. Let f(t) be a function defined for t ≥ 0:

f̂(s) = L[f(t)] =
∞∫
0

dt f(t) · e−st, s ∈ C

The back transforms

f(t) =
1

2πi

c+i∞∫
c−i∞

ds f̂(s) · est (2.39)

follow from complex analysis and are tabulated in many books.
We now show how to solve the ODE (Equation 2.38):

Ḟ +BF = f(t) (2.40)
⇒ sF̂ (s)− F0 +BF̂ (s) = L[f(t)] = f̂(s) (2.41)

⇒ F̂ (s) =
f̂(s) + F0

s+B
(2.42)

Taking the strain ramp as an example from above:

f(t) = C · ε̇ = C · r = const, B =
1

τ
, F0 = 0 (2.43)

⇒ f̂(s) =
C · r
s

(2.44)

⇒ F̂ (s) =
C · r

s · (s+B)
(2.45)

⇒ F (t) = C · r · τ(1− e−
t
τ ) (2.46)
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2.5

Laplace
transform

ation

Table 2.1.: Some examples of forward Laplace transformations
f(t) f̂(s)

1
∞∫
0

dt 1e−st = 1
s

eat
∞∫
0

dt e−(s−a)t = 1
s−a

eat − ebt 1
s−a − 1

s−b = a−b
(s−a)(s−b)

t
∞∫
0

dt te−st =
[
− t

se
−st
]∞
0

+
∞∫
0

dt 1
se

−st = 1
s2

t · f(t) − d
ds

∞∫
0

dt f(t)e−st = − d
ds f̂(s)

tn
∞∫
0

dt e−stt · tn−1 = − d
dsL[t

n−1] = (−1)n−1 dn−1

dsn−1L[t] = n!
sn+1

f ′(t)
∞∫
0

dt e−st df
dt =

[
e−stf(t)

]∞
0

+ s
∞∫
0

dt e−stf(t) = −f(0) + sf̂(s)

convolution integral:
∫
y(t− t′)x(t′)dt′ ≡ f(t)

∞∫
0

dt e−st
∫
dt′y(t− t′)x(t′) = L[x(t)] · L[y(t)], t = t′′ + t′
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FF

Cη

C

Figure 2.9.: Spring-dashpot in parallel is a Kelvin-Voigt arrangement

2.6. Kelvin-Voigt model
The Kelvin-Voigt model as another example of combined viscoelastic behaviour is the simplest model for
a viscoelastic solid (it does not flow on long time scales).
In analogy to an electric circuit, the forces add up so that the total force equals the sum of the forces due
to the elastic spring Fs and the viscous damper Fd:

F = Fs + Fd = C · ε+ Cη · ε̇ (2.47)

The natural way to analyse this situation is a creep experiment where the force is prescribed. Following
the mathematical treatment of the Maxwell modell, the constitutive ODE for the Kelvin-Voigt model is
given by

ε̇+
1

τ
ε =

F

Cη
linear ODE for ε (2.48)

Like equation 2.30, but with ε and F exchanged, the solution is

ε(t) =
1

Cη

t∫
0

dt′ e−(t−t′)/τ F (t′) (2.49)

where we assume that at t = 0 we start to pull on the setup. In the case of a force jump to a constant
value F0 at t = 0, the creep function is given by

J(t) =
ε(t)

F0
=

1

C
(1− e−

t
τ ) (2.50)

The strain response is such that it initially increases and then plateaus which is called creep (see fig. 2.11).
Looking at the limits we have for t � τ :

ε =
F0 · t
Cη

a linear viscous response (2.51)

and for t � τ :
ε =

F0

C
a constant elastic response (2.52)
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F

t

F₀

0

(A)

t

(B)

0

F₀/C
elastic

viscous

ε

Figure 2.10.: (A) The simple Heaviside step function is often used as a loading protocol for viscoelastic
models.
(B) The behaviour of the Maxwell model is reversed, showing that the response not only
depends on scaling but also on the arrangements of elements in the setup.

2.7. Standard linear model
For the standard linear model (see cartoon in fig. 2.12) we now combine the Maxwell and Kelvin-Voigt
models. For the linear elements the force has to be the same, whereas in parallel the forces add up. Hence
we get the following relations:

F = F1 + F2 (2.53)
= C1 · (ε− εd) + C2 · ε (2.54)

ε̇d =
F1

Cη
=

F − F2

Cη
=

F − C2ε

Cη
(2.55)

Inserting (2.54) into (2.55) and thus eliminating F1, F2 and ε̇d and again introducing the relaxation time
τ (equation 2.4)

⇒ Ḟ = C1 · (ε̇− ε̇d) + C2 · ε̇ (2.56)

= (C1 + C2) · ε̇− C1 · (
F − C2 · ε

Cη
) (2.57)

we finally obtain the constitutive equation for the standard linear model:

⇒ τḞ + F = (C1 + C2)τ ε̇+ C2ε (2.58)

FF

Cη

C₁

C₂

F₁

F₂

Figure 2.11.: The standard linear model with one dashpot and two springs.
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ε

t

ε₀

0

(A)
F

t

(C₁+C₂)ε₀

0

(B)

C₂ε

Figure 2.12.: (A) Strain jump.(B) Force response

By taking away the upper branch, i.e. C2 → 0 we regain the Maxwell model and in the limit C1 → ∞ the
elastic elements become infinitely rigid, leading back to the Kelvin-Voigt model:

C2 → 0 ⇒ τḞ + F = C1τ ε̇ Maxwell (2.59)
C1 → ∞ ⇒ F = Cη ε̇+ C2ε Kelvin-Voigt (2.60)

Equation 2.58 allows for both a relaxation and a creep experiment by specification of the source term.

Example: Strain jump (relaxation experiment, see fig. 2.13)

The relaxation function is given by
F (t) = ε0 · (C2 + C1e

− t
τ ) (2.61)

Getting the jump at t = 0 is not trivial. We introduce two times t = 0− and t = 0+ at the left and right
of t = 0 and rewrite the ODE as:

F (0−) + F (0+)

2
+ τ · F (0+)− F (0−)

∆t
= C2 ·

ε(0−) + ε(0+)

2
+ (C1 + C2)τ · ε(0

+)− ε(0−)

∆t
(2.62)

Multiplying with ∆t and using the one-sided nature of the function (hence F (0−) = 0 = ε(0−)) we find in
the limit ∆t → 0

F (0+) = (C1 + C2) · ε(0+) (2.63)

a finite force jump with magnitude (C1 + C2)ε0.
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2.8. Boltzmanns Theory of Linear Viscoelasticity
The spring-and-dashpot models discussed above can be generalized to a class of materials called linear
viscoelastic bodies (Boltzmann 1876). The basic assumption here is superposition: Individual loading
histories add up linearly to the combined loading history. Therefore, all we need to know is the response
to a unit-step perturbation.
Consider a creep experiment where we prescribe the force F = H(t) with Heaviside function H(t).
The strain in response will follow the force denoted by ε(t) = J(t) which is called the creep compliance or
simply the creep function. The superposition principle is graphically shown below:

F

t0

H(t)

(A)

ε

t0

(B)

J(t)

Figure 2.13.: Example of a strain response to a prescribed unit-step in force.

t0

(A)

F

t0

(B)

ε

Figure 2.14.: Linear superposition of responses.

t

F

ΔF

Δt'

Figure 2.15.: An arbitrary force linearized.

An arbitrary perturbation can be considered as an infinite number of small steps in the force: The increase
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in the force is then given by

∆F (t′) =
dF (t′)

dt′
dt′ (2.64)

and it follows for the strain response that

∆ε(t) = Ḟ (t′)dt′J(t− t′) (2.65)

Taking the time intervals ∆t′ infinitesimally small and using the superposition principle, we can add up
all the responses to steps in the force to get an integral expression first derived by Boltzmann in 1876:

ε(t) =

t∫
−∞

dt′ J(t− t′)Ḟ (t′) Boltzmann 1876 (2.66)

In the same way one can write for a relaxation experiment:

F (t) =

t∫
−∞

dt′G(t− t′)ε̇(t′) (2.67)

where G(t) is the relaxation function. Obviously G and J must be related to each other2.
Again the natural framework for this are Laplace transforms. The two integral equations become

ε̂(s) = Ĵ(s) · s · F̂ (s) (2.68)
F̂ (s) = Ĝ(s) · s · ε̂(s) (2.69)

⇒ Ĝ(s) · F̂ (s) =
1

s2
(2.70)

⇒
t∫

0

dt′ J(t− t′)G(t′) = t (2.71)

Creep function J and relaxation function G are thus related by an integral equation. In principal it is
sufficient to know one of them.

2.9. Complex modulus
So far we have introduced the 1d elastic modulus C and the viscous modulus Cη (damping coefficient) by

Fs = C · εs [C] = N (2.72)
Fd = Cη · ε̇d [Cη] = Ns (2.73)

For composite systems, we have seen that the overall response depends on time scales. It therefore makes
sense to consider harmonic excitations, when loading has the form of a sine or cosine (Fourier analysis):

ε(t) = ε0 · cos(ωt) (2.74)

2G and J act as propagators. In the creep experiment, think of this as creating a perturbation at t′ and then propagate it in
a linear manner to the present time and integrate over the past history. G and J are both Green’s functions to the ODE
of the viscoelastic model of interest and can be calculated respectively by specifying the source term.
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⇒ F (t) =

t∫
−∞

dt′G(t− t′)ε̇(t) Boltzmann linear viscoelasticity (2.75)

= −
0∫

∞

dsG(s)ε̇(t− s), s = t− t′ (2.76)

=

∞∫
0

dsG(s)ε̇(t− s) (2.77)

Inserting

ε̇(t− s) = −ε0ω sin(ω(t− s)) (2.78)
= −ε0ω sin(ωt) cos(ωs) + ε0ω cos(ωt) sin(ωs) (2.79)

gives

F (t) = ε0 cos(ωt)︸ ︷︷ ︸
in phase, elastic

·

ω ∞∫
0

dsG(s) sin(ωt)


︸ ︷︷ ︸
≡ E1(ω), ”storage modulus”

− ε0 sin(ωt)︸ ︷︷ ︸
out of phase, viscous

·

ω ∞∫
0

dsG(s) cos(ωs)


︸ ︷︷ ︸

≡ E2(ω) ”loss modulus”

(2.80)

= ε0E1 cos(ωt)− ε0E2 sin(ωt) (2.81)
= F0 · cos(ωt+ δ) (2.82)

with

δ = arctan(E2

E1
) phase shift (2.83)

F0 = ε0

√
E2

1 + E2
2 amplitude (2.84)

We can again look at the elastic and viscous limit

elastic limit: E2 = 0, δ = 0, F0 = ε0 · E1 (2.85)

viscous limit: E1 = 0, δ =
π

2
, F0 = ε0 · E2 (2.86)

where in the elastic limit no energy is dissipated and the force in the viscous limit is shifted by half a cycle.
The amount of work for one loading cycle can be calculated

W =

2π
ω∫

0

dt F · ε̇ (2.87)

= −

2π
ω∫

0

dt [ε0E1 cos(ωt)− ε0E2 sin(ωt)] ε0ω sin(ωt) (2.88)

= πε20E2 This work is disspated as heat (2.89)

The work represented by E1 is released again during unloading (→ storage modulus), but not the work
represented by E2 (→ loss modulus).

In harmonic calculations it is often convenient to use comlex numbers. Instead of equation 2.74 write

ε(t) = Re
(
ε0e

iωt
)

(2.90)
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Then the convolution integral becomes

F (t) = Re
(∫

dt′G(t− t′)ε̇(t′)

)
(2.91)

= Re
(∫

dsG(s)ε̇(t− s)

)
(2.92)

= Re

iωε0e
iωt

∫
dsG(s)e−iωs︸ ︷︷ ︸

G∗(ω)

 (2.93)

where we recognize G∗(ω) as the Fourier transform of G(t).
We then define the complex modulus as

Definition 2. E∗(ω) = iωG∗(ω) = E1(ω) + iE2(ω)

⇒ F (t) = Re
(
ε0e

iωtE∗(ω)
)

(2.94)
= Re (ε0(cos(ωt) + i sin(ωt))(E1(ω) + iE2(ω))) (2.95)
= ε0E1 cos(ωt)− ε0E2 sin(ωt) (2.96)

thus E1 and E2 are the storage and loss modulus as defined above.
With these definitions, the fundamental relation between force and strain

F (t) =

∞∫
−∞

dsG(s)ε̇(t− s) (2.97)

simply becomes

F ∗(ω) = G∗(ω)iωε∗(ω) (2.98)
= E∗(ω)ε∗(ω) (2.99)

In the physics literature the complex modulus E∗(ω) is usually denoted as

G(ω) = G′(ω) + i ·G′′(ω) (2.100)

where G′(ω) is the storage and G′′(ω) the loss modulus.
G(ω) carries the complete viscoelastic information of a system. It is measured in a rheometer.

A typical result for a polymer melt (liquid) is shown in fig. 2.18:
The polymer is elastic at high frequencies (G′ > G′′) and viscous at low frequencies (G′′ > G′) (this

corresponds to the longtime limit).
Here

G′′ = Cηω (2.101)
and

G′ ≈
C2
ηω

2

C
(2.102)

. Equating at the intersection gives an expression for ω and thus a simple way to extract the relaxation
time τ :

ω =
C

Cη
=

1

τ
(2.103)

Perfect elastic networks like PDMS (Polydimethylsiloxan) have a large and constant storage modulus and
small loss modulus.
The Newtonian liquid water has a constant loss modulus for 10−5 Hz < ε̇ < 105 Hz (viscoelasticity is
expected for 1010 Hz!)
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Figure 2.16.: Sketches of rotational rheometers: (a) cylindrical, (b) cone and plate, (c) parallel plate

Figure 2.17.: Response of a linear polybutadiene at 25 ◦C. Filled symbols are the storage modulus G′ and
open symbols are the loss modulus G′′ (Rubinstein and Colby, Polymer Physics, 2003, p.
293).



CHAPTER 3

Distributed forces in 1d

In the preceding chapter, deformations of 1d structures were represented only by one variable. In this
chapter we address the deformation of 1d structures in more detail, in particular the effect of spatially
distributed deformations and forces.

3.1. Continuum equation for an elastic bar
Consider a bar loaded by a force F at x = L and clamped in space at x = 0 (fig. 3.1) . Different from
Chapter 2 we now allow the cross sectional area A and the elastic modulus E to be functions of x. We
also allow for some force per volume Q to act in x-direction (e.g. gravity) and the coupling to an elastic
foundation, which introduces a traction force.
Consider a slice of thickness ∆x. Here we have

N(x) = N(x+∆x) +Q(x)A(x) ·∆x−Ku(x) (3.1)

where N(x) is the normal force on the slice surface. With q(x) = Q(x)A(x), ρ the spring constant K per
length and in the continuum limit (∆x → 0) we obtain

dN

dx
+ q(x)− ρu(x) = 0 (3.2)

F

Δx

xL

N(x) N(x+Δx)

Figure 3.1.: Representation of an elastic bar with magnification of the forces acting on a slice of thickness
∆x.

19 19



20 3.1 Continuum equation for an elastic bar

If the force per volume Q and the traction are zero, the normal force N is constant throughout the bar.
We now introduce a displacement field u(x). Then the strain at position x reads

ε =
u(x+∆x)− u(x)

∆x

∆x → 0
=

du(x)

dx
(3.3)

[ε] =
m

m
= 1 (3.4)

Strain is related to stress by Hooke’s law:
σ = E · ε (3.5)

where the stress σ is defined as
σ =

N

A
(3.6)

Substitution of N = Aσ into equation 3.2 yields a second order differential equation for the displacement
u(x)

−q + ρu =
dN

dx
=

d

dx
(σA) (3.7)

=
d

dx
(EAε) (3.8)

=
d

dx

(
C(x) · du

dx

)
(3.9)

where C(x) = E(x) ·A(x) is the 1d modulus.

⇒ d

dx

(
C(x) · du

dx

)
+ q(x)− ρu(x) = 0 central ODE (3.10)

Example: 1) Homogeneous bar without gravity (see fig. 3.2)

A = const, E = const, Q = 0, ρ = 0 and the ODE reduces to

C · u′′ = 0 (3.11)
⇒ u′ = const = a (3.12)
⇒ u = a · x+ b (3.13)

subject to the boundary conditions of suppressed displacement at the origin (3.15) and a force F applied
at the free end of the bar (3.16):

u(x = 0) = 0 (3.14)
N(x = L) = F = C · u′(L) (3.15)

hence the solution reads

b = 0, a =
F

C
⇒ u =

F

C
x (3.16)

The stress is then given by
σ = E · u′ = F

A
= const (3.17)

F

xL

Figure 3.2.: A bar of length L, with uniform cross section A and constant Young’s modulus E. No volume
force or traction is present.
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F

xL

(A) (B)
u

xL

A=const

A(x)

Figure 3.3.: (A) The Young’s modulus E is constant throughout the bar of length L, but the cross section
A(x) varies along the x-axis.
(B) The displacement along the bar is linear for a homogeneous cross section A whereas for
an increasing cross section the displacement becomes weaker for larger A.

Example: 2) Increasing cross section (see fig. 3.3)

Let
A(x) = A0 ·

(
1 +

x

3L

)
(3.18)

Integration of
d

dx

(
EA

du

dx

)
= 0 (3.19)

yields
du

dx
=

a

EA0 · (1 + x
3L)

(3.20)

Integration again gives
u =

3aL

EA0
ln
(
1 +

x

3L

)
+ b (3.21)

with integration constants a and b to be specified by the boundary conditions:

u(0) = 0 ⇒ b = 0 (3.22)

EA · u′(L) = F ⇒ u′(L) =
3aL

EA0

1/3L
4/3

=
3a

4EA0
=

F

EA04/3
⇒ a = F (3.23)

and all in all the displacement reads

u =
3FL

EA0
ln
(
1 +

x

3L

)
≈ F

EA0
x for x � L, A = const (3.24)

Example: 3) Homogeneous bar with gravity (see fig. 3.4)

A = const, E = const, q = const = ρ · g ·A and the central equation becomes

d

dx

(
C · du

dx

)
= −q (3.25)

⇒ u = − q

2C
x2 +

a

C
x+ b (3.26)

subject to the boundary conditions

u(x = 0) = 0 ⇒ b = 0 (3.27)
C · u′(L) = F = −q · L+ a ⇒ a = F + qL (3.28)
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x

(A)

F

L

(B)
u

xL

q=0

Figure 3.4.: (A) For a bar exposed to gravity, the largest elongation occurs at the end, whereas the largest
force acts close to the bounding surface and defines a possible breaking point.
(B) A comparison to the reference case with linear displacement (example 1)) shows an in-
creased slope at small x. The boundary condition at x = L forces a crossover to the same
slope.

Thus

u = − q

2C
x2 +

F + qL

C
x (3.29)

For q = 0 this reduces to the linear behaviour of the elastic bar in example 1):

u =
F

C
· x (3.30)

The full solution is depicted in fig. 3.4.

3.2. Elastic chain
We now start with a discrete approach and derive the 1d continuum equation for an elastic chain (”coarse-
graining” or ”homogenization”). We also include elastic coupling to the ground (fig. 3.5).
We have n = 0, 1, ..., N beads at positions xn = a · n with x0 = 0 and xN = L.
For a given n in the chain the force at equilibrium is

0 = FN = kn+1 · (un+1 − un)− kn · (un − un−1)−Kn · un − qa (3.31)

where qa denotes the amount of volume force on bead n.
A Taylor expansion of kn+1, un+1 and un−1 for a � L, i.e. in a

L = 1
N , and taking un as a reference term

gives

0 = FN (3.32)

= (kn + a · ∂xkn +
a2

2
∂2
xkn) · (un + a · ∂xun +

a2

2
∂2
xun − un) (3.33)

+kn · (un − (un − a · ∂xun +
a2

2
∂2
xun)) + qa−Knun (3.34)

= kna
2∂2

xun + a2(∂xkn) · (∂xun)−Knun + qa+O(a3) (3.35)
= k(x)a2u′′(x) + a2k′(x)u′(x)−Ku(x) + qa (3.36)

⇒ ∂x(C(x) · u′(x))− ρ · u(x) + q = 0 (3.37)

with C = E ·A = k · a and ρ = K/a.
This is the same equation as above where we started with the continuum description in the first place.
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......

xL0

0 1 2 n NN-1

a

k_n k_(n+1)

K_n

Figure 3.5.: The beads, separated at a distance a, are laterally connected by springs with spatially varying
spring constants kn and attached to the surface with springs with constants Kn.

Example: 1) Stretching a bar with elastic foundation, no gravity (see fig. 3.6)

Without gravity, q = 0, the constitutive equation becomes, in the case ρ = 0:

Cu′′ = 0 ⇒ N = Cu′ = F ⇒ u =
F

C
· x (3.38)

like before.
And for ρ 6= 0:

Cu′′ − ρu = 0 ⇒ l2u′′ − u = 0 (3.39)

where we define the localization length as l =
√

C
ρ =

√
k
K a.

⇒ u = A · ex/l +B · e−x/l (3.40)
u(0) = 0 ⇒ B = −A (3.41)
⇒ u = 2A · sinh(x/l) (3.42)

C · u′(L) = F =
C2A

l
· cosh(L/l) (3.43)

resulting in

u =
Fl

C
· sinh(x/l)

cosh(L/l)
(3.44)

The force on the foundation FT = k · u is known as the traction force.

Example: 2) Contracting bar with elastic foundation, no gravity (see fig. 3.7)

F

xL

(A)

(B)
u

xL

Figure 3.6.: (A) For a bar with elastic foundation, the displacement of string attachments increases with
x.
(B) The displacement is an exponentially increasing function of x.



24 3.2 Elastic chain

We now consider that deformation arises not from an external force, but by internal contraction (e.g.
thermal or active contraction). We add force dipoles along the bar:

N = Cu′ + P, P = const (3.45)
⇒ l2u′′ − u = −P ′/ρ = 0 (3.46)

Thus the displacement has the same solution as before

u = 2A · sinh (x/l) (3.47)

but the boundary condition is different at x = L:

N(L) = 0 (3.48)
⇒ C · u′(L) + P = 0 (3.49)

⇒ −P

C
=

2 ·A
l

· cosh (L/l) (3.50)

⇒ u(x) = −Pl

C
· sinh(x/l)

cosh(L/l)
(3.51)

Thus the deformation vanishes if the contraction is zero P = 0. Note also that the displacement now is to
the left.

We can now easily calculate the internal force in the bar:

N(x) = Cu′ + P = P

(
1− cosh(x/l)

cosh(L/l)

)
(3.52)

This force is maximal at x = 0 and falls to cero at x = L.

xL

(A)
u x(B) L

Figure 3.7.: (A) A bar with a distribution of contractile forces. (B) Displacement for to a contracting bar.



CHAPTER 4

Elasticity theory in 3d

Up to this point we dealt with one-dimensional equations describing the relationship between stress and
strain for fibres and bars. We now turn to the derivation of the fundamental concepts and equations for a
3d theory of elastic deformations.

4.1. Material and spatial temporal derivatives
In order to describe the deformation and movement of a three-dimensional object in time, we consider
how it deforms under surface or volume forces (see fig.4.1). We consider a material point P at x0 in a
continuum body with initial volume V0. This point is moved to x = x (x0, t) at time t and deformed by
surface or volume forces. The vector x0 is bound to the material point for all configurations parameterized
by t and thus when x0 is constant we can trace the material point in time where x (x0, t) is the kinetic
path taken by the material point P .
Partial differentiation with respect to time t results in the velocity and acceleration fields of the material
point under consideration:

v = ẋ = v (x0, t) velocity field (4.1)
a = v̇ = ẍ = a (x0, t) acceleration field (4.2)

For each vector x,v,a, its three components are scalar fields depending on x0 and t. The same would
be true for any other scalar field, take for example a temperature field T (x0, t) where the temperature is
defined on every point of the body and the temporal evolution monitored.

P

P

V₀

V(t)

x₀⃗

⃗ ⃗x(x₀,t)

x

y

z

Figure 4.1.: The material point P is labeled on the reference configuration V0 and then traced in time.
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Lagrangian and Eulerian frame
We can define two different types of time derivatives:

(1) Material time derivative Ṫ = ∂T
∂t

∣∣∣∣
x0=const

Ṫ is the change in unit time of the temperature at material point P identified by x0 and moving through
space. When the the temperature field in the configuration V (t) is mapped onto the reference configura-
tion V0 the description is referred to as Lagrangian. The Lagrangian description is the natural choice for
solids where it is always possible to return to the initial configuration by removing surface or volume forces.

(2) Spatial time derivative δT
δt = ∂T

∂t

∣∣∣∣
x=const

In the Eulerian description, x is a fixed point in V (t). At each time t, a different material particle
might be present at this location. Thus δT

δt is the change in unit time of the temperature at a fixed point
x in space. The Eulerian frame is the natural choice for fluids, because upon deformation there is no way
to trace back the reference configuration of a fluid.

In order to derive a relation between the material and the spatial time derivative we start with
the Eulerian description of the scalar temperature field T = T (x, t). The total derivative can be rewritten
with the gradient operator ∇:

dT =
∂T

∂x
dx+

∂T

∂y
dy +

∂T

∂z
dz +

∂T

∂t
dt (4.3)

= (dx ·∇)T +
δT

δt

∣∣∣∣
x=const

dt (4.4)

= (vdt ·∇)T +
δT

δt
dt ≡ Ṫ dt (4.5)

where dx = vdt implies movement with the flow and accordingly a change in temperature dT = Ṫ dt.
Dividing equation 4.5 by dt gives

Ṫ︸︷︷︸
material derivative

= (v ·∇)T +
δT

δt︸︷︷︸
spatial derivative

(4.6)

Special care has to be taken with the two different types of derivatives involved. If v = 0, i.e. there is no
movement/deformation, the derivatives are equal. The difference between material and spatial derivatives
is called the convective contribution given by (v ·∇).
The temperature field was an introductory example, but the same can now also be applied to vectors:

ẋ = (v ·∇)x +
δx
δt︸︷︷︸

fixed position in space

= v · 1+ 0 = v

or with the convective part written in components

(v ·∇)x = (vj∂j)xi = vjδij = vi (4.7)

The velocity is of course the correct result when following the motion in the Eulerian frame.
Applying the same operation to the velocity v and taking the ith component of the convective term results
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x

y

z

x⃗

P

⃗⃗

dx⃗v⃗dt

⃗⃗dx+dxdt (v+Ldx)dt

P'

Figure 4.2.: Change of a material line element dx expressed by the the velocity gradient tensor L.

in

v̇ = (v ·∇)v︸ ︷︷ ︸
(vj∂j)vi

+
δv
δt

= v · (∇⊗ v)︸ ︷︷ ︸
vj∂jvi

+
δv
δt

= (∇⊗ v)T · v︸ ︷︷ ︸
∂jvivj

+
∂v
∂t

= L︸︷︷︸
velocity gradient tensor

·v +
δv
δt

This is the first time we encounter tensors and the dyadic product ⊗. We also have used bi = Mijaj =
aj(M

T )ji for b = M · a = a ·MT . The difference between the material and the spatial derivative is in this
case simply a linear operation on the velocity.

Tensors
Elasticity theory in 3d makes use of 2nd rank tensors, which are linear maps of one vector onto another.
The simplest way to generate such a tensor is the dyadic or tensor product:

(a ⊗ b)ij ≡ aibj

We take the dyadic product of gradient and velocity

∇⊗ v =

∂xvx ∂xvy ∂xvz
∂yvx ∂yvy ∂yvz
∂zvx ∂zvy ∂zvz

 (4.8)

therefore the velocity gradient tensor reads

L = (∇⊗ v)T =

∂xvx ∂yvx ∂zvx
∂xvy ∂yvy ∂zvy
∂xvz ∂yvz ∂zvz

 (4.9)

The tensor L measures the change in unit time of a material line element dx (see fig.4.2):

• The tail of dx (P) moves to x + vdt

• The head of dx (P’) moves to x + dx + (v + dx(∇× v)︸ ︷︷ ︸
Ldx

)dt

After an infinitesimal increase in time dt the line element in the volume V will change into dx + dẋ and
we can read of fig.4.2

⇒ dx + dẋdt = x + dx + (v + Ldx)dt− (x + vdt)

⇒ dẋ = Ldx
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The line element thus changes by the linear element L which measures changes both in length and in
orientation, gives complete information as the 3d metric of the system.

Since in the following, extensive use of 2nd rank tensors will me made, this section summarizes some
general statements:
Typically one uses Cartesian coordinates with a set of basis vectors {ei}. Then an arbitrary 2nd rank
tensor can be written as

M =
∑
ij

Mij (ei ⊗ ej) (4.10)

and we note that the dyadic product is compatible with the inner product (by definition and the linearity
of vectors)

(a ⊗ b) · f = a(b · f) ⇒ (ei ⊗ ej) · ek = ai · δjk (4.11)

and thus

b = M · a =

∑
ij

Mij (ei ⊗ ej)

 ·

(∑
k

akek

)

=
∑
ij

Mijajei ⇒ bi = Mijaj

The trace of M is defined as
tr(M) =

∑
i

Mii (4.12)

i.e. as the sum of diagonal elements.
The deviatoric part of M is defined as

Md = M − 1

3
tr(M)1 ⇒ tr(Md) = 0 (4.13)

Most of the tensors we encounter will be symmetric and can therefore always be diagonalized. The eigen-
values of M are defined by the characteristic equation

0 = det (M − λ1) = λ3 − I1λ
2 + I2λ− I3 (4.14)

in 3d with the three invariants of M:

I1 = tr(M) = Mxx +Myy +Mzz (4.15)

I2 =
1

2

[
(tr(M))2 − tr(M · M)

]
= MxxMyy +MxxMzz +MyyMzz −M2

xy −M2
yz −M2

xz (4.16)

I3 = det(M) = Mxx (MyyMzz −MzyMyz)−Mxy (MyxMzz −MzxMyz) +Mxz (MyxMzy −MzxMyy)
(4.17)
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P

P

V₀

V(t)

x₀⃗

⃗ ⃗x(x₀,t)

x

y

z

u⃗

Figure 4.3.: The displacement vector for a material point P .

4.2. The displacement vector field
We now introduce the most central quantity of elasticity theory, the displacement vector field. Again consid-
ering the displacement of a material point P from a reference configuration V0 to the current configuration
V (t) (see fig.4.3), the displacement vector u satisfies

u = x − x0 =

{
x(x0, t)− x0 = u(x0, t) Lagrangian frame
x − x0(x, t) = u(x, t) Eulerian frame

(4.18)

Many problems in solid mechanics amount to determining the displacement field u corresponding to a
given set of applied forces.
For a scalar field like temperature T , we can define two gradients depending on the frame that should
become identical for u = 0:

• spatial gradient ∇T = ex
∂T
∂x + ey

∂T
∂y + ez

∂T
∂z

• material gradient ∇0T = ex
∂T
∂x0

+ ey
∂T
∂y0

+ ez
∂T
∂z0

These two can be related by the chain rule as exemplified for the x-component at a fixed time t

∂T

∂x0
=

∂T

∂x0

∂x

∂x0
+

∂T

∂y

∂y

∂x0
+

∂T

∂z

∂z

∂x0
(4.19)

and likewise for the other two components. Using the procedure from section 4.1 we can summarize this
as

∇0T = FT ·∇T (4.20)
with the transpose of the deformation gradient tensor F from the current configuration with respect to the
reference configuration, or mathematically with the Jacobian matrix of the coordinate transformation.

FT =


∂x
∂x0

∂y
∂x0

∂z
∂x0

∂x
∂y0

∂y
∂y0

∂z
∂y0

∂x
∂z0

∂y
∂z0

∂z
∂z0

 ⇒ F =


∂x
∂x0

∂x
∂y0

∂x
∂z0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂z
∂x0

∂z
∂y0

∂z
∂z0

 (4.21)

We can also write, including the deformation vector u = x − x0

FT = ∇0 ⊗ x = ∇0 ⊗ (x0 + u) = 1+∇0 ⊗ u (4.22)
F = (∇0 ⊗ x)T = 1+ (∇0 ⊗ u)T (4.23)

If there is no deformation (u = 0):
FT = F ⇒ ∇ = ∇0 (4.24)

Again, if the reference and current state are equal, then the deformation is zero and F = 1 and the gradient
operators are also identical as demanded.
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P

P

V₀

V(t)

x₀⃗

⃗ ⃗x(x₀,t)

x

y

z
P'

dx₀⃗

P'

dx⃗

Figure 4.4.: The change in distance and direction between the two material points can be described with
the strain tensor.

4.3. The strain tensor
We now consider a material line segment dx0 that changes both length and orientation during deformation:

• dl0 → dl length

• e0 → e orientation

The orientation and length of the respective line segments are defined by:

dx0 = e0dl0 dl0 =
√
dx0 · dx0 (4.25)

dx = edl dl =
√
dx · dx (4.26)

For the relation between dx0 and dx we look at the total differential again (e.g. for the x-component)

dx =
∂x

∂x0
dx0 +

∂x

∂y0
dy0 +

∂x

∂z0
dz0 (4.27)

and the same for the other components such that in a more compact form the deformation gradient tensor
can be used

dx = F · dx0 (4.28)

This can be rewritten with the help of equations 4.25 and 4.26

edl = F · e0dl0 |()2 (4.29)
⇒ e · edl2 = e0 · FTF · e0dl

2
0 (4.30)

⇒ stretch ratio λ =
dl

dl0
=

√
e0 · FT · F︸ ︷︷ ︸

≡C

·e0 (4.31)

The stretch ratio is defined as the ratio between the lengths of the line segments in the corresponding
configurations. The stretch ratio λ for the material line segment is thus determined by the right Cauchy-
Green deformation tensor C (Lagrangian description).
The new orientation of the material line segment can be calculated as

e = F · e0
dl0
dl

= F · e0
1

λ
=

F · e0√
e0 · C · e0

(4.32)
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The procedure can also be inverted, starting from (dl, e) we can get to (dl0, e0):

F−1 · dx = dx0 ⇔ F−1 · edl = e0dl0 (4.33)
⇒ e · F−TF−1 · edl2 = e0 · e0dl

2
0 (4.34)

⇒ λ =
dl

dl0
=

1√
e · F−TF−1︸ ︷︷ ︸

≡B−1

·e
(4.35)

The tensor B ≡ F · FT is called the left Cauchy-Green deformation tensor in the Eulerian frame. The old
direction of the material line segment is then given by

e0 = F−1 · e · dl

dl0
=

F−1 · e√
e · B−1 · e

(4.36)

As explained earlier, often it is more convenient to introduce a variable which vanishes for vanishing
deformation (strain). We now define various strain tensors. One can show that each of them is invariant
under a rigid body transformation (translation and rotation).
In the Lagrangian frame we found

λ2 = e0 · C · e0 (4.37)

coupled to this one can now introduce the Green-Lagrange strain εGL

First definition: εGL =
λ2 − 1

2
= e0

1

2
(C − 1)︸ ︷︷ ︸
≡E

·e0 (4.38)

with the Green-Lagrange strain tensor E.
Above we showed

FT = 1+ (∇0 ⊗ u) F = 1+ (∇0 ⊗ u)T (4.39)

Substitution gives an expression for E

E =
1

2

(
FT · F − 1

)
=

1

2

(∇0 ⊗ u) + (∇0 ⊗ u)T︸ ︷︷ ︸
linear in u

+(∇0 ⊗ u) (∇0 ⊗ u)T︸ ︷︷ ︸
quadratic

 (4.40)

The linear strain εlin is defined as

Second definition: εlin = λ− 1 =
√

e0 · FT · F · e0 − 1 (4.41)

Due to the square root this expression is not easy to use. For small deformations F ≈ 1 we can write

εlin =
√
1 + e0 · (FT · F − 1) e0 − 1 (4.42)

≈ 1

2
e0

(
FT · F − 1

)
· e0 = e0 · E · e0 = εGL (4.43)

We further linearise to define the linear strain tensor ε expressed as

ε =
1

2

(
FT + F − 21

)
=

1

2

(
(∇0 ⊗ u) + (∇0 ⊗ u)T

)
(4.44)
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This is the most often used formulation of a strain tensor in linear elasticity theory (LET).
In the Eulerian frame we found

1

λ2
= e · B−1 · e (4.45)

Coupled to this we define the Almansi Euler strain εAE as

Third definition: εAE =
1− 1

λ2

2
= e · 1

2
·
(
1− B−1

)
︸ ︷︷ ︸

≡A

·e (4.46)

with the Almansi-Euler strain tensor A.

In summary we have found that for large deformation, geometrical non-linearities appear in the vari-
ous strain tensors. In linear elasticity theory (LET), one assumes small deformations. Then it is sufficient
to consider the linear strain tensor

εij =
1

2
(∂iuj + ∂jui) =


∂ux
∂x0

1
2(

∂ux
∂y0

+
∂uy

∂x0
) 1

2(
∂ux
∂z0

+ ∂uz
∂x0

)
1
2(

∂uy

∂x0
+ ∂ux

∂y0
)

∂uy

∂y0
1
2(

∂uy

∂z0
+ ∂uz

∂y0
)

1
2(

∂uz
∂x0

+ ∂ux
∂z0

) 1
2(

∂uz
∂y0

+
∂uy

∂z0
) ∂uz

∂z0

 (4.47)

This is a symmetrical 3x3 matrix which can be interpreted as follows:

• The diagonal terms εii are the linear strains of material line segments of the reference configuration
in the i-directions.

• The off-diagonal terms represent the shear in the material (compare fig. 4.5 )

Volume change
We consider a small parallelepiped spanned by three linearly independent vectors {dxa

0, dxb
0, dxc

0} . The
Volume is then given by

dV0 =
(
dxa

0 × dxb
0

)
· dxc

0 (4.48)

In the deformed configuration we have
dxi = F · dxi

0 (4.49)

One can then calculate for the relative volume

J =
dV

dV0
= det(F) (4.50)

x

y

dx

dy

(∂uₓ/∂y)dy

(∂uy/∂x)dxuₓ

uy

Figure 4.5.: Graphical interpretation of the linear strain tensor
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Note that this is simply the Jacobian for the transformation x0 → x : dx = F · dx0.
In linear approximation one finds

dV

dV0
= 1 + tr(ε) ⇒ dV − V0

dV0
= tr(ε) (4.51)

Thus the trace of the linear strain tensor is simply the relative volume change.
This result also motivates to decompose the strain tensor into a pure shear and a pure compression/dilation
part:

εij =

(
εij −

1

3
δijεll

)
︸ ︷︷ ︸

pure shear

+

(
1

3
δijεll

)
︸ ︷︷ ︸

compression/dilation

(4.52)

The trace of the strain tensor εll gives the volume change in terms of compression and dilation, whereas
the off-diagonal entries give the pure shear without a change of the volume (deviatoric part).

Relation to deformation in time:
Above we have considered a material line segment dx which evolves into a line segment dx + dẋdt from
time t to time t+∆t. We have shown that

dẋ = L · dx with L = (∇0 ⊗ v)T (4.53)

where L is yet another tensor, the velocity gradient tensor, a purely kinematic variable not related to the
reference configuration. On the other hand we now have

dx = F · dx0 (4.54)

with the deformation gradient tensor F = (∇0 ⊗ x)T . We can thus relate the two and find

dẋ = Ḟ · dx0 = Ḟ · F−1 · dx = L · dx (4.55)

⇒ L = Ḟ · F−1 (4.56)

4.4. The stress tensor
We have seen before that for a continuum body, stress σ = F/A rather than force F is the correct concept
for the cause of a deformation.
For a 1d bar with constant cross-section A and no volume forces, we have derived as condition of mechanical
equilibrium: dσ

dx = 0. We now generalize these results to 3d.

We first define a stress vector s =
3∑

i=1
siei by decomposing the force ∆F onto an infinitesimally small

surface element of area ∆A in a 3d continuum body:

∆F =

3∑
i=1

∆Fiei ⇒ si =
∆Fi

∆A
(4.57)

Like before, stress is defined in the limit ∆A → 0, but now we deal with a 3d vector.

We next investigate the equilibrium conditions in 2d. Therefore we decompose the stress vector into
different directions (see fig. 4.7(B)):

• Following the notation for σij in fig.4.7, the subscript i denotes the direction in which the stress is
acting, whereas the subscript j gives the direction of the normal of the surface element.
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ΔF⃗

x
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z

Figure 4.6.: Force ∆F acting on a small surface element ∆A in a contiuum body.
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Figure 4.7.: (A) Free body diagram of the volume element with the stress vector s decomposed into direc-
tions (t) top, (r) right, (b) bottom and (l) left.
(B) All stress components are a function of the x- and y-position in space, but assumed constant
in the z-direction.
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Figure 4.8.: Illustration of the forces acting on the surface element.
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• As for the sign convention, σij > 0 if i, j have the same orientation in regard to their respective
coordinate direction.

Note that all σij = σij(x, y) are functions of position!
For equilibrium the forces in each direction have to add up to zero:

• x-direction: ∆Flx +∆Fbx = ∆Frx +∆Ftx

• y-direction: ∆Fly +∆Fby = ∆Fty +∆Fry

We now transform the equations for forces into one equation for stresses and first take the x-direction with
reference point (x0, y0):

∆Flx = h ·
y0+∆y∫
y0

dy σxx(x0, y) (4.58)

= h ·
y0+∆y∫
y0

dy

[
σxx(x0, y0) +

∂σxx
∂y

∣∣∣∣
x=x0,y=y0

(y − y0) + ...

]
(4.59)

= σxxh∆y +
∂σxx
∂y

h
∆y2

2
(4.60)

Here h is a constant thickness in z-direction and we suppress dependances on (x0, y0). In a similar way we
find

∆Frx = h ·
y0+∆y∫
y0

dy

[
σxx +

∂σxx
∂x

∆x+
∂σxx
∂y

(y − y0) + ...

]
(4.61)

= σxxh∆y +
∂σxx
∂x

h∆x∆y +
∂σxx
∂y

h
∆y2

2
(4.62)

∆Ftx = h

x0+∆x∫
x0

dx

[
σxy +

∂σxy
∂x

(x− x0) +
∂σxy
∂y

∆y + ...

]
(4.63)

= σxyh∆x+
∂σxy
∂x

h
∆x2

2
+

∂σxy
∂y

h∆x∆y (4.64)

∆Fbx = h

x0+∆x∫
x0

dx

[
σxy +

∂σxy
∂x

(x− x0) + ...

]
(4.65)

= σxyh∆x+
∂σxy
∂x

h
∆x2

2
(4.66)

The equilibrium condition in the x-direction now yields

σxx∆y +
∂σxx
∂y

∆y2

2
+ σxy∆x+

∂σxy
∂x

∆x2

2
(4.67)

= σxx∆y +
∂σxy
∂y

∆x∆y +
∂σxx
∂y

∆y2

2
+ σxy∆x+

∂σxy
∂x

∆x2

2
+

∂σxy
∂y

∆x∆y (4.68)

⇒ ∂σxx
∂x

+
∂σxy
∂y

= 0 (4.69)

For the y-direction one finds in a similar manner

∂σyx
∂x

+
∂σyy
∂y

= 0 (4.70)
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x

y

ΔFry

ΔFbx

ΔFly

ΔF
tx

Δx/2
Δy/2

Figure 4.9.: Shear forces contribute to rotation of the prism.

Thus the equilibrium conditions amount to PDEs for σij . This is the generalization of ∂σ
∂x = 0 for 1d.
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We next show that σxy = σyx by balancing the moments around the midpoint (see fig.4.9). We note
that only the shear forces create a moment:

− ∆x

2
∆Fly −

∆x

2
∆Fry +

∆y

2
∆Ftx +

∆y

2
∆Fbx = 0 (4.71)

Inserting the expressions from above gives the desired result

σxy = σyx (4.72)

The stress tensor σij has to be symmetric in order to avoid rotation.

In 2d, we have three independent stresses σxx, σyy, σxy. How do we calculate the stress vector s act-
ing on an arbitrary area element from these stresses? We consider the following triangular prism (see fig.
4.10): The normal to the inclined plane has components nx = sinα and ny = cosα and the stress vector
can be decomposed as s = sxex + syey. The forces over the whole prism have to sum up to zero again:

• x-direction: sx ·∆l · h = σxx · sinα ·∆l · h+ σxy · cosα ·∆l · h ⇒ sx = σxx · nx + σxy · ny

• y-direction: sy ·∆l · h = σyx · sinα ·∆l · h+ σyy · cosα ·∆l · h ⇒ sy = σyx · nx + σyy · ny

⇒ s = σ · n (4.73)

The stress vector is simply the product of the stress tensor σ with the normal vector n.

Generalization to 3d
In 3d there are 6 independent stress components building up the symmetric stress tensor:

σ =
3∑

i,j=1

σij ei ⊗ ej , σij = σji (4.74)

The stress vector on an arbitrary surface element with normal n is simply

s = σ · n (4.75)

The condition of mechanical equilibrium is
∂jσij = 0 (4.76)

σ

σ

σ

σyy

xy

xx

yx
α

n⃗

s⃗

Δl

Figure 4.10.: A prism with two faces along cartesian coordinates and one face that is inclined by an angle
α.
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the divergence of the stress tensor has to vanish.
This central result follows in a more elegant way from the divergence theorem (DT). Since all elastic forces
act over surfaces, then there must exist a tensor σij , called Cauchy’s stress tensor, such that

0 =

∫
V

fi dV =

∫
∂V

σij dAj
DT
=

∫
V

∂σij
∂xj

dV (4.77)

This holds for any volume V and thus
⇒ ∂jσij = 0 (4.78)

The detailed derivation above gave the same result and showed how to calculate and interpret σ in detail.
A more general derivation starts from momentum conservation and considers Newton’s second law for a
small and arbitrary material volume:

d

dt

∫
V

∂ui
∂t

ρ dV︸︷︷︸
ρJdV0 =const

=

∫
V

giρ dV +

∫
∂V

σij dAj (4.79)

⇒ ρ
∂2ui
∂t2

= ρgi +
∂σij
∂xj

Cauchy’s momentum equa-
tion (valid both for fluids and
solids)

(4.80)

The condition ∇ ·σ = 0 thus arises as a steady state solution for Cauchy’s equation without volume forces.
With the constitutive equation for LET between σ and ε, Cauchy’s equation becomes the Navier equation.
We now formulate an energy equation from equation 4.80 by multiplying with ∂u

∂t and integrating over a
large volume (without volume forces, gi = 0):∫

V

∂2ui
∂t2

∂ui
∂t

ρ dV =
d

dt

∫
V

1

2

∣∣∣∣∂u
∂t

∣∣∣∣2 ρ dV︸ ︷︷ ︸
kinetic energy T

=

∫
V

∂σij
∂xj

∂ui
∂t

dV (4.81)

DT, PI
=

∫
∂V

∂ui
∂t

σij dAj

︸ ︷︷ ︸
surface traction term, can usually be neglected

−
∫
V

σij
∂εij
∂t

dV

︸ ︷︷ ︸
bulk term describing the rate at which
energy is stored in the material as it
deforms

(4.82)

where we again used the divergence theorem (DT), partial integration (PI), the symmetry of the stress
tensor σij = σji and the linear strain tensor εij =

1
2(

∂ui
∂xj

+
∂uj

∂xi
) to get to the last line.

We introduce a scalar function w such that ∂w
∂εij

= σij

⇒ Ṫ +

∫
V

∂w

∂εij

∂εij
∂t

dV

︸ ︷︷ ︸
U̇

= 0 energy conservation: T + U = const (4.83)

dw = σijdεij strain energy density (4.84)

analogous to the energy stored in a stretched spring. U is the potential energy.

Principal stresses
For each point in the continuum body, the stress tensor σ describes its local stress state. Because σ is
symmetric, it can be diagonalized, giving three principal stresses σi and the corresponding principal stress
directions ni. Then

si = σ · ni = σi · ni 1 ≤ i ≤ 3 (4.85)
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Thus for the directions, only normal and no shear forces are acting. We arrange the principal stresses such
that σ1 ≤ σ2 ≤ σ3 (ordered in rising magnitude).
We consider an arbitrary surface element with normal n. Then the stress vector s = σ · n has normal and
tangential components

sn = (s · n)n sn = s · n (4.86)
st = s − sn st = |st| (4.87)

One can prove that all possible combinations of (sn, st) are located in the marked area between the three
Mohr’s circles in fig. 4.11:

(sn)max = σ3 (sn)min = σ1 (st)max =
σ3 − σ1

2
(4.88)

The eigenvalues of σij give upper bounds for maximal stresses which are the starting point for failure
mechanics.
Next we observe that if all three shear components are zero (σxy = σxz = σyz = 0) and all normal stresses
are equal (σxx = σyy = σzz = −p), then

σ = −p1 (4.89)

In this case, p can be identified with the pressure. This motivates to identify

p = −1

3
tr(σ) = −1

3
(σ1 + σ2 + σ3) (4.90)

σh = −p1 hydrostatic stress tensor (4.91)
⇒ σ = σh + σd (4.92)

with σd the deviatoric stress tensor.
Depending on the nature of the material under consideration, it might fail (break) if different stresses are
exceeded. For example for metals, the maximum shear is relevant, whereas ceramics have a threshold in
extension.
In this context, often one considers the von Mises stress:

σM =

√
3

2
tr(σd · σd) =

√
1

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (4.93)

The von Mises stress is often used to color-circle the stress field in a loaded piece of material.

sn

st

σ
2 σ3σ

1

Figure 4.11.: The shaded area between the three Mohr’s circles gives all possible combinations for (sn, st).
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4.5. Linear elasticity theory
For a purely elastic system, the deformation history is not relevant and therefore there must exist a
constitutive relation between stress and deformation gradient tensors

σ = σ(F) (4.94)

We also assume that the reference state is stress-free,

σ(F = 1) = 0 (4.95)

thus excluding pre-stressed material (typical for biomaterials, for example wood, carots or skin, which
spring open when being cut).
We first consider linear elasticity theory (LET), where one assumes that ∂iuj is small. Then σij depends
only on the linear strain tensor εij =

1
2(∂iuj + ∂jui) as

σij = Cijkl · εkl (4.96)

where Cijkl is the tensor of elastic moduli (of rank 4).
The symmetry of σij and εkl allows one to reduce the number of unknowns from 81 to 36. The minimal
number of elastic moduli depends on the symmetry group of the material:

triclinic 21
hexagonal 5
cubic 3
isotropic 2

Isotropic LET
The isotropic case can be introduced as follows. We decompose both stress and strain tensors into isotropic
and deviatoric parts:

σ = −p1+ σd ε =
1

3
tr(ε)1+ εd (4.97)

where p = −1
3 tr(σ) is the hydrostatic pressure and tr(ε) = dV−dV0

dV0
is the relative volume change. Linear

elastic isotropic behaviour then assumes linear relations between the corresponding parts:

p = −K tr(ε), σd = 2G · εd (4.98)

with K the compression or bulk modulus and G the shear modulus. Both are positive for thermodynamic
stability.
Rewriting equation 4.97 with the help of equation 4.98 gives the 3d version of Hooke’s law:

σ = K tr(ε)1+ 2G · (ε− 1

3
tr(ε)1)︸ ︷︷ ︸
εd︸ ︷︷ ︸

σd

(4.99)

= (K − 2

3
G) tr(ε)1+ 2G · ε (4.100)

⇒ σ = λ tr(ε)1+ 2µ · ε
3d Hooke’s law, gen-
eralization of σ = E ·
ε

(4.101)

with the Lamé constants λ = K − 2
3G and µ = G being an alternative choice to (K,G). This choice

corresponds to
Cijkl = λ · δijδkl + 2µ · δikδjl (4.102)
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The two terms represent the two possibilities to construct an isotropic tensor of rank 4 and explain why
one has at least two elastic constants.
The relation between stress and strain tensors can be easily inverted:

σll = 3λ · εll + 2µ · εll = (3λ+ 2µ)εll (4.103)

⇒ εij =
1

2µ
σij −

λ

2µ

1

(3λ+ 2µ)
σll (4.104)

Our equilibrium condition for stress was ∂jσij + ρgi = 0. We now can replace σij by εij and then εij by ui
and thus obtain an equation for the displacement field ui:

∂jσij = ∂j(λ · εllδij + 2µ · εij) = λ · ∂iεll + 2µ · ∂jεij (4.105)
= λ · ∂i∂lul + µ · (∂j∂iuj + ∂j∂jui) (4.106)
= (λ+ µ) · ∂i(∂lul) + µ · ∂j∂jui = −ρ · gi (4.107)

In vector notation:
µ∆u + (λ+ µ)∇(∇ · u) + ρg = 0 (4.108)

where ∆ is the Laplace-operator and ∇ · u couples different components of u. There are two elastic
constants because there are two ways to write a 2nd order derivative in 3d.
Due to the linearity of this ODE for u, it can be solved by a Green’s function:

ui(r) =
∫

dr′Gij(r − r′)Fj(r′) (4.109)

where the Green tensor G follows from solving

µ∆u + (µ+ λ)∇(∇ · u) = −Fδ(r) (no volume force) (4.110)

For the infinite isotropic elastic space, the solution was given in 1848 by Lord Kelvin:

Gij =
1

8πµ(2µ+ λ)

(3µ+ λ)δij︸ ︷︷ ︸
compression

+(µ+ λ)
xixj
r2︸ ︷︷ ︸

shear

 1

r
(4.111)

Note the 1
r -scaling factor from the solution of the Laplace equation in 3d, implying a long-ranged kernel

with strong dependence on boundary conditions.
We finally give an expression for the strain energy density w:

dw = σijdεij = (λεllδij + 2µεij)dεij (4.112)

⇒ w =
1

2
λ(εll)

2 + µεijεij (4.113)

There are two elastic constants because there are two ways to contract εij to a scalar (in quadratic order).
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F

1/r

Figure 4.12.: The displacement decays with 1/r and points move according to the change in angle.

4.6. Non-linear elasticity theory
For linear elasticity theory, the difference between Lagrangian and Eulerian variables could be neglected.
For non-linear elasticity theory, when deformations can be large, we now have to confront the difficulty
that the balance of stresses is performed in the deformed state, while the constitutive relation refers to the
reference configuration.

In the deformed state, we have for the stress vector

ds = σ · dA (4.114)

We have to relate dA to the surface element dA0 in the undeformed state. We consider the deformation
of a small cylinder defined by dA0 and dx0:

dA0
⃗

n⃗
dx0⃗

n⃗
dx⃗

dA⃗

Figure 4.13.: For infinitesimal deformations of the cylinder, both normal vector n and axis vector dx0

change directions and lengths.

The volumes are related by

dV = dx · dA = J · dV0 = J · dx0 · dA0 = (F · dx0) · dA = dx0 · (FT · dA) (4.115)

with J = det(F). This is valid for all dx0 and hence

dA = J · (FT )−1 · dA0 (4.116)

Via equation 4.114 we define
ds = J · σ(FT )−1︸ ︷︷ ︸

P

·dA0 (4.117)

the first Piola-Kichhoff stress tensor P. P describes the stress in the reference configuration. In contrast
to the Cauchy stress tensor σ, it is not symmetric.
The second Piola-Kirchhoff stress tensor

S ≡ F−1P = J · F−1σ(FT )−1 (4.118)
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is symmetric and can be shown to be energy-conjugate to the Green-Lagrange strain tensor E. It is
therefore the standard choice for a constitutive relation.
We now can write

ds0 = S · dA0 (4.119)

in the undeformed state, where s0 is the back-transformed stress vector. Note however that this is a mathe-
matical definition, because in physical reality, the stress tensor can only be measured in the deformed state.

We now revisit Cauchy’s momentum equation and transfer it to the reference (Langrangian) frame. We
again start with Newton’s second law:

d

dt

∫
V

∂xi
∂t

ρdV =

∫
V

giρdV +

∫
∂V

σijdAj (4.120)

⇒ d

dt

∫
V0

∂xi
∂t

ρJ︸︷︷︸
ρ0

dV0 =

∫
V0

gi ρJ︸︷︷︸
ρ0

dV0 +

∫
∂V0

Jσ(FT )−1︸ ︷︷ ︸
P

dA0 (4.121)

DT⇒
∫
V0

∂2xi
∂t2

ρ0dV0 =

∫
V0

giρ0dV0 +

∫
V0

∂Pij

∂x0j
dV0 (4.122)

∀V⇒ ρ0
∂2xi
∂t2

= ρ0gi +
∂Pij

∂x0j

Lagrangian form of
Cauchy’s equation (4.123)

In steady state and without volume forces the equilibrium condition ∇ ·σ = 0 is thus replaced by ∇0 ·P =
∇0 · (F · S) = 0.

NLET in 1D
We consider a unidirectional displacement u(x, t)

F =

1 + ∂u
∂x 0 0

0 1 0
0 0 1

 E =
1

2
(FTF − 1) (4.124)

Exx =
∂u

∂x
+

1

2

(
∂u

∂x

)2

︸ ︷︷ ︸
geometrical NL

(4.125)

The equilibrium condition is
∂Pxx

∂x
= 0 ⇒ Pxx = const. (4.126)

The most general constitutive law is
Sxx = φ(Exx) (4.127)

with some function φ (possibly non-linear, a material NL).

⇒ Pxx = const = (F · S)xx =

(
1 +

∂u

∂x

)
φ

(
∂u

∂x
+

1

2

(
∂u

∂x

)2
)

(4.128)

This equation is both geometrically and mechanically non-linear. For mechanical linearity, one has

φ (Exx) = (λ+ 2µ)Exx (4.129)

⇒ Pxx =

(
1 +

∂u

∂x

)
(λ+ 2µ)

(
1 +

1

2

(
∂u

∂x

))
∂u

∂x
(4.130)
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a geometrically non-linear, cubic equation for ∂u
∂x . In LET this reduces to

Pxx = (λ+ 2µ)
∂u

∂x
(4.131)

Pxx = det Jσxx
1

1 + ∂u
∂x

≈ σxx ⇒ σxx = (λ+ 2µ)εxx 1d LET (4.132)

NLET in 3D
For LET in 3D, we have assumed

σ = σ(F), σ(F = 1) = 0 (4.133)

For NLET in 3D, one can argue that the corresponding assumption should be

S = S(C), S(C = 1) = 0 (4.134)

Assuming further that the material is locally isotropic, one can show that S has to have the form

S(C) = φ0(I1, I2, I3)1+ φ1(I1, I2, I3)C + φ2(I1, I2, I3)C2 (4.135)

where φ0, φ1, φ2 are functions of the three invariants of C:

I1 = tr(C) = λ2
1 + λ2

2 + λ2
3 (4.136)

I2 =
1

2

(
(tr(C))2 − tr(C2)

)
= λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 (4.137)

I3 = det(C) = λ2
1λ

2
2λ

2
3 (4.138)

There are no higher order terms of C due to the Cayley-Hamilton theorem from Linear Algebra. The λ2
i

are the eigenvalues of C. In LET, the λi become the stretch ratios. Therefore an isotropic constitutive
relation amounts to specifying the three scalar functions φ1, φ2, φ3.
S(1) = 0 leads to the condition

φ0(3, 3, 1) + φ1(3, 3, 1) + φ2(3, 3, 1) = 0 (4.139)

Choosing arbitrary φi usually leads to models with unphysical behaviour (e.g. material which can be used
as a limitless energy source during cyclic deformation). The best solution to this problem is the use of
appropriate strain energy density functions (hyperelastic materials).

Energy equation for NLET
We again multiply the momentum equation by the velocity and integrate over a large material volume V0:∫

V0

ρ0
∂2xi
∂t2

∂xi
∂t

dV0 =

∫
V0

ρ0gi
∂xi
∂t

dV0 +

∫
V0

∂Pij

∂x0j

∂xi
∂t

dV0 (4.140)

DT, PI⇒ d

dt

∫
V0

ρ0
2

(
∂xi
∂t

)2

dV0

︸ ︷︷ ︸
rate of change in
kinetic energy =
Ṫ

+

∫
V0

Pij
∂

∂t

(
∂xi
∂x0j

)
︸ ︷︷ ︸

Fij

dV0

︸ ︷︷ ︸
rate at which elas-
tic energy is stored
in the material = U̇

(4.141)

=

∫
V0

ρ0gi
∂xi
∂t

dV0

︸ ︷︷ ︸
rate of work by
body forces

+

∫
∂V0

∂xi
∂t

PijdAj

︸ ︷︷ ︸
rate of work on
the surface

(4.142)
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We postulate the existence of a strain energy density w(Fij) such that

Pij =
∂w

∂Fij
⇒ U̇ =

d

dt

∫
V0

w · dV0 (4.143)

U̇ is the rate of change in elastic energy stored int the material. We also need to require w to have a
minimum for F = 1. If w is a function only of C, then one can show that

Sij = 2 · ∂w

∂Cij
(4.144)

For isotropic material, w = w(I1, I2, I3), it holds that

Sij = 2 · ∂w
∂Ik

∂Ik
∂Cij

(4.145)

This leads to an explicit procedure to calculate φ0, φ1, φ2 from a given w.
Using minimization of an energy functional is computationally much easier than solving the non-linear
PDEs following from ∇0(F · S) = 0. This procedure naturally leads to the finite element method (FEM).
For hyperelastic material (a typical example is rubber, which can have very large deformations), one usually
assumes incompressibility, that is I3 = 1.
The commonly used constitutive relations are:

(a) Neo-Hookean: w = µ
2 (I1 − 3)

The Neo-Hookean description is good for plastic and rubber up to 20% strain. µ is the classical
shear modulus known from LET.

(b) Mooney-Rivelin: w = C1(I1 − 3) + C2(I2 − 3)

The Mooney-Rivelin formulation becomes Neo-Hookean with C2 = 0 and is good for rubber up
to 100% strain.

(c) Ogden: w =
N∑
p=1

µp

αp
(λ

αp

1 + λ
αp

2 + λ
αp

3 − 3)

The Ogden relation is a generalization of 1 and 2 in the sense that it contains both the Neo-Hookean
and the Mooney-Rivelin description. Usually N = 3 with 6 independent parameters gives a very

good fit to experiments. The relation to LET is such that
N∑
p=1

µpαp = 2µ.

The results of a typical stress test with uni-axial loading are visualized in fig. 4.14.

Example: Blowing up a balloon
Balloons as rubber-like material with very large displacements are ideal examples for NLET.
We consider a thin, spherical, incompressible rubber membrane of initial radius R and thickness H � R.
The two angular stretches have to be the same (biaxial loading in the sheet):

λθ = λφ =
2πr

2πR
=

r

R
(4.146)

The normal stretch is determined by incompressibility:

I3 = λ2
θλ

2
φλ

2
r = 1 ⇒ λr =

R2

r2
(4.147)
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LET

Neo-Hookean

MR

λ₁

F

Ogden 1<α<2

λ₁

F
Ogden α>2

Ogden α<1

Figure 4.14.: In each case the slope of the curve corresponds to the elastic constant of the material
probed. Neo-Hookean behaviour with strain-softening is typical for synthetic polymer net-
works, whereas strain-stiffening (Ogden α > 2) is typical for biopolymer networks. Material
instability or failure behavior occurs in the Ogden model for α < 1.

R

H

P

λθ

Figure 4.15.: The pressure required to inflate a balloon with radius R much larger than thickness H initially
increases, but then decreases. This corresponds to the familiar experience that blowing up a
balloon becomes easier after an initial barrier.

A typical value for the classical shear modulus is µ = 0.4MPa. This defines the Neo-Hookean model.
For Mooney-Rivelin one can use C1 = 0.44µ, C ′ = C2

C1
= 1

7 .
For the Ogden relation one can use N = 3 and

α1 = 1.3 µ1 = 0.6MPa (4.148)
α2 = 5.0 µ = 0.01MPa (4.149)

α3 = −2.0 µ = −0.01MPa (4.150)

All three material laws give similar results for this example.
We now consider that the balloon is inflated by some internal pressure p. This gives rise to a Laplace

relation

d(Ep) = d(ET ) ⇒ d(
4π

3
r3p) = d(4πr2T ) (4.151)

⇒ pr2dr = T2rdr ⇔ p =
2T

r
(4.152)

For Mooney-Rivelin, one can combine these elements to show:

p =
4C1H

R
·
(1 + C ′λ2

θ)(λ
6
θ − 1)

λ7
θ

(4.153)
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which is only defined for λθ ≥ 1.
Equation 4.153 is plotted in fig. 4.15.



CHAPTER 5

Applications of LET

This chapter will deal with elastic problems that can be analytically solved in LET. Exact analytical
solutions to realistic problems are often not possible and require numerical methods like the finite element
method (FEM), but the systems discussed here are of large importance and help to understand more
complex situations. Before addressing the actual problems, we will quickly recapitulate the most important
concepts of LET.

5.1. Reminder on isotropic LET
In LET we have two elastic constants and we have already encountered two different possible choices:

• (K,G) the bulk and shear moduli

• (λ, µ) the Lamé coefficients

which are related by λ = K − 2
3G, µ = G.

The three main concepts are the displacement vector field u(x) and the tensors for strain and stress, εij
and σij . The equilibrium condition for stress and displacement respectively is

0 = ∇σ + ρg = µ∆u + (λ+ µ)∇ · (∇ · u) + ρg (5.1)

and the strain energy density w is given by

w = σijεij =
1

2
λ (εll)

2 + µ εij εij (5.2)

5.2. Pure Compression
As a first example, we look at a case where the material is compressed and there are no shear forces, as
illustrated in fig. 5.2. The stress tensor is then given by

σij = −p δij (5.3)

where the pressure p is related to the relative volume change by

dw = σij d(εij) = −p d(εll) = −p
dV

V0
(5.4)

σll = −3p = 3Kεll ⇒ 1

K
= − 1

V0

∂V

∂p
(5.5)
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That the volume change should be negative as pressure increases is a familiar result from thermodynamics.
The bulk modulus K is the isothermal compressibility and has to be positive, K > 0, as a stability criterium.

Figure 5.1.: We take a piece of material and compress it equally from all sides. There are only normal
forces acting.

5.3. Simple shear
As a second example we look at a plate under force F and with area A leading to pure, one-dimensional
shear in the x-direction (fig. 5.3). The stress is the force per area s = F

A and the stress tensor is now given
by

σ =

0 s 0
s 0 0
0 0 0

 (5.6)

With vanishing trace, σll = 0, the inverted relation is obtained easily and the strain tensor has the same
symmetrical structure:

ε =

 0 s
2µ 0

s
2µ 0 0

0 0 0

 (5.7)

The displacement field corresponding to these stress and strain tensors is then

u =

(
sy

µ
, 0, 0

)
α =

u1
y

=
s

µ
(5.8)

The displacement has a linear profile in the x-direction and is dependent only on the shear modulus µ and
not on the bulk modulus. The larger the shear modulus, the smaller the displacement and the shear angle
α.

α

A
F

Figure 5.2.: Shear forces acting on a plate of area A. The deformed state is characterized by the shear
angle α.
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5.4. Uni-axial stretch

A

F

F

0

z

Figure 5.3.: Illustration of uni-axial stretching. The material is stretched in the z-direction.

In the case of uni-axial stretching (fig. 5.4), we again know the stress p = F
A and can immediately write

for the stress tensor
σzz = p, σij = 0 for all other components (5.9)

In order to construct the strain tensor, we procede component-by-component:

εzz =
1

2µ
σzz −

λ

2µ(3λ+ 2µ)
σll︸︷︷︸
=σzz

=
(λ+ µ)

µ(3λ+ 2µ)
p ≡ p

E
(5.10)

εxx = εyy = − λ

2µ(3λ+ 2µ)
p ≡ −νεzz = − ν

E
p (5.11)

Here we have defined a new set of elastic constants:

E =
µ(3λ+ 2µ)

(λ+ µ)
Young’s modulus (5.12)

ν =
λ

2(λ+ µ)
Poisson’s ratio (5.13)

The strain tensor and matching displacement are then given by

ε =
p

E
·

−ν 0 0
0 −ν 0
0 0 1

 , u =
p

E

−νx
−νy
z

 (5.14)

εll =
p

E
· (1− 2ν) (5.15)

The Young’s modulus is commonly stated in the literature to characterize the stiffness or rigidity of a given
material. Some typical values are given in table 5.1.

The Poisson ratio ν has no physical unit and describes the coupling between different directions in the
material. It is the ratio between longitudinal expansion and lateral contraction. In the example of uni-axial
stretch, the displacement in x- and y- direction is negative and the material moves in from the sides when
being stretched (Poisson effect).

Since bulk and shear moduli must be positive for thermodynamic reasons, you can also convince yourself
that the values for the dimensionless Poisson’s ratio ν lie in a narrow range:

G,K > 0 ⇒ −1 < ν <
1

2
(5.16)
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E [Pa] material
TPa graphene
GPa crystals
MPa rubber
kPa cells

Table 5.1.: Typical values for the Young’s modulus for different types of materials

x

y
z

Figure 5.4.: The plate is strained in the (x,y)-plane.

The upper bound ν = 1
2 corresponds to the limit λ → ∞ (K → ∞) and the material becomes incompressible

(εll = p
E (1 − 2ν) = 0). This is the case for most biomaterials which are incompressible due to the large

amount of water in the material (volume conservation in biological systems).
For negative Poisson’s ratio, ν < 0, so-called auxetic materials, when expanded in one direction, they

also expand in the other directions (take for example a crumpled piece of paper and expand it uni-axially).
(E, ν) is an alternative choice to (λ, µ) or (K,G)

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(5.17)

With this choice, the constitutive relation is given by

εij =
1 + ν

E
σij −

ν

E
σllδij (5.18)

and the strain energy density reads

w =
p2

2E
compare spring: U =

F 2

2k
(5.19)

5.5. Biaxial strain
Compression and shearing forces act as shown in fig. 5.5. We assume linear in-plane deformations and
shrinking by a factor γ in the z-direction:

u =

ax+ by
cx+ dy
−γz

 ⇒ ε =

 a 1
2(b+ c) 0

1
2(b+ c) d 0

0 0 −γ

 (5.20)

εij and σij are both constant.
By a linear mapping we get for the stress tensor (assuming free surfaces on the top and bottom):

σzz = λ εll + 2µ εzz = λ(a+ d− γ) + 2µ(−γ) = 0 (5.21)

⇒ γ =
λ(a+ d)

(λ+ 2µ)
= (

ν

1− ν
)(a+ d) (5.22)

⇒ σ =


E(a+νd)
1−ν2

E(b+c)
2(1+ν) 0

E(b+c)
2(1+ν)

E(νa+d)
1−ν2

0

0 0 0

 (5.23)
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L

z

0

ρg

F

Figure 5.5.: Elastic cube with dimenson L subject to gravity. Homogeneous stress at the top surface is
holding the cube.

If no force is applied in the y-direction: σyx = σxy = σyy = 0

⇒ d = −νa, c = −b (5.24)

⇒ σ =

Ea 0 0
0 0 0
0 0 0

 , ε =

a 0 0
0 −νa 0
0 0 −νa

 (5.25)

We recover the solution for uni-axial stretching for E · a = p.
Alternatively, one can also obtain displacement only in the (x,z)-plane, no displacement in the y-

direction:

b = c = d = 0 ⇒ σ =

 Ea
1−ν2

0 0

0 Eνa
1−ν2

0

0 0 0

 (5.26)

Thus, a transverse stress σyy must be applied to prevent the plate from contracting in the y-direction as
we stretch in x-direction. We obtain an effective elastic modulus E

1−ν2
> E, so that 2d stretching is more

strenuous than uni-axial stretching.

5.6. Elastic cube under its own weight
The cube and corresponding stresses are illustrated in fig. 5.6. The cube under its own weight is subject
to the body force fi = −ρgδiz. We ask for stress free boundaries at the sides and bottom, σ · n = 0, but
hold the cube from above by a homogeneous surface stress.

The equilibrium condition is given by the steady Navier equation with constant gravity

∂iσij + fi = 0 (5.27)

⇒ ∂σzz
∂z

= ρg ⇒ σzz = ρgz (5.28)

Gravitation is balanced everywhere in the material and the total force on the upper surface, ρgL · L2,
exactly balances the overall gravitation.

Strain tensor and displacement field are given by

ε =

− ν
Eρgz 0 0
0 − ν

Eρgz 0
0 0 ρg

E z

 u =

 −ν ρg
E xz

−ν ρg
E yz

ρg
2E (z2 + ν(x2 + y2))

 (5.29)

Upper and lower surfaces become parabolic and the cube, with the point (0, 0, 0) fixed in space, broadens
from top to bottom (see fig. 5.7).
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5.7. Torsion of a bar
We twist a bar of arbitrary cross-section D by applying moments to its ends and make the following ansatz
for the displacement vector:

u =

 −Ω yz
Ωxz

ΩΨ(x, y)

 (5.30)

Hence we assume a rotation, with Ω representing the twist of the bar, in the (x,y)-plane, and translational
invariance, with the torsion function Ψ yet to be determined, in the z-direction.

The strain and stress tensors are then given by

ε =

 0 0 Ω
2 (∂xΨ− y)

0 0 Ω
2 (∂yΨ+ x)

Ω
2 (∂xΨ− y) Ω

2 (∂yΨ+ x) 0

 σ = 2µε (5.31)

The trace of the strain tensor vanishes, εll = 0, so that this is a pure shear experiment. The stress tensor
has the same structure as the strain tensor.

The condition for equilibrium is again given by the Navier equation:

∂jσij = Ωµ(∂2
x Ψ+ ∂2

y Ψ) = 0 (5.32)

⇒ ∇2Ψ = 0
Ψ has to satisfy the
Laplace equation on D (5.33)

We parameterize the boundary ∂D as
(
X(s)
Y (s)

)
. The normal in the (x, y)-plane is given by n =

(
Y ′

−X ′

)
.

Assuming stress-free boundary conditions, we get

σzjnj = Ωµ
[
(∂xΨ− Y )Y ′ − (∂yΨ+X)X ′] = 0 (5.34)

⇒ ∂xΨY ′ − ∂yΨX ′ = ∇Ψ · n (5.35)

= ∂nΨ =
1

2

d

ds
(X2 + Y 2) on ∂D (5.36)

The solution Ψ(x, y) for this Neumann problem is unique up to an arbitrary constant corresponding to an
arbitrary uniform translation.

Figure 5.6.: Image of the deformed cube from one side. The cube is fixed at the point (0, 0, 0). Again the
Poisson effect brings the sides of the cube in, but lower and upper side are parabola shaped.
Gravity lets the system sag down.
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D

x

y

z

Figure 5.7.: A moment couple applied to a general elastic rod with domain D. Due to symmetry there will
always be one plane without movement, here at z = 0.

Once the solution is known, the moment applied at each end of the bar is given by

M =

∫
D

dxdy r × F =

∫
D

dxdy

x
y
0

×

σxz
σyz
0

 (5.37)

=

∫
D

dxdy

 0
0

(xσyz − yσxz)

 (5.38)

⇒ M = Mz = µ

∫
D

dxdy
[
x∂yΨ− y∂xΨ+ (x2 + y2)

]
︸ ︷︷ ︸

≡R torsional rigidity

Ω (5.39)

The torsional rigidity R is the factor of proportionality between moment M and twist Ω, analogue to the
spring constant.

For simple cross-sectional shapes, R can be calculated analytically. The simplest case is the circular bar.
Then, D is a disc of radius a and our Neumann problem is

∆Ψ =
1

r
∂r(r∂rΨ) = 0, r < a (5.40)

∂nΨ = 0, r = a (5.41)

We then find

Ψ = const (5.42)

R = 2πµ

a∫
0

rdr r2 =
πµa4

2
= R (5.43)

The torsional rigidity of a circular bar is linear in the shear modulus µ, as expected in LET, but increases
with the 4th power of its radius, showing a large geometrical dependence! This is formally the same problem
as the Hagen-Poiseuille law for viscous fluid flow due to a pressure gradient through a pipe of radius a in
hydrodynamics.

Only for the circular bar we get ∂nΨ = 0 and Ψ = const. For all other cases, one would get more
complicated boundary conditions and a non-trivial component uz = ΩΨ(x, y).
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We now introduce an alternative and more general way to solve this problem. Due to the special form
of the stress tensor, the steady Navier equation reads

∂xσzx + ∂yσzy = 0 (5.44)

This can be satisfied by postulating the existence of a stress function φ(x, y) such that

σzx = µΩ∂yφ, σzy = −µΩ∂xφ (5.45)

The factors of µΩ are introduced for later convenience. φ has the role of a scalar potential and is defined
up to addition of an arbitrary constant.

Comparing this with
σzx = µΩ(∂xΨ− y), σzy = µΩ(∂yΨ+ x) (5.46)

we can relate φ to Ψ by

∂xΨ = ∂yφ+ y, ∂yΨ = −∂xφ− x (5.47)
⇒ ∆φ = (−∂x∂yΨ− 1) + (∂y∂xΨ− 1) = −2 (5.48)

Thus φ satisfies Poisson’s equation
∆φ = −2 (5.49)

in the domain D.
The zero-stress boundary condition now reads

0 = σzxY
′ − σzyX

′ = µΩ(∂yφY
′ + ∂xφX

′) = µΩφ′ on ∂D (5.50)

⇒ φ = const = 0
on ∂D without loss of gener-
ality (5.51)

Thus the Neumann problem for Ψ has now been converted into a Dirichlet problem for φ, which is easier
to solve. For the torsional rigidity R we find:

R =

∫
D

dxdy (xσzy − yσzx) (5.52)

= µ

∫
D

dxdy (−x∂xφ− y∂yφ)︸ ︷︷ ︸
=−∇(φr)+2φ

= 2µ

∫
D

dxdy φ (5.53)

In application to a circular bar this becomes:

∆φ =
1

r
∂r(r∂rφ) = −2, φ = 0 for r = a (5.54)

⇒ φ =
a2 − r2

2
⇒ R = 2πµ

a∫
0

(a2 − r2)rdr =
πµa4

2
(5.55)

We recover the same result as in the ansatz with the torsion function Ψ above.

5.8. Contact of two elastic spheres (Hertz solution 1881)
We consider two elastic spheres of radii R and R′, which are pressed onto each other by a force F (see
fig. 5.9). Their elastic constants are (E, ν) and (E′, ν ′), respectively. The undeformed spheres around the
point of contact have the shapes

z = κr2, z′ = κ′r2 (5.56)
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z

x,r

R, (E,ν)

R', (E',ν')

h

x,r

z

u'z

uz

z

-a a
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Figure 5.8.: The Hertz problem is a mixed boundary contact problem with restrictions on u and σ. Two
elastic spheres are pressed onto each other by a force F . If they would not feel each other, the
spheres would move into each other with indentation depth h. In reality, the spheres develop
a contact area A, a circular disc of radius a. In general, the contact area does not need to
be flat as ahown here. For (R′, E′) → ∞, the problem becomes one of pressing an elastic ball
onto a flat rigid substrate.

with κ = 1
2R the mean curvature and the radial distance r2 = x2 + y2.

The indentation length is denoted by h. We then have (see Fig. 5.9)

(z + uz) + (z′ + u′z) = h (5.57)
⇒ (κ+ κ′)︸ ︷︷ ︸

≡A

r2 + uz + u′z = h (5.58)

within the contact area. For symmetry reasons, this has to be a circular disc of radius a.
We assume that only a normal stress pz(x, y) acts inside the contact area. The resulting displacement

fields are obtained from the Green’s function for a surface force acting on an elastic halfspace (Boussinesq
solution):

uz(x, y) =
1− ν2

πE

∫
dx′dy′

pz(x
′, y′)

s
(5.59)

u′z(x, y) =
1− ν ′2

πE′

∫
dx′dy′

pz(x
′, y′)

s
(5.60)

s =

∣∣∣∣ (xy
)
−
(
x′

y′

) ∣∣∣∣ =√(x− x′)2 + (y − y′)2 (5.61)

Note the 1/r-relation typical for 3d LET. From (5.58) we now get

1

π

(
1− ν2

E
+

1− ν ′2

E′

)
︸ ︷︷ ︸

≡ 4
3
D

∫
dx′dy′

pz(x
′, y′)

s
= h−Ar2 (5.62)

This integral equation determines the stress distribution pz(x, y) in the contact area. We solve this by
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noting that it corresponds to the potential of a uniformly charged disc known from electrostatics:

pz(r) =
3F

2πa2

√
1−

(r
a

)2
Hertz-stress (5.63)

The stress is normalized such that ∫
dx′dy′ pz(x

′, y′) = F (5.64)

The maximal stress (at r = 0) is
3F

2πa2
=

3

2
(
F

πa2
)︸ ︷︷ ︸

average stress

(5.65)

Combining the expression for the Hertz-stress with the integral equation (equation 5.63) allows us to
express indentation length h and contact area with radius a as a function of the force F (this requires more
integrals from potential theory). One then finds:

a3 = FD
RR′

R+R′ , h3 = F 2D2(
1

R
+

1

R′ ) (5.66)

The Hertz law a ∼ F 1/3 and the relation h ∼ F 2/3 for a spherical indenter are the most famous results of
contact mechanics.

From −F = −∂U
∂h we obtain for the potential energy:

U =
2

5
h

5/2 1

D

(
RR′

R+R′

)1/2

(5.67)

In the limit R′ → ∞: a3 = FDR, h3 = F 2D2

R , U = 2
5h

5/2R1/2/D.
These relations are often used to measure the stiffness of a material, for example by placing a steel ball

of radius R on a material with modulus E′ (E → ∞, F = G = 4πR3

3 ρg) or by indenting with an AFM. The
scaling laws a ∼ F 1/3 and h ∼ F 2/3 hold true also for non-spherical indenters with finite curvature (but not
for conical or flat indenters), compare Fig. 5.10. Here is a simple way to predict the scaling law for the
spherical indenter (see Fig. 5.11):

U ∼ V Eε2 (5.68)

where V is the deformed volume and ε is the strain. The indentation length is usually the quantity
monitored. From Fig. 5.11 we obtain:

R2 = l2 + (R− h)2 ⇒ l ∼
√
Rh (5.69)

⇒ V ∼ l3, ε ∼ h

l
(5.70)

Then, force and potential energy scale like

U ∼ (Rh)
3/2E

(
h

(Rh)1/2

)2

= E ·R1/2 · h5/2 (5.71)

F ∼ ∂U

∂h
∼ E ·R1/2 · h3/2 (5.72)



58 5.9 Compatibility conditions

spherical indenter conical indenterflat indenter

h~F
2/3

h~F
1/2h~F

Figure 5.9.: A standard way to measure the rigidity of a material is by means of measuring the indentation
length h as a function of force F .

h

R

l

Figure 5.10.: Illustration of a spherical indenter.

5.9. Compatibility conditions
The steady Navier equation ∂jσij+ρgi = 0 can be regarded as 3 equations for the 3 displacment components
ui. However, the strain tensor εij has 6 components, correspondong to 6 equations for u if σij and the
constitutive equations are known. Therefore εij is actually overdetermined and has to satisfy 3 additional
requirements , the 3 compatibility conditions. Only if these conditions are satisified, then εij corresponds
to a single-valued, and thus physically acceptable, displacement field.

We first consider a plain strain problem, that is u = (ux(x, y), uy(x, y), 0). If ux and uy are twice
continuously differentiable single-valued functions:

∂x∂yux = ∂y ∂xux︸︷︷︸
εxx

, ∂x ∂yuy︸︷︷︸
εyy

= ∂y∂xuy (5.73)

⇒ ∂2
yεxx + ∂2

xεyy = ∂y∂x(∂yux) + ∂x∂y(∂xuy) = ∂x∂y(∂yux + ∂xuy) = 2∂x∂yεxy (5.74)

⇒ ∂2
yεxx + ∂2

xεyy − 2∂x∂yεxy = 0 (5.75)

The same considerations for the (x, z)- and (y, z)-planes give

∂2
z εyy + ∂2

yεzz − 2∂y∂zεyz = 0 (5.76)
∂2
xεzz + ∂2

z εxx − 2∂z∂xεzx = 0 (5.77)

One can derive 3 more compatibility conditions, but only 3 out of the 6 are independent. The first equation
from above (equation 5.76) in linear elasticity can be written in terms of stresses as

∂2
yσxx + ∂2

xσyy − 2∂x∂yσxy =
ν

1 + ν
(∂2

x + ∂2
y) tr(σ) (5.78)

and similar expressions result from the other 5 compatibility conditions in strain.
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z, h

x

t

tension

compression

Figure 5.11.: Bending of a thin plate in z-direction. There must exist a plane with neither compression
nor tension which defines a neutral surface.

5.10. Bending of a plate
We consider a weakly bent plate with the surface normal in z-direction and a thickness t which is much
smaller than the lateral extension (see Fig. 5.12). The upper side is in compression and the lower side is
in tension. No stresses thus exist in the neutral middle surface, which we describe by the height function
h(x,y). To first order in h, the displacement vector for the middle surface is

u0 =

 0
0

h(x, y)

 Monge parametrization (5.79)

At the bottom and top surfaces we have the boundary conditions:

σxz = σyz = σzz = 0 (5.80)

Because the plate is very thin, these equations must be valid also in its interior

⇒ σzx =
E

1 + ν
εzx =

E

2(1 + ν)

(
∂ux
∂z

+
∂uz
∂x

)
= 0 (5.81)

σzy =
E

1 + ν
εzy =

E

2(1 + ν)

(
∂uy
∂z

+
∂uz
∂y

)
= 0 (5.82)

σzz =
E

(1 + ν)(1− 2ν)
[(1− ν)εzz + ν(εxx + εyy)] = 0 (5.83)

Since
εij =

1

E
[(1 + ν)σij − νσllδij ] (5.84)

the inverted expression gives the strain tensor

σij =
E

(1 + ν)
εij +

νE

(1 + ν)(1− 2ν)
δijεll (5.85)

and with
∂ux
∂z

= −∂uz
∂x

= −∂xh ⇒ ux = −z∂xh (5.86)

∂uy
∂z

= −∂uz
∂y

= −∂yh ⇒ uy = −z∂yh (5.87)

εzz = − ν

(1− ν)
(εxx + εyy) (5.88)
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we now know the strain tensor:

εij =

 −z∂2
xh −z∂x∂yh 0

−z∂x∂yh −z∂2
yh 0

0 0 zν
(1−ν)(∂

2
xh+ ∂2

yh)

 (5.89)

Note that for ε31 we used, to first order in h, that

ε31 =
1

2
(∂xuz + ∂zux) =

1

2
(∂xh− ∂xh) = 0 (5.90)

The strain energy density w leads to the bending energy of the plate:

w =
E

2(1 + ν)
(ε2ij +

ν

1− 2ν
ε2ll) (5.91)

= z2
E

(1 + ν)


2

(1− ν)
(

1

2
(∂2

xh+ ∂2
yh)︸ ︷︷ ︸

≡ H mean curva-
ture

)2 −
(
∂2
xh∂

2
yh− (∂x∂yh)

2
)︸ ︷︷ ︸

≡ K Gaussian
curvature

 (5.92)

Mean curvature and Gaussian curvature are definitions from differential geometry

H =
1

2
(κ1 + κ2) mean curvature (5.93)

K = κ1 · κ2 Gaussian curvature (5.94)

where κ1 and κ2 are the principal curvatures of the surface. These geometric quantities are fundamental
in all theories of plates and shells.

For a thin plate, we intend to integrate out the z-component and obtain for the net strain energy:

U =

t/2∫
−t/2

dz

∫
dxdy w (5.95)

= 2κ

∫
dxdy H2︸ ︷︷ ︸

bending energy

+ κ̃

∫
dxdyK︸ ︷︷ ︸

= const, due to
Gauss-Bonnet
theorem

(5.96)

The bending stiffness κ is then given by

κ =
E

(1− ν2)

t/2∫
−t/2

dz z2 =
Et3

12(1− ν2)
= κ (5.97)

Again, the bending rigidity (in units of energy) shows a strong dependence on geometry, in terms of the
thickness, of the material. κ̃ = κ(1 − ν) is another curvature elastic constant of interest, called the splay
modulus.

Minimizing U a a functional of h using the calculus of variation is non-trivial but gives a clear result:

κ∇4h = −ρtg biharmonic equation (5.98)

In addition to derivatives of 4th order, the boundary conditions for the plate problem with body forces are
non-trivial and simplest for the clamped case (h = ∂nh = 0 at the rim).
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(E, ν)

g g
-R R

Figure 5.12.: The plate is clamped at both sides and gravity pulling everywhere lets it sag down.

Example: Circular plate with gravity
For example, in order to describe the sagging of an elastic disc of radius R under gravity with clamped
boundary conditions, (5.98) reads

∇4h =

(
1

r

d

dr
(r

d

dr
)

)2

h = 64β with β =
3ρg(1− ν2)

16t2E
(5.99)

⇒ h = βr4 + ar2 + b+ cr2 ln( r
R
) + d ln( r

R
) (5.100)

We make a polynomial ansatz for the height function h(r) in cylindrical polar coordinates and demand
d = c = 0 to avoid singularities. The constants a and b are calculated from the boundary conditions
h = ∂rh = 0 at r = R and we find that

h = β(R2 − r2)2 (5.101)

The height of the clamped plate varies parabolically in r (compare Fig. 5.13). A technical application
of the mechanics of bending a plate is, for example, the manufacture of curved wind screens. A glass plate
is heated with an inhomogeneous temperature field to achieve the required sag.

5.11. Bending of a rod
Like for the plate, we have tension on one side, compression on the other, and a neutral surface inbetween.
For weak bending, torsion is a higher order effect and can be neglected. We choose the z-axis for the long
axis of the rod. In this case

nz = 0 ⇒ σixnx + σiyny = 0 (5.102)

for example, for i = x. At point P we have

ny = 0 ⇒ σxx = 0 (5.103)

everywhere since the rod is thin. σij vanishes except for σzz and we only have tension or compression along
the z-axis. Basically this is a stretch experiment.

z

x

R

tension

compression

Figure 5.13.: Bending of a rod. Basically this is a stretch experiment with tension for x > 0 and compression
for x < 0.
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Figure 5.14.: (a) View from the side. (b) Cut through the rod. The sides of the rectangular cross-section
are tilted with linear dependence in x-direction, but remain planar, whereas the upper and
lower planes deform parabolically.

For the stretch in x-direction we get

dz′

dz
=

2π(R+ x)

2πR
= (1 +

x

R
) ⇒ dz′ − dz

dz
= εzz =

x

R
(5.104)

We then find for the displacement field and stress tensor:

ε =

−ν x
R

(−νy+νy)
R = 0 (z−z)

R = 0
0 −ν x

R 0
0 0 x

R

 u =
1

R

−1
2(z

2 + ν(x2 − y2))
−νxy
xz

 (5.105)

where we used the same intermediate steps as in section 5.10 for the bending of a plate, respectively

σzz = E
x

R
(5.106)

εxx = εyy = −νεzz = −ν
x

R
⇒ ∂xux = ∂yuy = −ν

x

R
(5.107)

A cross-section at constant z = z0 has uz = z0
x
R . It stays planar but is rotated (except at the origin),

as shown in Fig. 5.15a. However, the shape of the cross-section is changed as shown in Fig. 5.15b. For
example for a rectangular cross-section at y = ±y0 the two sides stay planar, but are rotated:

uy =
−νy0
R

x (5.108)

At x = ±x0, the top and bottom sides become parabolic:

ux =
−1

2R
(z20 + ν(x20 − y2)) (5.109)

From the strain energy density w we now obtain a strain energy per length U
L :

w =
σikεik
2

=
σzzεzz

2
=

Ex2

2R2
(5.110)

⇒ U

L
=

E

2R2

∫
x2dA︸ ︷︷ ︸
≡Iy

(5.111)



63 5.11 Bending of a rod

where Iy is the moment of inertia with respect to the y-axis. For a rectangular cross-section with dimensions
a and b in x- and y-directions, respectively, we have Iy = a3b

12 . For a circular cross-section we have Iy = πR4

4 .
For the whole rod we now have

U =
EI

2

∫
ds

1

R2
=

EI

2

∫
ds

(
d2r
dz2

)
(5.112)

where I is the moment of inertia with regard to the axis around which we bend. This is the basis of
the worm-like chain model for polymers. κ = E · I is called the bending stiffness which is related to the
persistence length lp, i.e. the length on which the rod stays bend, by κ = lp · kBT .

For bending in a plane, r = (x, y, 0) and the corresponding Euler-Lagrange equation gives

EI

2

(
d2

ds2
∂L
∂X ′′

)
= EIX ′′′′ = Kx (5.113)

EI

2

(
d2

ds2
∂L
∂Y ′′

)
= EIY ′′′′ = Ky (5.114)

where Kx, Ky are external forces per length. Thus for weakly bent rods, we have to solve a differential
equation of 4th order, like for weakly bent plates.

Example 1:
An initially horizontal rod is clamped at s = 0 and free at s = L. How does it deform under its own
weight?

Y ′′′′ =
g

EI
⇒ Y =

g

24EI
· s2(s2 − 4Ls+ 6L2) ⇒ Y (L) =

gL4

8EI
(5.115)

Again we encounter a strong dependence on geometry. Cross-checking the solution depicted in Fig. 5.16
gives the correct results:

Y ′′′′ =
g

EI
Y (0) = Y ′(0) = 0 (5.116)

moment Mx(L) = −EIY ′′(L) = 0 (5.117)

Y(L)g
g

L

x

z r(s)⃗

Figure 5.15.: Clamped rod subject to gravity.

Example 2:
Now the rod is deformed by a point force F at its free end:

Y =
F

6EI
· s2(3L− s) ⇒ Y (L) =

FL3

3EI
=

4FL3

3πER4
(5.118)
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where the last formula is valid for a spherical cross-section with radius R. The proportionality factor
between force and deformation is the spring constant of the rod, given by

k =
3πER4

4L3
(5.119)

where the rod radius R enters to 4th power. Cross-checking the solution gives

Y ′′′′ = 0, Y (0) = Y ′(0) = 0 (5.120)
Mx(L) = 0, Fy = −EIY ′′′ = −F (5.121)

F

L

Figure 5.16.: Clamped rod subject to a point force at its end.



CHAPTER 6

The finite element method

Continuum mechanics leads to partial differential equations (PDEs), and in particular elasticity theory
leadds to the Navier-Cauchy equations (like fluid dynamics leads to the Navier-Stokes equations). Many
different techniques have been developed to solve PDEs numerically, including

• finite differences

• finite volumes

• finite element method (FEM)

• boundary element method

• spectral methods

In contrast to ordinary differential equations (ODEs), there is no general mathematical theory for the
solvability of PDEs. Rather different numerical schemes have been developed for different classes of PDEs.
In each case, one has to check for which assumption a solution exists, if it is unique, and how it depends on
the parameters (existence, uniqueness, robustness). Here we will focus on the FEM, which is the standard
tool in many applications. FEM combines different aspects, but the two most important ones are usage of
the weak formulation, which converts the differential equation into an integral equation, and transformation
of this integral equation into an algebraic equation by use of elements and shape functions.

6.1. Classification of PDEs
A linear PDE of second order has the form (aij = aji since ∂j∂iu = ∂i∂ju):

Lu = −aij∂j∂iu+ bi∂iu+ cu = f (6.1)

It is called

(a) elliptic if all eigenvalues of a are non-zero and have the same sign. For example: Laplace equation

∆u = 0 a =

1 0 0
0 1 0
0 0 1

 (6.2)

65 65
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(b) hyperbolic if all eigenvalues are non-zero, n−1 have the same sign and the remaining one the opposite
sign. For example: Wave equation

∂2
t u = ∆u a =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (6.3)

(c) parabolic if one eigenvalue is zero and the remaining ones have the same sign. For example: Heat
equation

∂tu = ∆u a =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (6.4)

These names are taken from the case n = 2 when the quadratic form a11x
2 +2a12xy+ a22y

2 = 0 describes
an ellipse, a hyperbola or a parabola. For each of these types and depending on boundary conditions,
theorems on existence and uniqueness and robustness can be derived. However, for practical purposes it is
important to note that also functions that do not have the derivatives required for a rigorous solution of
a given PDE qualify as reasonable solutions. It is these weak solutions which are obtained with the FEM.
Below we will choose the elliptical 1d equation (actually an ODE)

d

dx
(c
du

dx
) + f = 0 (6.5)

to introduce the FEM. Here c could have a space-dependance, c = c(x). Note that this equation occurs in
many different physical situations. Later we generalise to 3d and PDEs.

diffusion equation u concentration
c diffusion constant

f particle production
heat conduction (steady state) u temperature

c thermal conductivity
f heat source term

mechanics of a bar u displacement
c = E ·A

f body force

6.2. The weak form
Rather than solving the PDE directly (strong form), we transform it into an integral equation by multi-
plying with a weighting function w(x) and integrating over the domain [a, b]:

I =

b∫
a

w

[
d

dx
(c
du

dx
) + f

]
︸ ︷︷ ︸

residualR(x)

dx = 0 (6.6)

This has to hold for all weighting functions w(x). Then it is also true for w(x) = R(x) and thus from the
requirement I = 0 ∀w it follows that R = 0. The reverse direction is obviously treu as well.
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Integration by parts gives:

I = w c
du

dx

∣∣∣∣b
a︸ ︷︷ ︸

= Jb − Ja ≡ B,
with flux J = cdudx

−
b∫

a

dw

dx
c
du

dx
dx+

b∫
a

wf dx (6.7)

⇒
b∫

a

dw

dx
c
du

dx
dx =

b∫
a

wf dx+B (6.8)

The weak form only involves first order derivatives. This formulation forces the residual to vanish in a
spatially averaged sense. Mathematically the weak formulation corresponds to the introduction of a scalar
product in a Sobolev space. The main idea of FEM is to solve the weak problem in a finite dimensional
subspace. The Lax-Milgram theorem then ensures solvability in the subspace. For a grid size h going to
zero, this solution converges to the full solution. As we will see below, the discretized version can be solved
algebraically (by matrix inversion).

6.3. Shape functions
We discretize the problem by introducing n nodes xi (1 ≤ i ≤ n) in the domain. The polynomial approxi-
mation to u then is

uh(x) =

n−1∑
i=0

aix
i (6.9)

where h represents the grid spacing. The coefficients ai follow from solving

1 x1 x21 ... xn−1
1

1 x2 x22 ... xn−1
2

.

.

.
1 xn x2n ... xn−1

n

 ·



a0
a1
.
.
.

an−1

 =



u1
u2
.
.
.
un

 (6.10)

The ai depend linearly on the ui

⇒ uh(x) =

n∑
i=1

Ni(x)ui (6.11)

The shape functions Ni(x) are polynomial expressions of order n− 1 in x.

Example: n=2
⇒ uh(x) = N1(x)u1 +N2(x)u2 (6.12)

with
N1(x) = 1− x− x1

x2 − x1
N2(x) =

x− x1
x2 − x1

(6.13)

6.4. Galerkin approximation
We now transform the weak form into a linear set of equations. We divide the domain Ω into Nel subdomains
Ωe (elements). Within each element both the weighting function w(x) and the unknown functin u(x) are



68 6.4 Galerkin approximation

u

xx xx x1 2 3 n

uh

h

(a)

u u u u1 2 3 n

u

x

1

x1 x2

N1 N
2

u
1

u2

(b)

Figure 6.1.: (a) We introduce n nodes xi with typcial grid spacing h, not necessarily equidistant. The
polynomial approximation for uh(x) is exact at the grid points, but can deviate inbetween.
(b) Shape functions in the simple case of two nodes.

approximated by a polynomial in Ωe:

ueh(x) =

n∑
i=1

Ni(x)u
e
i = N(x) · ue, we

h(x) =

n∑
i=1

Ni(x)w
e
i = N(x) · we (6.14)

⇒
dueh
dx

=
dN
dx

· ue,
dwe

h

dx
=

dN
dx

· we (6.15)

⇒
∫
Ωe

dwe
h

dx
c
dueh
dx

dx =

∫
Ωe

dN
dx

· we c
dN
dx

· ue dx (6.16)

= we ·

∫
Ωe

dN
dx

⊗ dN
dx

c dx


︸ ︷︷ ︸

≡Ke

·ue (6.17)

where Ke is the stiffness matrix of element e (can be calculated by numerical integration with trapezoidal
or Gaussian rules). For the last term in (6.7) we define the loading vector of element e:

fe =
∫
Ωe

N f dx ⇒
∫
Ωe

we
h f dx = we · fe (6.18)

We now assemble the local elements into a global stiffness matrix K and a global loading vector f: For
example for 4 nodes we have 3 elements:

K = K1 + K2 + K3 (6.19)

K1 =


x x 0 0
x x 0 0
0 0 0 0
0 0 0 0

 K2 =


0 0 0 0
0 x x 0
0 x x 0
0 0 0 0

 K3 =


0 0 0 0
0 0 0 0
0 0 x x
0 0 x x

 (6.20)

f = fint + fext (6.21)

with

fext ≡


−Ja
0
0
Jb

 (6.22)
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the external loading vector specifying the flux condition such that B in the integral equation (6.8) can be
written as

B = w · fext (6.23)

and

fint ≡
Nel∑
e=1

fe (6.24)

the internal loading vector.
All in all,

w · K · u = w · f (6.25)

and because this must hold for all w, we finally have

K · u = f (6.26)

The final step depends on the boundary conditions. As an example, let us prescribe u for x = a and J for
x = b. We label the known part of u as up. The remaining part uu is the unknown one.

⇒
(

Kuu Kup

Kpu Kpp

)(
uu

up

)
=

(
fu
fp

)
(6.27)

fu will be known and thus we can solve

Kuu · uu = fu − Kup · up (6.28)

for uu. Then we can calculate
fp = Kpu · uu + Kppup (6.29)

because up is known. With this, the problem is completely solved! In summary, the objective of a FEM-
program is to compute the coefficient or stiffness matrix K and the loading vector f, and to solve the
resulting system of algebraic equations taking the boundary conditions into account.

6.5. FEM for 3d LET
We now deal with a PDE in 3d:

∇ · σ + f = 0 steady Cauchy equation (6.30)

For the weak formulation, the weight function now has to be a vector field w(x):∫
Ω

w · (∇ · σ + f) dV = 0 (6.31)

We integrate by parts using

∂i(σijwj) = (∂iσij)wj + σij(∂iwj) (6.32)

⇒
∫
Ω

∇ · (σ · w)dV −
∫
Ω

σ : (∇⊗ w)TdV +

∫
Ω

w · fdV = 0 (6.33)

with
A : B ≡ tr(A · B) = AijBji double dot product (6.34)

By the divergence theorem we get∫
Ω

(∇⊗ w)T : σ dV =

∫
∂Ω

w · σ · dA+

∫
Ω

w · f dV (6.35)
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The LHS can be simplyfied: We split the dyadic product (∇⊗w)T into a symmetric and a skew-symmetric
part:

(∇⊗ w)T =
1

2

[
(∇⊗ w) + (∇⊗ w)T

]
︸ ︷︷ ︸

≡εw

−1

2

[
(∇⊗ w)− (∇⊗ w)T

]
(6.36)

Because σ is symmetric, only the symmetric part εw contributes to the double dot product:

(∇⊗ w)T : σ = εw : σ (6.37)

Because it is linear in the tensor components, it also can be written as the dot product of two appropriately
defined vectors:

εw : σ = εw · σ (6.38)

The same applies for the constitutive equation, which we also write with vectors:

σ = H ε (6.39)

where ε is an appropriate definition following from the strain tensor ε.

⇒ εw · σ = εw H ε (6.40)

We also have
ε = B u, εw = B w (6.41)

where B is a differential operator and u the displacement field. Expressing u and w by shape functions,
B becomes the strain displacement matrix with entries of the type ∂Ni

∂xj
.

⇒
∫
Ω

(∇⊗ w)T : σ dV = w ·
∫
Ω

BTH B dV

︸ ︷︷ ︸
≡ K stiffness matrix

·u (6.42)

With an appropriately defined loading vector f, we finally have the same result as before:

w K u = w · f ∀w⇒ K u = f (6.43)

which can be solved as explained earlier for given boundary conditions.

6.6. Software for FEM
The standard GUI-based commercial software for solving FEM-problems is Comsol Multiphysics. 2d prob-
lems (plain strain, plain stress) can also be solved with the PDE toolbox in Matlab. Basic PDE-tools are
also provided by Mathematica. Very powerful but complicated commercial FEM-software used for indus-
trial applications (for example in the automobile or airplane industries) are for example Abaqus, Ansys and
Adina. There exist several non-commercial (sometimes open source) FEM-packages, mainly from academic
groups in applied math. At Heidelberg, this includes deal.II and Dune. A very good open source choice
is FEniCS (https://fenicsproject.org), which can be run from python scripts that start directly from the
weak form. The FEniCS-tutorial is a good introduction into FEM.
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APPENDIX A

Overview of tensors in elasticity theory

Fij =
∂xi
∂x0j

= δij +
∂ui
∂x0j

deformation gradient tensor

C = FT · F right Cauchy-Green deformation tensor

B = F · FT left Cauchy-Green deformation tensor (aka Finger
tensor)

E = 1
2(C − 1) Green-Lagrange strain tensor

A = 1
2(1− B−1) Almansi-Euler strain tensor

ε = 1
2(F

T + F − 21) linear strain tensor

σ Cauchy stress tensor

Cijkl tensor of elastic moduli

P = det(F)σ(FT )−1 1st Piola-Kirchhoff stress tensor

S = F−1P 2nd Piola-Kirchhoff stress tensor
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