

Dark Side of the Universe and its Observational Signature.

Gaveshna Gupta Center for Theoretical Physics Jamia Millia Islamia, New Delhi.

Institute Theoretical Physics, University of Heidelberg

- 1. Constraining Thawing Quintessence. Gaveshna Gupta, Subhabrata Majumdar and Anjan A Sen <u>Mon. Not. Roy. Astron. Soc. 420, 13091316 (2012)</u>
- 2. GCG Parameterization for Growth Function and Current Constraints.

Gaveshna Gupta, Somasri Sen and Anjan A Sen JCAP 04, 028 (2012)

Constituents of the Universe

Observational Evidence

Picture credit to M Kowalski et al. (Supernova Cosmology Project)

7/11/2012

Gaveshna Gupta, CTP, JMI

The physics of accelerated expansion

General relativity and the Cosmological principle give the acceleration equation

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} \left(\rho c^2 + 3p\right)$$

In conditions where negative pressure dominates, an accelerated period of expansion may be expected.... " *Dark energy* " In the FRW background the modified Einstein equations

The Cosmological constant Λ is the simplest candidate for Dark Energy.

Fine tuning problem.

$$\frac{\rho_{obs}}{\rho_{th}} \approx 10^{-120}$$

Cosmic coincidence problem.

Alternative theories to explain the late time acceleration.

 $G_{\mu\nu} = T_{\mu\nu}$ Modify the gravity modify the matter sector.

- DGP model.
- Cardassian model.
- f(R) theories.
- Galileon models.

- Quintessence.
- Tachyon.
- Phantom.
- K- essence... etc.

Dynamical Dark Energy (Quintessence)

$$\rho = \dot{\phi}^2 / 2 + V(\phi)$$

$$p = \dot{\phi}^2 / 2 - V(\phi)$$

$$V(\phi)$$

$$\psi = p / \rho = \frac{\dot{\phi}^2 / 2 - V(\phi)}{\dot{\phi}^2 / 2 + V(\phi)} \ge -1$$
[Wetterich; Peebles & Ratra; Caldwell, Dave & Steinhardt; etc.]

Dynamics of Quintessence

Equation of motion of scalar field

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0$$

- Driven by steepness of potential.
- Slowed by Hubble friction.

6 -5 -4 -

3

2 -

7/11/2012

Broad classification

- Field rolls but decelerates as dominates energy.
- Field starts frozen by Hubble drag and then rolls.

1.5

1.0

0.5

10

Limits of Quintessence

Thawing scalar field models

Equation of motion.

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0$$

Einstein equation.

$$3H^2 = \rho_m + \rho_\phi$$

Assume spatially flat Universe so that

$$\Omega_m + \Omega_\phi = 1$$

Autonomous system

$$\gamma' = -3\gamma(2-\gamma) + \lambda(2-\gamma)\sqrt{3\gamma\Omega_{\phi}}$$
$$\Omega_{\phi}' = 3(1-\gamma)\Omega_{\phi}(1-\Omega_{\phi})$$
$$\lambda' = -\sqrt{3}\lambda^{2}(\Gamma-1)\sqrt{\gamma\Omega_{\phi}}$$

[Scherrer & Sen Phys.Rev. D 77 083515]

Taylor expand the scale factor

$$a(t) = a(t_0) + a(t_0) \sum_{n=1}^{\infty} \frac{\alpha_n(t_0)}{n!} \left[H_0(t - t_0) \right]^n$$

$$\alpha_n = \frac{\frac{d^n a}{dt^n}}{\left(aH^n\right)}$$

$$S_2 = \alpha_2 + \frac{3}{2}\Omega_m$$
$$S_3 = \alpha_3$$
$$S_4 = \alpha_4 + \frac{3^2}{2}\Omega_m$$

[Arabsalmani & Sahni Phys. Rev D 83 ,043501]

And so on

Where,

Concordance Cosmology

$$\Omega_m = \Omega_{m0} \frac{(1+z)^3}{h^2(z)}$$
 Also, $\Omega_m = \frac{2}{3}(1+q)$

Plot of S_2 and Ω_m

$$\Omega_{\rm m0}=0.3$$

Solid lines -Thawing models (for $\Gamma = 0$, 0.5, 1, 1.5 and 2)

Dashed lines - 1» CG, 2»GCG, 3»DGP, 4»CPL, 5»Const w.

Dots – Present day value

Plot of S_3 and Ω_m

$$\Omega_{\rm m0} = 0.3$$

Solid lines -Thawing models (for $\Gamma = 0$, 0.5, 1, 1.5 and 2)

Dashed lines - 1» CG, 2»GCG, 3»DGP, 4»CPL, 5»Const w.

Dots – Present day value

Plot of S_4 and Ω_m

$$\Omega_{\rm m0} = 0.3$$

Solid lines -Thawing models (for $\Gamma = 0$, 0.5, 1, 1.5 and 2)

Dashed lines - 1» CG, 2»GCG, 3»DGP, 4»CPL, 5»Const w.

Dots – Present day value

7/11/2012

Plot of S_4 and S_3

$$\Omega_{\rm m0}=0.3$$

Solid lines -Thawing models (for $\Gamma = 0$, 0.5, 1, 1.5 and 2)

Dashed lines - 1» CG, 2»GCG, 3»DGP, 4»CPL, 5»Const w.

Dots – Present day value

W-W' Phase Plane for Thawing Models.

Figure 5. The panel shows the dynamics of scalar field in w - w'plane at redshifts z = 0 (solid) and z = 1 (dashed). The dots (black) represents the potentials $V = \phi, \phi^2, \phi^{-2}, \phi^{-1}$ (from top to bottom, for each z) respectively.

W-W' Phase Plane for Thawing Models.

Observational Constraints

• With the assumption of a flat Universe we use the latest observational data.

- Type IA Supernovae Union 2 compilation.
- **BAO** measurement from SDSS.
- **CMBR** measurement by WMAP 7.
- H(z) data from HST key project and Stern et.al
- Simulated dataset based on upcoming JDEM SN survey.

Figure 7. The 1σ and 2σ confidence contours in $\lambda i - \Omega_{m0}$ plane for $\Gamma = 0$. The shaded regions are constraints from SN+BAO data while the thick lines are constraints from SN+BAO+CMB+H(z) data respectively. The dashed lines are for the simulated JDEM data. The two vertical lines represent the WMAP7 bound on Ω_{m0}

Shaded region – Sn+Bao Solid lines (red) -Sn+Bao+CMB+Hubble Dashed lines – JDEM

Vertical lines – WMAP7 bound.

Shaded region – Sn+Bao Solid lines (red) -Sn+Bao+CMB+Hubble Dashed lines – JDEM

Vertical lines – WMAP7 bound.

Effectiveness of simulated data in distinguishing DE models using Statefinder Hierarchies.

Figure 11: The behaviour of S_3 at present (z = 0) as a function of λ_i for different thawing potentials. The lines represent $\Gamma = 0, 0.5, 1, 1.5, 2$ from bottom to top. $\Omega_{m0} = 0.24, 0.26, 0.28$ (from left to right) respectively. The horizontal lines represent the bound on S_3 at z = 0 due to the JDEM simulated data.

Results

Thawing models described by 3 parameters.

Quintessence in String Theory

In a recent work by Panda, Sumitomo and Trivedi (**PRD**, **83 (2011) 083506**) a model of quintessence is constructed in String Theory.

It is interesting to note that the potential in this set up comes out to be linear

Alternative theories to explain the late time acceleration.

Modify the gravity sector.

- DGP model.
- Cardassian model.
- f(R) theories.
- Galileon models.

Modify the matter sector.

- Quintessence.
- Tachyon.
- Phantom.

Gaveshna Gupta, CTP, JMI

K - Essence

Fields that have non canonical Kinetic term

$$S = \int d^4 x \sqrt{-g} L(\phi, X)$$

$$X = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi$$

The most used form of $L(\phi, X)$ is of Dirac-Born-Infeld (DBI) type

$$L(\phi, X) = -V(\phi)\sqrt{1-X}$$

The energy density and pressure for the Tachyon Field

$$\rho_{\phi} = \frac{V(\phi)}{\sqrt{1 - \dot{\phi}^2}} \qquad p_{\phi} = -V(\phi)\sqrt{1 - \dot{\phi}^2}$$

The equation of motion for the field is

$$\frac{\ddot{\phi}}{\sqrt{1-\dot{\phi}^2}} + 3H\dot{\phi} + \frac{V'}{V} = 0$$

Generalized Chaplygin Gas

The Action $L = -A\sqrt{1-X}$ where $X = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi$ In a FRW universe it gives EoS of a perfect fluid A more complicated k- essence action $L = -A^{\frac{1}{(1+\beta)}} \left[1 - X^{\frac{(1+\beta)}{2\beta}} \right] \frac{\beta}{(1+\beta)}$ $p = \frac{-A}{\alpha^{\beta}}$ EoS

The energy density and EoS of GCG are

$$\rho_{gcg} = \rho_{gcg0} \left[A_s + (1 - A_s)(1 + z)^{3(1 + \beta)} \right]^{\frac{1}{(1 + \beta)}}$$

Where,
$$A_s = \frac{A}{\rho_{gcg0}^{1+\mu}}$$

Features of GCG

At present (z = 0) $A_{s} = -w_{gcg0}$ for $A_{s} = 1$, $w_{gcg0} = -1 \Rightarrow C.C$ $\beta = 0, \rho_{gcg} = \rho_{gcg0}[A_{s} + (1 - A_{s})(1 + z)^{3}] \Rightarrow \Lambda CDM$

Growth Function for GCG

The growth rate of large scale structures is given by matter density perturbation in linear regime, governed by equation

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} - 4\pi G\rho_m\delta = 0$$

The background universe

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\rho_m + \rho_{gcg}\right)$$

$$\delta = \frac{\delta \rho_m}{\rho_m}$$

$$\Omega_{\rm m}({\rm a}) = \frac{\rho_{\rm m}}{\rho_{\rm m} + \rho_{\rm gcg}} \qquad Growth \,Factor: \quad f \equiv \frac{d\ln\delta}{d\ln a}$$

$$3w_{gcg}\Omega_m(1-\Omega_m)\frac{df}{d\Omega_m} + f^2 + f\left[\frac{1}{2} - \frac{3}{2}w_{gcg}(1-\Omega_m(a))\right] = \frac{3}{2}\Omega_m(a).$$

Effective parameterization for growth factor

$$f = \Omega_m^{\gamma(\Omega_m)}$$

Introduced by Wang & Steinhardt (APJ 1998)

For Dark energy with const. EoS

$$\gamma = \frac{3(w_0 - 1)}{6w_0 - 5} \quad For \ C.C, w = -1, \quad \gamma = \frac{6}{11}$$

Using parameterization

$$3w_{gcg}\Omega_m(1-\Omega_m)\ln\Omega_m\frac{d\gamma}{d\Omega_m} - 3w_{gcg}\Omega_m\left(\gamma-\frac{1}{2}\right) + \Omega_m^{\gamma} - \frac{3}{2}\Omega_m^{\gamma} + 3w_{gcg}\gamma - \frac{3}{2}w_{gcg} + \frac{1}{2} = 0$$

$$\gamma(\Omega_m) = \gamma \left|_{\left(\Omega_m = 1\right)} + (\Omega_m - 1) \frac{d\gamma}{d\Omega_m} \right|_{\left(\Omega_m = 1\right)} + O(\Omega_m - 1)^2$$

$$\gamma(\Omega_m) = 3 \frac{(1 - w_{gcg})}{(5 - 6w_{gcg})} + (1 - \Omega_m) \frac{3(1 - w_{gcg}) \left(1 - \frac{3w_{gcg}}{2}\right)}{125 \left(1 - \frac{6w_{gcg}}{5}\right)^3}$$

$$w_{gcg} = \frac{-A_s}{\left[A_s + (1 - A_s)(1 + z)^{3(1 + \beta)}\right]}$$

normalized growth function "g" from the numerical solution $g(z) \equiv \frac{\delta(z)}{\delta(0)}$

Approximate normalized growth function using parameterized form

$$g_{th}(z) = \exp^{\frac{1}{1+z}} \Omega_m(a)^{\gamma} \frac{da}{a}$$

1.
$$A_s = 0.9, \beta = 0.1$$

2. $A_s = 0.9, \beta = -1.05$
3. $A_s = 0.8, \beta = -0.6$
4. $A_s = 0.8, \beta = -1.02$

Fitting GCG parameterization for $\gamma(\Omega_m)$ to other models

Dark energy with CPL EoS

 $w_{de}(a) = w_0 + w_a(1-a)$

$$w_0 = -1, w_a = 0 \rightarrow C.C$$

$$w_0 = w, w_a = 0 \rightarrow \text{const.} EoS$$

$$w_0 \neq 0, w_a \neq 0 \rightarrow \text{variable} EoS$$

Ordinary scalar field models

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0 \quad w_{\varphi} = \frac{\frac{\dot{\phi}^2}{2} - V(\phi)}{\frac{\dot{\phi}^2}{2} + V(\phi)}$$

• Non canonical (tachyon type) field models

$$\ddot{\phi} + 3H\dot{\phi}(1-\dot{\phi}^2) + \frac{V'}{V}(1-\dot{\phi}^2) = 0 w_T = \dot{\phi}^2 - 1$$

1.
$$w_0 = -0.8$$
, $w_a = 0$
2. $w_0 = -1$, $w_a = 0$
3. $w_0 = -0.8$, $w_a = -0.3$
4. $w_0 = -1.1$, $w_a = 0.22$

$$1. V(\phi) = \phi$$
$$2. V(\phi) = \phi^{2}$$
$$3. V(\phi) = e^{\phi}$$
$$4. V(\phi) = \phi^{-2}$$

Growth rate data

Z	f_{obs}	σ	Ref.
0.15	0.51	0.11	2df
0.22	0.60	0.10	Wiggle-z
0.32	0.654	0.18	2df-SDS LRG
0.35	0.70	0.18	SDSS
0.41	0.70	0.07	Wiggle-z
0.55	0.75	0.18	2df-SDSS LRG
0.60	0.73	0.07	Wiggle-z
0.77	0.91	0.36	GRS
0.78	0.70	0.08	Wiggle-z
1.4	0.90	0.24	XMM-Newton
3.0	1.46	0.29	Ly-alpha in SDSS

RMS Mass Fluctuation $\sigma_8(z)$

Another dependable observational probe for the growth function $\delta(z)$ is the redshift dependence of the rms mass fluctuation $\sigma_8(z)$. It is defined as ,

$$\sigma^2(R,z) = \int_0^\infty W^2(kR)\Delta^2(k,z)\frac{dk}{k},$$

With R = $8h^{-1}Mpc$ and $P_{\delta}(k, z)$ the mass power spectrum at redshift z.

The function $\sigma_8(z)$ is connected with $\delta(z)$ as

$$\sigma_8(z) = \frac{\delta(z)}{\delta(0)} \sigma_8(z=0)$$

This implies

$$s_{th}(z_1, z_2) \equiv \frac{\sigma_8(z_1)}{\sigma_8(z_2)} = \frac{\delta(z_1)}{\delta(z_2)} = \frac{e^{\int_{1}^{1+z_1}} \Omega_m^{\gamma}(a) \frac{da}{a}}{\int_{e^{-1}}^{1+z_2} \Omega_m^{\gamma}(a) \frac{da}{a}}$$

Observational Constraints

Marginalized over A_{s} Marginalized over β 0.34 0.34 0.32 0.320.30 0.30 $2_{\rm m0}$ 0^m 0.28 0.28 0.26 0.26 0.24 0.240.22 0.22 0.20 0.20 -1.5-1.0-0.50.00.5 0.7 0.8 0.9 **0.4** 0.6 1.0 в A_s

Horizontal lines WMAP 7 bound on Ω_{m0}

At 2σ C.L $\beta \leq -1.1$

Transient Acceleration

Gaveshna Gupta, CTP, JMI

The reconstructed Growth function

Summary

- Probing the higher order S_n different thawing models not only become distinguishable among themselves they also behave significantly different from other dark energy models including Λ CDM.
- Using various observational data we constrain the deviation of the thawing model from ΛCDM.
- •With current data the models cannot be distinguished from Λ CDM but with simulated data like JDEM we show for some values of Ω_{m0} , the data may distinguish thawing models with Λ CDM.
- We study the growth of linear matter over density with generalized Chaplygin gas as dark energy candidate.
- We find that the parameterization for growth function fits the actual growth function with less than 1% difference.

• We show that the parameterization fits the growth function of other dark energy models with a great accuracy.

• We use the growth data to constrain the dark energy behaviour using the given parameterization and consequently, get a transient accelerating behaviour.

Thanks