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 Constituents of the Universe 
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Observational Evidence 

Picture  credit to M Kowalski et al. (Supernova Cosmology Project) 
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The physics of accelerated expansion 

General relativity and the Cosmological 
principle give the acceleration equation 

    In conditions where negative pressure 
dominates, an accelerated period of expansion 
may be expected…. “ Dark  energy  “ 
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Cosmological Constant 

In the FRW background the modified Einstein equations 

gives, 
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The Cosmological constant    is the 
simplest candidate for Dark Energy. 

 Fine tuning problem. 
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problem. 
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Alternative theories to explain the   
  late time acceleration.     
   

 TG  

    Modify the gravity       

 sector. 
 
• DGP model. 
• Cardassian model. 
• f(R) theories. 
• Galileon models. 

  Modify the matter 

 sector. 
 
• Quintessence. 
• Tachyon. 
• Phantom. 
• K- essence… etc. 
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Dynamical Dark Energy (Quintessence) 
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[Wetterich; Peebles & Ratra;  
 Caldwell, Dave & Steinhardt; etc.] 



Dynamics of Quintessence 

            Equation of motion of scalar field 

 

•  Driven by steepness of potential.  

• Slowed by Hubble friction. 

                       Broad classification     

• Field rolls but decelerates as dominates energy.  

• Field starts frozen by Hubble drag and then rolls.  

    

 

         Freezers  Vs. Thawers 
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Limits of Quintessence 

[Caldwell & Linder, Phys.Rev.Lett.95:141301,2005 ] 
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Thawing  scalar  field  models 

Equation of motion.  0 3  
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Autonomous  system 

Here, 
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[Scherrer & Sen  Phys.Rev. D 77   083515] 
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The Scalar field is 
initially  frozen.   

The  parameter   
determines  deviation 

from initial frozen 
state. 

 Various power law 
potentials considered 

for which Γ is a 
constant. 

No slow roll 
conditions are 

assumed for the 
potential. 

Key 
Features  
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            Statefinder Hierarchy 

Taylor expand the scale factor  
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And so on …. 

[Arabsalmani & Sahni Phys. Rev D 83 ,043501] 
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 Concordance  Cosmology 

Also, 
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m2 Ω and S ofPlot 

0.3Ωm0 

Solid lines -Thawing 
models (for Γ = 0, 

0.5, 1, 1.5 and 2) 
 
Dashed lines - 1» CG, 

2»GCG, 3»DGP, 
4»CPL, 5»Const w. 
 
Dots – Present day  
              value   
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m3 Ω and S ofPlot 

0.3Ωm0 

Solid lines -Thawing 
models (for Γ = 0, 

0.5, 1, 1.5 and 2) 
 
Dashed lines - 1» CG, 

2»GCG, 3»DGP, 
4»CPL, 5»Const w. 
 
Dots – Present day  
              value   
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m4 Ω and S ofPlot 

0.3Ωm0 

Solid lines -Thawing 
models (for Γ = 0, 

0.5, 1, 1.5 and 2) 
 
Dashed lines - 1» CG, 

2»GCG, 3»DGP, 
4»CPL, 5»Const w. 
 
Dots – Present day  
              value   
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 S and S ofPlot 34

0.3Ωm0 

Solid lines -Thawing 
models (for Γ = 0, 

0.5, 1, 1.5 and 2) 
 
Dashed lines - 1» CG, 

2»GCG, 3»DGP, 
4»CPL, 5»Const w. 
 
Dots – Present day  
              value   
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  W-W’ Phase Plane for Thawing Models. 
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W-W’ Phase Plane for Thawing Models. 



7/11/2012 Gaveshna Gupta,CTP,JMI 23 

Observational Constraints 

• With the assumption of a flat Universe we use the latest      
observational data. 
 
• Type IA Supernovae Union 2 compilation. 
 
• BAO measurement from SDSS. 
 
• CMBR measurement by WMAP 7. 

 
• H(z) data from HST key project  and Stern  et.al 

 
• Simulated dataset based on upcoming JDEM SN survey. 
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Shaded region – 
Sn+Bao 
 

Solid lines (red) -
Sn+Bao+CMB+Hubble  
 
Dashed lines – JDEM 
 
Vertical lines – 
WMAP7 bound. 
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Shaded region – 
Sn+Bao 
 

Solid lines (red) -
Sn+Bao+CMB+Hubble  
 
Dashed lines – JDEM 
 
Vertical lines – 
WMAP7 bound. 
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Shaded region – 
Sn+Bao 
 

Solid lines (red) -
Sn+Bao+CMB+Hubble  
 
Dashed lines – JDEM 
 
Vertical lines – 
WMAP7 bound. 
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Shaded region – 
Sn+Bao 
 

Solid lines (red) -
Sn+Bao+CMB+Hubble  
 
Dashed lines – JDEM 
 
Vertical lines – 
WMAP7 bound. 
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Effectiveness of simulated data in distinguishing 
DE models using Statefinder Hierarchies.  
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Results 
Thawing models described by 3 parameters. 

• Describes  
deviation of 
thawing model 
from ΛCDM. 

• We get  its 
upper bound.  

Γ   

• Consider WMAP 7 
bound current 
data always allow 
ΛCDM for all 
potentials. 

• Using simulated 
data like JDEM 
we get lower 
bound for 
different  from 
zero for some 
values of  

iλ m0Ω
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 Quintessence in String Theory 

In a recent work by Panda, Sumitomo and Trivedi (PRD, 83 (2011) 083506)  a 
model of quintessence is constructed in String Theory. 

It is interesting to note that the potential in this set up 
comes out to be linear 
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Alternative theories to explain the   
  late time acceleration.     
   

 TG  

    Modify the gravity       

 sector. 
 
• DGP model. 
• Cardassian model. 
• f(R) theories. 
• Galileon models. 

  Modify the matter 

 sector. 
 
• Quintessence. 
• Tachyon. 
• Phantom. 
• K- essence… etc. 
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K - Essence 

Fields that have non canonical Kinetic term 
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The most used form of L(φ,X) is of Dirac-Born-Infeld (DBI) type 
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The energy density and pressure for the Tachyon Field 
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  Generalized Chaplygin Gas 

The Action  XAL  1 where  
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In a FRW universe it gives EoS of a perfect fluid 
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β = 0  is  ΛCDM 



7/11/2012 Gaveshna Gupta,CTP,JMI 34 

The energy density and EoS of GCG are 
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    Growth Function for GCG 

The growth rate of large scale structures is given by matter 
density  perturbation  in linear regime, governed by equation 

The background         
universe 
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       Effective parameterization for growth factor   

    For  Dark energy with const. EoS 

Introduced  by Wang & Steinhardt 
(APJ 1998) 

Using parameterization 
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Approximate normalized growth function using parameterized form 
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Fitting GCG parameterization for            
to other models 

)( m

• Dark energy with CPL EoS 

• Ordinary scalar field models  

• Non canonical (tachyon type) field models  
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           z           σ       Ref. 

0.15 0.51 0.11 2df 

0.22 0.60 0.10 Wiggle-z 

0.32 0.654 0.18 2df-SDS LRG 

0.35 0.70 0.18 SDSS 

0.41 0.70 0.07 Wiggle-z 

0.55 0.75 0.18 2df-SDSS LRG 

0.60 0.73 0.07 Wiggle-z 

0.77 0.91 0.36 GRS 

0.78 0.70 0.08 Wiggle-z 

1.4 0.90 0.24 XMM-Newton 

3.0 1.46 0.29 Ly-alpha in 
SDSS 

Growth rate data 

obsf
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RMS Mass Fluctuation )(8 z

Another dependable observational probe for the growth function 
δ(z) is the redshift dependence of the rms mass fluctuation σ₈(z). 
It is defined as ,   
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Observational Constraints 

Marginalized over β Marginalized over  
sA

Horizontal lines WMAP 7 bound on             0m

At  2σ C.L    β≤ -1.1 Transient 
Acceleration 
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The reconstructed Growth function  
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Summary  

• Probing the higher order      different thawing models not only become 

distinguishable among themselves they also behave significantly different 
from other dark energy models including  ΛCDM. 
 
 

nS

• Using various observational data we constrain the deviation of the thawing 

model from ΛCDM. 
 

•With current data the models cannot be distinguished from ΛCDM but with 
simulated data like JDEM we show for some values of       , the data may 
distinguish thawing models with ΛCDM. 

 

0m

• We study the growth of linear matter over density with generalized 
Chaplygin  gas as dark energy candidate.   

• We find that the parameterization for growth function fits the 
actual growth function with less than 1% difference.  
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• We show that the parameterization fits the growth function of other 
dark energy models  with a great accuracy. 

• We use the growth data to constrain the dark energy behaviour  
using the given parameterization and consequently, get a transient 
accelerating  behaviour. 
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Thanks  


