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Physics in the early universe

• What can we learn about UV physics from cosmology?
• Can we differentiate between models of inflation?
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Motivation

1 Planck: local fNL severely constrained, putting pressure
on multifield models

2 f equil
NL (NC kinetic terms, varying cs) relatively

unconstrained
3 NC kinetic terms are also fairly generic in string theory

models of inflation
4 However, there is degeneracy between canonical and

noncanonical models even at the 3pt function level
(Non gaussianities)

5 in [1211.0070] and [1212.4135] we try to understand
this degeneracy better...
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UV sensitivity of inflation
The UV-complete theory in which inflation operates is
unknown, so we take an EFT approach:
• Effective field theory: corrections from higher-

dimensional operators should be suppressed by the
cut-off Λ:

Leff = Lrelevant +
∑

n

cn
On

Λn−4

However, the EFT can be sensitive to the UV physics:
• Eta problem: Mass dimension 6 corrections can spoil

the flatness of the potential: O6
M2

p
→ O4

M2
p
φ2

Veff = V0 +
1
2

m2
0φ

2 +
O4

M2
p
φ2

< O4 > ∼ V0 ⇒ η = M2
p

V ′′

V
∼ O(1).
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UV sensitivity of kinetic terms
In particular, non-canonical kinetic terms arise when
massive degrees of freedom are integrated out:

L =
1
2

(∂φ)2 +
1
2

(∂ρ)2 +
ρ

M
(∂φ)2 − 1

2
M2ρ2

⇒ Leff =
1
2

(∂φ)2 +
(∂φ)4

M4 for H � M

at energy scales H << M. E.g., the DBI action [Silverstein and
Tong, 0310221]

LDBI = −Λ4

[√
1− (∂φ)2

Λ4 − 1

]
− V (φ)

≈ 1
2

(∂φ)2 +
1
8

(∂φ)4

Λ4 + ...− V (φ)
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Non-canonical Lagrangian
A single scalar field coupled minimally to gravity (X = 1

2 φ̇
2):

S =

∫
d4x
√
−g4

[
M2

p

2
R4 + p(X , φ)

]

For example,

pcan = X − V (φ)

pDBI = − 1
f (φ)

(√
1− 2f (φ)X − 1

)
− V (φ)

pTach = −V (φ)

√
1− 2

X
Λ4

pK = K (φ)X +
X 2

Λ4
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Non-canonical Inflation
Take separable action

p(X , φ) = Λ4S(X )− V (φ).

The inflationary solution is given by Xinf (A) satisfying√
2X
Λ4

dp
dX

= A

where A = V ′
3Hλ2 is the noncanonicalness parameter.

• NCI is attractive
• overshoot/ICFTP reduced when the NC regime is

relevant
[Franche, RG, Underwood and Wissanji: 0912.1857 & 1002.2639]
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Observational signatures of NCI
NCI models P(X , φ) can lead to an observable amount of
nongaussianity, of the equilateral type:[Chen, Huang, Kachru,
Shiu: 0605045]

f equil
NL ∼ c−2

s

where

c2
s =

(
1 + 2X

pXX

pX

)−1

• Potentially clear observational signature of NCI!
• Not yet ruled out by data....
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Constraints on NCI
New Planck bounds: [1303.5082 etc]

f local
NL = 2.7± 5.8

f equil
NL = −42± 75

f ortho
NL = −25± 39

cs ≥ 0.02
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Degeneracy
This looks like a clear signal should be possible, but we can
still have degeneracy with canonical models....
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Field redefinitions
• for simple Lagrangians p(X , φ) can transform to a

canonical action via a field redef eg
p(X , φ) = − 1

2φ2 (∂µφ)2 − V (φ) using ψ = lnφ.

• for more general p(X , φ) can always transform a
canonical theory to a noncanonical one via canonical
transformations [Bean et al, 0801.0742]:

p =
∂F
∂φ

, p̃ = −∂F
∂φ̃

for a generating functional F (φ, φ̃).
• However only separable NC theories with quadratic

potentials can be transformed to canonical theories this
way (AFAIK...). [RG, Rummel and Westphal, 1212.4135]
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Onshell transformation
Can we construct a potential Vcan(φ) which gives rise
(in a canonical theory) to the same trajectory Xinf (φ) as
in the noncanonical theory?



Degeneracies
between

canonical and
non-canonical

inflation

Rhiannon
Gwyn, AEI
Potsdam

Introduction

Non-canonical
inflation

Canon/Noncan
transformation

Summed
resonant non-
gaussianities

Conclusions

Onshell transformation
Noncanonical theory:

Πinf (φ) ≈ ∂p
∂φ

1
3H

Π = −
√

2X
∂p
∂X

H2 =
ρ

3M2
p

=
2XpX − p

3M2
p

Canonical theory:

φ̇ = −V ′can(φ)

3H(φ)

H2(φ) =
Vcan(φ)

3

Given some
X (φ) = Xinf , integrate

√
6Xdφ =

dVcan√
Vcan

⇒ Vcan(φ) =

(√
Vcan +

∫ φ

φ0

dφ′
√

3
2

Xinf (φ′)

)2
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DBI + Inflection point potential

Vinf (φ) = V0 + λ(φ = φ0) + β(φ− φ0)3
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Canon vs Noncanon
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Observables
(Non)Canonical theory:

∆2
s(k) =

1
8π2

H2

M2
p

1
csε

∣∣∣∣∣
csk=aH

∆2
t (k) =

2
π2

H2

M2
p

∣∣∣∣∣
k=aH

ns(k)− 1 = − 2ε− η|csk=aH

nt (k) = −2 ε|k=aH

• ε = − Ḣ
H2 ; η = ε̇

Hε so in the canonical limit
ε→ εV ; η → 4εV − 2ηV

• Recall that c−2
s = 1 + 2X pXX

pX

• note that time of horizon crossing is different for scalar
modes in NCI
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Comparison of Observables
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Analytic understanding?
For theories with (1) a canonical limit where V = Vcan and
(2) a speed limit st Xinf = Λ4R when A is large (from finite
convergence radius), ∆2

s(k),∆2
t (k),Ne match when

Vcan ≈ V ; cs =

√
2R
A

for A� 1

.
• can have V ≈ Vcan and V ′ >> V ′′can in some

intermediate regime for A

• c2
s (A) =

A ∂Xinf
∂A

2Xinf
≈ 1

An for Xinf = Xinf (An). Then we get
the matching condition for DBI:

X DBI
inf =

Λ4

2
A2

1 + A2

No other working examples.... DBI special?
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What about
nongaussianities??
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Resonant NG
Axionic shift symmetry will receive small periodic
modulations from NP effects [Chen, Easther, Lim 0801.3295 &
Flauger and Pajer 1002.0833]

V (φ) = V0(φ) + Λ4 cos(
φ

f
)

⇒ G(k1, k2.k3)

k1k2k3
= f res

[
sin(

√
2ε?
f

ln
K
k?

) +
∑

cos() + ...

]
where

f res =
3b?
√

2π
8

(

√
2ε?
f

)3/2

b? =
Λ4

V ′0(φ?)f
K = k1 + k2 + k3.

NG comes from δ̇ where δ = Ḧ
2HḢ

in interaction term. f is the
axion decay constant.
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Resonant NG

0.0

0.5

1.0

0.6
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1.0
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0

2

Less than 10 % overlap with the other shapes (local,
equilateral, orthogonal)
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Multiple sources

V (φ) = V0(φ) +
∑

i

Ai cos(
φ+ ci

fi
)

δ̇

H
=

∑
i

√
2ε?
fi

3b?i cos(
φ0 + ci

fi
)

G(k1, k2, k3)

k1k2k3
=

∑
i

3
√

2πb?i
8

(√
2ε?
fi

)3/2

sin(

√
2ε?
fi

ln
K
k?

+
ci

fi
) + ...]

Can choose b?i , fi , ci to get an overlap with a periodic
equilateral shape for N = O(10) terms!
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One-dimensional limit

x2 =
k2

k1
, x3 =

k3

k1
, x± = x2 ± x3

Resonant NG is to 1st order in fi√
2ε?

a fn of x+, k1 but not x−:

sin
(√

2ε?
fi

ln
K
k?

)
= sin

(√
2ε?
fi

(ln(1 + x+) + ln
k1

k?
)

)
Can only reproduce NG which is predominantly a function of
x+, such as equil:

Seq(k1, k2, k3) =
(k1 + k2 − k3)(k1 + k3 − k2)(k3 + k2 − k1)

k1k2k3

Sx−→0
eq (x+) =

4(x+ − 1)

x2
+

C(Seq,S
x−→0
eq ) = 0.93



Degeneracies
between

canonical and
non-canonical

inflation

Rhiannon
Gwyn, AEI
Potsdam

Introduction

Non-canonical
inflation

Canon/Noncan
transformation

Summed
resonant non-
gaussianities

Conclusions

Periodic approximation

Need to approximate a scale-inv shape by a scale-dep
shape: make a periodic generalisation of Sx−→0

equil . The
overlap is still considerable:

C(Sequil ,S
per
equil) = 0.83

Can now fourier synthesize.
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Fourier series

Fourier expansion for N = 5(left) and N = 10(right)
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Observational constraints

fi < 1; b?i < 1; b?i fi <
10−5
√

2ε?

⇒ ε?f
eq
NL < 10−2.

• as is, the power spectrum constraint implies a
resonantly generated f equil

NL ≤ O(1)

• if shift symmetry is collectively broken [Behbahani & Green,
1207.2779] (i.e. scale invariance is protected by several
independent symmetries), N pt functions are no longer
hierarchically suppressed with N.

• Then can have fNL up to 140 without implying a large
oscillation in the power spectrum

• for small field models expect no NG (f too large to have
fourier sum)
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Conclusions/Future Work
Canonical/Noncanonical
• We suspect the description in terms of a canonical

theory may be special to the DBI case
• We don’t know why this works (asking for fluctuations

around the bg to match...)
• Might be able to match 3pt observables

Resonant NG
• Possible string theory/axion monodromy embedding?

(series of instanton corrections expected)
• Applications elsewhere?
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