Recent Progress in Testing Alternate Theories of Gravity

Jeremy Sakstein
Institute of Cosmology and Gravitation, Portsmouth

Institute for Theoretical Physics
University of Heidelberg
20th May 2015
If it ain’t broke, don’t fix it
Why modify gravity?
The universe is accelerating, and we don’t know why!
Can’t GR accelerate?

GR can accelerate with a cosmological constant:

\[G_{\mu\nu} = 8\pi G \left(T_{\mu\nu} + \Lambda g_{\mu\nu} \right) \]

Get acceleration if \(\Lambda \sim 10^{-12} \text{ eV}^4 \)
So, what’s the problem?

Naturalness!

E.g. electron decoupling

\[\Lambda_{\text{eff}} = \Lambda_{\text{bare}} + m_e^4 \]

\[\Lambda = -m_e^4 + 10^{-12} \]
Okay, so what happens next?

We have to do this for every particle:

$$\Lambda = - \underbrace{m_e^4}_{10^8 \text{ eV}^4} - \underbrace{m_\mu^4}_{10^{28} \text{ eV}^4} - \underbrace{m_\tau^4}_{10^{36} \text{ eV}^4} - \cdots - \underbrace{m_H^4}_{10^{56} \text{ eV}^4} + 10^{-12} \text{ eV}^4$$

Have to fine-tune a classical number against a quantum correction to 56 decimal places!

This is not natural
Technical naturalness to the rescue

E.g. fermion masses are natural because of chiral symmetry

\[\Psi \rightarrow e^{i\alpha \gamma_5} \Psi \]

\[\mathcal{L} = \underbrace{\bar{\Psi} i\gamma^\mu \partial_\mu \Psi} \quad \text{invariant} - \quad m \bar{\Psi} \Psi \quad \text{breaks symmetry} \]

Symmetry restored when \[m \rightarrow 0 \]

\[\Delta m^2 = m^2 + O(1)m^2 \]

A small fermion mass is natural.
How about gravity?

Can we find a theory of gravity with a technically natural vacuum?

- No naturalness problem
- No fine-tuning
- Self acceleration?
But wait? Isn’t gravity already constrained?

Yes and no!

Gravity tested in:

- Solar system - Newtonian and post-Newtonian
- Binary Pulsars - post-Newtonian

The fully relativistic structure has not been probed!
Local tests

E.g. Cassini measures light bending by the Sun

\[ds^2 = (-1 + \frac{GM}{r}) \, dx^2 \]

“How much space is curved by a unit rest mass?”
What do local tests mean?

E.g. scalar-tensor theory - new scalar graviton

\[\nabla^2 \Phi_N = 4\pi G \rho \quad F_N = -\nabla \Phi_N \]

\[\nabla^2 \phi = 8\pi \alpha G \rho \quad F_5 = -\alpha \nabla \phi \]

\[\phi = 2\alpha \Phi_N \Rightarrow \frac{F_5}{F_N} = 2\alpha^2 \]

Cassini: \[\alpha < 10^{-5} \Rightarrow \text{Theory is GR on all scales} \]
Screening mechanisms to the rescue

Non-linear effects decouple cosmological scales from the solar system

solar system astrophysics cosmology

screened partially screened unscreened
This talk

1. Vainshtein mechanism

• Astrophysics only partially screened
• Identify novel probes in stars and galaxies
• Place new constraints
This talk

2. Disformal Gravity

• Can constrain cosmology using solar system tests
• Interesting cosmological phenomenology
• Still many unsolved mysteries
The Vainshtein mechanism

Recall the problem:

\[\mathcal{L} = -\frac{1}{16\pi G} \partial_\mu \phi \partial^\mu \phi + \alpha \phi T \]

\[\nabla^2 \phi = 8\alpha \pi G \rho \]
The Vainshtein mechanism

Try to fix this by adding new kinetic terms

E.g. cubic galileon:

\[\mathcal{L} = - \frac{1}{16\pi G} \partial_\mu \phi \partial^\mu \phi - \frac{1}{16\pi G \Lambda^3} \partial_\mu \phi \partial^\mu \Box \phi + \alpha \phi T \]

\[\nabla^2 \phi + \frac{1}{\Lambda^3 r^2} \frac{d}{dr} \left(r \phi' \right)^2 = 8\alpha \pi G \rho \]
Vainshtein Mechanism

We can integrate this once:

\[x + \left(\frac{r_V}{r} \right)^3 x^2 = 2\alpha^2 \]

\[x = \frac{F_5}{F_N} \]

\[r \ll r_V \Rightarrow \frac{F_5}{F_N} = 2\alpha^2 \left(\frac{r}{r_V} \right)^{\frac{3}{2}} \ll 1 \]

\[r \gg r_V \Rightarrow \frac{F_5}{F_N} = 2\alpha^2 \sim O(1) \]

\[r_V \text{ - Vainshtein radius} \]
Vainshtein Screening

\[
\frac{F_5}{F_N} \quad 2\alpha^2 \quad r \quad r_V
\]

Screened

Unscreened
Astrophysical Screening

\[r_\odot^V \geq 10^2 \, \text{pc} \]

Exhibited in:

- DGP - tension with data
- Covariant galileons - too much ISW
- Massive gravity - no FRW solutions
- Massive bigravity - unstable (or is it?)
- Beyond Horndeski - new and unexplored

Mechanism is partially broken in beyond Horndeski
Vainshtein Breaking

\[ds^2 = -(1 + 2\Phi) \, dt^2 + (1 - 2\Psi) \, \delta_{ij} \, dx^i \, dx^j \]

Motion of NR matter

Bending of Light

GR:

\[\frac{d\Phi}{dr} = \frac{GM(r)}{r} \]

\[\frac{d\Psi}{dr} = \frac{GM(r)}{r} \]
Vainshtein Breaking

Stars and satellites behave differently

\[\frac{d\Psi}{dr} = \frac{GM(r)}{r} - \frac{5\gamma G}{4r} \frac{dM(r)}{dr} \]

\[\frac{d\Phi}{dr} = \frac{GM(r)}{r} + \frac{\gamma G}{4} \frac{d^2M(r)}{dr^2} \]

Cosmological field

\[\gamma = \left(\frac{\dot{\phi_0}}{\Lambda} \right)^4 \]

Light bent differently
Potential probes

- Stellar structure
- Galactic rotation curves
- Gravitational lensing
Stellar Structure Tests

Main idea:

- Stars burn fuel to stave off gravitational collapse
- Changing gravity changes the burning rate
- This alters the temperature, luminosity and life time
Vainshtein Stars

Gravity weaker

Slower burning rate

Dimmer and cooler stars that live longer
Polytropic stars

\[P = K \rho^{\frac{4}{3}} \]

Balls of gas that collapse under gravity - no physics

- No nuclear burning, convection etc.
- Can isolate new effects of MG
- Not realistic enough to compare with data
Mass-G-Luminosity relation

\[P_{\text{gas}} = \frac{\rho k_B T}{\mu m_H} \quad \quad P_{\text{rad}} = \frac{1}{3} a T^4 \]

Gas pressure - \(L \propto G^4 M^3 \)

Radiation pressure - \(L \propto GM \)

High-mass stars are more radiation pressure-supported
Vainshtein Polytropes

\[
\frac{L_{\text{MG}}}{L_{\text{GR}}} = \gamma
\]

\(\gamma = 0.1\)

\(\gamma = 0.3\)

\(\gamma = 0.5\)
Realistic stars

We have modified MESA to include MG:

• Fully consistent treatment of stellar structure

• No approximations

• Includes burning, convection, mass loss etc.

• Can compare with data
$M = 1M_\odot \quad Z = 0.02 \quad \bullet = \text{solar age}$

No change on red giant

Dimmer + cooler on main-sequence

GR, $Z = 0.03$
Vainshtein vs. GR

- Main-sequence cooler and dimmer
- No change to red giant phase
- MS degenerate with GR + more metals

May be detectable by comparing MS and RG fits to globular clusters.
Galactic rotation curves

Circular velocity:

\[v_{\text{circ}}^2 = \frac{\mathrm{d}\Phi}{\mathrm{d}r} \]

New features in rotation curves?

\[\frac{\mathrm{d}\Phi}{\mathrm{d}r} = \frac{GM(r)}{r} + \frac{\Upsilon G}{4} \frac{\mathrm{d}^2M(r)}{\mathrm{d}r^2} \]
Galactic rotation curves

NFW density profile:

$$\rho(r) = \frac{\rho_s}{\frac{r}{r_s} \left(1 + \frac{r}{r_s}\right)^2}$$

$$v_{\text{circ}}^2 = \frac{4\pi G r_s^3 \rho_s}{r} \left[\ln \left(1 + \frac{r}{r_s}\right) - \left(1 + \frac{r_s}{r}\right)^{-1} + \frac{\chi}{4} \frac{(r_s/r - 1)}{(1 + r_s/r)^3} \right]$$
Vainshtein rotation curves

\[
v = \begin{cases}
\text{GR} \\
\gamma = 0.5 \\
\gamma = 1
\end{cases}
\]

Koyama & JS 2015
Vainshtein rotation curves

Measure using 21 cm
Measure using stellar motions

Deviations in 21 cm region compared with stellar prediction
Gravitational lensing

Lensing of light (relative to NR force): \(\frac{\Phi + \Psi}{2\Phi} \)

GR: \(\Phi + \Psi = 2\Phi \)

BH: \(\Phi + \Psi = \frac{8\pi G r_s^3 \rho_s}{r} \left[\ln \left(1 + \frac{r}{r_s}\right) + \frac{\Upsilon}{8} \frac{6 + \frac{r_s}{r}}{(1 + \frac{r_s}{r})^2} \right] \)
Vainshtein lensing

Deviations from GR in the strong lensing regime

$\gamma = 1$

$\gamma = 0.5$

$\gamma = 0.2$

Koyama & JS 2015
Disformal Gravity

\[S = \int d^4x \sqrt{-g} \frac{M_{pl}^2}{2} \left[\frac{R}{2} - \frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi - V(\phi) \right] + S_m[\tilde{g}_{\mu\nu}] \]

\[\tilde{g}_{\mu\nu} = A^2(\phi) \begin{bmatrix} g_{\mu\nu} + \frac{B^2(\phi)}{\Lambda^2} \partial_{\mu} \phi \partial_{\nu} \phi \end{bmatrix} \]

Jordan frame \hspace{1cm} conformal \hspace{1cm} Einstein frame \hspace{1cm} disformal

Matter moves on geodesics of \(\tilde{g}_{\mu\nu} \) not \(g_{\mu\nu} \)

\(\Rightarrow \) fifth-force

Beckenstein 1992
Potential Problem

Jordan frame metric can become singular:

\[
\frac{\sqrt{-\tilde{g}}}{\sqrt{-g}} = A^4 \sqrt{1 + \frac{B^2 (\partial \phi)^2}{\Lambda^2}} = A^4 \sqrt{1 - \frac{\dot{\phi}_0}{\Lambda^2}}
\]

Solutions slow down to avoid this, but no one knows why.

“Natural pathology resistance”

Koivisto, Mota & Zumalacarregui 2012
Metric Singularity?

\[
\frac{\sqrt{-\tilde{g}}}{\sqrt{-g}} ^{10^{10}} \quad \frac{\sqrt{-g}}{\sqrt{-\tilde{g}}} ^{10^{10}}
\]

\[
N = \ln a
\]

Graph showing values of \(\frac{\sqrt{-\tilde{g}}}{\sqrt{-g}} \) and \(\frac{\sqrt{-g}}{\sqrt{-\tilde{g}}} \) against \(N = \ln a \) with specific values indicated on the graph.
Natural Pathology Resistance

Is this okay? No*, e.g. disformal only:

\[\text{d} s^2 = -N^2 \text{d} t^2 + \cdots \quad N^2 = 1 - \frac{\phi^2}{\Lambda^2} \quad \text{d} T = N \text{d} t \]

Proper time \(\rightarrow 0 \)

Lapse \(\rightarrow 0 \) but so what? Two speeds:

\[\frac{c^2_{\text{tensors}}}{c^2_{\text{light}}} = N^2 \]

Don’t know what the true non-relativistic limit is!
Non-relativistic limit

EOM is horrible:

\[\chi \Box \phi - 8\pi G \frac{B^2}{\Lambda^2} T_{m}^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi = \]

\[- 8\pi \alpha G T_{m} - 8\pi G \frac{B^2}{\Lambda^2} (\alpha - \gamma) T_{m}^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi + \chi V(\phi) , \phi \]

\[\chi = 1 + \frac{B^2 (\partial \phi)^2}{\Lambda^2} \quad \alpha = \frac{d \ln A}{d \phi} \quad \gamma = \frac{d \ln B}{d \phi} \]
Non-relativistic limit

But we have calculated the PPN parameters:

\[\tilde{g}_{00} = 1 + 2U - 2\beta U^2 + \cdots \]

Preferred frame

\[\tilde{g}_{0i} = -\frac{1}{2}(\cdots + \alpha_1 - \alpha_2 + \cdots) V_i - \frac{1}{2}(\cdots + \alpha_2 + \cdots) W_i \]

Light bending

\[\tilde{g}_{ij} = (1 + 2\gamma_{PPN} U) \delta_{ij} \]
Non-relativistic limit

\[\tilde{g}_{00} = 1 + 2U - 2\beta U^2 + \cdots \]

\[\tilde{g}_{0i} = -\frac{1}{2} (\cdots + \alpha_1 - \alpha_2 + \cdots) V_i - \frac{1}{2} (\cdots + \alpha_2 + \cdots) W_i \]

\[-\Upsilon \ (GR = 0) \]

\[\tilde{g}_{ij} = (1 + 2\gamma_{PPN} U) \delta_{ij} \]

\[\Upsilon = \left(\frac{B \dot{\phi}_0}{\Lambda} \right)^2 \]

\[1 - \Upsilon \ (GR = 1) \]

\[-4\Upsilon \ (GR = 0) \]
Constraints

Strongest constraint comes from α_2

$$\alpha_2 < 10^{-7}$$

Simple model: $V(\phi) \propto e^{-\lambda \phi}$, $B = 1$

$$\chi^2 \left(\frac{H_0}{\Lambda} \right)^2 < 4 \times 10^{-7}$$
Constraints
What does this mean?

\[\chi^2 \left(\frac{H_0}{\Lambda} \right)^2 < 4 \times 10^{-7} \]

Need \[\left(\frac{H_0}{\Lambda} \right)^2 \sim \mathcal{O}(1) \] for novel cosmology

Cosmology is identical to \(\Lambda \text{CDM} \)

Van de Bruck & Morrice 2015
Cosmology

Friedmann equations same as GR

Field equations are coupled:

\[
\dot{\rho} + 3H\rho = Q_0\dot{\phi}_\infty
\]

\[
\ddot{\phi}_\infty + 3H\dot{\phi}_\infty + V'(\phi_\infty) = -Q_0
\]

\[
Q_0 = 8\pi G\rho \frac{\alpha + \frac{B^2}{\Lambda^2} \left([\gamma - \alpha] \phi^2_\infty - 3H\dot{\phi}_\infty - V,\phi \right)}{1 + \frac{B^2}{\Lambda^2} \left(8\pi G\rho - \dot{\phi}^2_\infty \right)}
\]
Dynamical Systems

Different initial conditions, common late-time behaviour

\[x = \frac{\phi'}{\sqrt{6}} \quad y = \frac{\sqrt{V}}{\sqrt{3H}} \]
Why is this useful?

- Classify the entire solution space
- Know cosmological properties at the fixed points
- Identify models that have the properties we want
- Tells us which models to focus future efforts on
What we want

Fixed points with

• Dark energy domination - match observations

• Finite metric determinant - well-defined NR limit
Recap: Conformal Case

\[V(\phi) = m_0^2 e^{-\lambda \phi} \quad A(\phi) = e^{\alpha \phi} \quad N = \ln a \]

Phase space is 2-dimensional

\[x = \frac{\phi'}{\sqrt{6}} \quad y = \frac{\sqrt{V}}{\sqrt{3H}} \quad \lambda = -\frac{V'}{V} = \text{constant} \]

\[\ddot{\phi}_\infty + 3H \dot{\phi}_\infty + V'(\phi) = 8\pi \alpha G \rho \]
Conformal phase space
Disformal System

What happens when we include a disformal coupling?

Old attractor is a saddle point - what’s going on?
Disformal System

\[x = \frac{\phi'}{\sqrt{6}} \quad y = \frac{\sqrt{V}}{\sqrt{3H}} \quad \lambda = -\frac{V'}{V} = \text{constant} \]

\[\ddot{\phi} + 3H \dot{\phi} - V'(\phi, \lambda) = -Q_0 x \quad \text{and} \quad y \]

Can't eliminate \(B(\phi, \lambda) \) in terms of \(x \) and \(y \)

Phase space is 3D

\[Q_0 = 8\pi G \frac{B_H}{\Lambda} \left(\gamma - \alpha \right) \frac{\phi^2}{\Lambda^2} \left(\gamma \right) = \frac{Z}{\Lambda} = \frac{1}{Z + 1} + \frac{B^2}{\Lambda^2} \left(8\pi G \phi \right) \]

\[0 \leq Z \leq 1 \quad \gamma \text{ constant} \]
Stability is altered

Perturbations in the z-direction are unstable

(3 eigenvalues instead of 2, one can be positive)

New dark energy dominated fixed point at

\[x = 0, y = 1, Z = 1 \]

But: \[\sqrt{-\tilde{g}} = 0 \]

Metric singularity at late times
Special Case

\[\gamma = \lambda/2 \Rightarrow zy = \text{const} \]

New fixed point with interesting properties

\[\Omega_{\text{DE}} = \Omega_{\text{DE}} \left(\lambda, \frac{\Lambda}{m_0} \right) \quad \omega_{\text{DE}} = \omega_{\text{DE}} \left(\frac{\Lambda}{m_0} \right) \]

Can always match any measurement without fine-tuning

BUT: \(\sqrt{-\tilde{g}} = 0 \)
What does this mean?

Only viable models are identical to conformal theories!*

* Possible loopholes are models whose dynamics are not described by this analysis
Summary

Vainshtein

- Vainshtein broken in beyond Horndeski
- Main-sequence stars are dimmer and cooler
- Circular velocity is lower
- Deviations from GR in strong lensing regime
Summary

Disformal

• Metric singularity not well-understood
• Solar system constraints give ΛCDM
• Cosmological solutions evolve towards singularity
• Only viable models have no disformal properties
• Still a lot to understand!
Thank you!
(and to my collaborators)

Vainshtein
Kazuya Koyama (ICG)

Papers
1502.06872

Disformal
Fabian Schmidt (MPA)
Hiu Yan Ip (MPA)

Papers
15xx.xxxxx
1409.7296
1409.1734