Seeking the Epoch of Maximum Luminosity for Dusty Quasars

Valeri V. Vardanyan

Universität Heidelberg 23.04.2014

In collaboration with D. Weedman and L. Sargsyan Under review at ApJ

Reminder: what is quasar?

- Quasi Stellar Radio Source, discovered in 1950s
- Maarten Schmidt explained the spectrum in 1963
 > very distant objects
- From the high variability
 => very compact objects
- Supermassive black hole with accretion disc around.
 Yakov Zeldovich, Igor Novikov and Edwin Salpeter

Accepted Model of the Quasar

Our Fundamental Questions

When and How did the First SMBHs of 10^9 Solar Masses Form?
When and How did the Dust Form in the Universe?

Currently Accepted Evolutionary Scenario

- Galaxies form
- Gather mass
- Merge (starburst triggering, bigger BH)
- Reach the activity peak at z of \sim 2-3 (based on UV luminosity)
- Will There be Such a Peak When Looking in IR?

Galaxy Merging and Dust

Dust in Quasar

fr

NO HOT DUST VISIBLE A SILICATE ABSORPTION 5 Jun 10 Jun 15 Jun

Dust Luminosities of Quasars and Ultraluminous Infrared AGN determined from Spitzer spectroscopy and SDSS/WISE

Data Sources

SDSS Telescope in New Mexico SDSS compilation from - Shen et. al., 2011, ApJS 194, 45

WISE – launched in 2009 captures the sky in IR

IR Template (Spitzer Spectra of optically discovered SDSS quasars).

Template from - Weedman et. al., 2012, ApJ 761, 184

IR Distribution

Luminosity Functions

IR Luminosity Evolution

The difference between z = 2 and z = 4halves the time available for massive galaxy and black hole formation (down to 1.5 Gyr from the beginning of the Universe at z = 4 from 3.2 Gyr at z = 2)

Comparisons With UV

Comparisons With UV

Dusty merger scenario - Hopkins et. al., 2006, ApJ 639, 700. Narayanan et. al., 2010, MNRAS 407, 1701

Dust in Quasar

fr

No Hor Dust Visible A Hor Dust Visible Silicate Absorption 5 Jun 15 Jun

Average BOOTES Spectrum

Lfs of Obscured and Unobscured Quasars

Radio Loud Quasars Blazars Narrow Line P Radio Loud Radio Quiat Jet Region Broad **Broad Line** Line Radio Region Galaxies Narrow Line Radio Black Accretion Galaxies Hole Disk Obscuring Torus Viewing Angle

Seyfert Galaxies Type 2

Seyfert Galaxies Type 1

Radio Quiet Quasars

Summary

No Luminosity Peak in IR up to at Least z~5.
Comparisons with UV do not Show any Significant Trend with Redshift in Dust Content.
There are as Many Obscured Quasars Out

There as the Unobscured Ones.

