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A Primer on Cosmology and the Cosmic Microwave Background

Michael Doran∗

Department of Physics & Astronomy, HB 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755, USA

We introduce the theory of cosmic microwave background anisotropies in a self consistent manner.

I. THE HOMOGENOUS BACKGROUND

In general relativity, Einstein’s equations relate the ge-
ometry of the universe locally to the energy momentum
content. The geometry is expressed via the metric gµν
and subsequently through the Ricci Tensor Rµν and the
curvature scalar R, while the energy momentum tensor
is commonly denoted by Tµν . Using the reduced Planck

mass MP ≡ (8πG)−1/2, Einstein’s equations read1

Tµν = M2
P

(

Rµν −
1

2
gµνR

)

. (1)

In order to solve these very complicated, coupled differen-
tial equations analytically, one needs to guess the geome-
try of the space and hence the metric. The most general
metric that is isotropic and homogenous on constant time
hyper-surfaces is the Robertson-Walker metric. This
metric comes in three ‘flavors’, for the cases of negative,
positive or vanishing 3-curvature in the constant time
hyper-surfaces. A vanishing of this 3-curvature means
a spatially flat universe (we will sloppily call this just a
‘flat universe’). Having said this, the Robertson-Walker
metric is given by

ds2 ≡ gµνdxµdxν =

− dt2 + a(t)2
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θ dφ2

)

. (2)

Here k = −1, 0,+1 corresponds to open, flat and closed
geometries. Using so called conformal time dτ = a−1dt,
this becomes

ds2 = a(τ)2
(

−dτ2 +
dr2

1− kr2 + r2dθ2 + r2 sin2 θ dφ2

)

.

(3)

For flat geometries (the case we will concentrate on), this
can be written in terms of the coordinates xi as

ds2 = a(τ)2
(

−dτ2 + δijdx
idxj

)

, (4)

The expression ‘conformal time’ is well chosen, for the
metric (4) is conformally related to the usual Minkowski
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1 When required, the cosmological constant will be assumed to be
part of the energy momentum tensor.

metric ηµν = diag(−1, 1, 1, 1) by the conformal factor
a(τ). For flat cosmologies, we normalize a(τ) such that
today, we have a0 ≡ a(τ0) = 1, where here and in the
following a subscript 0 will denote quantities as mea-
sured today. As a(τ) determines the stretching of physi-
cal length scales,

l2physical(τ) = gij l
ilj = a(τ)2δij l

ilj = a(τ)2l2, (5)

it is commonly called the scale factor. Please note that
3-vectors are in bold, spatial components are denoted by
Latin indices and the 3-vector scalar product is the usual
one: x y = δijx

ixj .

Exercise 1: Express the Hubble parameter H ≡ a−1 da
dt

in terms of a derivative w.r.t dτ (remember that
dτ = 1

adt).

It is common practice to describe the matter content of
the universe by fluids. Even in cases where this descrip-
tion is no longer valid and one needs to think in terms of
distribution functions, we will still identify certain parts
of these distributions with fluid terminology. For a start,
let us briefly forget about cases where the fluid descrip-
tion breaks down and note that the energy momentum
tensor for a perfect fluid is [19]

T̄ µν = diag(−ρ̄, p̄, p̄, p̄), (6)

where ρ̄(τ) is the (unperturbed2) energy density and p̄(τ)
is the pressure. The relation between ρ̄ and p̄ is expressed
in the equation of state

p̄(τ) = w(τ)ρ̄(τ). (7)

For non-relativistic matter, the pressure vanishes,
whereas photons and massless neutrinos have w = 1/3.
From the 0− 0 and i− i part of Einstein’s Equation (1),
we we get the Friedmann equation

3M2
P

(

H2 +
k

a2

)

= ρ(τ). (8)

2 Anticipating perturbation theory, we denote background quanti-
ties by a bar.
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Here, the Hubble parameter H is related to the scale
factor a(τ) by

H ≡ a−1 da

dt
= a−1 da

dτ

dτ

dt
≡ a−2ȧ, (9)

where a dot denotes a derivative with respect to confor-
mal time τ throughout this lecture.

The ratio of the energy of some species ρ to the so
called critical energy density ρcrit. ≡ 3M2

PH
2 is defined

as

Ω ≡ ρ

ρcrit.
(10)

For a flat universe, Ω is just the fraction a given species
contributes to the total energy of the Universe. Careful:
while Ω is a function of time, the subscript 0 indicating
today’s value is frequently omitted in the literature.

Exercise 2: Determine the redshift z ≡ 1
a − 1 of

matter-radiation energy equality (ρm = ργ) in a flat
universe, provided you are given Ωm and Ωγ today.
Use the scaling of energies ρm = ρ0

m a
−3 and ργ = ρ0

γ a
−4

Exercise 3: Solve the Friedman Equation for a flat
universes dominated by radiation energy which scales
as ρ(τ) = ρ0

ra(τ)
−4. Having considered this, what is

the solution for a universe dominated by pressure-less
matter for which ρ(τ) = ρ0

m a(τ)
−3 ?

Exercise 4: With the solution of the above exercise 3
at hand, what is ȧ

a in the case of radiation domination
(RD) and what is it for a matter dominated (MD)
universe ?

We can rewrite Equation (8) to argue that the curva-
ture of the Universe didn’t play a role at early times. We
start from

3M2
PH

2 +
3M2

P k

a2
= ρ(τ), (11)

dividing by 3M2
PH

2,

3M2
P k

3M2
PH

2 a2
=

ρ(τ)

3M2
PH

2
− 1, (12)

using 3M2
PH

2 = ρcrit. and the definition of Ω, the above
equation (12) can be cast in the form

k

a2H2
= Ωtotal − 1. (13)

Now, we know from the exercises that H = a−1 ȧ
a and

ȧ
a = 1/τ in RD and 2/τ in MD. Hence, a2H2 =

(

ȧ
a

)2
=

1
τ2 → ∞ in the early universe and therefore

Ωtotal − 1 =
k

a2H2
→ 0, (14)

in the early universe. As the density today is at least
very close to the critical density, we are led to conclude
that the spatial curvature of the universe (if it has one)
was irrelevant until today and may well continue to be
irrelevant in the future. As in addition, the theory of
inflation predicts a spatially flat universe, we will from
now on work only in flat geometries.

Conservation of the zero component of the energy mo-
mentum tensor,∇µT̄ µ0 = 0, yields the useful relation

˙̄ρ

ρ̄
= −3(1 + w)

ȧ

a
. (15)

Finally, by combining Friedmann’s equation (8) with the
i− i part of Einstein’s equation one obtains

∑

all species

(

ρ̄

[

1

3
+ w

])

= −2M2
P a

−1 d2a

dt2
. (16)

A. Horizons

Within the framework of FRW cosmology, one may
ask the question what parts of the universe have been
in causal contact since the beginning of time. Assuming
that the speed of light c (which in our units is 1, how-
ever we keep it here for clarity) is the maximum speed
information can travel, the horizon is given by

shori. =

∫ t

0

a(t)

a(t′)
c dt′ (17)

where the factor a(t)
a(t′) accounts for the fact that a step

taken at an earlier time t′ has been stretched by exactly
this factor at time t.

Exercise 5: Rewrite Equation (17) in terms of confor-
mal time τ

Caution: usually horizons (and other scales) in the
early universe are quoted in terms of their size today.

Obviously, this size is greater by another factor of a(t0)
a(t) .
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FIG. 1: The energy density of matter, radiation, a cosmologi-
cal constant and some dark energy model as a function of the
scale factor. Please note that today a0 = 1 and the crossing
of radiation and matter densities at matter-radiation equality
aequ ≈ 10−4 .

For instance, the horizon at recombination (redshift z ≈
1100) is said to be τls ≈ 300Mpc. The physical size at
that time, however was almost 1100 times smaller. The
reason why one usually quotes the size as seen today is
simply that one observes today and what used to be small
is now much larger.

B. Who’s who in the universe ?

As far as particles are concerned that may interact with
us (at least at reasonable energy scales of say< 100 Gev),
there is radiation (photons and neutrinos) and baryons.
Baryons contribute about 5% of the energy density of
the Universe today. However, different measurements of
the large scale structure, Sne Ia and the CMB indicate
that there are two more important ingredients: cold dark
matter and dark energy. Cold dark matter (CDM) is sup-
posed to be at least very weakly interacting with us and
with itself and in addition it is considered to be mas-
sive. CDM makes up roughly 25% of the Universe today.
Dark energy is a rather strange substance or vacuum en-
ergy that has become important in the late Universe. Too
little is known about its time behaviour or equation of
state to single out a likely theoretical (string / particle)
model describing it. In Figure 1, we plot the energy scal-
ing of baryons, radiation, CDM, a cosmological constant
and some form of dark energy.

II. PHOTONS AND HYDROGEN

RECOMBINATION

The photons that form the CMB have microwave fre-
quencies. The frequency of a typical wavelength of say

10 cm is

f =
c

λ
=

3× 108 m
s

0.1 m
= 3× 109 Hz. (18)

Let us compare this to the Hubble parameter today which
is roughly

H0 = 100 km s−1Mpc−1

= 105m s−1/3× 106ly ≈ 2× 10−18Hz (19)

Hence, the expansion of the universe is so slow compared
to the microwave frequency that it is adiabatic. There-
fore the occupation number

fγ = (exp(~ω/kT )− 1)
−1

= (exp(hc/kTλ)− 1)
−1

is preserved. Now, the wavelength λ of radiation
stretches as the universe expands:

Hence, to conserve occupation number, the tempera-
ture of the CMB scales as T ∝ a−1.

Despite the low CMB temperature today, we deduce
from this argument that there must have been a time
before which the CMB photons were powerful enough to
ionize hydrogen:

e− + p↔ H + γ

The equilibrium condition for the chemical potential is

µ(e) + µ(p) = µ(H) (20)

and for small occupation numbers (and as the protons
are non relativistic), we have

fb = exp ([µ− E]/kT ) (21)

where E = mbc
2 + p2/2mb and b ∈ {p, e−, H}. Integrat-

ing over phase space yields the number of particles per
unit volume

nb = gb
(2πmbkT )3/2

(2π~)3
exp

(

[µ−mbc
2]/kT

)

. (22)

To avoid any misunderstandings: ne is the number den-
sity of free electrons, np is the number density of free
protons and nH is the number density of neutral hydro-
gen. Furthermore, T is the temperature of the plasma,
i.e. the common temperature of e−, p,H and the photons
where we assume that the photon temperature evolves
as Tγ = T 0

γ a
−1. If you wonder why the temperature in

the plasma should be given by the (unaltered) photon
temperature: Even for some time after matter-radiation
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equality, when the energy contribution of photons be-
comes less important than that of matter, there are still
many more photons than matter particles. Each matter
particle contributes its large rest mass to the energy bud-
get, whereas photons weigh in by shear number. There
is very little kinetic energy in the matter and the en-
ergy transfer from photons to baryons needed to keep
the baryons at photon temperature is negligible for the
photon gas. Now, the binding energy of hydrogen is

B = (me +mp −mH)c2 = 13.6 eV. (23)

Exercise 6: Calculate the ratio ne np : nH using
equations (22), (20) and (23).

Using equations (22), (20) and (23) yields

ne np
nH

=
(2πmekBT )3/2

(2π~)3
exp

(

− B

kB T

)

(24)

which is roughly speaking the Saha equation. Defining
the total number density of baryons as n = ne + nH and
the ionization fraction of electrons as xe ≡ ne/n, we get
from (24)

nenp
nH

=
x2
en

2

n(1− xe)

= n
x2
e

1− xe
=

(2πmekBT )3/2

(2π~)3
exp

(

− B

kB T

)

(25)

Exercise 7: Remember that ~c = 200 Mev fm and
mec

2 ≈ 0.5 Mev. Use this and n ≈ 5m−3a−3 =
5m−3(T/T0)

3 to rewrite Equation (25).

Using xe = 0.1 to define decoupling, one can now calcu-
late the temperature at decoupling.

Exercise 8: Estimate kBTdec, i.e. the energy scale at
decoupling. Hint: assume that kBTdec is of the order
of 0.1 . . .10 eV and use the logarithm to estimate the
ratio B/(kBT )

So the temperature of decoupling is Tdec = T0zdec ≈
3000−4000K and hence zdec ≈ 1000 . . .1500. Please note
that the Temperature Tdec is by two orders of magnitude
smaller than the Temperature corresponding to 13.6eV
which is T ≈ 13.6eV/kB = 13.6eV × 11000K/eV ≈
150′000K The reason is the vast number of photons per
baryon: there are roughly one billion photons per baryon.
It should also be remarked that the CMB photons com-
pletely dominate the entropy of our Universe: the en-
tropy of the universe per baryon is of the order of 1010.

III. OBSERVATIONS

Observationally, we see that radiation from different
directions on the sky has slightly different intensities and
polarisation. None less than S. Chandrasekhar wrote a
book on radiative transfer and it is due to his influence
that astrophysicists still use notation and to large ex-
tend his derivations. Let us take a look at a beam from
direction n, which we can characterize using so called
Stokes parameters. These describe phases and intensities
of the beam. Pependicular to the beam, on chooses an
orthonormal basis ǫ1, ǫ2 to describe the electromagnetic
wave

E =
(

a1e
iδ1ǫ1 + a2e

iδ2ǫ2

)

eipn x−iωt. (26)

Let’s briefly use the projections E1 ≡ ǫ1(Eǫ1) and like-
wise E2 ≡ ǫ2(Eǫ2). The Stokes parameters are then
defined by the long time averages of squares of the peak
amplitudes

I ≡ 〈EE⋆〉 = a2
1 + a2

2, (27)

Q ≡ 〈E1E
⋆
1 −E2E

⋆
2 〉 = a2

1 − a2
2, (28)

U ≡
〈

∣

∣

∣

∣

E1 + E2√
2

∣

∣

∣

∣

2

−
∣

∣

∣

∣

E1 −E2√
2

∣

∣

∣

∣

2
〉

(29)

= 2a1a2 cos(δ1 − δ2).

There is a fourth one, V which describes cirular polarized
light which is not needed here, because Thomson scatter-
ing will not produce V . In words, I is the total intensity,
Q is the linear polarization (comparing intensities along
the axis ǫ1 to ǫ2) and U is the linear polarization (com-
paring intensities along axis rotated by 45 degrees). An
important property of Q and U is that under a rotation
of the coordinate system by an angle ψ

ǫ1 = cos(ψ)ǫ1 + sin(ψ)ǫ2 (30)

ǫ2 = − sin(ψ)ǫ1 + cos(ψ)ǫ2 (31)

they transform as

Q̃ = cos(2ψ)Q+ sin(2ψ)U (32)

Ũ = − sin(2ψ)Q+ cos(2ψ)U (33)

To see this, rotate the axis by ψ and project E onto
these new axis and compute Q̃ and Ũ . Alternativly, as
a quick way to make it plausible consider a rotation by
90 degrees. Then ǫ̃1 = ǫ2 and ǫ̃2 = −ǫ1. Hence Q̃ =
|ǫ̃1E|2−|ǫ̃2E|2 =|ǫ2E|2−|−ǫ1E|2 = −Q. So a rotation
by 90 degrees flips sign and one by 180 degrees goes back
to the old state. This tells us that we are looking at a
quantity of spin 2. In the late 1960’s, Newman, Penrose
and Goldberg tackled the problem of functions on the
sphere which under a rotation ψ⋆ = −ψ 3 around the

3 The CMB convention for the rotation is the exact opposite of
what Newman and Penrose chose. The CMB community looks
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radial unit vector r̂ transform as

η̃ = eisψ
⋆

η, (34)

where s is called spin and is always integer in this for-
malism. Clearly

˜(Q± iU) = e∓2iψ(Q± iU) (35)

and hence these combinations have spin ∓2.

Additional reading: Tetrad basis. . .

When you open a book on General Relativity, you
can find a section on the tetra formalism. In
short, a tetrad is a set of basis vectors eaµ with
a = 0, 1, 2, 3 and µ the ordinary 4-coordinates. Us-
ing such a tetrad, any quantity can be expressed in
terms of the components along the basis vectors:

va = eaµv
µ (36)

This formalism is particularily useful for field the-
ory in curved spaces. Newman and penrose chose
to use 4 complex basis vectors in their paper on
the spin formalism for gravitational waves around
a black hole. In their later paper about the spin
functions in a 3 dimensional space, they chose the
radial unit vector r̂ and the complex tangent vec-
tor on the sphere m = (ǫ1 + ǫ2)/

√
2 and its com-

plex conjungate m̄. The complex nature of the
basis vectors has a big benefit: The number of
equations one has to solve is reduced by a fac-
tor of 2. A quantity of some spin can be con-
structed by contracting a three tensor Ωijk... with
the complex basis vectors m, r̂ and m̄. Contract-
ing with m raises the spin by 1, contracting with
m̄ lowers it by one and contracting with r̂ leaves
it unchanged. Again, for radiation around a black
hole, the projection of e.g. the Field-strength ten-
sor on the tetrad leads to an (almost) decoupling
of quantities with definite spin and it is evident
in the equations that some of them fall off at in-
finity much faster than other solutions and hence
one can classify the solutions easily.See also the an
article on scholarpedia:
http://www.scholarpedia.org/article/
Newman-Penrose formalism

For us, the benefit of spin functions is 3-fold:

• We will get a complete set of basis functions for
spin 2 quantities on the sphere “for free” from the
literature

from earth up and the photon wave is coming in, whereas New-
man and Penrose were interested in gravitational and electro-
magnetic waves going outwards from a black hole. Hence, what
is a clockwise rotation on a sphere from the outside is counter
clockwise from the inside.

• We can act with spin lowering and raising operators
(see below) on the spin 2 quantities and make them
spin 0

• As spin 0 quantities are unambigiously defined
(they don’t care which coordinate system one
chooses), we can compare the polarization at dif-
ferent points on the sky unambigiously

Just like one can expand a scalar function on the sphere
in terms of spherical harmonics Y ml (n) (we will do this
frequently later on), one can as well expand a spin s
quantity in terms of spin-weighted spherical harmonics

sY
m
l (n), e.g.

(Q(n) + iU(n)) =
∑

l,m

2alm 2Y
m
l (n) (37)

On the sky today, one may also expand the temperature
anisotropy ∆ ≡ ∆T/T as

∆(n) =
∑

l,m

almY
m
l (n). (38)

For our calculation, however, we will not need as many
m’s as are in the sum (38). Indeed, we can perform our
calculations in a “nice” coordinate frame in which we can
work (more of this soon) with m = 0,±1 and ±2. We
will follow the recent literature and use the functions

sG
m
l (x,n) = (−i)l

√

4π

2l+ 1
sY

m
l (n) exp(ikx), (39)

to expand a function of spin weight s both in Fourier
space (again: more of this soon) and in spin weighted
harmonics. A very useful expansion is that of the rela-
tive temperature perturbation ∆ ≡ ∆T/T

∆(τ,x,n) =

∫

d3k

(2π)3

∑

l

2
∑

m=−2

∆l(k, τ) 0G
m
l (x,n).

(40)

Likewise, one can expand the spin 2 polarization combi-
nations

(Q± i U)(τ,x,n) =

∫

d3k

(2π)3

∑

l=2

2
∑

m=−2

(Eml ± iBml )

× ±2G
m
l (x,n). (41)

Don’t be intimedated by these spin weighted functions!
For m = 0 (the most important case)

0Y
0
l (θ, φ) =

√

2l + 1

4π
Pl(cos θ) (42)

are basically just Legendre Polynomials Pl and so for
m = 0, the temperature expansion becomes particularily
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simple

∆(τ,x,n)
m=0
=

∫

d3k

(2π)3

∑

l

(−i)l∆l(k, τ)Pl(n) exp(ikx).

(43)
We will soon see that we can notationally even neglect the
Fourier transform part above. Hence, things will become
really simple. Promised.

If you don’t mind, I would like to remind you (quite
out of context) of integration over all directions

∫

dΩ of
some function f(θ, φ) = f(n) on the sky. In spherical
coordinates,

∫

dΩf(n) =

∫ 2π

0

dφ

∫ π

0

sin(θ)dθf(n) (44)

and it is convenient to rewrite this as

∫

dΩf(n) =

∫ 2π

0

dφ

∫ 1

−1

d cos θf(n) (45)

and if one called cos θ = µ, one could say that

∫

dΩf(n) =

∫ 2π

0

dφ

∫ 1

−1

dµf(n). (46)

As said, just a reminder . . . .

IV. PERTURBATIONS

In the previous section, we have seen that using the
Robertson-Walker metric, we can solve Einstein’s equa-
tion. The result is almost miraculously simple. However,
the universe is not completely homogenous. On the con-
trary: it is quite clumpy on the scales of the solar system
or even galaxies. Yet, the larger the scale one looks at,
the more homogenous it becomes. In addition, the in-
homogeneities usually grow due to gravitational infall.
Hence, in the early universe, we may expect only small
departures from homogeneity. This is where linear per-
turbation theory enters the stage. Starting from the ho-
mogenous FRW universe, one perturbs the metric and
the energy momentum tensor. It is convenient to expand
these perturbations in (generalized) Fourier modes and to
classify physical quantities in the 3-dimensional constant
time hyper-surfaces by their transformation properties
[12–14, 21]. Eigenfunctions of the 3-dimensional Laplace
operator

∆Qk(x) = −k2Qk(x) (47)

are used to decompose the metric and energy momen-
tum perturbations into scalar, vector and tensor parts
(called modes). The benefit of this classification is that
different modes do not mix in first order perturbation
theory [13]: the perturbation equations decouple. Fur-
thermore, a coupling between perturbations of different

Fourier modes k and k′ involves products of perturba-
tions. These would be of second order and are thus ne-
glected. Hence, also modes with different k decouple
and it is not necessary to display the wave vector k of
the eigenfunctions Q explicitly. For the same reason, it
is not necessary to keep the integration over the Fourier
modes explicitly in the equations. One should however
keep in mind that, for instance, the energy density is

ρ(τ,x) = ρ̄+

∫

d3k

(2π)3
δρ(τ,k)Qk(x), (48)

and it is only the decoupling of different k modes that
will enable us to compare the integrands directly. Finally,
there is another benefit of working in Fourier space: much
the same as in electrodynamics, differential equations are
turned into algebraic equations which are much easier to
solve.

If the 3-space is flat (the case we are primarily in-
terested in), then Q = exp(ikx) is the solution of the
Laplace equation (47). Now, take for instance some vec-
tor Vi. One can decompose it into a gradient and a
(divergence-less) rotation part:

V = gradφ+ rotB (49)

The function φ is a scalar, yet it contributes to a vector.
In general, we can construct the scalar basis functions by
deriving Q. Let us define4

Qi ≡ −k−1Q,i (50)

Qij ≡ k−2Q,ij +
1

3
δijQ, (51)

whereQij is traceless by construction and gives the scalar
contribution towards a symmetric tensor.

Exercise 9: Verify that Qij is traceless.

In general, the contributions to a vector field B by
some scalar function B can thus be written as:

Bi(τ,x) = B(τ)Qi (52)

and for a tensor field, we have

Hij(τ,x) = HL(τ)Qδij +HT (τ)Qij (53)

Please note that in a coordinate system with k||ẑ,
we get k−1k · n = cos θ and hence Q ∝ 0G

0
0,

niQi = −injkjk−1Q = −i cos θQ ∝ 0G
0
1 and ninj =

(−i)2k−2kikjn
injQ + 1

3δijn
inj = 1

3 − cos2 θ ∝ 0G
0
2. In

4 We follow [12], but restrict ourselves to flat universes. Hence the
covariant 3-derivative Q|i can be replaced by the partial deriva-
tive Q,i.
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this system, we therefore need only m = 0 for scalar
perturbations, as promised.

In exactly the same manner, basis functions for vec-
tor and tensor type perturbations can be derived. For
instance, the divergence-less part of a vector field is ex-

pressed [12] via Q
(V )
i (x) solving the vector Helmholtz

equation

Q
(V ),j
i,j + k2Q

(V )
i = 0, (54)

and being divergence-less: Q
(V )i
,i = 0. As already men-

tioned, we will restrict the discussion to scalar pertur-
bations. The most general line element for a perturbed
Robertson-Walker metric is [12]

ds2 = a(τ)2
[

−(1 + 2AQ)dτ2 − 2Bidτdx
i

+ (δij + 2Hij)dx
idxj

]

(55)

Where in the scalar case Bi and Hij are given by Equa-
tions (52) and (53).

We will concentrate on scalar perturbations in this lec-
ture. Scalar perturbations account by far for the largest
contributions of anisotropies measured by today’s exper-
iments. Yet, tensor modes are interesting in their own
right because inflation predicts a certain level of tensor
fluctuations that may be measured in the future.

Exercise 10: The Fourier mode k is usually quoted in
units of Mpc−1 and the product k τ is a good measure
for deciding whether a length scale is inside or outside
the horizon τ at any given time. In fact, the transition
is at k τ ≈ 1. The good question is: is a mode with
k τ < 1 outside or inside the horizon?

1. The Gauge Problem

General coordinate transformations are a main ingre-
dient of general relativity. Unfortunately, the freedom to
choose a coordinate system needs to be used with care in
cosmology. Let us see, how this comes about. Consider
an infinitesimal coordinate transformation

xµ → x̃µ = xµ + ǫµ(τ,x), (56)

where the derivative of ǫµ is also assumed to be at most
of the order ǫ. We know that some tensor expressed in
the new coordinate system will be

T̃ µ...ν...(x̃) =

(

∂x̃µ

∂xα

)(

∂xβ

∂x̃ν

)

. . . Tα...β...(x), (57)

where the transformation matrices are
(

∂x̃µ

∂xν

)

= δµν +
∂ǫµ(τ,x)

∂xν
(58)

(

∂xµ

∂x̃ν

)

= δµν −
∂ǫµ(τ,x)

∂x̃ν
(59)

= δµν −
∂ǫµ(τ,x)

∂xα
∂xα

∂x̃ν
(60)

= δµν −
∂ǫµ(τ,x)

∂xν
+O(ǫ2). (61)

The last equation in the above holds, because we have
assumed that the derivative of ǫ is also of the order ǫ.
Thus, working to order ǫ, the tensor transformation (57)
becomes

T̃ µ...ν...(x̃) = T µ...ν...(x) + T̄α...ν...(x)
∂ǫµ(τ,x)

∂xα
+ · · ·

− T̄ µ...α...(x)
∂ǫα(τ,x)

∂xν
− · · · (62)

If we were willing to give up the nice FRW background
universe, we could happily use the transformation Equa-
tion (62). However, we would like to make the coordi-
nate transformation (56), but without paying the price
of changing the background physics. The reason why
we would like to keep the background physics the same
regardless of our coordinate transformations is that we
would like the background to maintain its (only τ depen-
dent) Robertson-Walker metric, for we have seen that
it is this metric that leads to the convenient Friedmann
equation. So, in order to stick to the old coordinates for
the background, we have to go back from x̃ to x in the
argument of T̃ :

T̃ µ...ν... (x̃) = T̃ µ...ν... (x+ ǫ)

= T̃ µ...ν... (x) + ǫα

(

∂T̃ µ...ν... (ξ)

∂ξα

)

|ξ=x

= T̃ µ...ν... (x) + ǫα
(

∂T µ...ν... (ξ)

∂ξα

)

|ξ=x

+O(ǫ2). (63)

Here, we have used the transformation Equation (62).
Putting Equations (62) and (63) together, we get the
final gauge transformation law

T̃ µ...ν...(x) = T µ...ν...(x)− T̄ µ...ν... ,α(τ)ǫα + T̄α...ν...(τ)ǫ
µ
,α + · · ·

− T̄ µ...α...(τ)ǫα,ν − · · · . (64)

The derivatives above combine to give the Lie derivative
LǫT̄ and we can rewrite Equation (64) rather elegantly

as T̃ (x) = T (x)− LǫT̄ .
Having derived the transformation equation, let us see

what this means for the metric. Using Equation (64), we
get

g̃µν(x) = gµν(x)− ḡανǫα,µ − ḡµαǫα,ν − ǫα ḡµν, α. (65)
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It is the last term in the above equation that would quan-
tify the change in the background, if we allowed one.
However, as we stick to the same background, we will
interpret this term as a contribution to the change of the
perturbation variables due to the coordinate transforma-
tion. This is the conceptional difference between the co-
ordinate transformation (changing the background, the
coordinates and the fluctuations) and the gauge trans-
formation (changing only the fluctuations, keeping the
old coordinates and background quantities). The trans-
formation four vector ǫ can be decomposed into scalar
and vector parts. Following [12], we set

τ̃ = τ + T (τ)Q(x)

x̃i = xi + L(τ)Qi(x) + L(V )(τ)Q(V ) i(x). (66)

The vector contribution will not affect scalar perturba-
tions, just like scalar, vector and tensor perturbations
decouple in linear approximation. Using the above trans-
formation (66) in (65), we can calculate for instance the
change in the metric perturbation B:

g̃0i(x) = g0i(x) − ḡαi(τ)ǫα,0 − ḡ0α(τ)ǫα,i − ǫα ḡ0i, α
= g0i(x) − ḡji(τ)L̇Qj − ḡ00(τ)TQ,i
= −a2(τ)

(

B + L̇+ kT
)

Qi

≡ −a2(τ) B̃ Qi (67)

Similar calculations yield the transformation properties
of all the metric perturbation variables:

Ã(τ) = A(τ) − ȧ

a
T (τ)− Ṫ (τ)

B̃(τ) = B(τ) + L̇+ kT (τ)

H̃L(τ) = HL(τ) − ȧ

a
T − k

3
L(τ)

H̃T (τ) = HT (τ) + kL(τ) (68)

Exercise 11: Verify the transformation property of A
and HL.

From the transformation properties (68) of the scalar
metric fluctuations, it is clear that one can choose the
functions T (τ) and L(τ) such that two of the pertur-
bation variables vanish. Popular choices are the syn-
chronous gauge defined by A = B = 0 and the longi-
tudinal gauge with HT = B = 0.

Having the transformation law (68) at hand, one can
construct gauge-invariant combinations, the so called
Bardeen potentials

Ψ ≡ A− ȧ

a
k−1σ − k−1σ̇ (69)

Φ ≡ HL +
1

3
HT −

ȧ

a
k−1σ, (70)

where σ ≡ k−1ḢT−B vanishes in the longitudinal gauge.
Hence, the line element in the longitudinal gauge takes
on the particularly convenient form

ds2 = a(τ)2
[

− (1 + 2ΨQ)dτ2

+ (1 + 2ΦQ)δijdx
idxj

]

, (71)

where we have restricted ourselves to scalar contribu-
tions.

Exercise 12: Verify that Ψ and Φ are gauge invariant.

2. The Energy Momentum Tensor

Having defined the metric, we will now specify the en-
ergy momentum tensor for matter and radiation. Even
though photons during recombination (and neutrinos)
need to be described by a distribution function, it is still
convenient to identify certain moments of these distribu-
tions as fluid perturbations. Here, we are going to derive
the perturbation equations for one single species.5 After
deriving the perturbation equations in the fluid descrip-
tion, we will turn to quintessence perturbations. Let us
start by defining the energy momentum tensor of a fluid:

T µν = pδµν + (p+ ρ)uµuν + πµν (72)

Here, the 4-velocity u is the velocity of the matter rest
frame with respect to the coordinate frame. Usually, one
assumes that the spatial components ui are first order
perturbations. With this in mind, we get from uµuνgµν =
−1 the time component

u0 = a(τ)−1(1−A(τ)). (73)

Next, we set for the spatial part

ui = a−1v(τ)Qi, (74)

defining v.

Exercise 13: Calculate u0 and ui. Hint: Remember to
work to first order in the perturbations only.

Lowering the index, we find for the covariant velocity

u0 = −a(1 +A) ui = a(v −B)Qi. (75)

5 In Appendix E we give the full equations (including momen-
tum transfer between baryons and photons) used to calculate
the CMB anisotropies.
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Using the same conventions as [13, 14], let us set

ρ ≡ ρ̄(τ) [1 + δ(τ)Q], (76)

and the spatial trace

p δij ≡ p̄(τ) [1 + πL(τ)Q] δij , (77)

while for the traceless part

πij ≡ p̄ΠQij . (78)

This defines the perturbations Π and πL and δ. Working
to first order one gets from these definitions

T 0
0 = −ρ̄(1 + δ Q) (79)

T 0
i = (ρ̄+ p̄) (v −B)Qi (80)

T i0 = −(ρ̄+ p̄) v Qi (81)

T ij = p̄
[

(1 + πLQ)δij + ΠQij
]

. (82)

3. Gauging the Energy

We will now investigate the gauge dependence of the
energy momentum perturbations.

From Equations (64), (66) and (15), we get

T̃ 0
0(x) = T 0

0(x) + T̄ 0
0ǫ

0
,0 − T̄ 0

0ǫ
0
,0 − T̄ 0

0,0ǫ
0 (83)

= −ρ̄
(

1 +

[

δ −
˙̄ρ

ρ̄
T

]

Q

)

= −ρ̄
(

1 +

[

δ + 3(1 + w)
ȧ

a
T

]

Q

)

. (84)

Hence,

δ̃ = δ + 3(1 + w)
ȧ

a
T. (85)

Exercise 14: Mimicking the above procedure, what is
π̃L?

The velocity perturbation transforms as

ṽ = v + L̇, (86)

which can be seen by either calculating dx̃i/dτ̃ or by
transforming T i0. Finally, we get from a calculation sim-
ilar to the one for δ, that πL transforms as

π̃L = πL −
˙̄p

p̄
T = πL + 3(1 + w)

c2s
w

ȧ

a
T, (87)

where the sound speed is given by

c2s ≡
˙̄p
˙̄ρ
. (88)

The vanishing of the off diagonal elements T̄ ij ensures
that Π is gauge invariant from the start.

4. Gauge Invariant Energy-Momentum Perturbations

We will not need to work in gauge invariant quantities.
However, for completeness we present gauge invariant
energy momentum perturbations in this section. There
are many ways to combine one of the energy-momentum
perturbations with the metric fluctuations (or another
energy-momentum perturbation) to form gauge-invariant
quantities. Following [14], we define

V ≡ v − 1

k
ḢT = v(longit) (89)

Dg ≡ δ + 3(1 + w)

(

HL +
1

3
HT

)

(90)

= δ(longit) + 3(1 + w)Φ

D ≡ δ(longit) + 3(1 + w)
ȧ

a

V

k
(91)

Γ ≡ πL −
c2s
w
δ, (92)

where (longit) labels perturbations in the longitudinal
gauge, and Γ can be viewed as entropy production rate
[22]. This is due to the fact that for adiabatic perturba-
tions for which δp/δρ = ˙̄p/ ˙̄ρ and therefore

Γ = πL −
c2s
w
δ (93)

=
δp

p
− c2s
w

δρ

ρ
(94)

=
δp

p
− c2s

δρ

w ρ
(95)

=
δp

p
− δp

δρ

δρ

p
= 0, (96)

in this case.
For a comparison between the cold dark matter power

spectrum as inferred from δsync. in synchronous gauge
and the gauge invariant Dc

g, see Figure 8.

5. Perturbed Einstein’s and Conservation Equation

Having defined the metric and the energy momentum
tensor, we are now in the position to use Einstein’s equa-
tion to relate the metric perturbations to the matter
perturbations. We will first derive the equations with
δ, v . . . in the longitudinal gauge and in a second step
move to the gauge invariant variables. The perturbed
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FIG. 2: Cold dark matter power spectrum using δ
(sync.)
c in

synchronous gauge (long dashed line) and the gauge invariant
Dc
g (straight line). The parameters used were h = 0.6, ΩΛ

0 =

0.6, Ωb
0 = 0.1, Ωc

0 = 1− ΩΛ
0 − Ωb

0 , ns = 1. Also shown is the
relative deviation of both spectra (dotted line). Please note
the perfect agreement inside the horizon, where both display
the same baryon oscillation patterns. On scales approaching
and outside the horizon, where the notion of energy density
perturbations becomes gauge dependent, they disagree.

part of Einstein’s equations yields

G
0
0→ a2 ρ̄ δ = 2M2

P

{

k2Φ + 3
ȧ

a

(

Φ̇− ȧ

a
Ψ

)}

,(97)

a2 v (ρ̄+ p̄) = 2M2
P k

(

ȧ

a
Ψ− Φ̇

)

←G
0
i, (98)

G
i
j→ a2p̄Π = −M2

P k
2(Φ + Ψ). (99)

Conservation of the energy component T µ0;µ = 0, gives

(ρ̄+ p̄)
[

3Φ̇ + k v
]

+3
ȧ

a
ρ̄ (δ + wπL)+

d

dτ
(ρ̄ δ) = 0 (100)

whereas the momentum part T µi;µ = 0 yields

p̄

(

2

3
Π− πL

)

+ k−1(ρ̄+ p̄)

[

4
ȧ

a
v + v̇

]

+ k−1 v ( ˙̄ρ+ ˙̄p)− (ρ̄+ p̄)Ψ = 0 (101)

Please note that in principle, the equation of state w
and the speed of sound cs could be time dependent. It

should also be remarked that we use c2s =
˙̄ρ
˙̄p
as defined by

Bardeen. This is the adiabatic sound speed. However,
for instance in the case of a scalar field which has two
“degrees of freedom”, the adiabatic sound speed is not
the speed of propagation of perturbations.

Exercise 15: Rewrite Equations (100) and (101) to get
evolution equations for δ and v. Replace ˙̄ρ/ρ̄ using
Equation (15) and substitute Γ for πL.

Rewriting (100) and (101), we finally get

−δ̇ = (1 + w)
[

k v + 3Φ̇
]

+ 3
ȧ

a
wΓ + 3

ȧ

a
δ
(

c2s − w
)

,

(102)

and

v̇ =
ȧ

a

(

3 c2s − 1
)

v + kΨ +
k c2s

1 + w
δ

+
k w

1 + w

[

Γ− 2

3
Π

]

. (103)

Exercise 16: Consider a universe with only radi-
ation present. How do the perturbations δ and v
behave ? Hints: In a RD universe, we have already
solved Friedmann’s equation and hence we know
that ȧ

a = 1/τ . Plugging this back into Friedmann’s
equation, you can immediately read off an expression
for M−2

P a2ρ̄ which you can substitute into Einstein’s
equations (97-99). In addition, a radiation fluid has
c2s = w = 1/3, Γ = Π = 0. Use the product x ≡ k τ and
solve for super-horizon x ≪ 1 and sub-horizon x ≫ 1
modes separately. Finally, it is useful to formulate the
differential equations in terms of d

dx = k−1 d
dτ which

you may indicate using a prime. In order to coordinate
our efforts, let’s proceed like this:
1. Get an expression for M−2

P a2ρ̄
2. Express Φ in terms of Ψ from Einstein’s Equations
3. Plug in the values of c2s, w,Γ and Π into the e.o.m.’s
and re-express these in terms of derivatives w.r.t x = k τ
4. Solve the e.o.m’s and Poisson’s equation (97) in the
case x≪ 1 and x≫ 1
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Additional reading: The equations of motion in
gauge invariant variables. . .

In gauge invariant variables, Einstein’s equations
become

a2ρ̄D = 2 M2
P k

2Φ (104)

a2(ρ̄+ p̄)V = 2 M2
P k

(

ȧ

a
Ψ− Φ̇

)

(105)

a2p̄Π = −M2
P k

2(Φ + Ψ), . (106)

the e.o.m’s for the density perturbation and veloc-
ity are:

Ḋg + 3
(

c2s − w
) ȧ

a
Dg + k V (1 + w) + 3

ȧ

a
wΓ = 0,

(107)
and

V̇ =
ȧ

a
(3c2s − 1)V + k

[

Ψ− 3c2sΦ
]

+
c2sk

1 + w
Dg +

wk

1 + w

[

Γ− 2

3
Π

]

(108)

V. CMB ANISOTROPIES

In this section, we will outline the derivation of the
CMB anisotropy calculation and review the line of sight
[15] strategy. The discussion resembles closely that in
[14] and deals mainly with scalar fluctuations.

Ultimately, we will calculate the so called Cl spectrum.
This spectrum is a plot of the two point correlation of
temperature anisotropy on the sky. As we will later see,
a multipole l corresponds to an angular separation in the
sky according to l ≈ 180◦/θ. So the higher l, the smaller
the angular separation one measures. We postpone the
business of the Cl’s and their intuitive interpretation un-
til later. First, we will calculate in great detail how the
photon distribution function – and as we will see also the
temperature anisotropy – evolves as time progresses.

We will mainly use longitudinal gauge to derive our re-
sults but express the temperature fluctuation in terms of
a gauge invariant quantity. Strictly speaking this is not
necessary, because only the monopole C0 and dipole C1

are affected by gauge transformation (corresponding to
one scalar and one vector degree of freedom in choosing
the coordinate system). Hence, any gauge will yield the
same Cl spectrum from l = 2 on. Having spend quite
some time discussing gauge freedom, we will neverthe-
less stick to gauge invariant expressions, when it is not
computationally inconvenient.

A. The Homogenous Photon Background

The expansion of the Universe is slow compared to the
microwave frequency of the CMB. It is hence adiabatic,
as far as the photons are concerned. Therefore the occu-
pation number of the background

f̄ =

[

exp

(

E

T̄

)

− 1

]−1

, (109)

is preserved. As the energy of a photon redshifts ∝ a−1

we see that T ∝ a−1 in order to keep the ration E/T
constant. Writing T = T0 a

−1, we see that f̄ is a function
of aE only:

f̄(aE) =

[

exp

(

aE

T̄0

)

− 1

]−1

. (110)

Later, we will use the geodesic equation which is cast in
terms of the momentum. It is therefore clever to treat
E for the momentum. To make the connection, we note
that in General Relativity, the energy of a photon is given
by

E = −uµpµ, (111)

and as the observers in the unperturbed background are
at rest, i.e. ūµ = a(−1, 0, 0, 0), we see that

Ē = −ap, (112)

where p ≡ |p| =
√

pipjδij and the above holds, because

in the background p0 = p. As f̄ solely depends on aE,
we see that in terms of momentum, f̄ depends solely on

P = a2p. (113)

Now what we need to do is follow the evolution of the
full distribution function f(xµ, pµ) as time progresses.
Excellent articles of the late 60’s and early 70’ (e.g. [24])
and a very good book [27] discuss relativistic kinetic the-
ory. A small section in the Appendix will outline the
derivation of Boltzmann’s equation in its standard form
using (xµ, pµ) as the arguments of f .

While we could certainly use this standard description
(and I encourage you to check that it leads to the same
result), we will use more convenient arguments for f , for
instance P .

B. The Full Boltzmann Equation for Photons

The full distribution function is naively a function of
(xµ, pµ). Yet, the physics governing the evolution of f
respects the mass shell condition pµp

µ = m2. So one can
either evolve f(xµ, pµ) and at the end of the calculation
use the mass-shell condition – or one uses it to obtain
one momentum component as a function of the others



12

from the start. It turns out that it is much more eco-
nomical to regard p0 as a function of pi right from the
start. Therefore, f is a function f(xµ, pi) only.

As we have already mentioned, we will use P as an
argument of f . In order to do this, let us first split the
spatial momentum

pi ≡ p ni, (114)

into its modulus p and the unit vector of photon momen-
tum n. So δijn

inj = 1 and p ≡ |p| =
√

pipjδij just like
in the unperturbed case (the definition of p will never
change in the following). Now, we are in business! Using
P = a2 p to trade p for P , we arrive at our final set of
variables for f :

f = f(x, τ,P ,n). (115)

In particular, we can again split this into a background
plus perturbation part

f(τ,x,P ,n) = f̄(P) + F (τ,x,P ,n). (116)

In order to be equipped for the later calculation, we
derive some results in the next section that will be useful
soon.

1. Useful relations for the photon distribution function

Being variables on which f depends, the pi’s are free of
perturbations. However, p0 contains perturbation terms.
In fact, from gµνp

µpν = 0 we get in longitudinal gauge

0 = −(1 + 2Ψ)(p0)2 + p2 + 2Hijp
ipj (117)

= −(1 + 2Ψ)(p0)2 + p2 + 2ΦQδijp
ipj, (118)

which we multiply with (1− 2Ψ)

0 = (p0)2 + p2 (1 + 2ΦQ) (1− 2ΨQ) (119)

= (p0)2 + p2 (1 + 2ΦQ− 2ΨQ) , (120)

yielding

p0 =
√

p2 [1− 2ΨQ+ 2ΦQ] (121)

= |p|(1 −ΨQ+ ΦQ). (122)

All in all, p0 the covariant components pµ, as well as
√−g

are given by

p0 = p (1−ΨQ+ ΦQ) (123)

p0 = −a2p (1 + [Ψ + Φ]Q) (124)

pi = a2p ni (1 + 2ΦQ) (125)√−g = a4(1 + ΨQ+ 3ΦQ), (126)

where p ≡ |p| =
√

pipjδij as always.

Very soon, we will encounter terms of the form niQ
i

involving dot products n·k between the photon direction
and the Fourier vector k. It is useful to follow the existing
literature to define the direction cosine µ via

niQ
i = −iµQ (127)

which in a flat Universe simply translates into

µ = k−1k · n. (128)

Finally, a useful formula we need is

∂p

∂pi
=
∂
√
δmnpmpn

∂pi
=

1

2

2pi

p
= ni. (129)

2. Boltzmann’s Equation for photons (I): Derivation and
Collisionless Part

After all this preparation, let us finally compute Boltz-
mann’s Equation. We would like to compute both the
temperature anisotropies and polariazation. Except for
the collisions which mix the components, the evolution is
quite similar. The main difference is that while the inten-
sity has a background value f̄ , the polarization vanishes
identically in the background. Hence, the following dis-
cussion applies to polarization as well by simply replacing
F → G (we use G to denote the linear polarization dis-
tribution function) and f̄ = f̄ ′ → 0.

So we would like to calculate the total change in the
distribution function f(x, τ,P ,n):

(

∂f

∂τ

)

P

+
∂f

∂xi
∂xi

∂τ
+
∂f

∂P
∂P
∂τ

+
∂f

∂ni
∂ni

∂τ
= C[f,G], (130)

where C[f,G] represents collision terms. The last term
in (130) vanishes, because it is of second order in pertur-

bation theory: f̄ does not depend on ni and hence ∂f
∂ni

is a perturbation. In addition, ∂n
i

∂τ is a change in photon
direction that can only come from a spatially inhomoge-
neous scattering process. So all in all the last term is of
second order and we can safely discard it.

The most difficult term to compute is the third one on
the l.h.s of equation (130). We need an expression for

∂P
∂τ

=
∂

∂τ
a2p. (131)

To this end, we note that

∂

∂τ
a2p = 2

ȧ

a
a2p+ a2 ∂p

∂τ
, (132)

and using Equation (129)

∂p

∂τ
=

∂p

∂pi
∂pi

∂τ
= ni

∂pi

∂τ
. (133)
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Luckily, ∂p
i

∂τ can be computed from the geodesic equation

p0 ∂p
i

∂τ
+ Γiαβ

pαpβ = 0. (134)

Indeed,

ni
∂pi

∂τ
= −

(

p0
)−1

ni Γ
i
αβ
pαpβ . (135)

Let us collect all terms of niΓ
i
αβ
pαpβ . We will do this

in great detail keeping both unperturbed and perturbed
parts. From Γi00p

0p0, and noting that Γ̄i00 = 0, δΓi00 =
−kΨQi, we get

niΓ
i
00p

0p0 = −kΨp2niQ
i (136)

= iµkp2ΨQ. (137)

From Γi0jp
0pj, and noting that Γ̄i0j = ȧ

aδ
i
j , δΓ

i
0j = Φ̇δijQ

and that we will get a factor of 2, because the lower
indices could be either 0j or j0,

niΓ
i
0jp

0pj = 2
ȧ

a
δijp

0nip
j + 2Φ̇Qp2nin

i (138)

= 2
ȧ

a
p0 p+ 2Φ̇Qp2 (139)

Finally, from Γijlp
lpj, and noting that Γ̄ijl = 0, δΓijl =

kΦ
(

Qiδjl −Qjδil −Qlδij
)

, we get

niΓ
i
jlp

jpl = kΦni
(

Qiδjl −Qjδil −Qlδij
)

pjpl (140)

= kΦ(niQ
ip2 − 2niQjp

jpi) (141)

= kΦ(niQ
ip2 − 2pjQ

jnip
i) (142)

= kΦ(niQ
ip2 − 2p2njQ

j) (143)

= −kΦp2niQ
i (144)

= iµkp2ΦQ. (145)

Collecting all terms, we have

niΓ
i
βγp

βpγ = 2
ȧ

a
p0 p+ p2

[

iµk(Φ + Ψ) + 2Φ̇

]

Q. (146)

According to Equation (133), we need to multiply this

Equation (146) by −(p0)−1 to find ∂p
∂τ ,

∂p

∂τ
= −(p0)−1niΓ

i
βγp

βpγ (147)

= −2
ȧ

a
p− p

{

iµk[Φ + Ψ] + 2Φ̇
}

Q (148)

(149)

We are almost there. Equation (132) tell us that

∂P
∂τ

= 2
ȧ

a
a2p+ a2 ∂p

∂τ
(150)

= 2
ȧ

a
P − P

[

2
ȧ

a
+
{

iµk[Φ + Ψ] + 2Φ̇
}

Q

]

(151)

= −P
[

iµk[Φ + Ψ] + 2Φ̇
]

Q (152)

and hence

∂f

∂P
∂P
∂τ

= −P f̄ ′
{

iµk[Φ + Ψ] + 2Φ̇
}

Q. (153)

The final piece in Boltzmann’s equation is the spatial
part, i.e.

∂f

∂xi
∂xi

∂τ
=

∂F

∂xi
ni (154)

= F (τ,P)Q,in
i (155)

= −kF (τ,P)niQ
i (156)

= iµkF (x, τ,P ,n) (157)

which holds, because f̄ does not depend on xi and dxi

dτ =

ui = pi/p = ni.
Let’s pause here a little to collect all terms involving

the background only. It turns out that this collection
doesn’t leave us with much, namely

(

∂f̄

∂τ

)

P

= 0. (158)

There is not even a collision term, because the collisions
average out in a homogenous plasma (as we shall see
shortly). Equation (158) is the proof that we have been
right in our conjecture that f̄ is a function of P only: The
change in a distribution function of massless particles
which depends solely on P is zero! Now that’s a fancy
derivation of the preservation of the background black
body spectrum!

As far as the perturbed distribution is concerned, it’s
much more exciting:

(

∂F

∂τ

)

|P

+ ikµF

− P f̄ ′
{

iµk[Φ + Ψ] + 2Φ̇
}

Q = C[f,G]. (159)

Finally, making the substitution F → G, f̄ ′ → 0, we
get the simple evolution equation for the linear polariza-
tion G

(

∂G

∂τ

)

|P

+ ikµG = CG[f,G], (160)

where CG is the collision term for G.

3. Boltzmann’s Equation for photons (II): The collision
term

Electrons and photons scatter in the plasma of the
early universe. At the relatively low energies of a few eV
before recombination, the only efficient scattering pro-
cess is Thomson scattering. From electrodynamics, we
know the differential cross section

dσ

dΩ
=

3σT
8π
|ǫ · ǫ′|2 (161)



14

of Thomson scattering an incident beam polarized along
some axis ǫ′ into the outgoing polarization ǫ. Unfortu-
nately, the above formula for Thomson scattering is valid
in the Minkowski rest frame of the electron. In this frame,
Thomson scattering is elastic, i.e. p̃0 = p̃0′. In the FRW
frame, however, the electrons might move relative to the
photon fluid. This introduces a doppler shift which will
automatically come out in our discussion later on. For
the time being, however let us take one step after the
other and compute the change in some Minkowski rest
frame intensity f̃ and polarization G̃ and later go back
into the FRW frame.

To make life as simple as possible (don’t worry, it still
won’t be super easy :-), let choose our coordinate system
best as possible. We orient the z-axis such that z||k. In
addition, we choose the x-axis such that the outgoing di-
rection n is in the x−z plane. To compute both intensity
and polarization, we need a basis which we choose as

ǫ1 = ǫθ = (cos θ cosφ, cos θ sinφ,− sin θ)T (162)

ǫ2 = ǫφ = (− sinφ, cosφ, 0)T . (163)

So for the outgoing beam with φ = 0, this gives

ǫθ = (cos θ, 0,− sin θ)T , (164)

ǫφ = (0, 1, 0)T . (165)

We will briefly work with intensities along the θ
and φ unit vectors,

f̃θ(x̃, p̃
′,n′) ≡ f̃(x̃, p̃′,n′) + G̃(x̃, p̃′,n′)

2
(166)

f̃φ(x̃, p̃
′,n′) ≡ f̃(x̃, p̃′,n′)− G̃(x̃, p̃′,n′)

2
(167)

In terms of these, the Thomson cross section says that
the number of particles scattered into the beam n is given
by

d

dt̃
f̃+
θ =

3σT ne
8π

∫

f̃θ(x̃, p̃
′,n′)|ǫθǫ′θ|2

+ f̃φ(x̃, p̃
′,n′)|ǫθǫ′φ|2dΩ′ (168)

and likewise

d

dt̃
f̃+
φ =

3σT ne
8π

∫

f̃θ(x̃, p̃
′,n′)|ǫφǫ′θ|2

+ f̃φ(x̃, p̃
′,n′)|ǫφǫ′φ|2dΩ′ (169)

To compute these, let’s compute |ǫθǫ′θ|2 etc.

|ǫθǫ′θ|2 = cos2 θ cos2 θ′ cos2 φ′ + sin2 θ sin2 θ′

+2 cosφ′ cos θ cos θ′ sin θ sin θ′ (170)

|ǫθǫ′φ|2 = sin2 φ′ cos2 θ (171)

|ǫφǫ′θ|2 = sin2 φ′ cos2 θ′ (172)

|ǫφǫ′φ|2 = cos2 φ′ (173)

In our cleverly chosen coordinate system, we can write
µ = k−1kn = cos θ, λ = k−1kn′ = cos θ′. In addition,
the distributions will not depend on the azimutal angle φ,
because 0G

0
l is independent of φ. We can therefore easily

perform the
∫

dφ′ part of the dΩ′ integration above. Let’s

keep in mind that
∫ 2π

0
cos2 φdφ =

∫ 2π

0
sin2 φdφ = π,

∫ 2π

0
cosφdφ = 0 and

∫ 2π

0
dφ = 2π. Then Equations (170)

to (173) yield

∫ 2π

0

dφ′|ǫθǫ′θ|2 = π
(

3µ2λ2 − 2λ2 − 2µ2 + 2
)

(174)

∫ 2π

0

dφ′|ǫθǫ′φ|2 = πµ2 (175)

∫ 2π

0

dφ′|ǫφǫ′θ|2 = πλ2 (176)

∫ 2π

0

dφ′|ǫφǫ′φ|2 = π. (177)

It’s about time to move back from f̃θ and f̃φ to f̃ and G̃.
Let me for the sake of notationally simplicity drop the
arguments x̃ and p̃′ of f̃ and G̃. In addition, f̃ and G̃
depend on n′ only through λ. The total intesity scattered
into the beam is then

d

dt̃
f̃+ =

d

dt̃
f̃+
θ +

d

dt̃
f̃+
φ (178)

=
3σT ne

8

∫ 1

−1

dλ
f̃(λ)− G̃(λ)

2
(µ2 + 1)

+
f̃(λ) + G̃(λ)

2

(

3µ2λ2 − λ2 − 2µ2 + 2
)

(179)

=
3σT ne

8

∫ 1

−1

dλf̃(λ)
[

3µ2λ2 − λ2 − µ2 + 3
]

+G̃(λ)
[

3µ2λ2 − λ2 − 3µ2 + 1
]

(180)

The polynomials above in the square brackets should trig-
ger a thought in your brain right now: hey, don’t those
look like Legendre Polynomials multiplied together ? In-
deed they do. Remember that P2(λ) = 1

2 (3λ2−1). After
some minor shuffling around, you’ll find (try it!)

d

dt̃
f̃+ =

σT ne
4

∫ 1

−1

dλf̃(λ) [P2(λ)P2(µ) + 2]

+ G̃(λ)P2(µ)[P2(λ)− 1]. (181)

Very similar along the same lines, one can obtain (again:
try it, it’s fairly simple)

d

dt̃
G̃+ =

σT ne
4

∫ 1

−1

dλf̃(λ) [P2(λ)[P2(µ)− 1]]

+ G̃(λ)[P2(µ)− 1][P2(λ)− 1]. (182)

Radiation leaving the beam direction n is much easier to
compute, because every scattering event will lead to the



15

radiation leaving the beam:

d

dt̃
f̃− = neσT f̃(x̃, p̃,n) (183)

d

dt̃
G̃− = neσT G̃(x̃, p̃,n) (184)

(no primes here!).
We are almost there! The above holds in the rest frame

of the electron. Yet, what we really want to calculate is

d

dτ
f(xµ, pi), (185)

i.e. the total change in the distribution function due to
collisions. As f is a scalar (which does not transform
under coordinate transformations), we can rewrite this
as

d

dτ
f(xµ, pi) =

dt̃

dτ

d

dt̃
f̃(x̃, p̃)

=
dt̃

dτ

d

dt̃
f̃+ −

dt̃

dτ

d

dt̃
f̃−, (186)

As already mentioned, we may replace f̃(x̃, p̃′,n′) by
f(x,P ′,n′), because f is a scalar. So

f̃(x̃, p̃′,n′) = f(x,P ′,n′). (187)

Let us power expand the r.h.s in ∆P ≡ P ′ −P = a2p′ −
a2p:

f̃(x̃, p̃′,n′) = f(x,P ,n′) +
∂f

∂P∆P . (188)

In an exercise at the end of Appendix A, you can compute

∆P = iP(µ− λ)Qvb, (189)

hence ∆P is a perturbation and we can write

f̃(x̃, p̃′,n′) = f̄(P) +
∂f̄

∂P∆P + F (x, τ,P ,n′). (190)

Please note that it does not matter whether the argument
of F is P or P ′, because the difference is of second order
in perturbation theory. There is no such complication for
G, because it vanishes in the background, hence

G̃(x̃, p̃′,n′) = G(x, τ,P ,n′). (191)

Before we proceed to take the final steps, we need to
pause a bit. We didn’t yet put all parts together, but
what we derived so far is the Boltzmann equation for F
and G. At this point, you surely have wondered already
how we are going to connect this to the familiar language
of density perturbations, velocities etc., which couple to
the metric perturbations. One way would be to take
moments of the entire Boltzmann equation, i.e. multiply
the entire equation by some combination of momenta p
and integrate over momenta. There are cases in which
one has to do this, however in our case, we are lucky.
Neither graviation nor Thomson scattering is the least
interested in the momentum of our photons. We can
therefore separate the momentum dependence from the
rest. Let’s do it!

4. Connecting the perturbed distribution to temperature

The relative temperature perturbation ∆ is defined as

T (τ,x,n) = T̄ (τ)[1 + ∆(τ,x,n)]. (192)

F and ∆ are connected. Just observe what happens to f̄
if one uses P

1+∆ as the argument of f̄ and expands in ∆:

f = f̄

( P
1 + ∆

)

= f̄ +
∂f̄

∂P

[ P
1 + ∆

− P
]

+ . . .(193)

= f̄ +
∂f̄

∂PP
(

1

1 + ∆
− 1

)

(194)

= f̄ +
∂f̄

∂PP(1−∆− 1) (195)

= f̄ − P f̄ ′∆. (196)

Here and in the following, f̄ ′ denotes the derivative w.r.t
P . Comparing Equations (196) to (116), we get

F (τ,x,P ,n) = −P f̄ ′∆(τ,x,n). (197)

The linear polarization G (which vanishes in the back-
ground) carries the same p-dependence as the intensity:
Thomson scattering does not alter the momentum in
the rest frame and the doppler shift can be neglected as
it would be a second order correction. So

G(τ,x,P ,n) = −P f̄ ′Q(τ,x,n). (198)

5. Boltzmann Equation continued

Let us use Equation (197) to simplify our Boltzmann
equation. We start with the colisionless part. Replacing
F by ∆(τ,x,n) using Equation (197), we have6

− P f̄ ′∆̇Q− P f̄ ′ikµ∆Q

− P f̄ ′
{

iµk[Φ + Ψ] + 2Φ̇
}

Q = C[f,G], (199)

and dividing out −P f̄ ′Q, we get

∆̇ + ikµ∆ = −iµk[Φ + Ψ]− 2Φ̇ + Ĉ[f,G], (200)

where Ĉ[f,G] ≡ −C[f ]/(P f̄ ′Q). For this collision term,
we need to finally perform the

∫

dλ integration. In ap-
pendix C, you can find the detailed derivation of the
following useful expressions for the first few moments of

6
“

∂f̄
∂τ

”

P
acts on the explicit time dependence only. Hence

“

∂f̄
∂τ

”

P
= −P f̄ ′∆̇.
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the distribution function

δ = 4Φ +
1

π

∫

∆(n)dΩ (201)

Vγ =
3i

4π

∫

µ∆(n)dΩ (202)

Πγ = − 3

π

∫

P2(µ)∆(n)dΩ. (203)

where as usual µ = k−1k · n is the direction cosine and
∆(n) is a function of either ∆(n,x, τ) or in Fourier space
∆(n,k, τ). Equipped with the above moments and the
orthogonality relation

∫

dλPl(λ)Pn(λ) = 2δln/(2l + 1),
we now have to perform the λ integration of the collision
terms. Our starting point is to put (181), (183) and (186)
together:

C[f,G] = a
σT ne

4

∫ 1

−1

dλ

{

[

f̄(P) + f̄ ′∆P + F (x, τ,P ,n′)
]

[P2(λ)P2(µ) + 2] +G(λ)P2(µ)[P2(λ) − 1]

}

− aneσT [f̄(P) + F (x, τ,P ,n)]. (204)

Please remind yourself that the integration is over n′.
Furthermore, the background part above cancels, be-
cause f̄(P) = f̄(P)1 = f̄(P)P0(λ) and therefore
∫

dλf̄(P)2 = 4 yields the only non-vanishing term for
the background in the integration. This nicely cancels
the contribution scattered out of the beam. So the lowest
order expression dt̃/dτ = a was sufficient, as promised.
Having eliminated the background piece, let’s plug in ∆P
from (189) and our expression of F in terms of ∆ and G
in terms of Q and proceed slowly

C[f,G] = a
σT ne

4
f̄ ′P

∫ 1

−1

dλ

{

[i(µ− λ)Qvb −∆(τ,x,n′)]

[P2(λ)P2(µ) + 2]−Q(τ,x,n′)P2(µ)[P2(λ) − 1]

}

+ aneσT f̄
′P∆(τ,x,n). (205)

The term proportional to λvb cannot contribute, because
λ = P1(λ) and there is no other dipole in the integration.
In fact, the only non-vanishing term proportional to µvb
yields

∫

dλiµvbQ2 = 4iµvbQ. In addition, P2(λ) − 1 =
3
2λ

2− 1
2 −1 = 3

2 (λ2−1) = − 3
2 sin2 θ = −2

√

6π/5 2Y
0
2 and

so

C[f,G] = aneσT f̄
′P
{

iµvbQ+ ∆(τ,x,n)

− 1

4

∫ 1

−1

∆(τ,x,n′) [P2(λ)P2(µ) + 2] dλ

− 1

4

∫ 1

−1

Q(τ,x,n′)P2(µ)[−2
√

6π/5 2Y
0
2 (λ)]dλ

}

.

(206)

Now comes the big entry of our multipole expansion for
∆ and Q± iU . As U = 0 in our frame, and dropping the
k integration, they are

∆(τ,x,n) =
∑

l

(−i)l∆l(k, τ)Pl(k̂n)Q (207)

and

(Q± i U)(τ,x,n) =
∑

l=2

(−i)l(E0
l ± iB0

l )

×
√

4π

2l+ 1
∓2Y

0
l (n)Q (208)

As B0
l vanishes and the λ integration picks out 2Y

0
2 by

virtue of the orthonormality of spin-weigthed harmonics,
we get (writing E0

l = El for ease of notation)

C[f,G] = aneσT f̄
′P
{

iµvbQ+ ∆(τ,x,n)

− 1

4

∫ 1

−1

∆(τ,x,n′) [P2(λ)P2(µ) + 2] dλ

− 1

4
P2(µ)(−2)

√

6π

5

1

2π
(−i)2E2

√

4π

5
Q

}

. (209)

Likewise, the λ integration for ∆(λ) picks out the
monopole and the quadrupole

C[f,G] = aneσT f̄
′P
{

iµvbQ+ ∆(τ,x,n)

− 1

4

[

2

5
(−i)2∆2P2(µ)Q+ 4∆0Q

]

−
√

6

10
E2P2(µ)Q

}

.

(210)

So

C[f,G] = aneσT f̄
′P
{

iµvb + ∆(τ,k,n)

+
1

10
∆2P2(µ)−∆0 −

√
6

10
E2P2(µ)

}

Q. (211)

So finally, we find the full Bolzmann equation by dividing
out −(P f̄ ′Q)

∆̇ + ikµ∆ + κ̇∆ = −iµk[Φ + Ψ]− 2Φ̇

+ κ̇

{

∆0 − iµvb +
1

10
P2(µ)

[√
6E2 −∆2

]

}

(212)

where we defined the differential optical depth κ̇ ≡
aneσT . Very similiarly, we can find the evolution equa-
tion for G. In fact, this is much more simple, because the
background and Doppler shift part of f do not contribute
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because of the P2(λ) that is integrated over in the first
term of Equation (182). The result is

Q̇+ikµQ+κ̇Q =
1

10
κ̇ [P2(µ)− 1]

[√
6E2 −∆2

]

(213)

We can express the monopole ∆0 nicely by observing
the relations

δ = 4Φ + 4∆0 (214)

vγ = ∆1 (215)

Πγ =
12

5
∆2; (216)

which follow from inserting the multipole decomposition
(207) into Equations (C18-C20). So in terms of longitu-
dinal gauge perturbations our final expression is

∆̇ + ikµ∆ + κ̇∆ = −iµk[Φ + Ψ]− 2Φ̇

+ κ̇

{

1

4
δγ − Φ− iµvb +

1

10
P2(µ)

[√
6E2 −∆2

]

}

(217)

and

Q̇ + ikµQ + κ̇Q =
κ̇

10
{P2(µ)− 1}

[√
6E2 −∆2

]

,

(218)

where you may substitute P2(µ)−1 = −2
√

6π/5 2Y
0
2 (µ).

At this point, you may want to read Appendix B, in
which we define the gauge invariant temperature pertur-
bation M = ∆ + 2Φ. It’s multipole decompisition looks
exactly like that for ∆:

M(τ,x,n) =
∑

l

(−i)lMl(k, τ)Pl(n)Q (219)

Using M and Dγ
g and Vb instead of δγ and vb, you can

easily verify (do it!) that

Ṁ+ ikµM+ κ̇M = iµk[Φ−Ψ]

+ κ̇

{

1

4
Dγ
g − iµvb +

1

10
P2(µ)

[√
6E2 −M2

]

}

(220)

A standard way to solve this equation is to project
out multipoles. In the old days, one needed multipole
moments up to l ≈ 3000. Since the introduction of the
fast line-of-sight method, one needs far less (usually l ≈
10). Still we need to know the evolution of the multipole
moments. The procedure is as follows: For each Legendre
polynomial Pl . . .

• multiply equation (220) by Pl(µ).

• replaceM(τ, µ) by its multipole expansion (219)

• integrate both l.h.s and r.h.s of the new equation

over µ:
∫ 1

−1
dµ.

• use the orthogonality relation
∫ 1

−1 dµPl(µ)Pn(µ) =

2δln/(2l+ 1).

As an example, consider l = 0. In this case Pl is particu-
larly simple, because P0 = 1. So according to the recipe
(220) stays unaltered and we integrate it over µ. Let’s
consider each term separately. First

∫

dµP0Ṁ =

∫

dµP0
d

dτ

∑

l

(−i)lMl(τ)Pl(µ)

=
∑

l

(−i)lṀl(τ)

∫

dµPl(µ)P0(µ)

=
∑

l

(−i)lṀl(τ)
2δl0

2l+ 1
(221)

= 2Ṁ0(τ), (222)

furthermore (remember that P1 = µ)

∫

dµP0iµkM =

∫

dµP1ik
∑

l

(−i)l(2l+ 1)Ml(τ)Pl(µ)

=
∑

l

(−i)lik
∫

dµP1(µ)Pl(µ)

=
∑

l

(−i)lik 2δl1
2l + 1

= i(−i)k 2

3
M1(τ) (223)

=
2

3
kM1(τ), (224)

then κ̇M gives a similar result as Ṁ:

∫

dµP0κ̇M = 2κ̇M0, (225)

the iµk[Φ−Ψ] term on the r.h.s vanishes, because

∫

dµP0iµk[Φ− Ψ] =

∫

dµiP1P0k[Φ−Ψ] = 0, (226)

the term κ̇Dγ
g /4 gives the same result as κ̇M (in fact the

terms cancel)

∫

dµκ̇
1

4
Dγ
g =

1

2
κ̇Dγ

g = 2κ̇M0. (227)

The rest of the terms vanish, because they involve P1 or
P2 and are orthogonal. Collecting the pieces, and pro-
ceeding along similar lines for l > 0, we find the hierarchy
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forM [30]

Ṁ0 = −k
3
Vγ (228)

Ṁ1 = κ̇(Vb − Vγ) + k(Ψ − Φ)

+k

(

M0 −
2

5
M2

)

(229)

Ṁ2 = −κ̇ (M2 − C) + k

(

2

3
Vγ −

3

7
M3

)

(230)

Ṁl = −κ̇Ml + k

(

l

2l− 1
Ml−1 (231)

− l + 1

2l+ 3
Ml+1

)

, ; l > 2.(232)

Again, in similar fashion, this time by integrating over
dΩ and projecting on spin weighted spherical harmonics

2Y
0
l , you can find from Equation (218) (try it!)

Ė2 = −k
√

5

7
E3 − κ̇

(

E2 +
√

6 C
)

(233)

Ėl = k

(

2κl
2l− 1

El−1 − 2κl+1

2l+ 3
El+1

)

− κ̇ El (234)

; l > 2.

Here, C = (M2 −
√

6E2)/10 as above and 2κl =
√
l2 − 4

are combinatorial factors [30] that should not be confused
with the differential optical depth κ̇.

Massless neutrinos follow the same multipole hierarchy
as M, however without polarization and Thomson scat-
tering. In fact, our analysis for photons carries directly
over to neutrinos – just omit the scattering. Hence, the
perturbed neutrino distribution is

Ṅ0 = −k
3
Vν (235)

Ṅ1 = k(Ψ − Φ) + k

(

N0 −
2

5
N2

)

(236)

Ṅl = k

(

l

2l − 1
Nl−1 −

l + 1

2l+ 3
Nl+1

)

(237)

; l > 1,

where Vν = N1. In contrast to photons, there is no tight
coupling to baryons. Thus, moments beyond the dipole
may built up from the beginning. However, as Ṅl ∝
kNl−1 for l > 1, it follows that Nl ∝ (kτ)(l−1)N1 at
early times. As kτ ≪ 1 for super-horizon modes, higher
order moments of N are suppressed.7

7 This is a bit of circular reasoning. If each moment Nl+1 is

small compared to Nl−1, then Ṅl ∝ kNl−1. That this leads to
the suppression of higher order moments is no wonder, for we
have assumed this from the start. Yet, N2 corresponds to Πν
and this in turn determines Ψ − Φ from Einstein’s equation. As
this difference is not substantial, one concludes that N2 (and all
higher moments) are small initially.

C. The Line of Sight Strategy

Experiments such as WMAP measure the tempera-
ture anisotropy today. So usually, we are interested in
M(τ0, µ). It turns out that there is a clever way to ob-
tain this that even highlights the different contributions
towards the final anisotropy. Let us develop this Line of
Sight strategy!

Inspecting (220), one notices that the l.h.s can be writ-
ten as

e−iµkτ e−κ(τ)L̇, (238)

where

L ≡ eiµkτ eκ(τ)M. (239)

Hence, (220) translates into

L̇ = eiµkτ eκ(τ)

[

iµk(Φ−Ψ)

+ κ̇

(

1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]

, (240)

and integrated over conformal time,

L(τ0) =

∫ τ0

0

dτeiµkτ eκ(τ)

[

iµk(Φ−Ψ)

+ κ̇

(

1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]

. (241)

According to Equation (239), the photon perturbation
today is given byM(µ, τ0) = e−iµkτ0e−κ(τ0)L(τ0), so

M(µ, τ0) =

∫ τ0

0

dτ eiµk(τ−τ0)eκ(τ)−κ(τ0)

×
[

iµk(Φ−Ψ) + κ̇

(

1

4
Dγ
g − iµVb −

1

2
(3µ2 − 1)C

)]

.

(242)

The product g ≡ κ̇ exp(κ(τ)− κ(τ0)) plays an important
role8 and is called the visibility function. Its peak defines
the epoch of recombination (see also Figure 3). Each
term in the above Equation (242) containing factors of
µ, can be integrated by parts, in order to get rid of µ.
For instance

∫ τ0

0

eiµk(τ−τ0)iµ gVbdτ (243)

=

∫ τ0

0

[

eiµk(τ−τ0)iµk
]

k−1gVbdτ (244)

=
[ ]

−
∫ τ0

0

eiµk(τ−τ0)k−1
(

gV̇b + Vb ġ
)

dτ, (245)

8 Please note that the function κ used in [15] is in fact the function
κ(τ0, τ) of Equation (2.5) of [33]. It is not the function κ for
which κ̇ = aneσT = dκ/dτ . Therefore the factor exp(κ(τ) −

κ(τ0)) in this work is equivalent to exp(−κ(τ)) of [15]. However,
this usage of κ (meaning κ(τ0, τ)) obscures the derivation a bit
and we therefore choose to display exp(κ(τ) − κ(τ0)) explicitly.
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FIG. 3: The visibility g ≡ κ̇ exp(κ(τ ) − κ(τ0)) as a function
of conformal time τ in Mpc. Its peak at about τ ≈ 300 Mpc
defines the epoch of last scattering. Before the visibility func-
tion peaks, photons are very likely to scatter again until the
Universe becomes translucent. After the peak, photons do
not scatter at a substantial rate. It is thus the balance be-
tween frequent scattering and sufficiently low optical depth
that will give the largest contribution towards the anisotropy
today. And this fact is exactly encoded in g.

where [ ] stands for the boundary term that here and for
all of the terms above can be dropped, as it vanishes for
τ → 0 and only contributes to C0 for τ = τ0. Applying
this procedure to all terms involving µ yields

M(µ, τ0) =

∫ τ0

0

eiµk(τ−τ0)ST (k, τ)dτ, (246)

where the source is

ST = −eκ(τ)−κ(τ0)
[

Φ̇− Ψ̇
]

+ ġ

[

Vb
k

+
3

k2
Ċ
]

+ g̈
3

2k2
C

+ g

[

1

4
Dγ
g +

V̇b
k
− (Φ−Ψ) +

C
2

+
3

2k2
C̈
]

. (247)

Let us pause to discuss this result (246, 339) in detail.
First, we note that the visibility function g is sharply
peaked at the epoch of decoupling (see Figure 3). Hence,
M(τ0) gets contributions from Dγ

g and V γb at about this
epoch: whatever the density contrast of the photon fluid
and the baryon fluid velocity has been at decoupling, it
will be imprinted in the temperature anisotropy today.
The term from the density contrastDγ

g is the most impor-
tant one on scales smaller than the sound horizon. It is
the main contributor towards the oscillatory behaviour of
the Cl spectrum [34]. Its appearance is plausible, because
for a photon gas, ρ ∝ T 4 and therefore δT/T ∝ 1

4δρ/ρ.

The V γb -term appears, because a baryon moving in the
direction towards the observer will cause a Doppler shift
of the emitted photon. For adiabatic initial conditions,
this Doppler shift fills the region before the first peak
(at l ≈ 220), which is mainly due to Dγ

g [35]. The first

term in the source (involving Φ̇ − Ψ̇) accounts for the
integrated Sachs-Wolfe (ISW) effect [36]: if the gravita-
tional potential decays, the photons have to climb out
of a more shallow potential than they have been in be-
fore. Quintessence, for instance can lead to a late ISW
effect. The terms involving C and its derivatives describe
polarization effects and are far less important than the
Dγ
g term. Finally, the (Φ − Ψ) term is the (ordinary)

Sachs-Wolfe effect. On scales that at decoupling were
well outside the horizon, this gives the main contribu-
tion.

1. Line of Sight for Polarization

To discuss polarization, we need to prepare the ground
a bit further. As said, we may decompose

(Q(n) + iU(n)) =
∑

l,m

−2alm −2Y
m
l (n) (248)

and

(Q(n) − iU(n)) =
∑

l,m

2alm 2Y
m
l (n) (249)

Using the spin lowering and raising operators, we get spin
0 quantities

′∂ 2(Q(n) + iU(n)) =
∑

l,m

[

(l + 2)!

(l − 2)!

]1/2

2alm Y ml (n)

(250)
and

′∂ 2(Q(n) − iU(n)) =
∑

l,m

[

(l + 2)!

(l − 2)!

]1/2

−2alm Y ml (n).

(251)
The combinations

aE,lm ≡ −(2alm +−2alm) (252)

aB,lm ≡ i(2alm −−2alm) (253)

have definite parity: E remains unchanged (like the elec-
tromagnetic E-field), while B changes sign. As U van-
ishes in our coordinate system, and Q depends only on
µ, the relation

′∂ 2(Q(n) + iU(n)) = ′∂ 2(Q(n) − iU(n)) (254)

holds and so

2alm =−2alm (255)
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and hence aE,lm =2 alm and aB,lm = 0. Hence scalar
perturbations will not contribute to B modes.

For polarization, we formally integrate just like for the
temperature, but we will not use partial integration to
get rid of any µ’s appearing. From (218), we get

Q =
3

4
(1− µ2)

∫ τ0

0

eiµk(τ−τ0) g Cdτ. (256)

Acting twice with ′∂ on the integral solution for Q yields

∆Ẽ = −3

4

∫ τ0

0

g C ∂2
µ

[

(1− µ2)2eiµk(τ−τ0)
]

dτ

=
3

4

∫ τ0

0

dτ g C
[

1 + ∂2
x

]2 (
x2e−ixµ

)

, (257)

where x ≡ k(τ0 − τ). BTW: verifying the above might
keep you busy for half an hour, but you are invited to
check it.

D. The Multipole Spectrum

In the previous sections, we obtained an evolution
equation for the gauge invariant temperature anisotropy
M. Here, we would like to make a connection to obser-
vations.

As we have seen, the fluctuations evolve from some
initial time on. It is widely assumed that some mecha-
nism (most prominently Inflation) generated these initial
fluctuations. While we cannot hope to make predictions
about a particular initial perturbation pattern in the Uni-
verse, we might hope to be able to describe the initial
perturbations statistically. In this approach, we take the
particular pattern of hot and cold spots on the CMB sky
today as just one realization of the underlying statistics.
In other words, we assume that the part of the Universe
that we can access with our measurement is a fair sam-
ple of the Universe as a whole. For correlations of large
angular separation, this is not a particularly good ap-
proximation, because there are just not enough regions
with such large extend on the sky today that do not over-
lap and could provide independent measurements to infer
the expectation value for the Universe as a whole. This
limitation is called cosmic variance and seen on the mea-
surement errors on large scale of the CMB. In some sense,
these are no measurement errors (the instrument is much
better than the errors quoted), but our inability to infer
the correct expectation value for the entire Universe.

So we measure the temperature or polarization
anisotropy today (τ0) on earth (x0). Generally speak-
ing a spin-0 field A on the sky can be expanded in terms
of

A(x0, τ0,n) =
∑

l,m

almY
m
l (n). (258)

In what follows, we will use the relation
∫

dnY ml (n)
[

Y m
′

l′ (n)
]∗

= δmm′δll′ . (259)

Using (259), we can project out alm in Equation (258),
yielding

alm =

∫

dn[Y ml (n)]∗A(x0, τ0,n). (260)

As the particular pattern on the sky cannot be predicted,
we rather predict (and measure) correlations between dif-
ferent directions on the sky

〈A(x0, τ0,n)B(x0, τ0,n
′)∗〉 =

〈





∑

l,m

almY
m
l (n)









∑

l′,m′

bl′m′Y m
′

l′ (n′)





∗
〉

. (261)

The expectation 〈〉 on the r.h.s acts only on the alm’s.
Hence

〈A(x0, τ0,n)B(x0, τ0,n
′)∗〉 =

∑

l,l′,m,m′

〈almb∗l′m′〉 [Y ml (n)]
[

Y m
′

l′ (n′)
]∗

. (262)

If the angle n · n′ is statistically independent of orienta-
tion, i.e. it does not matter in which direction we measure
an angular correlation of a given angle, we may write

〈almb∗l′m′〉 = δll′δmm′Cl, (263)

or equivalently in this case

1

2l + 1

l
∑

m=−l

〈almb∗lm〉 = Cl. (264)

It is intuitively clear why this relation must hold in that
case: the m’s select orientation for a given multipole in
the Y ml ’s. A net correlation between different orienta-
tions would mean that some orientations are more im-
portant than others. In addition, a correlation between
different l’s would mean that there is a net cross-talk
between fluctuations on different scales. If all processes
are well described by linear perturbation theory and the
initial fluctuations didn’t cross talk then they won’t mix
coherently later on. So a δll′ is in order. Please keep in
mind that this may not be true and must always be jus-
tified by observations. For instance non-linearities dur-
ing inflation would couple modes. Measuring the degree
to which (263) holds therefore provides important clues
about the physics of inflation. Plugging (263) into (262)
(and using the relation (D2)) yields

〈A(n)B(n′)∗〉 =
∑

l

Cl

l
∑

m=−l

Y ml (n) [Y ml (n′)]
∗

=
2l+ 1

4π

∑

l

ClPl(n · n′), (265)

where we have suppressed the arguments (x0, τ0) of A
and B. Hence, the Cl’s turn out to be the coefficients of
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a Legendre polynomial expansion. It is these Cl’s that
encode the two point function (provided (263) holds) and
we would like to find an expression for Cl in terms of A
and B. To this end, we note that using the Fourierde-
composition, Equation (260) becomes

alm =

∫

dn[Y ml (n)]∗
∫

d3k

(2π)3
A(k, τ0,n) exp(ikx).

(266)
As the evolution of A does not depend on the direction

of k, we may write

A(k, τ0,n) = ψini(k)A(k, τ0,n), (267)

where ψini(k) is the initial perturbation and the initial
correlation is usually cast in the ansatz

〈

ψini(k)ψini(k′)∗
〉

= (2π)3Pψ(k)δD(k − k′), (268)

where Pψ(k) is the initial power spectrum and δD(k−k′)
is the Dirac delta function.9 Please note that in cm-

beasy,

Pψ(k) =
2π2

k3
Pχ(k) (269)

, where Pχ is the power spectrum of the initial curvature
perturbation

Pχ(k) = As

(

k

k⋆

)ns−1

, (270)

and As is the intial scalar amplitude, quoted at a refer-
ence scale k⋆ (one chooses k⋆ = 0.05Mpc) and the spec-
trum is a feature-less power law with scalar spectral ns.

Using (266) and (267) to write the correlation, we get

〈almb∗lm〉 =
∫

dndn′[Y ml (n)]∗ Y ml (n′)

∫

d3k

(2π)3
d3k

(2π)3
〈

ψini(k)ψini(k′)
〉

A(k, τ0,n)B(k′, τ0,n
′)∗ei(k−k′)x.

(271)

The ansatz (268), simplifies this to

〈almb∗lm〉 =
∫

dndn′[Y ml (n)]∗ Y ml (n′)

∫

d3k

(2π)3
Pψ(k)A(k, τ0,n)B(k, τ0,n)∗, (272)

and provided that you can express A (and B) in the form
of sources

A(k, τ0,n) =

∫

dτ exp(i k µ[τ − τ0])SA(k, τ), (273)

9 Please note that for a real quantity R (such as the density con-
trast), R(−k) = R∗(k).

this becomes

Cl =
1

2l+ 1

∑

m

〈almb∗lm〉

=
1

2l+ 1

∫

d3k

(2π)3
Pψ(k)

∑

m

×
(
∫

dτdn[Y ml (n)]∗ exp(i k µ[τ − τ0])SA(k, τ)

)

×
(
∫

dτ ′dn′Y ml (n′) exp(−i k µ[τ ′ − τ0])SB(k, τ ′)

)

.

(274)

In Appendix D, we show that in our k||z system

∫

dn[Y ml (n)]∗e−iµx =
√

4π(2l+ 1)(−i)ljl(x)δ0m,
(275)

and by complex conjungation

∫

dnY ml (n)eiµx =
√

4π(2l+ 1)iljl(x)δ0m. (276)

So

Cl =
1

2l + 1

∫

d3k

(2π)3
Pψ(k)

×
(
∫

dτ
√

4π(2l + 1)(−i)ljl(k[τ0 − τ ])SA(k, τ)

)

×
(
∫

dτ ′
√

4π(2l + 1)iljl(k[τ0 − τ ])SB(k, τ ′)

)

= (4π)

∫

d3k

(2π)3
Pψ(k)

{
∫

dτjl(k[τ0 − τ ])SA(k, τ)

}

×
{
∫

dτ ′jl(k[τ0 − τ ′])SB(k, τ ′)

}

(277)

In case that A = B = ∆, we therefore get

CTTl = 4π

∫

d3k

(2π)3
Pψ(k)

∣

∣

∣

∣

∫

dτjl(k[τ0 − τ ])ST (k, τ)

∣

∣

∣

∣

2

,

(278)

In other words, the Cl’s are obtained by integrating
over Fourier modes k the initial power spectrum times
the square of the result of folding the sources with
spherical Bessel functions.10 BTW: by projecting out
the moments ∆l of the line-of-sight integral and using
equations (275), you can verify that

10 If you compare (??) to the corresponding expression in Ma &
Bertschinger [23], please keep in mind that PMa

ψ = (2π)3Pψ and

hence we seem to be off by a total factor of (2π)−6. However,
our definition of the Fourier decomposition leads to MMa

l =
Ml/(2π)3 and hence all factors of (2π) cancel.
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∆l = (2l + 1)

∫

dτjl(k[τ − τ0])ST (k, τ). (279)

For polarization, we want to quote

CEEl =
1

2l+ 1

∑

m

〈a∗E,lmaE,lm〉 (280)

and the temperature-polarization cross correlation

CTEl =
1

2l+ 1

∑

m

〈a∗T,lmaE,lm〉. (281)

For EE, we get from Equation (274) and (257) and using
again x ≡ k(τ0 − τ),

CEEl =
1

2l+ 1

∑

m

〈aE,lma∗E,lm〉

=
1

2l+ 1

(l − 2)!

(l + 2)!

∫

d3k

(2π)3
Pψ(k)

∑

m

×
∣

∣

∣

∣

3

4
dnY ml (n)

∫ τ0

0

dτ g C
[

1 + ∂2
x

]2 (
x2eixµ

)

∣

∣

∣

∣

2

,

(282)

where the factor (l−2)!
(l+2)! comes from acting twice with ′∂

(see Equation (257)). Again, we can use (275) to get rid
of the angular part

CEEl = (4π)2
(l + 2)!

(l − 2)!

∫

d3k

(2π)3
Pψ(k)

(

3

4

∫ τ0

0

dτ g C
[

1 + ∂2
x

]2 [
x2jl(x)

]

)2

(283)

The final step (which leads to a surprisingly simple result)
involves the defining relation of spherical bessel functions,
namely

j′′l +
2

x
j′l +

[

1− l(l + 1)

x2

]

jl = 0. (284)

Using this relation (do it!)11 (283) simplifies to

CEEl = (4π)2
(l + 2)!

(l − 2)!

∫

d3k

(2π)3
Pψ(k)

×
[

3

4

∫ τ0

0

dτ g C jl(x)
x2

]2

, (285)

11 The trick is to use the recursion relation whenever possible after
acting with ∂x once: using the relation, simplify (i.e. get rid of j′′l
and avoid getting even higher derivatives of jl.). Then act with
the next ∂x etc. until you have completed the (1 + ∂2

x)(1 + ∂2
x)

acting on x2jl(x).

a surprisingly elegant expression.

Again, as in the temperature case, we could write this
in terms of 12

∆E
l = (2l + 1)

√

(l − 2)!

(l + 2)!

∫ τ0

0

dτSE(k, τ)jl(x), (286)

where

SE(k, τ) =
3gC
4x2

. (287)

Repeating for convenience, we found

∆T
l = (2l + 1)

∫

dτjl(k[τ − τ0])ST (k, τ) (288)

∆E
l = (2l + 1)

√

(l − 2)!

(l + 2)!

∫ τ0

0

dτSE(k, τ)jl(x)(289)

with the sources

ST = −eκ(τ)−κ(τ0)
[

Φ̇− Ψ̇
]

+ ġ

[

Vb
k

+
3

k2
Ċ
]

+ g̈
3

2k2
C

+ g

[

1

4
Dγ
g +

V̇b
k
− (Φ−Ψ) +

C
2

+
3

2k2
C̈
]

. (290)

and

SE(k, τ) =
3gC
4x2

(291)

in terms of which the C′
ls are given by13

CTTl =
4π

(2l + 1)2

∫

d3k

(2π)3
Pψ(k)

[

∆T
l (k)

]2
(292)

CEEl =
4π

(2l + 1)2

∫

d3k

(2π)3
Pψ(k)

[

∆E
l (k)

]2
(293)

CTEl =
4π

(2l + 1)2

∫

d3k

(2π)3
Pψ(k)∆E

l (k)∆T
l (k) (294)

12 Please note that we differ by a factor of (2l+1) from the original
definition. This is due to the slightly more recent convention for
the expansion coefficients in terms of spherical harmonics which
we used.

13 Again, we differ by a factor of (2l+1)−2 which cancels the factor
of (2l + 1) squared from the ∆’s from the earlier literature, but
are in line with the more recent one.
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1. Putting it all together

As far as the CMB is concerned what one really wants
is the correlation functions, commonly quoted using the
coefficients Cl. The slow way would be to get the Cl’s di-
rectly from the (vast) multipole hierarchy of the photon
distribution via (292-294) and the multipole hierarchy
up to l ≈ 3000. In contrast, the line of sight integra-
tion gets the ∆l’s (in our case the gauge-invariantMl’s)
by folding the source term S with the spherical Bessel
functions jl. While the Bessel functions oscillate rapidly
in this convolution, the source term is most of the time
rather slowly changing. It thus suffices to calculate the
sources at few (cleverly chosen) points and interpolate
between. In order to determine the sources, one needs
to know (among other things) Dγ

g and C. Therefore, one
still needs to solve a multipole hierarchy for M and E.
However, for sufficient precision, only a few multipoles
are needed: they build up rather slowly starting from
initially shear-free conditions (Ml = 0, l > 1) due to
the tight coupling to baryons. In order to suppress trun-
cation effects, the multipole beyond the highest one in
the hierarchy is approximated by the recursion relation
of Bessel functions (see Appendix E).

VI. INITIAL CONDITIONS

To integrate the perturbation equations in k-Space, we
need initial conditions for all density perturbations, ve-
locities and in case of the neutrinos also the neutrino
shear Πν . Let us briefly write down the equations. For
photons (without the shear and higher moments, for
those wait until later)

δ̇γ = −4

3
kvγ + 4φ̇ (295)

v̇γ = k
1

4
δγ + kψ + τ−1

c (vb − vγ), , (296)

(297)

For baryons

δ̇b = −kvb + 3φ̇ (298)

v̇b = − ȧ
a
vb + c2skδb +Rτ−1

c (vγ − vb) + kψ, (299)

where a piece for momentum conservation in Thomson
scattering has been added. And the other species look
similar. These equations are supplemented by Einstein’s
equations from which we get ψ and φ which we need in
the above equations.

One usually starts in the radiation dominated regime,
where one can neglect all components but radiation and
therefore from the Friedmann equation

ȧ

a
= τ−1. (300)

Using this again in the Friedmann equation

3M2
Pa

−2

(

ȧ

a

)2

= 3M2
Pa

−2τ−2 = ρ̄, (301)

and hence

M−2
P a2ρ̄ = 3τ−2, (302)

which is exactly what we need to get the potentials Ψ
and Φ from the fluid perturbations δ, v and π using the
Einstein equations.

The standard strategy to find the relations between
δ, v and π at early times is to power expand all pertur-
bations in powers of x = kτ ≪ 1 and solve the evolution
equations plus the perturbed Einstein equations order by
order by comparing coefficients. That’s not too difficult,
just remember that Ωγ = const, and Ων = const during
radiation domination which simplifies the task.

Much more elegantly, you can verify that using scaled
variables for the velocities and the shear

ṽ ≡ v

x
(303)

and

Π̃ ≡ Π

x2
, (304)

one can write the system of differential equations as a ma-
trix equation for U ≡ (δb, δγ , δc, . . . ṽb, . . . , Π̃ν), namely

d

d lnx
U = A(x)U , (305)

where A(x) is only mildly x dependent. Let’s do this for
the velocity equation of the photons

d

dx
ṽγ =

d

dx

vγ
x

= −vγ
x2

+ x−1 d

dx
vγ (306)

d

dx
vγ =

dτ

dx

d

dτ
vγ =

1

4
δγ + ψ (307)

d

dx
ṽγ = − ṽγ

x
+ x−1(

1

4
δγ + ψ) (308)

x
d

dx
ṽγ =

d

d lnx
ṽγ = −ṽγ +

1

4
δγ + ψ (309)

In much the same manner, one can re-write all the per-
turbation equations. In general, for x → 0, the right
hand sides are time independent to first order. A mild
x dependence is hidden in ψ which depends on Ωc etc.
But those quantities are small at early times. The nice
thing about a matrix formulation is that you can easily
count solutions, here called modes, because the general
solution to the differential equation is

U(x) =
∑

i

ci

(

x

x0

λ

i

)

Ui, (310)
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where λi is the eigenvalue to the eigenvector Ui. Only
the modes with largest λi will be relevant after some
evolution. Those are the ones that are usually specified.

But back to our slightly x dependend A: It is clever to
Taylor expand

A(x) = A0 + A1x+ . . . (311)

Making the same split for U ,

U = U0 + xU1, (312)

one gets from the constant pieces A0 and U0 from (305)

A0U0 = 0, (313)

which is relativly simple to solve. The next to leading or-
der corrections (which are rather unimportant) are then
given by simple matrix multiplication

U1 = −(A0 − 1)−1A1U0 (314)

No matter how you get the solution to the differential
equation system, you will find that

ṽγ =
1

4
δ + ψ (315)

and several more such relations. As these relations come
from the equations of motion, they need to be fulfilled by
all modes.

As far as the density contrasts δ are concerned, the
equations of motion only demand that to leading order
δ = const. A specific mode is now usually selected by
choosing the δ’s. The way to classify this is by using

Sa:b ≡
δa

1 + wa
− δb

1 + wb
, (316)

which is the entropy perturbation between the fluids a
and b. The adiabatic mode is the one where all S vanish.
I.e. δγ = δnu , δb = δc = 3

4δγ . In addition to this single
adiabatic mode, there is one so called isocurvature mode
per fluid (slight subtlty: this is only true for a fluid with
Γ = 0). The iso-cdm mode, for example is given by the
requirement that

Sγ:cdm 6= 0, (317)

but all other species are adiabatic and that the total cur-
vature perturbation χ vanishes. As at early times χ ∝ Ψ,
this simply means that the gravitational potential should
vanish for such a mode.

A general initial condition is then simply a linear su-
perposition of such modes. Usually the only relevant one
is the adiabatic.

VII. TIGHT COUPLING

At early times, the photon and baryon fluids are
strongly coupled via Thomson scattering. The mean free

path between collisions of a photon τ−1
c ≡ aneσT is given

in terms of the number density of free electrons ne, the
scale factor of the Universe a and Thomson cross section
σT . During early times, Hydrogen and Helium are fully
ionized, hence ne ∝ a−3 and τc ∝ a2. During Helium and
Hydrogen recombination, this scaling argument does not
hold (see Figure 4). To avoid these periods we resort
to the correct value of τ̇c computed beforehand instead
of using τ̇c = 2 ȧaτc for redshifts z < 104. The effect of
assuming that the scaling holds would however be con-
siderably less than 1% on the final CMB spectrum.

To discuss the tight coupling regime, let us recapitulate
the evolution equations for baryons and photons. We do
this in terms of their density perturbation δ and bulk ve-
locity v. For photons, we additionally consider the shear
σγ and higher multipole momentsMl of the intensity as
well as polarization multipoles El. Our variables are re-
lated to the ones of [23] by substituting v → k−1θ. In
longitudinal gauge, baryons evolve according to

δ̇b = −kvb + 3φ̇ (318)

v̇b = − ȧ
a
vb + c2skδb +Rτ−1

c (vγ − vb) + kψ, (319)

where R ≡ (4/3)ργ/ρb, the speed of sound of the baryons
is denoted by c2s and φ and ψ are metric perturbations.
By definition, R ∝ a−1 (provided no baryons are con-
verted to other forms of energy) and at the time of inter-
est, c2s ∝ Tb = Tγ ∝ a−1 (for more detail see e.g. [23]).
Photons evolve according to the hierarchy

δ̇γ = −4

3
kvγ + 4φ̇ (320)

v̇γ = k

(

1

4
δγ − σγ

)

+ kψ + τ−1
c (vb − vγ), (321)

5

2
σ̇γ = Ṁ2 = −τ−1

c

(

9

10
M2 +

√
6

10
E2

)

+k

(

2

3
vγ −

3

7
M3

)

(322)

Ṁl = k

(

l

2l− 1
Ml−1−

l + 1

2l+ 3
Ml+1

)

−τ−1
c Ml,(323)

where the E-type polarization obeys

Ė2 = −k
√

5

7
E3 − τ−1

c

(

4

10
E2 +

√
6

10
M2

)

(324)

Ėl = −τ−1
c El

+k

(√
l2 − 4

2l− 1
El−1 −

√
l2 + 2l − 3

2l + 3
El+1

)

.(325)

The overwhelmingly large value of τ−1
c precludes a

straight forward numerical integration at early times:
tiny errors in the propagation of vb and vγ lead to strong
restoring forces. This severely limits the maximum step
size of the integrator and hence the speed of integra-
tion. Ever since Peebles and Yu [34] first calculated the



25

0 2×10
-4

4×10
-4

6×10
-4

8×10
-4

1×10
-3

1.2×10
-3

a

10
-6

10
-4

10
-2

10
0

10
2

FIG. 4: Relative deviation of τ̇c from the naive scaling rela-
tion: [τ̇c − 2(ȧ/a)τc]/[2(ȧ/a)τc] (solid line). We also depict
the product τc

ȧ
a

(dashed line) vs. the scale factor a, which
compares the mean free path to the expansion rate of the
Universe. In the cosmological model used, matter radiation
equality is at aequ = 3 × 10−4 and last scattering defined by
the peak of the visibility function is at als = 9 × 10−4. The
deviation around a = 2 × 10−4 is from Helium recombina-
tion and is practically negligible, because the visibility is still
small during that period. At later times, however the devia-
tion is due to the onset of Hydrogen recombination and takes
on substantial values before last scattering.

CMB fluctuations, one resorts to the so called tight cou-
pling approximation. This approximation eliminates all
terms of order τ−1

c from the evolution equations assum-
ing14 tight coupling at initial times. Our discussion will
closely lean on that of [23], taking a slightly different
route. In contrast to [23], however, we will keep all terms
in the derivation. Like [23], we start by solving (321) for
(vb − vγ) and write v̇γ = v̇b + (v̇γ − v̇b) to get Equation
(71) of [23]

(vb − vγ) = τc

[

v̇b + (v̇γ − v̇b)− k
(

1

4
δγ − σγ + ψ

)]

.

(326)
Substituting Equation (319) for v̇b into this Equation
(326), one gets Equation (72) of [23]

(1 +R)

τc
(vb − vγ) = − ȧ

a
vb + (v̇γ − v̇b)

+ k

(

c2sδb −
1

4
δγ + σγ

)

. (327)

14 There is no restoring force left, as we will see. Any error in
the approximation is therefore amplified over time. One could,
in principle retain a fraction of the restoring force to eliminate
small numerical errors. However, this is not necessary in practice
and we therefore will not discuss this possibility further.

Deriving the LHS of this Equation (327) yields

˙lhs =
(1 +R)

τc
(v̇b − v̇γ)

−(vb − vγ)
[

ȧ

a

R

τc
− 1 +R

τc

τ̇c
τc

]

(328)

∗
=

(1 +R)

τc
(v̇b − v̇γ)−

2 + 3R

τc

ȧ

a
(vb − vγ),(329)

where the last line holds provided the assumed scaling
of τc is correct (see also Figure 4). All in all, deriving
Equation (327) with respect to conformal time yields

(1 +R)

τc
(v̇b − v̇γ)−

[

ȧ

a

R

τc
− 1 +R

τc

τ̇c
τc

]

(vb − vγ)

= (v̈γ − v̈b)−
ä

a
vb +

(

ȧ

a

)2

vb −
ȧ

a
v̇b

+ k

(

ċ2sδb + c2s δ̇b −
1

4
δ̇γ + σ̇γ

)

(330)

Multiplying Equation (319) by ȧ
a to substitute ȧ

a v̇b in
(330), we get

(1 +R)

τc
(v̇b − v̇γ) =

[

ȧ

a

R

τc
− 1 +R

τc

τ̇c
τc

]

(vb − vγ)

+ (v̈γ − v̈b)−
ä

a
vb + 2

(

ȧ

a

)2

vb − 2
ȧ

a
c2skδb

+ k

(

c2s δ̇b −
1

4
δ̇γ + σ̇γ

)

+
ȧ

a
kψ (331)

where we have used ċ2s = − ȧac2s. We could stop here,
however it is numerically better conditioned to write

2
(

ȧ
a

)2
vb = 2 ȧa

(

ȧ
avb
)

where ȧ
avb is obtained from solv-

ing Equation (327) for ȧ
avb. This expression for

(

ȧ
a

)2
vb

is then plugged into Equation (331) to yield the final re-

sult for the slip (denoted by V̇)

V̇ ≡ (v̇b − v̇γ) =

{

[

τ̇c
τc
− 2

1 +R

]

ȧ

a
(vb − vγ)

+
τc

1 +R

[

− ä

a
vb + (v̈γ − v̈b) + k

(

1

2
δγ − 2σγ + ψ

)

+ k

(

c2s δ̇b −
1

4
δ̇γ + σ̇γ

)]

}/

{

1 + 2
ȧ

a

τc
1 +R

}

. (332)

or alternatively, at times when the scaling of τc holds,

V̇ ≡ (v̇b − v̇γ) =

{

2R

1 +R

ȧ

a
(vb − vγ)

+
τc

1 +R

[

− ä

a
vb + (v̈γ − v̈b) + k

(

1

2
δγ − 2σγ + ψ

)

+ k

(

c2s δ̇b −
1

4
δ̇γ + σ̇γ

)]

}/

{

1 + 2
ȧ

a

τc
1 +R

}

. (333)
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This Equation (332) (or more obviously (333)) is essen-
tially Equation (74) of [23] up to some corrections. Hav-
ing kept all terms, we note that our Equation (332) is ex-
act. To obtain Equations of motion for vb and vγ during
tight coupling, we plug our result for (v̇b− v̇γ), Equation
(332) into the RHS of Equation (326) and this in turn
into the RHS of Equations (319) and (321). This yields

v̇b =
1

1 +R

(

kc2sδb −
ȧ

a
vb

)

+ kψ

R

1 +R

[

k

(

1

4
δγ − σγ

)

+ V̇
]

v̇γ =
R

1 +R
k

(

1

4
δγ − σγ

)

+ kψ

+
1

1 +R

(

kc2sδb −
ȧ

a
vb − V̇

)

(334)

Up to now, we have made no approximations. Conceptu-
ally, we would like to separate the question of tight cou-
pling for the velocities vγ and vb from any approximations
of the shear σγ which we make below. As far as the tight

coupling of the velocities and hence the slip V̇ is con-
cerned, our approximation is to drop the term (v̈γ − v̈b).
We reserve the expression ’tight coupling’ for the validity
of our assumption that (v̈γ − v̈b) can be neglected in the

slip V̇. As a criterion, we use kτc <
2
10 for the photon

fluid. When this threshold is passed, we use Equation
(321) to evolve the photon velocity. Likewise, for the
baryons, we use max(k, ȧa )τc/R < 4

100 . Again, when this
limit is exceeded, we switch to Equation (319). In any
case, we switch off the approximation ∆τ = 30Mpc be-
fore the first evaluation of the CMB anisotropy sources
(see below). For a Λ−CDM model, this is at τ ≈ 200Mpc.

To obtain high accuracy during tight coupling, it is
crucial to determine σγ . Not so much for the slip (332),
but more so for the Equations of motion (334): the shear
reflects the power that is drained away from the velocity
in the multipole expansion. This leads to an additional
damping for photons. For the shear, we distinguish two
regimes: an early one, where we use a high-order analytic
approximation and a later one in which the full multipole
equations of motion are used.

Since τc ≪ 1 at early times, one gets from multiply-
ing (323) by τc thatMl ≈ (kτc)Ml−1l/(2l− 1). Hence,
higher multipoles are suppressed by powers of kτc. Ap-
proximating this situation by Ṁ3 = Ė3 =M4 = E4 = 0
in Equations (323) and (325), we get

M3 =
3

5
(kτc)M2

E3 =
1√
5

(kτc)E2. (335)

Likewise, we obtain a leading order estimate of the
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FIG. 5: The quadrupole M2 obtained by a full numerical
evolution for a mode of k = 1Mpc−1 (dotted line). The solid
(blue) line depicts the deviation of our analytic result, Equa-
tion (338) from the numerical value. For this mode, we nor-
mally switch to the full numerical evolution at τ = 65Mpc
when the analytic estimate still holds very well.

quadrupoles by temporarily setting Ṁ2 = Ė2 = 0,

5

2
σl.o.γ =Ml.o.

2 =
8

9
(kτc) vγ (336)

El.o.2 = −
√

6

4
Ml.o.

2 . (337)

Inserting Equations (335) into the quadrupole Equations

(322) and (324) and using Ṁ2 = Ṁl.o.
2 and Ė2 = Ėl.o.2

as an estimate for the derivative, we get the desired ex-
pression for the shear

5

2
σγ =M2 =

8

9
kτcvγ

[

1− 29

70
(kτc)

2

]

− 11

6
τcṀl.o.

2 ,

(338)

which is precise to order τc and (kτc)
2

(see also Figure
5). The inclusion of the octupole reduces the power of
M2 as expected.

In practice, we use Ml.o.
2 to calculate the slip V̇ l.o to

leading order. This in turn is used to calculate v̇l.oγ . From

v̇l.oγ , we get ˙Ml.o.
2 which in turn is needed to obtain the

accurate value ofM2 according to Equation (338). The
difference ∆M2 ≡ M2 −Ml.o.

2 is then used to promote

V̇ l.o → V̇ as well as v̇l.o.γ → v̇γ . Finally, having M2 and

V̇ at hand, we get v̇b from Equation (334).
When this approximation breaks down (sometimes

long before tight coupling ends), we switch to the full
multipole evolution equations. Tight coupling is appli-
cable for kτc ≪ 1. Equation (338) on one hand goes to
higher order in kτc, namely, as Ml.o.

2 is already of order

(kτc), our results incorporates quantities up to (kτc)
3
. In

terms of τc alone, however, Equation (338) is accurate to
order τc (kτc) only. Hence, when τc reaches ∼ 10−1Mpc,
our analytic expression is not sufficiently accurate any-
more. This signals the breakdown of our assumption that
Ṁ3 = Ė3 = 0 (and likewise for higher multipoles). Luck-
ily, it is not critical to evolve the full multipole equations
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even when τ−1
c is still substantial. This is in strong con-

trast to the coupled velocity equations which are far more
difficult to evolve at times when the analytic quadrupole
formulae breaks down. In essence, distinguishing be-
tween tight coupling and the treatment of the quadrupole
evolution is the key to success here.

VIII. A CURE FOR RAPID OSCILLATIONS

While the gain in speed from the method described in
the last section is impressive, high k-modes would still
require long integration times. To see this, one must
consider the evolution of the photon and neutrino multi-
pole hierarchies.15 Our discussion is aimed at small scale
modes which are supposed to be well inside the horizon,
i.e. kτ ≫ 1.

Before last scattering, (kτc) ≪ 1 and Ml ∝ (kτc)
l−1

for l > 1 and so the influence of higher multipoles on
δγ and vγ may be neglected to first order. In the small
scale limit that we are interested in, δγ and vγ are oscil-
lating according to δγ ∼ cos(cγskτ) and vb ∼ sin(cγskτ).
As the speed of sound of the photon-baryon fluid is
cγs ≈

√

1/3, we encounter oscillations with period ∆τ ≈
(2π)/(kcγs ) ≈ 11/k. Estimating the time of last scatter-
ing with τls ≈ 280Mpc, we see that a mode will per-
form τls/∆τ ≈ 25kMpc oscillations until last scatter-
ing. Yet, there are many more oscillations after last
scattering which we turn to now. After last scatter-
ing, τ−1

c is negligible and the multipole hierarchy of pho-
tons effectively turns into recursion relations for spheri-
cal Bessel functions. The same is true for neutrino multi-
poles which roughly evolve like spherical Bessel functions
from the start. Spherical Bessel functions have a lead-
ing order behavior similar to jl(kτ) ∝ (kτ)−3/2 sin(kτ)
for kτ ≫ 1 and kτ > l. The period is then given by
∆τ = (2π)/k. The time passed from last scattering to
today, is τ0 − τls ≈ τ0 ≈ 14000Mpc for current cosmo-
logical models. So we encounter ∼ τ0/∆τ ≈ kτ0/(2π)
=2200 × kMpc oscillations. Numerically, each oscilla-
tion necessitates ∼ 20 . . .40 evaluations of the full set
of evolution equations. We therefore estimate a total of
∼ 6× 104× kMpc evaluations induced by the oscillatory
nature of the solution. So a mode k = 5Mpc−1 needs
∼ 3× 105 evaluations – a substantial number.

Since the introduction of the line-of-sight algorithm,
what one really needs for the CMB and LSS are the low
multipoles up to the quadrupoles. In fact, the sources for

15 We include the monopole δγ and dipole vγ here.
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FIG. 6: The quadrupole as a function of conformal time τ
for a mode of k/h = 0.5Mpc−1 and h = 0.7. The multipole
expansion for photons and neutrinos has been truncated at
lmax = 200 (solid line) and lmax = 8 (dashed line) respec-
tively. In the case of lmax = 8, power reflected back from the
highest multipole lmax renders the further evolution of the
quadrupole unphysical. Indeed the magnitude of the physi-
cal oscillations are much smaller than the reflected ones. For
lmax = 200, reflection effects dominate the evolution from
τ ∼ 1300Mpc on. In both cases, the effect of shear of realistic
particles on the potentials φ and ψ is negligible by the time
the truncation effects set in.

temperature and polarization anisotropies are given by

ST = eκ(τ)−κ(τ0)
[

φ̇+ ψ̇
]

+ ġ

[

vb
k

+
3

k2
Ċ
]

+ g̈
3

2k2
C

+ g

[

1

4
δγ +

v̇b
k

+ (φ+ ψ) +
C
2

+
3

2k2
C̈
]

(339)

and

SE =
3 g

2
C (k [τ0 − τ ])−2

(340)

Here, g ≡ κ̇ exp(κ(τ) − κ(τ0)) is the visibility with
κ̇ ≡ τ−1

c the differential optical depth and C ≡ (M2 −√
6E2)/10 contains the quadrupole information. The

role of higher multipole moments is therefore reduced to
draining power away from δγ , vγ and M2 and E2 (and
likewise for neutrinos). As the oscillations are damped
and tend to average out, it suffices to truncate the mul-
tipole hierarchy at low l ∼ 8 . . . 25 in the line-of-sight
approach. This is one of the main reasons for its su-
perior speed. Truncating the hierarchy, though leads to
unwanted reflection of power from the highest multipole
lmax. As one can see in Figure 6, the power reflected
back spoils the mono frequency of the oscillations. At
best, the further high frequency evolution of the multi-
poles is wrong but negligible, because the oscillations are
small and average out. This is indeed the case in the
cmbfast/camb/cmbeasy truncation.

We will now show that the overwhelming contribution
from δγ and C (and its derivatives) of some small scale

mode k > 10−1Mpc−1 towards CMB fluctuations comes
from times before re-ionization. To do this, let us find an
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FIG. 7: Photon density contrast δγ (upper solid [blue] line),
vγ (lower solid [black] line) and quadrupole M2 ≡ (5/2)σγ
(dashed dotted [indigo] line) as a function of conformal time
τ before and after re-ionization at τ ≈ 2800Mpc. The [green]
upper dashed line is the analytic estimate for δγ , Equation
(344) and the lower [red] dashed line is the analytic esti-
mate for vγ , Equation (345). The analytic estimate of δγ
falls almost on top of the correct numerical result. Please
note the different scales for δγ and vγ and M2 respectively.
The quadrupole is roughly of the same order as vγ . The mode
shown is for k/h = 5Mpc−1 where h = 0.7 and the optical
depth to the last scattering surface is τopt = 0.3. Please note
that we truncated the multipole hierarchy at sufficiently high
lmax = 2500. With insufficient lmax, rapid unphysical oscilla-
tions of considerably higher amplitude would be present.

analytic approximation to the photon evolution after de-
coupling and in particular during re-ionization. Without
re-ionization, and neglecting M2 as well as using φ ≈ ψ
and φ̈ ≈ 0, the equation of motions (320) and (321) can
be cast in the form

δ̈γ = −4

3
k2

(

1

4
δg + ψ

)

, (341)

which has the particular solution

δγ = −4ψ. (342)

As the oscillations of vγ and higher multipoles are

damped roughly ∝ (kτ)−3/2, we see that to good ap-
proximation, δγ = −4ψ after decoupling (and before re-
ionization) and all higher moments vanish.

During re-ionization, τ−1
c reaches moderate levels

again. As vb has grown substantial during matter dom-
ination, the photon velocity vγ starts to evolve towards
vb. Any increase in magnitude of vγ , is however swiftly
balanced by a growth of δγ according to Equation (320).
So roughly speaking, during re-ionization, we may ap-
proximate

0 ≈ v̇γ ≈ τ−1
c vb + k

[

ψ +
1

4
δγ

]

, (343)

where we omit the tiny term τ−1
c vγ and (a bit more wor-

risome) M2. Hence, during re-ionization, the particular

solution to the equation of motion is

δγ ≈ −4ψ − 4
vb
kτc

. (344)

This approximation holds well (see Figure 7) and oscilla-
tions on top of it are again damped and tend to average
out. Deriving the above (344), one gets

vγ ≈
3

k

(

2ψ̇ − v̇b
kτc

+
vb
kτc

τ̇c
τc

)

. (345)

Please note that during the onset of re-ionization, τ̇c =
2 ȧaτc does not hold and it depends on the details of the re-
ionization history to what peak magnitude vγ will reach.
Both cmbfast and cmbeasy implement a swift switch
from neutral to re-ionized and it is likely that both serve
as upper bounds on any realistic contribution of higher
k modes towards the CMB anisotropies at late time. In
other words: as the effects are negligible for the currently
implemented re-ionization history, they will be even more
so for the real one. Going back on track, we give an
estimate for the amplitude ofM2: assuming Ṁl ≈ 0 and
τ−1
c Ml ≈ 0, one gets from the equations of motion (323)

that neighboring multipolesMl are of roughly the same
amplitude. So the amplitude of M2 and hence that of
the shear σγ is related to that vγ , i.e. we find the bound

max(|σγ |) ∼ max(|vγ |), (346)

where it is understood that the maximum is taken of
full oscillations. After radiation domination, the metric
potential ψ is given by

ψ ∼ a2ρcδc

2M2
Pk

2
, (347)

where MP is the reduced Plank mass, ρc is the energy
density of cold dark matter and δc is its relative density
perturbation. For modes that enter the horizon during
radiation domination, δc is roughly independent of scale
(we omit the overall dependence on the initial power spec-
trum in this argument). Hence, ψ ∝ k−2 during matter
domination and we see that ψ → 0 and so δγ → 0 ac-
cording to Equation (344). Provided that τ̇c/τc remains
reasonable, vγ and hence M2 and E2 will remain negli-
gible as well during re-ionization and afterwards.

For the LSS evolution, neglecting the shear is a good
approximation because Einstein’s Equation gives

12

5
a2 [p̄γM2 + p̄νN2] = M2

Pk
2(φ− ψ), (348)

where N2 is the neutrino quadrupole. As p̄γ,ν ∝ a−4,
the difference of the metric potentials vanishes for small
scale modes, i.e. at least

(φ− ψ) ∝ (ka)−2, (349)

where we have neglected the decay of the quadrupoles
M2 and N2 which give an additional suppression (see
also Figure 8).
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FIG. 8: Cold dark matter power spectrum using the old gauge
invariant implentation (dashed line) and the new strategy
in gauge invariant variables (thin solid line). The density
contrast shown is the gauge invariant combination Dcdm

g ≡

δlongit. − 3φ. The mean deviation between the curves is
≈ 0.02%. To guide the eye, we also depict the synchronous
gauge power spectrum [thin gray dotted line]. The difference
at large scales is due to gauge ambiguities. Again, we used
h = 0.7.

As the effect of δγ and M2 and E2 at late times for
small scale modes can be neglected (or very well approx-
imated in the case of δγ), we see that there is really no
need to propagate relativistic species at later times. The
key to our final speed up is therefore to avoid integrating
these oscillations after they have become irrelevant. We
do this by multiplying the RHS of equations (320 - 325) as
well as the corresponding multipole evolution equations
for relativistic neutrinos by a damping factor Γ. Defin-
ing x ≡ kτ , we employ Γ = {1 − tanh([x − xc]/w)}/2
with the cross over xc = max(1000, kτdilute), where
a(τdilute) = 5aequ and aequ is the scale factor at matter-
radiation equality. This later criterion ensures that the
contribution of relativistic species to the perturbed en-
ergy densities is negligible: from equality on, δc ∝ a,
whereas δγ decays and ρc/ρrel ∝ a−1 so at least

δcρc : δγργ ∝ a−2, (350)

and similar arguments hold for neutrinos. Hence, from
τdilute on, one can safely ignore this contribution. The
former criterion xc < 1000 ensures that oscillations have
damped away sufficiently. The cross-over width w is
rather uncritical. We used w = 50 to make the transition
smooth. Typically, τdilute ≈ 400Mpc and one therefore
has to follow only a fraction of τdilute/τ0 oscillations as
compared to the standard strategy. This corresponds to
a gain in efficiency by a factor τ0/τdilute ≈ 30.

To compute the sources ST and SE , we use the expres-

sions

δγ = Γδnumeric.γ − 4(1− Γ)

[

ψ +
vb
kτc

]

(351)

C = ΓCnumeric., (352)

Ċ = ΓĊnumeric., (353)

C̈ = ΓC̈numeric., (354)

which interpolate between the numerical value before
Γ-damping and the analytic approximations, Equation
(344) and C ≡ 0. Setting C ≡ 0 is an approximation to
the small value of the quadrupoles averaged over several
oscillations.

For general dark energy models with rest frame speed
of sound c2s > 0 of the dark energy fluid, the dark energy
perturbations well inside the horizon oscillate with high
frequency. In this case, one needs to suppress the damped
oscillations of the dark energy fluid perturbations much
like those of photons to achieve faster integration.

Appendix A: From Rest to FRW frame

In longitudinal gauge, the transformation matrices re-
lating FRW to Minkowski rest frame (denoted by )̃ are:

(

∂x̃0

∂x0

)

= a(1 + ΨQ) (A1)

(

∂x̃i

∂x0

)

= −a vQi (A2)

(

∂x̃0

∂xi

)

= −a vQi (A3)

(

∂x̃i

∂xj

)

= a(1 + ΦQ)δij . (A4)

and
(

∂x0

∂x̃0

)

= a−1(1 −ΨQ) (A5)

(

∂xi

∂x̃0

)

= a−1 v Qi (A6)

(

∂x0

∂x̃i

)

= a−1 v Qi (A7)

(

∂xi

∂x̃j

)

= a−1(1 − ΦQ)δij. (A8)

To give an example, the energy momentum tensor trans-
forms as

T̃ µν = Tαβ

(

∂x̃β

∂xν

)(

∂xµ

∂x̃α

)

(A9)

Using these transformations, we get

p̃0 = a(1 + Ψ)p0 − a v Qini (A10)

= a p (1 + Φ− vQini) (A11)

= a p (1 + Φ + ivµQ). (A12)
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This little term above will later give us the Doppler shift.

Exercise 17: Obtain an expression for ∆P from (A12).
Hint: use µ as the direction cosine for n and λ as the
direction cosine for n′. The velocity to transform from
FRW to the Minkowski rest frame is just the velocity
of the electrons vb. In addition, p̃0 = p̃′0, because
Thomson scattering is elastic in the electron rest frame.

The solution to this exercise is given in the main text.

Appendix B: Gauge invariant temperature

perturbation

Unfortunately, the temperature perturbation is not
gauge invariant. In principle, this is no problem, for
the data is always quoted in terms of multipole moments
l = 2, . . . which are gauge independent.16 Yet, it takes
only a little more work to find a gauge invariant temper-
ature anisotropy so let’s do it! The distribution function
is a scalar and hence does not transform under coordinate
transformations. To complete the gauge transformation,
however, we still have to go back from the new argument
x̃ to the old one using a Taylor expansion. There is a
small complication, though: the argument pµ transforms
under the coordinate transformation xµ → x̃µ = xµ + ǫµ

according to

p̃i = pi + ǫi,µp
µ (B1)

and we have to go back from p̃ to the old momentum p
just like we do for the spatial coordinates:

f̃(xµ, pi) = f(xµ, pi)− ǫµ∂µf −
∂f

∂pi
δpi (B2)

= f(xµ, pi)− ǫµ∂µf −
∂f

∂pi
ǫi,νp

ν (B3)

= f(xµ, pi)− ∂f

∂P
∂P
∂a

ȧ ǫ0 (B4)

−f̄ ′a2ni

[

L̇Qip+ LQi,jn
jp
]

(B5)

= f(xµ, pi)− 2
ȧ

a
f̄ ′PTQ (B6)

−f̄ ′P
[

niQ
iL̇+ LninjQi,j

]

. (B7)

(B8)

From (B2), we can then read off the transformation law
for F :

F̃ = F − f̄ ′P
[

2
ȧ

a
TQ+ niQ

iL̇+ LninjQi,j

]

. (B9)

16 The monopole and dipole are gauge dependent but not of interest
to us right now.

Using F = −P f̄ ′∆ and the definition for the direction
cosine µ, we see that ∆ transforms as

∆̃ = ∆ + 2
ȧ

a
TQ+ niQ

iL̇+ LninjQi,j (B10)

= ∆ + 2
ȧ

a
TQ− iµQL̇+ kµ2LQ. (B11)

We easily construct a gauge invariant temperature per-
turbation

M≡ ∆ + 2

(

HL +
1

3
HT

)

+ iµk−1ḢT − µ2HT , (B12)

which reduces to

M(τ,x,n) = ∆(τ,x,n) + 2Φ(τ)Q(x) (B13)

in longitudinal gauge.

Appendix C: The energy momentum tensor from

the distribution

The connection between the distribution language and
the fluid language is given by means of [27]

T µν =

∫ √−g p
µpν
|p0|

f(p, x) d3p, (C1)

where for the scalar case and in longitudinal gauge,√
g, p0 and pi are given by equations (124- 126). Let

us take a closer look at T 0
0. To warm up (and because

we will need the result for the perturbed case), we con-
sider the background only, neglecting all perturbation
variables in the formulae for p0 and σγ . So

−ρ̄ = T̄ 0
0 =

∫ √−g p̄
0p̄0

|p̄0|
f(p, x) d3p (C2)

= −a4

∫

p̄0f̄(P) d3p (C3)

= −a4

∫

pf̄(P) d3p (C4)

= −a4

∫

p3f̄(P) dpdΩ (C5)

= −4π a4

∫

p3f̄(P) dp (C6)

= −4π a−4

∫

P3f̄(P) dP . (C7)
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The total (background and perturbed part) is

T 0
0 =

∫

σγ
p0 p0

|p0|
f(p, x) d3p (C8)

= −
∫

σγp
0 f d3p (C9)

= −a4

∫

(1 + Ψ + 3Φ)p0 f d3p (C10)

= −a4

∫

(1 + Ψ + 3Φ)p(1−Ψ + Φ)f d3p (C11)

= −a4

∫

(1 + 4Φ)p f p2dp dΩ (C12)

= −a−4

∫

P3 f(1 + 4Φ) dP dΩ. (C13)

From this, we can readily read off the perturbation

−δT 0
0 = a−4

∫

[

4Φ f̄(P) + F (τ,x,P ,n)
]

P3dP dΩ

= a−4

∫

[

4Φ f̄(P)− P f̄ ′∆(τ,x,n)
]

P3dP dΩ

= a−4

∫

[

4ΦP3 f̄(P)− P4f̄ ′∆(τ,x,n)
]

dP dΩ

= a−4

∫

P3f̄ [4Φ + 4∆(τ,x,n)] dP dΩ

= a−4

∫

P3f̄ [4Φ + 4M(τ,x,n)− 8Φ] dP dΩ

= a−4

∫

P3f̄(P) 4 [M(τ,x,n)− Φ(τ)Q] dP dΩ

= a−4

∫

P3f̄(P)dP 4

∫

M(τ,x,n)− Φ(τ)Q dΩ,

where we have integrated by parts in line 3 to get rid of
f̄ ′. Using our background result T̄ 0

0, leads to

−δT 0
0 =

ρ̄

4 π
4

∫

M(τ,x,n)− Φ dΩ

=
ρ̄

π

[

−4πΦ +

∫

M(τ,x,n)

]

dΩ

= −4ρ̄Φ +
ρ̄

π

∫

M(τ,x,n) dΩ

(C14)

Finally, we know that δρ = −δT 0
0 and hence

δ =
δρ

ρ̄
(C15)

= −δT
0
0

ρ̄
(C16)

= −4Φ +
1

π

∫

M(τ,x,n) dΩ, (C17)

where as always in this chapter, δ is in longitudinal
gauge. As w = 1/3 for a radiation fluid, we can read
off a simple expression for the gauge invariant density

perturbation Dγ
g . Hence, the calculation above and

similar calculations for T i0 and T ij yield

Dγ
g =

1

π

∫

MdΩ (C18)

Vγ =
3i

4π

∫

µMdΩ (C19)

Πγ = − 3

π

∫

1

2

(

3µ2 − 1
)

MdΩ. (C20)

Appendix D: Useful Expressions for Y ml ’s, jl’s and

others

Spherical harmonics are orthogonal:

∫

dnY ml (n)
[

Y m
′

l′ (n)
]∗

= δmm′δll′ . (D1)

A Legendre Polynomial can be decomposed according to

Pl(n · n′) =
4π

2l+ 1

l
∑

m=−l

Y ml (n) [Y ml (n′)]
∗
. (D2)

A plane wave can be composed

e−iµx =
∑

l

(−i)l(2l+ 1)jl(x)Pl(µ) (D3)

Using these last two decompositions and orthogonality,
we can show that

∫

dn [Y ml (n)]
∗
e−iµx (D4)

=

∫

dn [Y ml (n)]∗
∑

l′

(−i)l′(2l′ + 1)jl′(x)Pl′ (µ) (D5)

=

∫

dn [Y ml (n)]
∗
∑

l′

(−i)l′(2l′ + 1)jl′(x) (D6)

× 4π

2l′ + 1

l′
∑

m′=−l′

Y m
′

l′ (n)
[

Y m
′

l′ (k̂)
]∗

(D7)

= 4π
∑

l′

(−i)l′jl′(x)
l′
∑

m′=−l′

[

Y ml′ (k̂)
]∗
∫

dn [Y ml (n)]
∗
Y m

′

l′ (n)

= 4π(−i)ljl(x)
[

Y ml (k̂)
]∗

. (D8)

If z||k, then Y ml (k̂) = 0 for all m 6= 0 and as Y 0
l (ẑ) =

√

2l+1
4π Pl(1) =

√

2l+1
4π , this yields

∫

dn [Y ml (n)]
∗
e−iµx =

√

4π(2l+ 1)(−i)ljl(x) (D9)
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Symbol Meaning

Ml Photon multipole, l = 0 . . . 7

El Photon polarization multipole, l = 2 . . . 7

Nl Neutrino multipole, l = 0 . . . 9

Db
g Density perturbation for baryons

D c
g Density perturbation for cold dark matter

Vb Velocity of baryons

Vc Velocity of cold dark matter

Dγ
g Density perturbation for photons (from M0)

Dν
g Density perturbation for massless neutrinos (from N0)

Vγ Velocity of photons (from M1)

Vν Velocity of neutrinos (from N1)

Πγ Photon shear (from M2)

Πν Neutrino shear (from N2)

TABLE I: Perturbations propagated through conformal time
(upper half). Quantities that are not propagated them-
selves, but derived algebraically from quantities propagated
are grouped in the lower half.

Appendix E: Full set of Perturbation Equations

In this appendix, we summarize the formulae needed to
evolve the gauge-invariant perturbation variables listed
in Table I.

1. Scalar fluctuations

a. The Metric Potentials Φ and Ψ

In order to solve Einstein’s equations, we first use
Equation (106) in the form

−Ψ = Φ + M−2
P k−2a2p̄ Π̄, (E1)

where p̄Π̄ ≡ p̄γΠγ + p̄νΠν . In addition, for each species
i,

a2ρ̄iDi = a2ρ̄iD
i
g − 3ρ̄ia

2(1 + wi)Φ. (E2)

Therefore, Equation (104) yields

Φ =

∑

a2ρ̄iD
i
g

2M2
Pk

2 +
∑

3ρ̄ia2(1 + wi)
(E3)

where the summation runs over all species. This fixes Φ,
because the right hand side of Equation (E3) contains
only known variables. The gravitational potential Ψ fol-
lows then immediately from Equation (E1).

b. Cold dark matter

For cold dark matter, we set w = c2s = 0, from Equa-
tions (107) and (108) one then gets:

Ḋ c
g = −kVc (E4)

V̇c = − ȧ
a
Vc + kΨ (E5)

c. Baryons and Photons

As baryons have a non - negligible sound speed at early
times, one needs to incorporate it in the baryon evolu-
tion. However following [23], we neglect the 3c2sVb term
in the evolution of the velocity perturbation.17 Hence,
from Equations (107) and (108) and including the mo-
mentum transfer between photons and baryons due to
Compton scattering [13], we have

Ḋb
g = −k Vb − 3 c2s

ȧ

a
Db
g (E6)

V̇b = − ȧ
a
Vb + k c2sD

b
g + k(Ψ− 3c2sΦ)

+κ̇ R (Vγ − Vb), (E7)

where R ≡ 4ργ/(3ρb) is large in the early universe. The
photons evolve according to Equations (229-232). For-
mulated in terms of velocity and density perturbations it
reads

V̇γ = κ̇(Vb − Vγ) + k(Ψ− Φ)

+ k

(

1

4
Dγ
g −

1

6
Πγ

)

(E8)

During the early stages of evolution, the differential op-
tical depth κ̇ as well as R are large. Hence the coupling
between baryons and photons is very strong. This poses
difficulties for the numerical integration. The aim is thus
to find equations for the tight coupling regime, which do
not involve terms proportional to κ̇. To this end, we fol-
low the procedure described in [23] and derive an expres-
sion for the slip between photons and baryons, starting
from Equations (E7) and (E8). The result is18:

17 That our approach is indeed equivalent to the one leading from
Equation (29) of [23] to Equation (66) of [23], is seen by using
our Equation (??).

18 A shortcut to reach it would be to simply transform Equation
(74) of [23] to gauge invariant variables.
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V̇b − V̇γ =
2R

1 +R
(Vb − Vγ) + [κ̇(1 +R)]

−1

×
{

− ä

a
Vb −

ȧ

a
k

(

1

2
Dγ
g + Ψ− 2Φ

)

+ k

(

c2sḊ
b
g −

k

4
Ḋγ
g + Φ̇(1− 3c2s)

)}

(E9)

Depending on whether the tight coupling approximation
is justified or not, we therefore use the following equa-
tions for baryons and photons:

(I) Tight coupling: From R× (E8)+ (E7) and neglect-
ing Πγ , one gets

V̇b = (1 +R)−1
{

− ȧ

a
Vb − kΦ(R+ 3c2s) +

k

4
RDγ

g

+ kc2sD
b
g +R

(

V̇b − V̇γ
)}

+ kΨ, (E10)

where Equation (E9) is used to evaluate the r.h.s of the
above Equation (E10). The evolution of the photon ve-

locity follows then by solving (E10) for V̇γ ,

V̇γ = R−1

{

− V̇b −
ȧ

a
Vb + kc2sD

b
g − 3kc2sΦ

+ k(R+ 1)Ψ

}

+ k

(

1

4
Dγ
g −

1

6
Πγ

)

, (E11)

where we have re-instated Πγ . The densities evolve ac-
cording to Equation (E6) and (228). All higher moments
ofM as well as the polarization terms El are set to zero.

(II) No Tight coupling:
Outside the tight coupling regime, baryons evolve accord-
ing to Equations (E6) and (E7). Photons evolve accord-
ing to Equations (228 - 234). As far as the photon veloc-
ity is concerned, one may alternatively evolve Vγ accord-
ing to Equation (E11). The multipole expansion for the
photons is truncated at some l < 10 for sufficient preci-
sion. In order to avoid truncation effects best as possible,
one uses a recursion relation for spherical Bessel functions
similar to the one in [23]:

Ṁlmax
=

2lmax + 1

2lmax − 1
kMlmax−1 −Mlmax

(

lmax + 1

τ
+ κ̇

)

(E12)
The polarization E is propagated using Equations
(233,234), and the recursion relation

Ėlmax
=

2lmax + 1

2lmax − 1
kElmax−1 − Elmax

(

lmax + 1

τ
+ κ̇

)

,

(E13)
for truncation.

d. Massless Neutrinos

Massless neutrinos evolve according to Equations (235-
237). The hierarchy is truncated using

Ṅlmax
=

2lmax + 1

2lmax − 1
kNlmax−1 −Nlmax

lmax + 1

τ
. (E14)

2. Tensor fluctuations

For completeness, we quote the results of [32]. The
anisotropies are

∆tens.
T;l =

√

(l + 2)!

(l − 2)!

∫ τ0

0

dτStens.
T (k, τ)

jl(x)

x2
, (E15)

∆tens.
E,B;l =

∫ τ0

0

dτStens.
E,B (k, τ)jl(x). (E16)

where x ≡ k[τ0 − τ ] and the sources are

Stens.
T (k, τ) = −ḣ exp(−κ) + gψ, (E17)

Stens.
E (k, τ) = g

{

ψ − ψ̈

k2
+

2ψ

x2
− ψ̇

kx

}

−ġ
{

2ψ̇

k2
+

4ψ

kx

}

− 2g̈
ψ

k2
, (E18)

Stens.
B (k, τ) = g

{

4ψ

x
+

2ψ̇

k

}

+ 2ġ
ψ

k
. (E19)

and ψ is given by

ψ =
1

10
∆̃T

0 +
1

7
∆̃T

2 +
3

70
∆̃T

4 −
3

5
∆̃P

0

+
6

7
∆̃P

2 −
3

70
∆̃P

4 (E20)

and the hierarchy for the tensor temperature and polar-
ization multipoles is

∆̃T
0 = −k∆̃T

1 − κ̇
[

∆̃T
0 − ψ

]

− ḣ (E21)

∆̃P
0 = −k∆̃T

2 − κ̇
[

∆̃T
1 + ψ

]

(E22)

∆̃T,P
l =

k

2l + 1

[

l∆̃T,P
l−1 − (l + 1)∆̃T,P

l+1

]

−κ̇∆̃T,P
l ; l ≥ 1 (E23)

Appendix F: Conventions, Symbols and Conversion

Factors

⋆ We take the metric with signature (−,+,+,+).
⋆ Greek indices run from 0 . . . 3 and are raised and low-
ered by the metric gµν .
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Symbol Meaning

t time

τ conformal time

a scale factor, normalized a(today) = 1

ẏ conformal time derivative d
dτ
y

V ′ derivative with respect to the field ϕ

y0 Quantity y today

MP Reduced Planck mass MP = (8πG)−1/2.

H Hubble parameter H = (da/dt)/a

ρ̄y Background energy density of y

p̄y Background pressure of y

wy Equation of state w = p̄/ρ̄ of species y

cs Sound speed (of some species) see (88)

Ωy Fraction of energy ρ̄y/ρtotal.

Ωy0 Ωy(today).

Dy
g Density perturbation of species y

Vy Velocity perturbation of species y.

Πy Shear of species y.

Ml Photon multipole

El Photon polarization multipole

Nl Neutrino multipole

Q Scalar perturbation basis function

Qi Scalar basis function for vector fields

Qij Scalar basis function for tensor fields

ne Number density of free electrons

σT Thomson scattering cross-section

κ̇ Differential optical depth κ̇ = aneσT .

ns spectral index of initial fluctuations

TABLE II: Frequently used symbols.

⋆ Latin indices run from 1 . . . 3 and are raised and low-
ered by δij .
⋆ The partial derivative of a tensor ∂µT is abbreviated

One Mpc is . . . One Mpc−1 is . . .

1.5637 × 1038 Gev−1 6.3952 × 10−39 Gev

3.0856 × 1022 m 3.2408 × 10−23 m−1

1.0292 × 1014 s 9.7163 × 10−15 s−1

3.264 × 106 years

In terms of Mpc is . . .

MP = 3.7685 × 1056 Mpc−1

H = 3.335 × 10−4 h Mpc−1

One Mpc−4 is . . .

1.673 × 10−153Gev4

TABLE III: All quantities in cmbeasy are in Mpc. For con-
venience, we summarize conversion factors to other units.

by T,µ.
⋆ The co-variant derivative of a tensor ∇µT is abbrevi-
ated by T;µ.
⋆ Perturbations in a certain gauge are denoted by lower
case letters: δ, v, χ . . .
⋆ Gauge-invariant variables are denoted by capital let-
ters: Dg, Π, X . . .
⋆ Three-vectors are denoted by bold letters and their
scalar product is given by a · b = ai bj δij .
⋆ The Christoffel symbols are

Γµαβ =
1

2
gµσ (gσβ,α + gασ,β − gαβ,σ) ,

⋆ while the Riemann tensor is

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓσνβΓ
µ
σα − ΓσναΓµσβ .

1. Christoffel symbols

The Christoffel symbols for the Robertson Walker met-
ric (4) in the unperturbed case are Γ0

00 = ȧ
a , Γ0

ij =
ȧ
aδij , Γi0j = ȧ

aδ
i
j , Γijl = Γ0

i0 = 0. Using the scalar longi-

tudinal gauge metric (71), the first order perturbations
become

δΓ0
00 = AQ (F1)

δΓ0
i0 = −kAQi −B

ȧ

a
Qi (F2)

δΓ0
ij = δijQ

(

1

3
ḢT + ḢL + 2

ȧ

a
[HL −A]

)

+Qk−2kikj

(

kB − 2
ȧ

a
HT − ḢT

)

(F3)

δΓi00 = −
(

kA+
ȧ

a
B + Ḃ

)

Qi (F4)

δΓij0 = ḢTQ
i
j + ḢLQδ

i
j (F5)

δΓijl = k

(

HL +
1

3
HT

)

(

Qiδjl −Qjδil −Qlδij
)

+k−1kjklHTQ
i +

ȧ

a
δjlBQ

i (F6)
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