QFT I - PROBLEM SET 3

(6) ATOM PROPAGATOR

Consider free nonrelativistic bosonic particles (noninteracting atoms) in a constant potential (e.g., a
chemical potential p). Their equation of motion is given by

<i<9t + % —,u> d(z) =0

Here, x = (t,x) is a space-time coordinate. The probability amplitude for such a particle to move
(“propagate”) from xg = (to, xo) to x = (¢, x) for ¢t > t¢ is given by

P(x — x9) = 6(t — to){x|xo).

The 6 - function ensures causality, i.e. the fact that the condition ¢ > ¢g must hold for a nonzero
amplitude in a well-posed problem.

a) Write the matrix element (z|zg) in terms of field operators.

b) Consider the action of the differential operator D = i0; + % — o on the obtained expression. You
should find that P(z — x¢) is precisely the Green function of D.

¢) Find an explicit expression for P(p), p = (E,p) in momentum space by Fourier transform of the
result in b). P is the propagator in momentum space.

d) Knowing the propagator in momentum space transform it back to position space to obtain an
explicit result for P(z — xp). In order to get the correct retarded causality perform the integration
over the energy/frequency part with an infinitesimal imaginary constant +ie (¢ > 0) added to the
denominator of the propagator Is(p) and use the following representation of the 6 - function
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After integrating over the energy/frequency part, you should find
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What would change if you chose € < 0 in the denominator of the propagator P(p) ?
Finally, perform the remaining integration over the spatial momenta.

(7) POTENTIAL ENERGY

This exercise might be a real eye-opener for you! We will consider the important case of two particles
at positions @ and &’ interacting via a potential that depends on their distance |z — 2’| only, V =
V(Jz—=’|). Suppose that the Hilbert space of our theory accommodates states with 0,1,2, ... particles
at positions @1, s, .... Let us label the states |zjx2...). To place a particle at some position y, you
simply have to act with the creation operator a'(y)|zixs...) = |x122...y). In addition, the usual
commutation relation holds [a(z),af(y)] = 6(x — y).

a) Don’t look at part b)! Don’t flip the page yet! How would the interaction piece of the Hamiltonian
H,,; for this case look like in terms of V, a and at? Hints: Think in terms of the familiar gravitational
potential: what you want in the end is the sum of the potential energies of all pairs you can form. So
clearly, in the case of a one-particle state, your interaction should return zero. And in the continuum,
summing means integrating.



b) Compute the interaction energy for a state of three particles at positions @1, x2 and x3, i.e.
(12223 | Hin|T12273).

The interaction Hamiltonian (the solution to (a)) is given by Hypy = % [ deda’al(z)al (z)a(z)a(z)V (|z—
x']).
Hints:

i) Rewrite Hypny in terms of the number operator n(x) = a'(x)a(x) (and n(z') of course!)
it) Compute n(x)|x1x23) to convince yourself of the action of n(x) on our three-particle state.

iii) The normalization of our three particle state is such that (xi@oxs|@ zoms) = [6(0)]°. If we put
our field theory in a box, §(0) — volume of boz.

i) Finally compute the interaction energy. Whenever you get a d-function and you have an integra-
tion left removing it, perform the integration. In other words, integrate over x and x'.

c) If you like, convince yourself that you get the same answer by pulling the annihilation operators
a(z)a(z') of Hiny = 5 [ dzda’al(z)a’ (z')a(z)a(x’)V (| — x’|) through the creation operators needed
for our state |zixoxs) = af(x1)al(z2)al (x3)|0).



