
QFT I - Problem Set 3

(6) Atom Propagator

Consider free nonrelativistic bosonic particles (noninteracting atoms) in a constant potential (e.g., a
chemical potential µ). Their equation of motion is given by(

i∂t +
4

2M
− µ

)
φ̂(x) = 0

Here, x = (t, x) is a space-time coordinate. The probability amplitude for such a particle to move
(“propagate”) from x0 = (t0,x0) to x = (t, x) for t > t0 is given by

P (x− x0) = θ(t− t0)〈x|x0〉.

The θ - function ensures causality, i.e. the fact that the condition t > t0 must hold for a nonzero
amplitude in a well-posed problem.

a) Write the matrix element 〈x|x0〉 in terms of field operators.

b) Consider the action of the differential operator D = i∂t + 4
2M − µ on the obtained expression. You

should find that P (x− x0) is precisely the Green function of D.

c) Find an explicit expression for P̃ (p), p = (E,p) in momentum space by Fourier transform of the
result in b). P̃ is the propagator in momentum space.

d) Knowing the propagator in momentum space transform it back to position space to obtain an
explicit result for P (x − x0). In order to get the correct retarded causality perform the integration
over the energy/frequency part with an infinitesimal imaginary constant +iε (ε > 0) added to the
denominator of the propagator P̃ (p) and use the following representation of the θ - function

θ(τ) = lim
ε→0

−1
2πi

∫ ∞

−∞

dωe−iωτ

ω + iε
. (1)

After integrating over the energy/frequency part, you should find

P (x− x0) = −i

∫
d3p

(2π)3
eip·(x−x0)−i[ p2

2M
+µ](t−t0)θ(t− t0) . (2)

What would change if you chose ε < 0 in the denominator of the propagator P̃ (p) ?
Finally, perform the remaining integration over the spatial momenta.

(7) Potential Energy

This exercise might be a real eye-opener for you! We will consider the important case of two particles
at positions x and x′ interacting via a potential that depends on their distance |x − x′| only, V =
V (|x−x′|). Suppose that the Hilbert space of our theory accommodates states with 0, 1, 2, . . . particles
at positions x1,x2, . . . . Let us label the states |x1x2 . . . 〉. To place a particle at some position y, you
simply have to act with the creation operator a†(y)|x1x2 . . . 〉 = |x1x2. . .y〉. In addition, the usual
commutation relation holds [a(x), a†(y)] = δ(x− y).

a) Don’t look at part b)! Don’t flip the page yet! How would the interaction piece of the Hamiltonian
Hint for this case look like in terms of V, a and a†? Hints: Think in terms of the familiar gravitational
potential: what you want in the end is the sum of the potential energies of all pairs you can form. So
clearly, in the case of a one-particle state, your interaction should return zero. And in the continuum,
summing means integrating.
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b) Compute the interaction energy for a state of three particles at positions x1,x2 and x3, i.e.

〈x1x2x3|Hint|x1x2x3〉.

The interaction Hamiltonian (the solution to (a)) is given by Hint = 1
2

∫
dxdx′a†(x)a†(x′)a(x)a(x′)V (|x−

x′|).
Hints:

i) Rewrite Hint in terms of the number operator n(x) = a†(x)a(x) (and n(x′) of course!)

ii) Compute n(x)|x1x2x3〉 to convince yourself of the action of n(x) on our three-particle state.

iii) The normalization of our three particle state is such that 〈x1x2x3|x1x2x3〉 = [δ(0)]3. If we put
our field theory in a box, δ(0) → volume of box.

iv) Finally compute the interaction energy. Whenever you get a δ-function and you have an integra-
tion left removing it, perform the integration. In other words, integrate over x and x′.

c) If you like, convince yourself that you get the same answer by pulling the annihilation operators
a(x)a(x′) of Hint = 1

2

∫
dxdx′a†(x)a†(x′)a(x)a(x′)V (|x−x′|) through the creation operators needed

for our state |x1x2x3〉 = a†(x1)a†(x2)a†(x3)|0〉.
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