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1. Introduction Why to modify gravity?

Why to modify gravity?

The Cosmological Constant ...

e is technically unnatural

might not be quantum mechanically consistent

is theoretically allowed because of ...?

does not challenge GR
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1. Introduction Theorem of Vermeil-Cartan

Theorem of Vermeil-Cartan
Let K be a tensor that naturally depends
on a pseudo-Riemannian metric and

e has rank 2,

e is divergence-free,

e is of 2nd order in the derivatives of the coefficients of g,
e is linear in these 2nd derivatives,
e is symmetric.

Then K is a linear combination of the Einstein tensor and the
metric.
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1. Introduction Theorem of Vermeil-Cartan

Theorem of Navarro-Sancho

Let K be a tensor that naturally depends on a pseudo-Riemannian
metric and

e has rank 2,
e is divergence-free,

e has weight w > —2.

Then K is, up to constant factors, either the Einstein tensor (with
weight w = 0) or the metric (with weight w = 2).

Navarro & Sancho (2008)
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2. Scary Ghosts

Why are we so scared about ghosts?

(credit: Luisa Jaime)
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2. Scary Ghosts

Ostrogradsky’s theorem

nth derivatives in the Lagrangian will usually introduce 2nth order
der. in the EOM:

d" oL d* 0L dOL 9L

o T a0 dids T ow 0
example: n =2
H=PQi+PQ—L
with
oL d oL oL

QIZI', QQZl', Pl:%_a%7 2:%

= Hamiltonian is unbounded from below!
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2. Scary Ghosts

unbounded Hamiltonian from below

could introduce classical instabilities

classical perturbative solution might hide negative
energy solutions

e no stable vacuum!

= ghosts will immediately rule out a theory
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2. Scary Ghosts

Vacuum decay

simple example:
Sint = [ e/ R 0 a)

where At ~ 2T denotes time since the creation of vacuum
= P:/d4p1/d4p2/d4k:1/d4k2|/\/l|2

T PO 0)272

and
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2. Scary Ghosts

Vacuum decay

simple example:

Simt = A / dPae /T §2 ()2 ()

Poc/d4P... o</d377\/1+172/d35...

with v, = —P,/+/s
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3. Friendly Ghosts

Avoiding an instantaneous decay of the vacuum requires a
modification of the momentum integral!

One possibility:

Breaking Lorentz invariance

Kaplan & Sundrum (2005)
Garriga & Vilenkin (2013)
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3. Friendly Ghosts

Vacuum decay

simple example:

Simt = A / dPae /T §2 ()2 ()

= P ~ AN2E%5max

Kaplan & Sundrum (2005)
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3. Friendly Ghosts

Massive Gravity with (friendly) Ghosts

S—Ml%/d4x\/jg {R+2m2 { g_ln}

_;(a(t)—l)g 9_1’7}2_[ g_lnDﬂ

/N
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3. Friendly Ghosts

Massive Gravity with (friendly) Ghosts

S = Ml%/d4x\/jg [R—i— 2m? ([ g_ln}

_;(a(t)—l)g 9_1’7}2_[ g_lnDﬂ

lowest order interactions that introduce BD ghost

has ghost-free limit

allows for dynamical FLRW solutions

additional features, e.g. particle production
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4. Conclusions

Conclusions

e Ghosts rule out all Lorentz invariant theories!

e broken Lorentz invariance: vacuum might not decay
instantaneously

e enlarges the class of viable theories of modified gravity

Frank Konnig (ITP Heidelb
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