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➢ Invitation: Phase transitions from microscopic physics

➢ Method: Artificial neural networks

➢ Testing ground: Ising Model

➢ Results  

Outline

Unsupervised learning of phase transitions: from principal Unsupervised learning of phase transitions: from principal 
component analysis to variational autoencoderscomponent analysis to variational autoencoders
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Possible? Solution: use Artificial Neural Networks! 



  

Machine Learning

„Machine learning is the subfield of computer science 
that gives computers the ability to learn without 
being explicitly programmed.“ - Wikipedia

Machine 
Learning 
Algorithm
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Feed forward neural network

 

Input: Data                                       , Label      

Output:

Goal: find      such that  

Artificial Neural Networks

Input
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Layers

Output



  

Perceptron

Example: Buying a house

➢ If all 3 conditions are fulfilled the perceptron decides to buy

Artificial Neural Networks
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Activation functions in neural networks

Artificial Neural Networks

Rectified linear 
unit
(relu)

Common 
interlayer 
activation 
function

Sigmoid Predicting 
probabilities of 
discrete variables

tanh Predicting an 
output 
constrained by 
an interval
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Objective functions (loss functions)

➢ Eg mean squared error (average over all samples)

Training

➢ Determination of          and  
➢ Gradient descent

                    and 

➢ Backpropagation algorithm

Training



  

➢ Data: Monte Carlo samples

➢ Training at well known points

 in phase diagram

➢ Labels: Phase

Supervised Learning of Phase Transitions
2d Ising Model

Machine Learning Phases of MatterMachine Learning Phases of Matter
Carrasquilla, Melko ' 2016Carrasquilla, Melko ' 2016
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test here

➢ Testing in interval containing 

 phase transition

➢ Estimate within 1% of exact 

value



  

Limitations of Supervised Learning

➢ Example Hubbard Model:

rich phase diagram,

many unknown phases

- Pseudogap?

- Strange Metal?

- Coexistence of AF and SC?
➢ Detecting unknown phases?
➢ In order to determine the

phase transition, you already 

need to know the existence

Supervised Learning of Phase Transitions

???



  

Unsupervised Learning

Up to now we discussed supervised learning,
where labels were given for training. 
Now we transition to unsupervised Learning.
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Up to now we discussed supervised learning,
where labels were given for training. 
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Method Invented Phase transitions

Principal 
component 
analysis

K. Pearson 1901 L. Wang  2016

Kernel Principal 
component 
analysis

Schollkopf, 
Smola, Müller 
1999

Autoencoder LeCun 1987 , 
Bourlard, Kamp 
1988

S.J. Wetzel 2017

Variational 
Autoencoder

Kingma, Welling 
2013

Unsupervised Learning of Phase transitions

+Non-Linear Features

+Scaling to huge Datasets
-Overfitting

+Less Overfitting
+Latent Parameter Model



  

➢ Architecture: Encoder NN + Decoder NN

➢ Objective: Minimize Reconstruction error

➢ Bottleneck: Latent Variables

Autoencoder

Input
Hidden
Layers

Output Input
Hidden
Layers

Output

Encoder Latent Variables

Decoder Output

Input Encoder
Latent 
Variables

Decoder Output



  

➢ Interesting quantities:

➢ Reconstructions of the samples
➢ Physical interpretation of the latent parameters

Correlation between latent parameter

and the magnetization

➢ Problems:

➢ Very hard to infer order parameter from this diagram
➢ Latent parameter can in principle store many substructures 

seen on the data

What do Autoencoders store? 
2d Ising Model



  

➢ Architecture: Encoder NN + Decoder NN

➢ Assumes data can be generated from Gaussian prior

➢ Input      is encoded into latent variables     which are decoded

producing the output

➢ Can be understood as a regularization of the traditional 
autoencoder

➢ Training makes sure that neighboring latent representations 
encode similar configurations  

Variational Autoencoder



  

➢ Why do we need a variational autoencoder?

➢ We approximate 1 to 1 mapping to the order parameter

How to determine an optimal number of latent neurons

➢ No theory
➢ Try different numbers
➢ Look for small ranges

From Autoencoders to Variational Autoencoders

AE: VAE:



  

Why could this work?

➢ Autoencoder encodes the general structure of samples in 
the decoder

➢ The latent variables store the parameters that hold the most 
information about quantifiable structures on configurations

➢ In the unordered phase sample configurations differ by 
random entropy fluctuations. The variational autoencoder 
averages over these fluctuations and thus fails to learn a 
quantity which quantifies these structures

➢ In the ordered phase the variational autoencoder learns a 
common correlation between the spins, whose strength is 
quantified by a latent variable with coincides with the order 
parameter

Variational Autoencoder



  

Why could this work?

➢ Autoencoder encodes the general structure of samples in 
the decoder

➢ The latent variables store the parameters that hold the most 
information about quantifiable structures on a configurations

➢ In the unordered phase sample configurations differ by 
random entropy fluctuations. The variational autoencoder 
averages over these fluctuations and thus fails to learn a 
quantity which quantifies these structures

➢ In the ordered phase the variational autoencoder learns a 
common correlation between the spins, whose strength is 
quantified by a latent variable with coincides with the order 
parameter

➢ Reconstruction Error as Universal Identifier for Phase 
Transitions

Variational Autoencoder



  

Ferromagnetic Ising model on the square lattice

➢ Latent parameter corresponds to magnetization
➢ Identification of phases: Latent representations are clustered 
➢ Location of phases: Magnetization, latent parameter and 

reconstruction loss show a steep change at the phase 
transition. 

Results
2d Ising Model



  

Antiferromagnetic Ising Model on the square lattice

➢ Spins correspond to order parameter depending on site
➢ Latent parameter corresponds to staggered magnetization
➢ Identification of phases: Latent representations are clustered 
➢ Location of phases: Staggered magnetization, latent 

parameter and reconstruction loss show a steep change at 
the phase transition. 

Results
2d Antiferromagnetic Ising Model



  

Ferromagnetic XY Model in 3d

➢ Continous phases have infinitely many representations
➢ Latent parameter corresponds to magnetization
➢ Identification of phases: Clustering could be inferred
➢ Location of phases: Magnetization, latent parameter and 

reconstruction loss show a steep change at the phase 
transition.  

Results 
3d XY Model



  

➢ Methods to pin down phase transitions, supervised learning

➢ Methods to detect phases, unsupervised learning

➢ Latent parameter coincides with order parameter
➢ Universal identifier: reconstruction error

➢ Caveat:

➢ No proof
➢ Requires huge amounts of sample configurations

Conclusion



  

➢ More Complicated Systems

➢ Non-Local Order Parameters

➢ Interpretability of Order Parameters

Outlook



  

➢ More Complicated Systems

➢ Non-Local Order Parameters

➢ Interpretability of Order Parameters

➢ Explicit expressions of Order Parameters

Outlook

Machine Learning of Explicit Order Parameters at the Example Machine Learning of Explicit Order Parameters at the Example 
of SU(2) Lattice Gauge Theoryof SU(2) Lattice Gauge Theory
S. J. Wetzel, M. Scherzer ' 2017 (in Preparation)S. J. Wetzel, M. Scherzer ' 2017 (in Preparation)
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