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Invitation: Phase transitions from microscopic physics
Method: Artificial neural networks
Testing ground: Ising Model

Results

Unsupervised learning of phase transitions: from principal
component analysis to variational autoencoders
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Invitation: Phase transitions }
from microscopic physics
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[ Invitation: Phase transitions }
from microscopic physics
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[ Invitation: Phase transitions }
from microscopic physics

Hamiltonian

H(S)=—-J Z SiSj
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Monte Carlo Sampling

Order ameter
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Unknown?
Hard to find?
Hard to define?
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[ Invitation: Phase transitions }
from microscopic physics

Hagaltonian Order ameter
M(S) = Unknown?
e Hard to find?
H(S) . 7189 Hard to define?
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Experiment? M(T) exp(—H(S5)/T)

Hamiltonian SeN

unknown?

Monte Carlo Sampling Wetterich equation

L.

i
» Ol = %Tr (F(Q) + Rk)_lﬁkRk



[ Invitation: Phase transitions }
from microscopic physics

Hagaltonian Order ameter
M(S) = Unknown?
e Hard to find?
H(S) . 7189 Hard to define?
NN _

Experiment? M(T) exp(—H(S5)/T)

Hamiltonian SeN

unknown?

Monte Carlo Sampling Wetterich equation
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Possible? Solution: use Artificial Neural Networks!
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Machine Learning

,»Machine learning is the subfield of computer science
that gives computers the ability to learn without
being explicitly programmed. “ - Wikipedia

Training Data Test Data

Machine
Learning
Algorithm

> Dog




Artificial Neural Networks

Feed forward neural network

Hidden

Layers
N AN AN /

Input; Data X = (.5131, ...,:de) , Label Y
OUtpUt: Ypred — F(X)

Goal: find F' such that Ypred ~Y



Artificial Neural Networks

Perceptron
X1 W,

xz%_y y = f(Z- 0+ b)

X3 W3

Example: Buying a house

Bigger than 100 m?_ 1
Allows pets -1 Buy house?
Garden—1

y =0O(x-w+0b)

- If all 3 conditions are fulfilled the perceptron decides to buy



Artificial Neural Networks

Activation functions in neural networks

Rectified linear
unit
(relu)

Sigmoid

tanh

max(0,x)
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Common
interlayer
activation
function

Predicting
probabilities of
discrete variables

Predicting an
output
constrained by
an interval




Training

Objective functions (loss functions)

- Eg mean squared error (average over all samples)
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Supervised Learning of Phase Transitions

2d Ising Model

:

- Data: Monte Carlo samples

> Training at well known points

>

In phase diagram

Labels: Phase
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> Testing in interval containing

phase transition

> Estimate within 1% of exact
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Machine Learning Phases of Matter
Carrasquilla, Melko ' 2016



[ Supervised Learning of Phase Transitions }

Limitations of Supervised Learning
> Example Hubbard Model:

electron doped hole doped
T T T T T T I T I '

rich phase diagram, ol NCeCOn Lm0
many unknown phases e e LBSSCCOCO
- Pseudogap? @ ‘
- Strange Metal? " ol
- Coexistence of AF and SC? =

> Detecting unknown phases?

> In order to determine the
phase transition, you already
need to know the existence

0.3



Unsupervised Learning

Up to now we discussed supervised learning,
where labels were given for training.
Now we transition to unsupervised Learning.

Training Data Test Data

Machine o
Learning . 297
Algorithm S




Unsupervised Learning

Up to now we discussed supervised learning,
where labels were given for training.
Now we transition to unsupervised Learning.

Training Data Test Data

?
Machine
Learning
) » Cluster 2
Algorithm Cluster 1: Cats
Cluster 2: Dogs
?

Clustering of Dog
and Cat Images




Unsupervised Learning of Phase transitions

Method

Principal
component
analysis

Kernel Principal
component
analysis

Autoencoder

Variational
Autoencoder

Invented Phase transitions

K. Pearson 1901 L. Wang 2016

Schollkopf,
Smola, Miiller
1999

LeCun 1987 , S.J. Wetzel 2017
Bourlard, Kamp
1988

Kingma, Welling
2013

+Non-Linear Features

+Scaling to huge Datasets
-Overfitting

+Less Overfitting
+Latent Parameter Model



Autoencoder

> Architecture: Encoder NN + Decoder NN
> Objective: Minimize Reconstruction error

> Bottleneck: Latent Variables

Latent
\_Variables )




What do Autoencoders store?
2d Ising Model

> Interesting quantities:

- Reconstructions of the samples

» Physical interpretation of the latent parameters

Correlation between latent parameter
and the magnetization

latent parameter

> Problems:

magnetization

~ Very hard to infer order parameter from this diagram

» Latent parameter can in principle store many substructures
seen on the data



Variational Autoencoder

Architecture: Encoder NN + Decoder NN
Assumes data can be generated from Gaussian prior
Input X is encoded into latent variables / which are decoded

producing the output Y
1 2
MSE = — Z Y0y — F(X@i))|
KLO = Dgr(N(mean(Z),var(Z))||N(0,1))

Can be understood as a regularization of the traditional
autoencoder

Training makes sure that neighboring latent representations
encode similar configurations



From Autoencoders to Variational Autoencoders

> Why do we need a variational autoencoder?

> We approximate 1 to 1 mapping to the order parameter

20 15
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latent parameter
latent parameter

AE: VAE:
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How to determine an optimal number of latent neurons

> No theory

10

0.0

- Try different numbers

-0.5

latent parameter 2

~ Look for small ranges

=15

-0.05 0.
latent parameter 1



Variational Autoencoder }

Why could this work?

~ Autoencoder encodes the general structure of samples in
the decoder

> The latent variables store the parameters that hold the most
information about quantifiable structures on configurations

- In the unordered phase sample configurations differ by
random entropy fluctuations. The variational autoencoder
averages over these fluctuations and thus fails to learn a
quantity which quantifies these structures

> In the ordered phase the variational autoencoder learns a
common correlation between the spins, whose strength is
quantified by a latent variable with coincides with the order
parameter



Variational Autoencoder }

Why could this work?

>

Autoencoder encodes the general structure of samples in
the decoder

The latent variables store the parameters that hold the most
information about quantifiable structures on a configurations

In the unordered phase sample configurations differ by
random entropy fluctuations. The variational autoencoder
averages over these fluctuations and thus fails to learn a
quantity which quantifies these structures

In the ordered phase the variational autoencoder learns a
common correlation between the spins, whose strength is
quantified by a latent variable with coincides with the order
parameter

Reconstruction Error as Universal Identifier for Phase
Transitions



Results
2d Ising Model
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Ferromagnetic Ising model on the square lattice

~ Latent parameter corresponds to magnetization

-~ |dentification of phases: Latent representations are clustered

» Location of phases: Magnetization, latent parameter and
reconstruction loss show a steep change at the phase

transition.



2d Antiferromagnetic Ising Model

Results
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Antiferromagnetic Ising Model on the square lattice

~ Spins correspond to order parameter depending on site

~ Latent parameter corresponds to staggered magnetization

- |dentification of phases: Latent representations are clustered

- Location of phases: Staggered magnetization, latent
parameter and reconstruction loss show a steep change at

the phase transition.



Results

3d XY Model

1.0

— magnetization
latent

B =  parameter
08| * P

loss

reconstruction

0.6 =

0.4}

latent parameter
%]

latent parameter 2
o

0.2}

0.0

_l i i i i i i i i i i i
0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 —6 —4 —2 4] 2 4 6 0 3 4
magnetization latent parameter 1 temperature

Ferromagnetic XY Model in 3d

~ Continous phases have infinitely many representations
> Latent parameter corresponds to magnetization
- |dentification of phases: Clustering could be inferred

- Location of phases: Magnetization, latent parameter and
reconstruction loss show a steep change at the phase
transition.



[ Conclusion

> Methods to pin down phase transitions, supervised learning

> Methods to detect phases, unsupervised learning

> Latent parameter coincides with order parameter
- Universal identifier: reconstruction error

> Caveat:

> No proof
- Requires huge amounts of sample configurations



- More Complicated Systems
> Non-Local Order Parameters

- Interpretability of Order Parameters



Outlook

More Complicated Systems
Non-Local Order Parameters
| bt ot Order P |

Explicit expressions of Order Parameters

Machine Learning of Explicit Order Parameters at the Example
of SU(2) Lattice Gauge Theory
S. J. Wetzel, M. Scherzer ' 2017 (in Preparation)
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