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The complementarity principle

In fact, it is only the mutual exclusion of any two experimen-
tal procedures, permitting the unambiguous definition of com-
plementary physical quantities, which provides room for new
physical laws, [...] which might at first sight appear irreconcil-
able with the basic principles of science.
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Statement of the PBR theorem

Any model in which ψ represents mere information about
an underlying physical state must make predictions that
contradict those of quantum theory.
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Premises

Hypothesis

• ψ represents mere information of the system it describes;

Assumptions

• There is an underlying physical state of the system;

• Systems that are prepared independently have
independent physical states;



Complementarity PBR’s theorem EPR’s theorem Bell’s theorem Kochen Specker’s theorem Summary Interpretation

Characterisation of information

If λ is the phase space of physical states one can define the
probability distribution of |ψi 〉 over phase space,

µi (λ)

If the distributions µ0(λ) and µ1(λ) of two non-orthogonal
quantum states |ψ0〉 and |ψ1〉 overlap, then one can conclude that
|ψ0〉 and |ψ1〉 represent mere information about the system they
describe.

And vice versa.



Complementarity PBR’s theorem EPR’s theorem Bell’s theorem Kochen Specker’s theorem Summary Interpretation

Construction of the argument

Consider two identical and independent preparation devices;
each device prepares a system in either the quantum state

|ψ0〉 = |0〉

or the quantum state

|ψ1〉 = |+〉 =
1√
2

(|0〉+ |1〉)

so that when the two states are brought together, the complete
system can be prepared in any of the four quantum states

|0〉 ⊗ |0〉, |0〉 ⊗ |+〉, |+〉 ⊗ |0〉, and |+〉 ⊗ |+〉 (1)



Complementarity PBR’s theorem EPR’s theorem Bell’s theorem Kochen Specker’s theorem Summary Interpretation

Construction of the argument

Consider two identical and independent preparation devices;
each device prepares a system in either the quantum state

|ψ0〉 = |0〉

or the quantum state

|ψ1〉 = |+〉 =
1√
2

(|0〉+ |1〉)

so that when the two states are brought together, the complete
system can be prepared in any of the four quantum states

|0〉 ⊗ |0〉, |0〉 ⊗ |+〉, |+〉 ⊗ |0〉, and |+〉 ⊗ |+〉 (1)



Complementarity PBR’s theorem EPR’s theorem Bell’s theorem Kochen Specker’s theorem Summary Interpretation

Construction of the argument

Figure given by PBR in Nat. Phys. 8, 475 (2012)
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Construction of the argument

The complete system can be measured, and for this they propose
an entangled measurement with the four possible outcomes:

|ξ1〉 =
1√
2

[
|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉

]
|ξ2〉 =

1√
2

[
|0〉 ⊗ |−〉 + |1〉 ⊗ |+〉

]
|ξ3〉 =

1√
2

[
|+〉 ⊗ |1〉 + |−〉 ⊗ |0〉

]
|ξ4〉 =

1√
2

[
|+〉 ⊗ |−〉 + |−〉 ⊗ |+〉

]
If |ψ0〉 and |ψ1〉 represent mere information, there is a probability
q2 > 0 that both systems result in physical states, λ1 and λ2, from
the overlap region, ∆.
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Construction of the argument

But the probability that the quantum state

|0〉 ⊗ |0〉

results in

|ξ1〉

is zero, same for |0〉 ⊗ |+〉 resulting in |ξ2〉, for |+〉 ⊗ |0〉 resulting
in |ξ3〉, and for |+〉 ⊗ |+〉 resulting in |ξ4〉.
This takes them to the conclusion that if the state λ1 ⊗ λ2 that
arrives to the detector is compatible with the four quantum
states (1), then the measuring device could give a result that
should, following simple QM, occur with zero probability.
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Physical state for systems;
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Contradiction
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Hypotheses + Assumptions

ψ merely information;
Physical state for systems;
System independence;
+ Measurement at the
preparation stage;

Contradiction
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No measurement assumption

In the case where there is no distinguishability between the
preparation of |0〉 and the preparation of |+〉, the state that would
arrive at the detector would be

|Ψ〉 = |ψ〉 ⊗ |ψ〉 = N2
[
|0〉+ |+〉

]
⊗
[
|0〉+ |+〉

]
,

and not one of the states (1) assumed by PBR.
This state |Ψ〉 that arrives at the detector is compatible with the
measurement basis used in the PBR theorem, in the sense that it
may result in any of its elements (|ξi 〉) with non-zero probability.
Following the logic of PBR, no contradiction arises when regarding
|0〉 and |+〉 as mere information.
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Statement of the EPR theorem

Either Quantum Mechanics is not a complete theory or two
quantities associated with non-commuting operators cannot
have a simultaneous reality. Negation of the first statement
leads to negation of the second one. Then Quantum Mechan-
ics must be an incomplete theory.
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Statement of the EPR theorem

Either Quantum Mechanics is not a complete theory or two
quantities associated with non-commuting operators cannot
have a simultaneous reality. Negation of the first statement
leads to negation of the second one. Then Quantum Me-
chanics must be an incomplete theory.



Complementarity PBR’s theorem EPR’s theorem Bell’s theorem Kochen Specker’s theorem Summary Interpretation

Premises

Hypothesis

• Completeness;

Assumptions

• Local realism;

• Counterfactuality;
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Characterisation of reality
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Hypotheses + Assumptions

Completeness;
Local realism;
Counterfactuality;

Contradiction
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Statement of Bell’s theorem

Any mathematical description which “completes” Quan-
tum Mechanics with local hidden variables has to satisfy
an inequality. Since this inequality is violated by the pre-
dictions of Quantum Mechanics, the latter cannot be com-
pleted by means of local hidden variables.



Complementarity PBR’s theorem EPR’s theorem Bell’s theorem Kochen Specker’s theorem Summary Interpretation

Premises

Hypothesis

• Existence of local hidden variables that determine the
state of a system before a measurement is made (local
realism);

Assumptions

• Counterfactuality;

• Correct predictions of QM;
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Characterisation of local hidden variables
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Construction of the argument

A(ẑ , λ) = ±1 B(ẑ , λ) = ±1

E (σ̂a, σ̂b) =

∫
Λ
A(â, λ)B(b̂, λ)ρ(λ)dλ
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Construction of the argument

|E (σ̂a, σ̂b)− E (σ̂a, σ̂c)| =∣∣∣∣∫
Λ
A1(â, λ)B1(b̂, λ)ρ(λ)dλ−

∫
Λ
A2(â, λ)B2(ĉ , λ)ρ(λ)dλ

∣∣∣∣[
A1(â, λ) = A2(â, λ)

]
...(∗1)

∗1
=

∣∣∣∣∫
Λ
A1(â, λ)B1(b̂, λ)

[
1−B1(b̂, λ)B2(ĉ , λ)

]
ρ(λ)dλ

∣∣∣∣
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]
...(∗1)

∗1
=

∣∣∣∣∫
Λ
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Construction of the argument

|E (σ̂a, σ̂b)− E (σ̂a, σ̂c)| =∣∣∣∣∫
Λ
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[
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]
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]
...(∗2)

∗2
≤
∫

Λ
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1+A3(b̂, λ)B2(ĉ , λ)

]
ρ(λ)dλ
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Construction of the argument

|E (σ̂a, σ̂b)− E (σ̂a, σ̂c)| ≤
∫

Λ

[
1 + A3(b̂, λ)B2(ĉ, λ)

]
ρ(λ)dλ

[
B2(ĉ , λ) = B3(ĉ , λ)

]
...(∗3)

∗3
=

∫
Λ

[
1 + A3(b̂, λ)B3(ĉ, λ)

]
ρ(λ)dλ

= 1 + E (σ̂b, σ̂c)
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Statement of the KS theorem

The non-contextual assignment of simultaneous values to n
observables defined on a system described by a state vector in
a Hilbert space of dimension d ≥ 3 is incompatible with the
algebraic structure of QM.
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Statement of the KS theorem

The non-contextual assignment of simultaneous values to
n observables defined on a system described by a state vector
in a Hilbert space of dimension d ≥ 3 is incompatible with the
algebraic structure of QM.
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Statement of the KS theorem

The non-contextual assignment of simultaneous values to n
observables defined on a system described by a state vector in
a Hilbert space of dimension d ≥ 3 is incompatible with the
algebraic structure of QM.
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Premises

Hypotheses

• Non-contextuality;

• Value definiteness;

Assumption

• Correct algebraic structure of QM;
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Characterisation of non-contextual hidden variables
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Construction of the argument

Figure given by KS in J. Math. Mech. 17, 59 (1967)
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Construction of the argument

d = 3; n = 117

Figure given by KS in J. Math. Mech. 17, 59 (1967)
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Construction of the argument

σ̂1
x σ̂2

x σ̂1
x σ̂

2
x

σ̂2
y σ̂1

y σ̂1
y σ̂

2
y

σ̂1
x σ̂

2
y σ̂1

y σ̂
2
x σ̂1

z σ̂
2
z

d = 4; n = 9
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Construction of the argument
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Hypotheses + Assumptions

Non-contextuality;
Value definiteness;
Correct algebraic structure of QM;
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Summary

Completeness;
Local realism;
Counterfactuality;

EPR contradiction

Local realism;
Counterfactuality;
Predictions of QM;

Bell contradiction

Non-contextuality;
Value definiteness (realism);
Algebra of QM;

KS contradiction
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Summary

Completeness;
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

Completeness;
Local realism;
Counterfactuality;
Predictions of QM;

Non-contextuality;
Realism;
Algebra of QM;

KS contradiction

 Complementarity
principle

Local, contextual, realism.
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The complementarity principle

In fact, it is only the mutual exclusion of any two
experimental procedures, permitting the unambiguous
definition of complementary physical quantities, which
provides room for new physical laws, [...] which might at
first sight appear irreconcilable with the basic principles
of science.

Complementarity meant for Bohr an understanding of physical
reality in regards to reference frames, the defining objects of
reference frames being the measuring apparatuses and the
quantities coming into being within these reference frames as
complementary; meaning that two or more complementary
quantities cannot manifest in one and the same reference
frame, and that each quantity must manifest in its
corresponding reference frame.
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The reference frame interpretation

• A reference frame is determined by a complete set of
commuting operators;

• Eigenstates of these complete set are ontological states;

• The states generated from linear combinations of different
eigenstates of an observable are quantum states;

• The reference frame determines the ontological or
informational character of ψ;
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Complementary reference frames

Any non-commuting quantities define complementary reference
frames.
So, the prototypical complementary quantities of position and
momentum define complementary reference frames, since

[x̂ , p̂] = −i~

holds.
Time and energy also define complementary reference frames.
Eigenstates of position are defined in space-time, while eigenstates
of momentum are defined in, what we call, momentum-energy.
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The complementary reference frame to position

A momentum measurement would force the system being
measured to stand in the momentum reference frame. In the
position representation,

ψ~p(~x , t) = e
i
~ (~p0·~x−E0t)

and, as we have seen, this state only depicts information of the
particle’s whereabouts in the position reference frame, while it is
an ontological state in the momentum reference frame. Indeed,

ψ~p(~p,E ) = δ(3)(~p − ~p0)δ(E − E0)

For a free particle in a momentum eigenstate all of space-
time is an equivalence class projected onto the location of
the particle in momentum-energy.
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The momentum-energy manifold

Four-dimensional space-time projected as an equivalence class to
four-dimensional momentum-energy. As we know from SR, space
and time are geometrically intertwined. We propose the same for
energy and momentum.
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Conclusions

• We can build an interpretation with the previous results,
namely the reference frame interpretation;

• The character of ψ is more subtle than just the division
between ontological/epistemological;

• This interpretation can be applied to explain in a local way
the violation of Bell’s inequality;

• It can also be used to explain in a less paradoxical manner the
double slit experiment and the measurement problem;

• As an example, one can give a geometrical structure to
momentum-energy, a manifold isomorphic to space-time;

All this is work in progress.
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