A geometric framework to compare classical field theories

Lukas Barth

Institute for theoretical Physics at the University of Heidelberg

February 2019

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

- Deeper understanding via analysis of similarities
- ► Overview of structure → innovation through order
- Transfer methods between theories
- Solving classes of problems efficiently

- Deeper understanding via analysis of similarities
- ➤ Overview of structure → innovation through order
- Transfer methods between theories
- Solving classes of problems efficiently

- Deeper understanding via analysis of similarities
- ➤ Overview of structure → innovation through order
- Transfer methods between theories
- Solving classes of problems efficiently

- Deeper understanding via analysis of similarities
- ➤ Overview of structure → innovation through order
- Transfer methods between theories
- Solving classes of problems efficiently

Requirements for framework

Framework should be able to answer:

- Are two (classical field) theories equivalent?
- Can one theory be embedded into another one?
- Do two theories share any subtheory?

Preferably, the Framework has a category-theoretical arena.

Requirements for framework

Framework should be able to answer:

- Are two (classical field) theories equivalent?
- Can one theory be embedded into another one?
- Do two theories share any subtheory?

Preferably, the Framework has a category-theoretical arena.

Requirements for framework

Framework should be able to answer:

- Are two (classical field) theories equivalent?
- Can one theory be embedded into another one?
- Do two theories share any subtheory?

Preferably, the Framework has a category-theoretical arena.

Category theory

- can serve to relate mathematical theories via functors,
- ▶ analysis of relations without specification of objects
 → comparison of relationship structures,
- very general with relations to all areas of mathematics

Category theory

- can serve to relate mathematical theories via functors,
- analysis of relations without specification of objects
 → comparison of relationship structures,
- very general with relations to all areas of mathematics

Category theory

- can serve to relate mathematical theories via functors,
- analysis of relations without specification of objects
 → comparison of relationship structures,
- very general with relations to all areas of mathematics

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

What is a classical field theory

System of differential equations on a manifold with

- Interpretation
- Initial / Boundary Conditions
- Validity bounds

What is a classical field theory

System of differential equations on a manifold with

- Interpretation
- Initial / Boundary Conditions
- Validity bounds

What is a classical field theory

System of differential equations on a manifold with

- Interpretation
- Initial / Boundary Conditions
- Validity bounds

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

How to compare

- Need intersection of PDEs whose solutions fulfill both theories
- Would like to investigate everything in one category

Solution: Jet Spaces \rightarrow PDE becomes submanifold

How to compare

- Need intersection of PDEs whose solutions fulfill both theories
- Would like to investigate everything in one category

Solution: Jet Spaces \rightarrow PDE becomes submanifold

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Equations cut out spaces

▶ Equations cut manifolds out of an embedding space.

How do differential equations cut out manifolds?

Equations cut out spaces

▶ Equations cut manifolds out of an embedding space.

How do differential equations cut out manifolds?

Consider PDE

$$u_t = u \tag{1}$$
 with $u_t = du/dt$ and solution $u(t) = A \cdot \exp(t)$

Introduce **new coordinate** u_t to plot solution surface \mathcal{Y} .

Consider PDE

$$u_t = u \tag{1}$$

with $u_t = du/dt$ and solution $u(t) = A \cdot \exp(t)$ Introduce **new coordinate** u_t to plot solution surface \mathcal{Y} .

- Formally introduce $\pi: E \to M$, $E := \mathbb{R} \times \mathbb{R}$, $M := \mathbb{R}$. $J^1(E) := E \times \mathbb{R}$ is the *Jet Space* with coordinates (t, u, u_t) .
- ▶ With $F := \mathbb{R} \times \mathbb{R}$, define bundle $\xi : F \to M$. Then our PDE is the kernel of the operator $\Phi : J^1(E) \to F$ defined by

$$\Phi(t, u, u_t) := (t, u_t - u) \Rightarrow \ker \Phi = \{\theta \in J^1(E) \mid u_t = u\}$$
 (2)

- Formally introduce $\pi: E \to M, E := \mathbb{R} \times \mathbb{R}, M := \mathbb{R}$. $J^1(E) := E \times \mathbb{R}$ is the *Jet Space* with coordinates (t, u, u_t) .
- ▶ With $F := \mathbb{R} \times \mathbb{R}$, define bundle $\xi : F \to M$. Then our PDE is *the kernel of the operator* $\Phi : J^1(E) \to F$ defined by

$$\Phi(t, u, u_t) := (t, u_t - u) \Rightarrow \ker \Phi = \{\theta \in J^1(E) \mid u_t = u\}$$
 (2)

- ▶ Solutions $u(t) = A \cdot \exp(t)$ foliate solution surface \mathcal{Y} .
- ▶ But not all sections $S: M \to J^1(E)$ of $\pi^1: J^1(E) \to M$,

$$S(t) = (t, u(t), u_t(t))$$
(3)

are solutions, even if $u(t) = u_t(t)$.

- ▶ Solutions $u(t) = A \cdot \exp(t)$ foliate solution surface \mathcal{Y} .
- ▶ But not all sections $S: M \to J^1(E)$ of $\pi^1: J^1(E) \to M$,

$$S(t) = (t, u(t), u_t(t))$$
 (3)

are solutions, even if $u(t) = u_t(t)$.

- ▶ Let $s: M \to E$ be section of $\pi: E \to M$, i.e. s(t) = (t, u(t))
- ▶ Let $j^1(s): M \to J^1(E)$ be the *prolongation*

$$j^{1}(s)(t) := (t, u(t), du/dt(t))$$
 (4)

► Those sections $S: M \to J^1(E)$ which are of form $j^1(s)$ and lie in solution surface $\mathcal{Y} = \ker \Phi$ are *solutions* of the PDE.

- ▶ Let $s: M \to E$ be section of $\pi: E \to M$, i.e. s(t) = (t, u(t))
- ▶ Let $j^1(s): M \to J^1(E)$ be the *prolongation*

$$j^{1}(s)(t) := (t, u(t), du/dt(t))$$
 (4)

► Those sections $S: M \to J^1(E)$ which are of form $j^1(s)$ and lie in solution surface $\mathcal{Y} = \ker \Phi$ are *solutions* of the PDE.

- ▶ Let $s: M \to E$ be section of $\pi: E \to M$, i.e. s(t) = (t, u(t))
- ▶ Let $j^1(s): M \to J^1(E)$ be the *prolongation*

$$j^{1}(s)(t) := (t, u(t), du/dt(t))$$
 (4)

▶ Those sections $S: M \to J^1(E)$ which are of form $j^1(s)$ and lie in solution surface $\mathcal{Y} = \ker \Phi$ are *solutions* of the PDE.

- ightharpoonup One can introduce *distribution* $\mathcal C$ to single out solutions
- Consists of tangent lines to all sections for which $u_t(t) = du/dt(t)$.

Therefore, $\mathcal Y$ and $\mathcal C$ suffice to geometrise the PDE.

- ightharpoonup One can introduce *distribution* $\mathcal C$ to single out solutions
- Consists of tangent lines to all sections for which $u_t(t) = du/dt(t)$.

Therefore, $\mathcal Y$ and $\mathcal C$ suffice to geometrise the PDE.

To summarise, we looked at

- ▶ Bundle $\pi: E \to M$ with $E := \mathbb{R} \times \mathbb{R}$, $M := \mathbb{R}$. M and E have coordinates (t) and (t, u).
- ▶ Jet Space $J^1(E) \simeq \mathbb{R}^3$ with coordinates (t, u, u_t)
- ▶ With $F := \mathbb{R} \times \mathbb{R}$, define bundle $\xi : F \to M$. Then our PDE is the kernel of the operator $\Phi : J^1(E) \to F$ defined by

$$\Phi(t, u, u_t) := (t, u_t - u) \Rightarrow \ker \Phi = \{\theta \in J^1(E) \mid u_t = u\}$$
 (5)

Prolong $s: M \to E$ to $j^1(s)(t) := (t, u(t), du/dt(t))$. Those sections $S: M \to J^1(E)$ which are of form $j^1(s)$ and lie in $\mathcal{Y} = \ker \Phi$ are *solutions* of PDE.

To summarise, we looked at

- ▶ Bundle $\pi: E \to M$ with $E := \mathbb{R} \times \mathbb{R}$, $M := \mathbb{R}$. M and E have coordinates (t) and (t, u).
- ▶ Jet Space $J^1(E) \simeq \mathbb{R}^3$ with coordinates (t, u, u_t)
- ▶ With $F := \mathbb{R} \times \mathbb{R}$, define bundle $\xi : F \to M$. Then our PDE is the kernel of the operator $\Phi : J^1(E) \to F$ defined by

$$\Phi(t, u, u_t) := (t, u_t - u) \Rightarrow \ker \Phi = \{\theta \in J^1(E) \mid u_t = u\}$$
 (5)

Prolong $s: M \to E$ to $j^1(s)(t) := (t, u(t), du/dt(t))$. Those sections $S: M \to J^1(E)$ which are of form $j^1(s)$ and lie in $\mathcal{Y} = \ker \Phi$ are *solutions* of PDE.

To summarise, we looked at

- ▶ Bundle $\pi: E \to M$ with $E := \mathbb{R} \times \mathbb{R}$, $M := \mathbb{R}$. M and E have coordinates (t) and (t, u).
- ▶ Jet Space $J^1(E) \simeq \mathbb{R}^3$ with coordinates (t, u, u_t)
- ▶ With $F := \mathbb{R} \times \mathbb{R}$, define bundle $\xi : F \to M$. Then our PDE is *the kernel of the operator* $\Phi : J^1(E) \to F$ defined by

$$\Phi(t, u, u_t) := (t, u_t - u) \Rightarrow \ker \Phi = \{\theta \in J^1(E) \mid u_t = u\}$$
 (5)

▶ Prolong $s: M \to E$ to $j^1(s)(t) := (t, u(t), du/dt(t))$. Those sections $S: M \to J^1(E)$ which are of form $j^1(s)$ and lie in $\mathcal{Y} = \ker \Phi$ are *solutions* of PDE.

To summarise, we looked at

- ▶ Bundle $\pi: E \to M$ with $E := \mathbb{R} \times \mathbb{R}$, $M := \mathbb{R}$. M and E have coordinates (t) and (t, u).
- ▶ Jet Space $J^1(E) \simeq \mathbb{R}^3$ with coordinates (t, u, u_t)
- ▶ With $F := \mathbb{R} \times \mathbb{R}$, define bundle $\xi : F \to M$. Then our PDE is the kernel of the operator $\Phi : J^1(E) \to F$ defined by

$$\Phi(t, u, u_t) := (t, u_t - u) \Rightarrow \ker \Phi = \{\theta \in J^1(E) \mid u_t = u\}$$
 (5)

Prolong $s: M \to E$ to $j^1(s)(t) := (t, u(t), du/dt(t))$. Those sections $S: M \to J^1(E)$ which are of form $j^1(s)$ and lie in $\mathcal{Y} = \ker \Phi$ are *solutions* of PDE.

Definition

Let E be an n+m-dimensional manifold. Two m-dimensional submanifolds M,M' of E are said to have the same k-th order $Jet\ [M]^k_a$ at $a\in M\cap M'\subset E$ if they are tangent to one another up to order k

Definition

The k-th order Jet Space $J^k(E,m)$ of m-dimensional submanifolds of E is defined as the union of all k-th order Jets at all points of E, i.e.

$$J^k(E,m) := \{ [M]_a^k \mid a \in M, \ M \subset E, \ \dim(M) = m \}.$$
 (6)

Definition

Let E be an n+m-dimensional manifold. Two m-dimensional submanifolds M,M' of E are said to have the same k-th order $\operatorname{Jet} [M]_a^k$ at $a\in M\cap M'\subset E$ if they are tangent to one another up to order k

Definition

The k-th order Jet Space $J^k(E,m)$ of m-dimensional submanifolds of E is defined as the union of all k-th order Jets at all points of E, i.e.

$$J^k(E,m) := \{ [M]_a^k \mid a \in M, \ M \subset E, \ \dim(M) = m \}.$$
 (6)

Definition

Let E be an n+m-dimensional manifold. Two m-dimensional submanifolds M, M' of E are said to have the same k-th order $Jet \ [M]^k_a$ at $a \in M \cap M' \subset E$ if they are tangent to one another up to order k.

Definition

The k-th order Jet Space $J^k(E, m)$ of m-dimensional submanifolds of E is defined as the union of all k-th order Jets at all points of E, i.e.

$$J^{k}(E,m) := \{ [M]_{a}^{k} \mid a \in M, \ M \subset E, \ \dim(M) = m \}.$$
 (6)

Definition

Let E be an n+m-dimensional manifold. Two m-dimensional submanifolds M, M' of E are said to have the same k-th order $Jet \ [M]^k_a$ at $a \in M \cap M' \subset E$ if they are tangent to one another up to order k.

Definition

The k-th order Jet Space $J^k(E, m)$ of m-dimensional submanifolds of E is defined as the union of all k-th order Jets at all points of E, i.e.

$$J^{k}(E,m) := \{ [M]_{a}^{k} \mid a \in M, \ M \subset E, \ \dim(M) = m \}.$$
 (6)

Definition

Let E be an n+m-dimensional manifold. Two m-dimensional submanifolds M,M' of E are said to have the same k-th order $Jet\ [M]_a^k$ at $a\in M\cap M'\subset E$ if they are tangent to one another up to order k.

Definition

The k-th order Jet Space $J^k(E,m)$ of m-dimensional submanifolds of E is defined as the union of all k-th order Jets at all points of E, i.e.

$$J^k(E,m) := \{ [M]_a^k \mid a \in M, \ M \subset E, \ \dim(M) = m \}.$$
 (6)

Definition

A differential equation (of order $\leq k$) is a submanifold $\mathcal{E} \subset J^k(E)$.

Definition

If $\pi:E\to M$ and $\xi:F\to M$ are fibered manifolds, then a morphism of fibered manifolds $\Phi:J\subset J^k(E)\to F$ is a differential operator.

 $\ker \Phi$ is a differential equation under certain conditions.

Definition

A differential equation (of order $\leq k$) is a submanifold $\mathcal{E} \subset J^k(E)$.

Definition

If $\pi:E\to M$ and $\xi:F\to M$ are fibered manifolds, then a morphism of fibered manifolds $\Phi:J\subset J^k(E)\to F$ is a differential operator.

 $\ker \Phi$ is a differential equation under certain conditions.

Contents

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Conclusion

Motivating example

1. Magneto-statics:

$$\nabla \times \mathbf{B} = \mathbf{j}, \qquad \nabla \cdot \mathbf{B} = 0. \tag{7}$$

2. Viscous, incompressible Navier-Stokes equations

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{u} = -\nabla \left(\frac{p}{\rho}\right) + \nu \Delta \mathbf{u}, \qquad \nabla \cdot \mathbf{u} = 0. \quad (8)$$

If we assume

$$\mathbf{j} = -\nabla \psi, \ 0 = d\mathbf{u}/dt = \partial u/\partial t + (\mathbf{u} \cdot \nabla)\mathbf{u}$$
 (9)

Use assumptions and vector identities to obtain

$$\nabla \times \mathbf{B} = -\nabla \psi, \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times (\nabla \times \mathbf{u}) = -\nabla \phi, \qquad \nabla \cdot (\nabla \times \mathbf{u}) = 0, \qquad \nabla \cdot \mathbf{u} = 0.$$
(10)

where $\phi := p/(\rho \nu)$. Similar under the "correspondence"

$$\mathbf{B} \to \nabla \times \mathbf{u}$$
. (11

Motivating example

Magneto-statics:

$$\nabla \times \mathbf{B} = \mathbf{j}, \qquad \nabla \cdot \mathbf{B} = 0. \tag{7}$$

2. Viscous, incompressible Navier-Stokes equations

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{u} = -\nabla \left(\frac{p}{\rho}\right) + \nu \Delta \mathbf{u}, \qquad \nabla \cdot \mathbf{u} = 0. \quad (8)$$

If we assume

$$\mathbf{j} = -\nabla \psi, \ 0 = d\mathbf{u}/dt = \partial u/\partial t + (\mathbf{u} \cdot \nabla)\mathbf{u}$$
 (9)

Use assumptions and vector identities to obtain

$$\nabla \times \mathbf{B} = -\nabla \psi, \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times (\nabla \times \mathbf{u}) = -\nabla \phi, \qquad \nabla \cdot (\nabla \times \mathbf{u}) = 0, \qquad \nabla \cdot \mathbf{u} = 0.$$
(10)

where $\phi := p/(\rho \nu)$. Similar under the "correspondence"

$$\mathbf{B} \to \nabla \times \mathbf{u}. \tag{11}$$

▶ Let $\pi: E \to M$ and $\xi: F \to M$ be bundles. Compare PDEs

$$\mathcal{E} = \ker \Phi_E \subset J^k(E), \qquad \mathcal{F} = \ker \Phi_F \subset J^l(F)$$
 (12)

• Correspondence is diff operator $\varphi: J \subset J^n(E) \to F$.

$$J^{k}(E) \qquad J^{n}(E) \xrightarrow{\varphi} F \xleftarrow{\xi_{0}^{k}} J^{l}(F)$$

$$\Phi_{E} \downarrow \qquad \qquad \downarrow^{\pi^{k}} \downarrow^{\pi^{n}} \qquad \xi \qquad \downarrow^{\Phi_{F}} \qquad (13)$$

$$E' \xrightarrow{\pi'} M \xleftarrow{\xi'} F'$$

▶ Let $\pi: E \to M$ and $\xi: F \to M$ be bundles. Compare PDEs

$$\mathcal{E} = \ker \Phi_E \subset J^k(E), \qquad \mathcal{F} = \ker \Phi_F \subset J^l(F)$$
 (12)

• Correspondence is diff operator $\varphi: J \subset J^n(E) \to F$.

$$J^{k}(E) \qquad J^{n}(E) \xrightarrow{\varphi} F \xleftarrow{\xi^{k}_{0}} J^{l}(F)$$

$$\Phi_{E} \downarrow \qquad \qquad \downarrow^{\pi^{k}} \downarrow^{\pi^{n}} \qquad \xi \qquad \downarrow^{\Phi_{F}} \qquad (13)$$

$$E' \xrightarrow{\pi'} M \xleftarrow{\xi'} F'$$

▶ Define $N := \max(k, n + l)$. Prolong φ to $p^L(\varphi)$, L = N - n.

Define preimage and intersection

$$\frac{\varphi_L^* \mathcal{F} := p^L(\varphi)^{-1}(\mathcal{F}^{L-l})}{\mathcal{I} := \mathcal{E}^K \cap \varphi_L^* \mathcal{F}} = \ker \left(p^K(\Phi_E) \vee p^{L-l}(\Phi_F) \circ p^L(\varphi) \right) \tag{15}$$

▶ Define $N := \max(k, n + l)$. Prolong φ to $p^L(\varphi)$, L = N - n.

► Define preimage and *intersection*

$$\boxed{\varphi_L^* \mathcal{F} := p^L(\varphi)^{-1} (\mathcal{F}^{L-l})} = \ker \left(p^{L-l} (\Phi_F) \circ p^L(\varphi) \right)
\boxed{\mathcal{I} := \mathcal{E}^K \cap \varphi_L^* \mathcal{F}} = \ker \left(p^K(\Phi_E) \vee p^{L-l} (\Phi_F) \circ p^L(\varphi) \right) }$$
(15)

Solution transfer

Theorem

Suppose we found a solution of an intersection $\mathcal{I} = \mathcal{E}^K \cap \varphi_L^* \mathcal{F}$, that means a local section $s: O \subset M \to E$ such that $j^N(s)(O) \subset \mathcal{I}$. Then s is also solution of \mathcal{E} and

$$s' := \varphi \circ j^n(s) : O \to F \tag{16}$$

is a solution of \mathcal{F} .

The solution is *transferred* from \mathcal{I} to \mathcal{F} via φ .

Contents

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Conclusion

- $ightharpoonup \pi: E \to M, \xi: F \to M, E:= \mathbb{R} \times \mathbb{R}, M:= \mathbb{R}, F:= E.$
- Solutions are: $u_1(t) = A \exp(t) + B \exp(-t)$ and $u_2(t) = 2/3t^3 + A/2t^2 + Bt + C$.
- ▶ Define correspondence $\varphi: J^0(E) \to F$ as identity.
- $\qquad \qquad \textbf{Prolong } \mathcal{E} \text{ to } \mathcal{E}^1 = \big\{ \theta \in J^3(E) \mid u_{tt} = u, \ u_{ttt} = u_t \big\}.$
- $I = \{ \theta \in J^3(E) \mid u_{tt} = u, \ u_{ttt} = u_t, \ u_{ttt} = 4 \}$

- \blacktriangleright $\pi: E \to M, \xi: F \to M, E:= \mathbb{R} \times \mathbb{R}, M:= \mathbb{R}, F:= E.$
- $\triangleright \mathcal{E} = \{\theta \in J^2(E) \mid u_{tt} = u\}, \mathcal{F} = \{\theta \in J^3(F) \mid u_{ttt} = 4\}.$
- Solutions are: $u_1(t) = A \exp(t) + B \exp(-t)$ and $u_2(t) = 2/3t^3 + A/2t^2 + Bt + C$.
- ▶ Define correspondence $\varphi: J^0(E) \to F$ as identity.
- ▶ Prolong \mathcal{E} to $\mathcal{E}^1 = \{\theta \in J^3(E) \mid u_{tt} = u, u_{ttt} = u_t\}.$
- $ightharpoonup \mathcal{I} = \{ \theta \in J^3(E) \mid u_{tt} = u, \ u_{ttt} = u_t, \ u_{ttt} = 4 \}$

- $ightharpoonup \pi: E \to M, \xi: F \to M, E:= \mathbb{R} \times \mathbb{R}, M:= \mathbb{R}, F:= E.$
- $\triangleright \mathcal{E} = \{\theta \in J^2(E) \mid u_{tt} = u\}, \mathcal{F} = \{\theta \in J^3(F) \mid u_{ttt} = 4\}.$
- Solutions are: $u_1(t) = A \exp(t) + B \exp(-t)$ and $u_2(t) = 2/3t^3 + A/2t^2 + Bt + C$.
- ▶ Define correspondence $\varphi: J^0(E) \to F$ as identity.
- ▶ Prolong \mathcal{E} to $\mathcal{E}^1 = \{\theta \in J^3(E) \mid u_{tt} = u, u_{ttt} = u_t\}.$
- $ightharpoonup \mathcal{I} = \{ \theta \in J^3(E) \mid u_{tt} = u, \ u_{ttt} = u_t, \ u_{ttt} = 4 \}$

- $ightharpoonup \pi: E \to M, \, \xi: F \to M, \, E:= \mathbb{R} \times \mathbb{R}, \, M:= \mathbb{R}, \, F:= E.$
- $\triangleright \mathcal{E} = \{\theta \in J^2(E) \mid u_{tt} = u\}, \mathcal{F} = \{\theta \in J^3(F) \mid u_{ttt} = 4\}.$
- Solutions are: $u_1(t) = A \exp(t) + B \exp(-t)$ and $u_2(t) = 2/3t^3 + A/2t^2 + Bt + C$.
- ▶ Define correspondence $\varphi: J^0(E) \to F$ as identity.
- $\qquad \qquad \textbf{Prolong } \mathcal{E} \text{ to } \mathcal{E}^1 = \big\{ \theta \in J^3(E) \mid u_{tt} = u, \ u_{ttt} = u_t \big\}.$
- $ightharpoonup \mathcal{I} = \{ \theta \in J^3(E) \mid u_{tt} = u, \ u_{ttt} = u_t, \ u_{ttt} = 4 \}$

- $ightharpoonup \pi: E \to M, \, \xi: F \to M, \, E:= \mathbb{R} \times \mathbb{R}, \, M:= \mathbb{R}, \, F:= E.$
- $\geq \mathcal{E} = \{ \theta \in J^2(E) \mid u_{tt} = u \}, \, \mathcal{F} = \{ \theta \in J^3(F) \mid u_{ttt} = 4 \}.$
- Solutions are: $u_1(t) = A \exp(t) + B \exp(-t)$ and $u_2(t) = 2/3t^3 + A/2t^2 + Bt + C$.
- ▶ Define correspondence $\varphi: J^0(E) \to F$ as identity.
- ▶ Prolong \mathcal{E} to $\mathcal{E}^1 = \{\theta \in J^3(E) \mid u_{tt} = u, u_{ttt} = u_t\}.$
- $ightharpoonup \mathcal{I} = \{ \theta \in J^3(E) \mid u_{tt} = u, \ u_{ttt} = u_t, \ u_{ttt} = 4 \}$

- $ightharpoonup \pi: E o M, \, \xi: F o M, \, E:= \mathbb{R} imes \mathbb{R}, \, M:= \mathbb{R}, \, F:= E.$
- $\triangleright \mathcal{E} = \{ \theta \in J^2(E) \mid u_{tt} = u \}, \mathcal{F} = \{ \theta \in J^3(F) \mid u_{ttt} = 4 \}.$
- Solutions are: $u_1(t) = A \exp(t) + B \exp(-t)$ and $u_2(t) = 2/3t^3 + A/2t^2 + Bt + C$.
- ▶ Define correspondence $\varphi: J^0(E) \to F$ as identity.
- ▶ Prolong \mathcal{E} to $\mathcal{E}^1 = \{\theta \in J^3(E) \mid u_{tt} = u, u_{ttt} = u_t\}.$
- $ightharpoonup \mathcal{I} = \{ \theta \in J^3(E) \mid u_{tt} = u, \ u_{ttt} = u_t, \ u_{ttt} = 4 \}$

- $ightharpoonup \mathcal{I} = \{(t, u, 4, u, 4) \mid t, u \in \mathbb{R}\}.$
- ► Prolongation:

$$\mathcal{I}^{1} = \left\{ \theta \in J^{4}(E) \mid \begin{pmatrix} u_{tt} = u, \ u_{ttt} = u_{t}, \ u_{ttt} = 4 \\ u_{ttt} = u_{t}, \ u_{tttt} = u_{tt}, \ u_{tttt} = 0 \end{pmatrix} \right\}$$

$$\mathcal{I}^1 = \{(t,0,4,0,4,0), \mid t \in \mathbb{R}\} \Rightarrow \pi_3^4 : \mathcal{I}^1 \to \mathcal{I} \text{ not surjective.}$$

▶ 2nd prolongation yields contradiction:

$$\mathcal{I}^{2} = \left\{ \theta \in J^{5}(E) \mid \begin{pmatrix} u_{tt} = u, \ u_{ttt} = u_{t}, \ u_{tttt} = 4 \\ u_{ttt} = u_{t}, \ u_{tttt} = u_{tt}, \ u_{tttt} = 0 \\ u_{tttt} = u_{tt}, \ u_{ttttt} = u_{ttt}, \ u_{ttttt} = 0 \end{pmatrix} \right\}$$

Namely
$$0 = u_{tttt} = u_{ttt} = 4$$
 $\Rightarrow \mathcal{I}^2 = \{\varnothing\}$

- $I = \{(t, u, 4, u, 4) \mid t, u \in \mathbb{R}\}.$
- ▶ Prolongation:

$$\mathcal{I}^{1} = \left\{ \theta \in J^{4}(E) \mid \begin{pmatrix} u_{tt} = u, \ u_{ttt} = u_{t}, \ u_{ttt} = 4 \\ u_{ttt} = u_{t}, \ u_{tttt} = u_{tt}, \ u_{tttt} = 0 \end{pmatrix} \right\}$$

 $\mathcal{I}^1 = \{(t,0,4,0,4,0), \mid t \in \mathbb{R}\} \Rightarrow \pi_3^4 : \mathcal{I}^1 \to \mathcal{I} \text{ not surjective.}$

▶ 2nd prolongation yields contradiction:

$$\mathcal{I}^{2} = \left\{ \theta \in J^{5}(E) \mid \begin{pmatrix} u_{tt} = u, \ u_{ttt} = u_{t}, \ u_{tttt} = 4 \\ u_{ttt} = u_{t}, \ u_{tttt} = u_{tt}, \ u_{tttt} = 0 \\ u_{tttt} = u_{tt}, \ u_{ttttt} = u_{ttt}, \ u_{ttttt} = 0 \end{pmatrix} \right\}$$

Namely
$$0 = u_{tttt} = u_{ttt} = 4 \qquad \Rightarrow \mathcal{I}^2 = \{\emptyset\}$$

- $I = \{(t, u, 4, u, 4) \mid t, u \in \mathbb{R}\}.$
- Prolongation:

$$\mathcal{I}^{1} = \left\{ \theta \in J^{4}(E) \mid \begin{pmatrix} u_{tt} = u, \ u_{ttt} = u_{t}, \ u_{ttt} = 4 \\ u_{ttt} = u_{t}, \ u_{tttt} = u_{tt}, \ u_{tttt} = 0 \end{pmatrix} \right\}$$

 $\mathcal{I}^1 = \{(t,0,4,0,4,0), \mid t \in \mathbb{R}\} \Rightarrow \pi_3^4 : \mathcal{I}^1 \to \mathcal{I} \text{ not surjective.}$

2nd prolongation yields contradiction:

$$\mathcal{I}^{2} = \left\{ \theta \in J^{5}(E) \mid \begin{pmatrix} u_{tt} = u, \ u_{ttt} = u_{t}, \ u_{tttt} = 4 \\ u_{ttt} = u_{t}, \ u_{tttt} = u_{tt}, \ u_{tttt} = 0 \\ u_{tttt} = u_{tt}, \ u_{ttttt} = u_{ttt}, \ u_{ttttt} = 0 \end{pmatrix} \right\}$$

Namely
$$0 = u_{tttt} = u_{ttt} = 4$$
 $\Rightarrow \mathcal{I}^2 = \{\emptyset\}.$

Formal integrability of intersection

Definition

A differential equation R^k is said to be *formally integrable* if

- 1. $\pi_{k+l}^{k+l+1}: \mathbb{R}^{k+l+1} \to \mathbb{R}^{k+l}$ is surjective,
- 2. g^{k+l+1} is a vector bundle

for all $l \in \{0, 1, 2, \dots\}$.

Theorem

If \mathbb{R}^k is a differential equation, then it is formally integrable if

- 1. $\pi_k^{k+1}: R^{k+1} \to R^k$ is surjective,
- 2. g^{k+1} is a vector bundle over \mathbb{R}^k
- 3. There exists a quasi-regular basis for g^{κ} .

Definition

A differential equation R^k is said to be *formally integrable* if

- 1. $\pi_{k+l}^{k+l+1}: R^{k+l+1} \to R^{k+l}$ is surjective,
- 2. g^{k+l+1} is a vector bundle

for all $l \in \{0, 1, 2, \dots\}$.

Theorem

- 1. $\pi_k^{k+1}:R^{k+1} o R^k$ is surjective
- 2. g^{k+1} is a vector bundle over R^k
- 3. There exists a quasi-regular basis for g^{κ} .

Definition

A differential equation R^k is said to be *formally integrable* if

- 1. $\pi_{k+l}^{k+l+1}:R^{k+l+1}\to R^{k+l}$ is surjective,
- 2. g^{k+l+1} is a vector bundle

for all $l \in \{0, 1, 2, \dots\}$.

Theorem

- 1. $\pi_k^{k+1}:R^{k+1} o R^k$ is surjective
- 2. g^{k+1} is a vector bundle over R^k
- 3. There exists a quasi-regular basis for g^{κ} .

Definition

A differential equation R^k is said to be *formally integrable* if

- 1. $\pi_{k+l}^{k+l+1}: R^{k+l+1} \to R^{k+l}$ is surjective,
- 2. g^{k+l+1} is a vector bundle

for all $l \in \{0, 1, 2, \dots\}$.

Theorem

- 1. $\pi_k^{k+1}: R^{k+1} \to R^k$ is surjective,
- 2. g^{k+1} is a vector bundle over R^k
- 3. There exists a quasi-regular basis for g^k .

Definition

A differential equation R^k is said to be *formally integrable* if

- 1. $\pi_{k+l}^{k+l+1}: R^{k+l+1} \to R^{k+l}$ is surjective,
- 2. g^{k+l+1} is a vector bundle

for all $l \in \{0, 1, 2, \dots\}$.

Theorem

- 1. $\pi_k^{k+1}: R^{k+1} \to R^k$ is surjective,
- 2. g^{k+1} is a vector bundle over \mathbb{R}^k
- 3. There exists a quasi-regular basis for g^k .

Definition

A differential equation R^k is said to be *formally integrable* if

- 1. $\pi_{k+l}^{k+l+1}: R^{k+l+1} \to R^{k+l}$ is surjective,
- 2. g^{k+l+1} is a vector bundle

for all $l \in \{0, 1, 2, \cdots\}$.

Theorem

- 1. $\pi_k^{k+1}: R^{k+1} \to R^k$ is surjective,
- 2. g^{k+1} is a vector bundle over \mathbb{R}^k ,
- 3. There exists a quasi-regular basis for g^k .

Definition

A differential equation R^k is said to be *formally integrable* if

- 1. $\pi_{k+l}^{k+l+1}: R^{k+l+1} \to R^{k+l}$ is surjective,
- 2. g^{k+l+1} is a vector bundle

for all $l \in \{0, 1, 2, \dots\}$.

Theorem

- 1. $\pi_k^{k+1}: R^{k+1} \to R^k$ is surjective,
- 2. g^{k+1} is a vector bundle over \mathbb{R}^k ,
- 3. There exists a quasi-regular basis for g^k .

Contents

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Conclusion

Shared Structure

Definition

Two differential equations *share structure* if they share an intersection $\mathcal I$ and this intersection is formally integrable at least for all points on an open subset of $\mathcal I$.

Contents

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Conclusion

Rewrite

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \mathbf{u} = -\nabla \left(\frac{p}{\rho}\right) + \nu \Delta \mathbf{u}, \qquad \nabla \cdot \mathbf{u} = 0.$$

$$\nabla \times \mathbf{B} = \mathbf{I}, \qquad \nabla \cdot \mathbf{B} = 0$$

as kernel of

$$\Phi_E(\theta) := \begin{pmatrix} u_t^i + u^j u^{i,j} + \frac{1}{\rho} p^{,i} - \nu u^{i,jj} \\ u^{i,i} \end{pmatrix}$$
 (17)

$$\Phi_F(\theta) := \begin{pmatrix} \varepsilon_{ijk} B^{k,j} - I^i \\ B^{i,i} \end{pmatrix} \tag{18}$$

Curl operator as correspondence

$$\varphi(x^i, t, u^i, u^{i,j}, u^i_t) := (x^i, t, \varepsilon_{ijk} u^{k,j}). \tag{19}$$

▶ For simplicity, set $\nu I^i = -p^{i,i}/\rho$. Intersection is

$$\mathcal{I}^{2} = \ker \begin{pmatrix} \Phi_{E} \\ \varphi^{*} \Phi_{F} \end{pmatrix} = \ker \begin{pmatrix} u_{t}^{i} + u^{j} u^{i,j} - \nu u^{j,ij} \\ u^{i,i} \\ u^{j,ij} - u^{i,jj} - I^{i} \end{pmatrix}$$

Curl operator as correspondence

$$\varphi(x^i, t, u^i, u^{i,j}, u^i_t) := (x^i, t, \varepsilon_{ijk} u^{k,j}). \tag{19}$$

▶ For simplicity, set $\nu I^i = -p^{,i}/\rho$. Intersection is

$$\mathcal{I}^{2} = \ker \begin{pmatrix} \Phi_{E} \\ \varphi^{*} \Phi_{F} \end{pmatrix} = \ker \begin{pmatrix} u_{t}^{i} + u^{j} u^{i,j} - \nu u^{j,ij} \\ u^{i,i} \\ u^{j,ij} - u^{i,jj} - I^{i} \end{pmatrix}$$

First prolongation

$$\mathcal{I}^{3} = \ker \begin{pmatrix} u_{t}^{i} + u^{j}u^{i,j} - \nu u^{j,ij} & u_{t}^{i,k} + u^{j,k}u^{i,j} + u^{j}u^{i,jk} - \nu u^{j,ijk} \\ u_{t}^{i} + u_{t}^{j}u^{i,j} + u^{j}u_{t}^{i,j} - \nu u_{t}^{j,ij} \\ u_{t}^{i,i} & u_{t}^{i,i} \\ u^{j,ij} - u^{i,jj} - I^{i} & u^{j,ijk} - u^{i,jjk} - I^{i,k} \\ u^{j,ij} - u^{i,jj} - I^{i} & u^{j,ij} - I^{i} \end{pmatrix}$$

⇒ Integrability conditions

$$u^{i,ik} = u^{j,kj} = 0 \implies du/dt = 0$$
 (20)

They are minimal physical assumptions needed for consistency.

Define new system with those conditions

$$\Rightarrow \mathcal{J}^2 = \ker \left(u_t^i + u^j u^{i,j}, \quad u_t^{j,j}, \quad u_t^{j,j}, \quad u^{j,ji} \\ u^i, & (u_t^i + u^j u^{i,j}),^k, \quad (u_t^i + u^j u^{i,j})_t \\ u^{i,jj} + I^{i,k} \\ \end{array} \right)$$

One can show: This system is formally integrable.

It can be understood as subtheory of the intersected theories.

Contents

Motivation and Requirements

What is a classical field theory

How to compare

Geometrisation of equations

Correspondence and Intersection

Formal integrability of intersection

Shared Structure

Application

Conclusion

One can now answer the questions

- 1. Are two (classical field) theories equivalent?
- 2. Can one theory be embedded into another one?
- 3. Do two theories share any subtheory?

in the category of smooth manifolds.

- Analogies of similar systems can be found and analysed.
- Equivalences (up to Symmetry) can be identified.
- Methods to solve systems can be transferred.
- ▶ Limits of analogue experiments can be made transparent.

One can now answer the questions

- 1. Are two (classical field) theories equivalent?
- 2. Can one theory be embedded into another one?
- 3. Do two theories share any subtheory?

in the category of smooth manifolds.

- Analogies of similar systems can be found and analysed.
- Equivalences (up to Symmetry) can be identified.
- Methods to solve systems can be transferred.
- ► Limits of analogue experiments can be made transparent.

One can now answer the questions

- 1. Are two (classical field) theories equivalent?
- 2. Can one theory be embedded into another one?
- 3. Do two theories share any subtheory? in the category of smooth manifolds.

- Analogies of similar systems can be found and analysed.
- Equivalences (up to Symmetry) can be identified.
- Methods to solve systems can be transferred.
- ► Limits of analogue experiments can be made transparent.

One can now answer the questions

- 1. Are two (classical field) theories equivalent?
- 2. Can one theory be embedded into another one?
- 3. Do two theories share any subtheory? in the category of smooth manifolds.

- Analogies of similar systems can be found and analysed.
- Equivalences (up to Symmetry) can be identified.
- Methods to solve systems can be transferred.
- ► Limits of analogue experiments can be made transparent.

One can now answer the questions

- 1. Are two (classical field) theories equivalent?
- 2. Can one theory be embedded into another one?
- 3. Do two theories share any subtheory? in the category of smooth manifolds.

- Analogies of similar systems can be found and analysed.
- Equivalences (up to Symmetry) can be identified.
- Methods to solve systems can be transferred.
- ► Limits of analogue experiments can be made transparent.

One can now answer the questions

- 1. Are two (classical field) theories equivalent?
- 2. Can one theory be embedded into another one?
- 3. Do two theories share any subtheory? in the category of smooth manifolds.

- Analogies of similar systems can be found and analysed.
- Equivalences (up to Symmetry) can be identified.
- Methods to solve systems can be transferred.
- Limits of analogue experiments can be made transparent.

One can now answer the questions

- 1. Are two (classical field) theories equivalent?
- 2. Can one theory be embedded into another one?
- 3. Do two theories share any subtheory? in the category of smooth manifolds.

- Analogies of similar systems can be found and analysed.
- Equivalences (up to Symmetry) can be identified.
- Methods to solve systems can be transferred.
- Limits of analogue experiments can be made transparent.

Outlook

- Find method to find the best of all correspondences
- Use homotopy theory to describe the deformation of solution spaces of theories. Such deformations may correspond to approximations of equations and therefore homotopy theory might be a suitable mathematical language to talk about the transition of physical theories.
- ► Find geometric formulation of functional differential equations → application to QFT.

Outlook

- Find method to find the best of all correspondences
- Use homotopy theory to describe the deformation of solution spaces of theories. Such deformations may correspond to approximations of equations and therefore homotopy theory might be a suitable mathematical language to talk about the transition of physical theories.
- Find geometric formulation of functional differential equations → application to QFT.

Outlook

- Find method to find the best of all correspondences
- Use homotopy theory to describe the deformation of solution spaces of theories. Such deformations may correspond to approximations of equations and therefore homotopy theory might be a suitable mathematical language to talk about the transition of physical theories.
- Find geometric formulation of functional differential equations → application to QFT.

Reference overview

Category Theory: Eilenberg and Mac Lane, Leinster, Geroch

Jet Spaces: Cartan, Ehresmann, Saunders

Geometric Theory of PDEs: Vinogadov, Krasilshchik, Vitagliano

Formal Integrability: Goldschmidt, Bryant, Pommaret, Seiler