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I Can one theory be embedded into another one?

I Do two theories share any subtheory?
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Simple example

I Formally introduce π : E →M , E := R× R, M := R.
J1(E) := E × R is the Jet Space with coordinates (t, u, ut).

I With F := R× R, define bundle ξ : F →M . Then our PDE
is the kernel of the operator Φ : J1(E)→ F defined by

Φ(t, u, ut) := (t, ut−u)⇒ ker Φ = {θ ∈ J1(E) | ut = u} (2)
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I Solutions u(t) = A · exp(t) foliate solution surface Y.
I But not all sections S : M → J1(E) of π1 : J1(E)→M ,

S(t) = (t, u(t), ut(t)) (3)

are solutions, even if u(t) = ut(t).



15/40

Simple example

I Solutions u(t) = A · exp(t) foliate solution surface Y.
I But not all sections S : M → J1(E) of π1 : J1(E)→M ,

S(t) = (t, u(t), ut(t)) (3)

are solutions, even if u(t) = ut(t).



16/40

Simple example

I Let s : M → E be section of π : E →M , i.e. s(t) = (t, u(t))

I Let j1(s) : M → J1(E) be the prolongation
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I Those sections S : M → J1(E) which are of form j1(s) and
lie in solution surface Y = ker Φ are solutions of the PDE.
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I Consists of tangent lines to all sections for which
ut(t) = du/dt(t).

Therefore, Y and C suffice to geometrise the PDE.
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Simple example

To summarise, we looked at
I Bundle π : E →M with E := R× R, M := R.
M and E have coordinates (t) and (t, u).

I Jet Space J1(E) ' R3 with coordinates (t, u, ut)

I With F := R× R, define bundle ξ : F →M . Then our PDE
is the kernel of the operator Φ : J1(E)→ F defined by

Φ(t, u, ut) := (t, ut−u)⇒ ker Φ = {θ ∈ J1(E) | ut = u} (5)

I Prolong s : M → E to j1(s)(t) := (t, u(t), du/dt(t)).
Those sections S : M → J1(E) which are of form j1(s) and
lie in Y = ker Φ are solutions of PDE.
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In general

Definition
Let E be an n+m-dimensional
manifold. Two m-dimensional
submanifolds M,M ′ of E are
said to have the same k-th
order Jet [M ]ka at
a ∈M ∩M ′ ⊂ E if they are
tangent to one another up to
order k. x

u

x

E

M

M′′

M′

Definition
The k-th order Jet Space Jk(E,m) of m-dimensional
submanifolds of E is defined as the union of all k-th order Jets
at all points of E, i.e.

Jk(E,m) := {[M ]ka | a ∈M, M ⊂ E, dim(M) = m}. (6)
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In general

Definition
A differential equation (of order ≤ k) is a submanifold
E ⊂ Jk(E).

Definition
If π : E →M and ξ : F →M are fibered manifolds, then a
morphism of fibered manifolds Φ : J ⊂ Jk(E)→ F is a
differential operator.

ker Φ is a differential equation under certain conditions.
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Motivating example

1. Magneto-statics:

∇×B = j, ∇ ·B = 0. (7)

2. Viscous, incompressible Navier-Stokes equations(
∂

∂t
+ u · ∇

)
u = −∇

(
p

ρ

)
+ν∆u, ∇ · u = 0. (8)

If we assume

j = −∇ψ, 0 = du/dt = ∂u/∂t+ (u · ∇)u (9)

Use assumptions and vector identities to obtain

∇×B = −∇ψ, ∇ ·B = 0

∇× (∇× u) = −∇φ, ∇ · (∇× u) = 0, ∇ · u = 0.
(10)

where φ := p/(ρν). Similar under the “correspondence”

B→ ∇× u. (11)
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Formal definition

I Let π : E →M and ξ : F →M be bundles. Compare PDEs

E = ker ΦE ⊂ Jk(E), F = ker ΦF ⊂ J l(F ) (12)

I Correspondence is diff operator ϕ : J ⊂ Jn(E)→ F .

Jk(E) Jn(E) F J l(F )

E′ M F ′

ΦE
πk

πn

ϕ
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ξk0
ΦF

π′ ξ′
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Formal definition

I Define N := max(k, n+ l). Prolong ϕ to pL(ϕ), L = N − n.

JN (E) JL(F )

Jk(E) Jn(E) F J l(F )

E′ M F ′

πN
k

pL(ϕ)

πN
n ξL0

ξLl

ΦE
πk

πn

ϕ

ξ

ξk0
ΦF

π′ ξ′

(14)

I Define preimage and intersection

ϕ∗LF := pL(ϕ)−1(FL−l) = ker
(
pL−l(ΦF ) ◦ pL(ϕ)

)
I := EK ∩ ϕ∗LF = ker

(
pK(ΦE) ∨ pL−l(ΦF ) ◦ pL(ϕ)

) (15)
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Solution transfer

Theorem
Suppose we found a solution of an intersection I = EK ∩ ϕ∗LF ,
that means a local section s : O ⊂M → E such that
jN (s)(O) ⊂ I. Then s is also solution of E and

s′ := ϕ ◦ jn(s) : O → F (16)

is a solution of F .

The solution is transferred from I to F via ϕ.
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Illustrating example

I π : E →M , ξ : F →M , E := R× R, M := R, F := E.

I E =
{
θ ∈ J2(E) | utt = u

}
, F =

{
θ ∈ J3(F ) | uttt = 4

}
.

I Solutions are: u1(t) = A exp(t) +B exp(−t) and
u2(t) = 2/3t3 +A/2t2 +Bt+ C.

I Define correspondence ϕ : J0(E)→ F as identity.

I Prolong E to E1 =
{
θ ∈ J3(E) | utt = u, uttt = ut

}
.

I I =
{
θ ∈ J3(E) | utt = u, uttt = ut, uttt = 4

}
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Illustrating example

I I ={(t, u, 4, u, 4) | t, u ∈ R}.
I Prolongation:

I1 =

{
θ ∈ J4(E)

∣∣∣∣ ( utt = u, uttt = ut, uttt = 4
uttt = ut, utttt = utt, utttt = 0

)}
I1 ={(t, 0, 4, 0, 4, 0), | t ∈ R} ⇒ π4

3 : I1 → I not surjective.
I 2nd prolongation yields contradiction:

I2 =

θ ∈ J5(E)

∣∣∣∣∣
 utt = u, uttt = ut, uttt = 4

uttt = ut, utttt = utt, utttt = 0
utttt = utt, uttttt = uttt, uttttt = 0


Namely 0 = uttttt = uttt = 4 ⇒ I2 ={∅}.
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Illustrating example
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Formal integrability of intersection

Definition
A differential equation Rk is said to be formally integrable if

1. πk+l+1
k+l : Rk+l+1 → Rk+l is surjective,

2. gk+l+1 is a vector bundle
for all l ∈{0, 1, 2, · · · }.

Theorem
If Rk is a differential equation, then it is formally integrable if

1. πk+1
k : Rk+1 → Rk is surjective,

2. gk+1 is a vector bundle over Rk,
3. There exists a quasi-regular basis for gk.
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Shared Structure

Definition
Two differential equations share structure if they share an
intersection I and this intersection is formally integrable at least
for all points on an open subset of I.
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Intersection of Magneto-Statics and Hydrodynamics

Rewrite(
∂

∂t
+ u · ∇

)
u = −∇

(
p

ρ

)
+ν∆u, ∇ · u = 0.

∇×B = I, ∇ ·B = 0

as kernel of

ΦE(θ) :=

(
uit + ujui,j + 1

ρp
,i − νui,jj

ui,i

)
(17)

ΦF (θ) :=

(
εijkB

k,j − Ii
Bi,i

)
(18)
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Intersection of Magneto-Statics and Hydrodynamics

I Curl operator as correspondence

ϕ(xi, t, ui, ui,j , uit) := (xi, t, εijku
k,j). (19)

I For simplicity, set νIi = −p ,i/ρ. Intersection is

I2 = ker

(
ΦE

ϕ∗ΦF

)
= ker

uit + ujui,j − νuj,ij
ui,i

uj,ij − ui,jj − Ii


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Intersection of Magneto-Statics and Hydrodynamics

First prolongation

I3 = ker


uit + ujui,j − νuj,ij

∣∣∣∣ ui,kt + uj,kui,j + ujui,jk − νuj,ijk
uitt + ujtu

i,j + ujui,jt − νu
j,ij
t

ui,i
∣∣∣∣ ui,ik

ui,it

uj,ij − ui,jj − Ii
∣∣∣∣ uj,ijk − ui,jjk − Ii,k

uj,ijt − ui,jjt − Iit


⇒ Integrability conditions

ui,ik = uj,kj = 0 ⇒ du/dt = 0 (20)

They are minimal physical assumptions needed for consistency.
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Intersection of Magneto-Statics and Hydrodynamics

Define new system with those conditions

⇒ J 2 = ker

 uj,j , uj,jt , uj,ji

uit + ujui,j , (uit + ujui,j),k, (uit + ujui,j)t
ui,jj + Ii,k


One can show: This system is formally integrable.

It can be understood as subtheory of the intersected theories.
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Conclusion

One can now answer the questions
1. Are two (classical field) theories equivalent?
2. Can one theory be embedded into another one?
3. Do two theories share any subtheory?

in the category of smooth manifolds.

With the notion of shared structure,
I Analogies of similar systems can be found and analysed.
I Equivalences (up to Symmetry) can be identified.
I Methods to solve systems can be transferred.
I Limits of analogue experiments can be made transparent.
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Outlook

I Find method to find the best of all correspondences

I Use homotopy theory to describe the deformation of
solution spaces of theories. Such deformations may
correspond to approximations of equations and therefore
homotopy theory might be a suitable mathematical
language to talk about the transition of physical theories.

I Find geometric formulation of functional differential
equations→ application to QFT.
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Jet Spaces: Cartan, Ehresmann, Saunders

Geometric Theory of PDEs: Vinogadov, Krasilshchik, Vitagliano

Formal Integrability: Goldschmidt, Bryant, Pommaret, Seiler
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