Spectral Reconstruction with Deep Neural Networks

Lukas Kades

Cold Quantum Coffee

- Heidelberg University -

arXiv: 1905.04305, Lukas Kades, Jan M. Pawlowski, Alexander Rothkopf, Manuel Scherzer, Julian M. Urban, Sebastian J. Wetzel, Nicolas Wink, and Felix Ziegler

Outline

- Physical motivation the inverse problem
- Existing methods
- Neural network based reconstruction
- Comparison
- Problems of reconstructions with neural networks
- Possible improvements
- Conclusion

Physical motivation

Real-time properties of strongly correlated quantum systems

- Time has to be analytically continued into the complex plane
- Explicit computations involve numerical steps

How to reconstruct the spectral function from noisy Euclidean propagator data to extract their physical structure?

The (inverse) problem

The (inverse) problem
$$= K_{ij}$$

$$G_i := G(p_i) = \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \frac{\omega \, \rho(\omega)}{\omega^2 + p_i^2} \simeq \sum_{j=1}^{N_\omega} K(p_i, \omega_j) \Delta \omega_j \, \rho_j \qquad \Longleftrightarrow \quad \rho_j = K_{ij}^{-1} G_i$$

Properties:

- Mostly very small eigenvalues hard to invert numerically
- <u>Ill-conditioned:</u> A small error in the initial propagator data can result in large deviations in the reconstruction
- Suppression of <u>additional</u> structures for large frequencies

The (inverse) problem

The (inverse) problem
$$= K_{ij}$$

$$G_i := G(p_i) = \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \frac{\omega \, \rho(\omega)}{\omega^2 + p_i^2} \simeq \sum_{j=1}^{N_\omega} K(p_i, \omega_j) \Delta \omega_j \, \rho_j \qquad \Longleftrightarrow \quad \rho_j = K_{ij}^{-1} G_i$$

Properties:

- Mostly very small eigenvalues hard to invert numerically
- <u>Ill-conditioned:</u> A small error in the initial propagator data can result in large deviations in the reconstruction
- Suppression of <u>additional</u> structures for large frequencies

How to tackle such an inverse problem?

Specifying the problem

Discretised noisy propagator points:

$$G = \{G_i + \sigma \eta_i\}_{i=1}^{N_p}$$

Consisting of 1, 2 or 3 Breit-Wigners:

$$\rho^{(BW)}(\omega|A,M,\Gamma) = \frac{4A\Gamma\omega}{(M^2 + \Gamma^2 - \omega^2)^2 + 4\Gamma^2\omega^2}$$

Objectives (the actual inverse problem):

Case 1: Try to predict the <u>underlying parameters</u>:

$$\theta = \{A_i, M_i, \Gamma_i \mid 0 \le i < N_{\text{BW}}\}$$

• Case 2: Try to predict a discretised spectral function: $\rho = \{\rho_i\}_{i=1}^{N_\omega}$

6

Bayesian inference

What is that? -

Bayesian inference

What is that? -

- An optimization algorithm that uses Bayes' theorem to deduce properties of an underlying posterior distribution.

(cf. Wikipedia: Statistical Inference)

Reminder: Bayes' Theorem

Given:

- ullet Discretised propagator data: $G = \left\{G_i + \sigma \eta_i
 ight\}_{i=1}^{N_p}$
- Parameters of the Breit-Wigner functions: $heta = \{A_i, M_i, \Gamma_i \, | \, 0 \leq i < N_{\mathrm{BW}} \}$

Prior probability

Posterior probability of $\, heta\,$ given propagator data G

Probability of propagator data G given Breit-Wigner functions parameterised by θ

GrHMC method (Existing methods I) 1804.00945, A.K. Cyrol et al.

$$p(\theta|G) \propto p(\theta)p(G|\theta)$$

$$L = \parallel G - G(\theta_{sug}) \parallel_2^2$$

 Based on a hybrid Monte Carlo algorithm to map out the posterior distribution

$$p(G|\theta) \propto \exp\left(-L\right)$$

• Enables the computation of expectation values: $\langle \theta \rangle$, $\langle \theta^2 \rangle$, ...

$$A(\theta'|\theta_t) = \min\left(1, \frac{p(\theta'|G)g(\theta_t|\theta')}{p(\theta_t|G)g(\theta'|\theta_t)}\right)$$

Aims particularly at a prediction of the underlying parameters (Case 1)

BR method (Existing methods II) 1307.6106, Y. Burnier, A. Rothkopf

$$p(\rho|G) \propto p(\rho)p(G|\rho)$$

$$S_{\rm BR} = \int d\omega \left(1 - \frac{\rho(\omega)}{m(\omega)} + \log\left[\frac{\rho(\omega)}{m(\omega)}\right]\right)$$

$$p(G|\rho) \propto \exp\left(-L - \gamma(L - N_{\tau})^2\right)$$

- Based on a gradient descent algorithm to find the maximum (Maximum A Posteriori - MAP)
- Incorporation of certain constraints (smoothness, scale invariance, etc.)

 $p(\rho) \propto \exp(S_{\rm BR})$

Aims particularly at a prediction of a discretised spectral function (Case 2)

Neural network based reconstruction

$$L = || G - G(\theta_{sug}) ||_2^2$$

$$L = \parallel \rho - \rho(\theta_{sug}) \parallel_2^2$$

$$L = \parallel \theta - \theta_{sug} \parallel_2^2$$

- Based on a feed-forward network architecture
- A definition of a <u>large set of loss functions</u> is possible

Aims at a correct prediction for both cases - a discretised spectral function or the underlying parameters

Training procedure

1. Generate training data:

$$\{(\theta, G) \mid \theta = \{A_i, M_i, \Gamma_i \sim \text{Uni} \mid 0 \le i < N_{\text{BW}}\} \land G \sim G(\theta) + \sigma\eta\}$$

- 2. Forward pass: $\theta_{sug} = \text{net}(G)$
- 3. Compute the loss: $L = \parallel \theta \theta_{sug} \parallel_2^2$
- Backward pass (Backpropagation): Adapt network parameters for better prediction
- 5. Repeat until convergence

The <u>inverse integral transformation is parametrised</u> by the hidden variables of the neural network.

Parametrisation of the inverse integral transformation

- <u>Parametrisation</u> of the inverse integral transformation
- Optimisation/Training based <u>directly on arbitrary representations</u> of the spectral function - <u>much larger set of possible loss functions</u>

$$L = \parallel \rho - \rho(\theta_{sug}) \parallel_2^2$$

$$L = || G - G(\theta_{sug}) ||_2^2$$
 $L = || \theta - \theta_{sug} ||_2^2$

- <u>Parametrisation</u> of the inverse integral transformation
- Optimisation/Training based <u>directly on arbitrary representations</u> of the spectral function - <u>much larger set of possible loss functions</u>
- Provides <u>implicit regularisation</u> by training data or explicit, by additional regularisation terms in the loss function

- <u>Parametrisation</u> of the inverse integral transformation
- Optimisation/Training based <u>directly on arbitrary representations</u> of the spectral function - <u>much larger set of possible loss functions</u>
- Provides <u>implicit regularisation</u> by training data or explicitly, by additional regularisation terms in the loss function
- Computationally <u>much cheaper</u> (after training)
- More direct access to <u>try-and-error scenarios</u> for the exploration of more appropriate loss functions, etc.

Comparison to existing methods

Neural network approach:

- Implicit Bayesian approach
- Optimum is <u>learned</u> a priori by a <u>parametrisation</u> by the neural network
- Based on <u>arbitrary loss</u>
 functions

Existing methods:

- Explicit Bayesian approach
- <u>Iterative</u> optimization algorithm

Restricted to <u>propagator loss</u>

Numerical results I

Numerical results II

Problems of neural networks

Expressive power too small for large parameter spaces:

- Set of inverse transformations is too large
- Systematic errors due to a varying severity of the inverse problem

Prop./Spec. 3000

 $M_2 - M_1 = M_2 - 1$

How to obtain reliable reconstructions?

What is meant by reliable reconstructions?

 <u>Locality</u> of proposed solutions in parameter space (aims at a reduction of the strength of the ill-conditioned problem)

What is meant by reliable reconstructions?

- <u>Locality</u> of proposed solutions in parameter space (aims at a reduction of the strength of the ill-conditioned problem)
- Homogeneous distribution of losses in parameter space

Spectral reconstructions with a reliable error estimation

Factors for reliable reconstructions

Iterative procedure

Reliable reconstructions allow an <u>iterative procedure</u> implemented by a <u>successive reduction</u> of the parameter space

How to obtain **reliable reconstructions**?

Future work I - Training data and learning loss functions

- Search for algorithms to artificially manipulate the loss landscape
- Discover more appropriate loss functions for existing methods
- Reduction of the strength of the ill-conditioned problem

1707.02198, Santos et al. 1810.12081, Wu et al.

Results in <u>locality</u> of solutions and a <u>homogeneous</u> loss distribution

Future work II - Invertible neural networks

1808.04730, Ardizzone et al.

- Particular network architecture that is trained in both directions invertible
- Allows Bayesian Inference by sampling

> Enables a reliable error estimation

Conclusion

- Recapitulation of the <u>inverse problem of spectral reconstruction</u>
- Introduction of a <u>reconstruction scheme</u> based on <u>deep neural</u> <u>networks</u>
- Analysed problems regarding reconstructions with neural networks
- Proposed solutions for this problems for future work

Further future work

- Gaussian processes
- Application on physical data