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Physical motivation

Propagator
Spectral function Källen-Lehmann kernel
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Real-time properties of strongly correlated quantum systems
● Time has to be analytically continued into the complex plane
● Explicit computations involve numerical steps

How to reconstruct the spectral function from noisy Euclidean 
propagator data to extract their physical structure?



The (inverse) problem

Properties:
● Mostly very small eigenvalues - hard to invert numerically
● Ill-conditioned:  A small error in the initial propagator data can result in large 

deviations in the reconstruction
● Suppression of additional structures for large frequencies
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The (inverse) problem

Properties:
● Mostly very small eigenvalues - hard to invert numerically
● Ill-conditioned:  A small error in the initial propagator data can result in large 

deviations in the reconstruction
● Suppression of additional structures for large frequencies

How to tackle such an inverse problem?
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Specifying the problem

● Discretised noisy propagator points:

 
● Consisting of 1, 2 or 3 Breit-Wigners:

Objectives (the actual inverse problem):
● Case 1: Try to predict the underlying parameters: 

● Case 2: Try to predict a discretised spectral 
function: 
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Bayesian inference

What is that? -
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Bayesian inference

What is that? -
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- An optimization algorithm that uses Bayes’ theorem to 
deduce properties of an underlying posterior distribution.

(cf. Wikipedia: Statistical Inference)



Reminder: Bayes’ Theorem

Given:
● Discretised propagator data:
● Parameters of the Breit-Wigner functions:  

Prior probability

Probability of propagator data     given 
Breit-Wigner functions parameterised by 

Posterior probability of    
given propagator data 
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GrHMC method (Existing methods I)

● Based on a hybrid Monte Carlo algorithm to 
map out the posterior distribution

● Enables the computation of expectation 
values:

Aims particularly at a prediction of the underlying parameters (Case 1) 
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1804.00945, A.K. Cyrol et al.



BR method (Existing methods II) 

● Based on a gradient descent algorithm to find 
the maximum (Maximum A Posteriori - MAP)

● Incorporation of certain constraints 
(smoothness, scale invariance, etc.)

Aims particularly at a prediction of a discretised spectral function (Case 2) 
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Neural network based reconstruction

● Based on a feed-forward network architecture
● A definition of a large set of loss functions is possible

Aims at a correct prediction for both cases - a discretised spectral 
function or the underlying parameters

Parameter net Point net
New!
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Training procedure

1. Generate training data:
 

2. Forward pass: 
3. Compute the loss:
4. Backward pass (Backpropagation): Adapt 

network parameters for better prediction
5. Repeat until convergence

The inverse integral transformation is parametrised by 
the hidden variables of the neural network.
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Potential advantages of neural networks

14

● Parametrisation of the inverse integral transformation



Potential advantages of neural networks
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● Parametrisation of the inverse integral transformation
● Optimisation/Training based directly on arbitrary representations of 

the spectral function - much larger set of possible loss functions



Potential advantages of neural networks
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● Parametrisation of the inverse integral transformation
● Optimisation/Training based directly on arbitrary representations of 

the spectral function - much larger set of possible loss functions
● Provides implicit regularisation by training data or explicit, by 

additional regularisation terms in the loss function



Potential advantages of neural networks
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● Parametrisation of the inverse integral transformation
● Optimisation/Training based directly on arbitrary representations of 

the spectral function - much larger set of possible loss functions
● Provides implicit regularisation by training data or explicitly, by 

additional regularisation terms in the loss function
● Computationally much cheaper (after training)
● More direct access to try-and-error scenarios for the exploration of 

more appropriate loss functions, etc.



Comparison to existing methods

Neural network approach:

● Implicit Bayesian approach
● Optimum is learned a priori by 

a parametrisation by the 
neural network

● Based on arbitrary loss 
functions
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Existing methods:

● Explicit Bayesian approach
● Iterative optimization algorithm

● Restricted to propagator loss



Numerical results I
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Numerical results II
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Problems of neural networks

Expressive power too small for large parameter spaces:
● Set of inverse transformations is too large
● Systematic errors due to a varying severity of the inverse 

problem

How to obtain reliable reconstructions?
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What is meant by reliable reconstructions?

● Locality of proposed solutions in parameter space (aims at a reduction of the 
strength of the ill-conditioned problem)

22



What is meant by reliable reconstructions?

● Locality of proposed solutions in parameter space (aims at a reduction of the 
strength of the ill-conditioned problem)

● Homogeneous distribution of losses in parameter space

23

➢ Spectral reconstructions with a reliable error estimation



Factors for reliable reconstructions
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Inverse 
problem 
related

Neural 
network 
related



Iterative procedure

How to obtain reliable reconstructions?
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Train network and 
reconstruct

Reduce parameter space 
based error estimation

➢ Reliable reconstructions allow an iterative procedure 
implemented by a successive reduction of the parameter space



Future work I - Training data and learning loss functions

● Search for algorithms to artificially manipulate the loss landscape
● Discover more appropriate loss functions for existing methods
➢ Reduction of the strength of the ill-conditioned problem
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➢ Results in locality of solutions and a homogeneous loss distribution

1707.02198, Santos et al.
1810.12081, Wu et al.



Future work II - Invertible neural networks

● Particular network architecture that is trained in both directions - invertible
● Allows Bayesian Inference by sampling

➢ Enables a reliable error estimation
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Conclusion

● Recapitulation of the inverse problem of spectral reconstruction
● Introduction of a reconstruction scheme based on deep neural 

networks
● Analysed problems regarding reconstructions with neural networks
● Proposed solutions for this problems for future work
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Further future work
● Gaussian processes
● Application on physical data


