Stable magnetic monopole in two Higgs doublet models

Yu Hamada (Kyoto Univ.)

Based on arXiv:1904.09269

Collaborators:

Minoru Eto (Yamagata U. & Keio U.), Masafumi Kurachi (Keio U.), Muneto Nitta (Keio U.)

Cold Quantum Coffee @ Heidelberg University (22 Nov. 2019)

Introduction

Is there any object that has a single magnetic charge?

 MM has attracted attention from many physicist since the work by Dirac (1931)

"If a magnetic monopole exists, we can derive EM-symmetric Maxwell eqs and quantized electric charges."

 MM has attracted attention from many physicist since the work by Dirac (1931)

"If a magnetic monopole exists, we can derive **EM-symmetric Maxwell eqs and quantized electric charges**."

't Hooft, Polyakov (1974)
 Magnetic monopoles arise as topological solitons in field theory.

topology of the vacuum is non-trivial ($\pi_2(Vacuum) \neq 0$)

Monopole can exist.

 MM has attracted attention from many physicist since the work by Dirac (1931)

"If a magnetic monopole exists, we can derive **EM-symmetric Maxwell eqs and quantized electric charges**."

't Hooft, Polyakov (1974)
 Magnetic monopoles arise as topological solitons in field theory.

topology of the vacuum is non-trivial ($\pi_2(Vacuum) \neq 0$)

Monopole can exist.

Titorioporo carrexist.

- In the SM, $\pi_2(\text{Vac.}) = 0$ \longrightarrow No stable monopole
- If discovered, it provides a strong evidence of New Physics. (cf. GUT monopole)

 MM has attracted attention from many physicist since the work by Dirac (1931)

"If a magnetic monopole exists, we can derive **EM-symmetric Maxwell eqs and quantized electric charges**."

't Hooft, Polyakov (1974)
 Magnetic monopoles arise as topological solitons in field theory.

topology of the vacuum is non-trivial ($\pi_2(Vacuum) \neq 0$)

Monopole can exist.

- In the SM, $\pi_2(\text{Vac.}) = 0$ \longrightarrow No stable monopole
- If discovered, it provides a strong evidence of New Physics.

 (cf. GUT monopole)

There are many projects searching magnetic monopoles.

(ATLAS, CMS, MoEDAL)

Two Higgs Doublet Model (2HDM)

In 2HDM, two Higgs doublets are introduced:

SM
$$\Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \longrightarrow \Phi_1 = \begin{pmatrix} \phi_{1,1} \\ \phi_{1,2} \end{pmatrix} \quad \Phi_2 = \begin{pmatrix} \phi_{2,1} \\ \phi_{2,2} \end{pmatrix}$$

2HDM has been widely studied because

- simple extension of the SM Higgs sector
- Electroweak baryogenesis possible
- supersymmetric SM includes 2HDM

Two Higgs Doublet Model (2HDM)

In 2HDM, two Higgs doublets are introduced:

SM
$$\Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \longrightarrow \Phi_1 = \begin{pmatrix} \phi_{1,1} \\ \phi_{1,2} \end{pmatrix} \quad \Phi_2 = \begin{pmatrix} \phi_{2,1} \\ \phi_{2,2} \end{pmatrix}$$

2HDM has been widely studied because

- simple extension of the SM Higgs sector
- Electroweak baryogenesis possible
- supersymmetric SM includes 2HDM

Today's message

Although 2HDM is a simple extension of the SM, it predicts stable magnetic monopoles depending on parameters.

Plan of talk

• Introduction (3p.) ← Done

Vortex string in 2HDM (Review) (5p.)

Magnetic monopole in 2HDM (6p.)

Summary

Vortex string in 2HDM

[Dvali, Senjanovic '93]

[Eto, Kurachi, Nitta '18]

- Vortex string is a topological soliton associated with a broken U(1) symmetry.
- eg.) Let us consider Abelian-Higgs model:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + |D_{\mu}\phi|^2 - V(\phi)$$

Vacuum is S^1 . $(\pi_1(\text{Vac.}) = \mathbb{Z} \neq 0)$

 Vortex string is a topological soliton associated with a broken U(1) symmetry.

eg.) Let us consider Abelian-Higgs model:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + |D_{\mu}\phi|^2 - V(\phi)$$

Vacuum is S^1 . $(\pi_1(\text{Vac.}) = \mathbb{Z} \neq 0)$

Assume asymptotic forms at infinity as follows:

$$\begin{cases} \phi(x) \sim ve^{i\theta} \\ A_i(x) \sim i\partial_i \theta \end{cases}$$
 (r \to \infty)
$$\text{winding #} = 1$$

 Vortex string is a topological soliton associated with a broken U(1) symmetry.

eg.) Let us consider Abelian-Higgs model:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu} \phi|^2 - V(\phi)$$

Vacuum is S^1 . $(\pi_1(\text{Vac.}) = \mathbb{Z} \neq 0)$

Assume asymptotic forms at infinity as follows:

$$\begin{cases} \phi(x) \sim ve^{i\theta} \\ A_i(x) \sim i\partial_i \theta \end{cases}$$
 (r \to \infty)
$$\text{winding #} = 1$$

There must be a vortex string at the center (topologically stable)

 Vortex string is a topological soliton associated with a broken U(1) symmetry.

eg.) Let us consider Abelian-Higgs model:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + |D_{\mu}\phi|^2 - V(\phi)$$

Vacuum is S^1 . $(\pi_1(\text{Vac.}) = \mathbb{Z} \neq 0)$

Assume asymptotic forms at infinity as follows:

$$\begin{cases} \phi(x) \sim ve^{i\theta} \\ A_i(x) \sim i\partial_i \theta \end{cases} (r \to \infty)$$

$$\text{winding #} = 1$$

In the following, we will see that vortex strings can exist in 2HDM.

Higgs potential can be expressed as

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right) + \frac{\beta_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\beta_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2}$$
$$+ \beta_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \beta_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \left\{ \frac{\beta_{5}}{2} \left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \text{h.c.} \right\}$$

We assume both of the two doublets acquire real VEVs.

$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ v_1 \end{pmatrix}$$
 $\langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$ $v_{EW}^2 = 2(v_1^2 + v_2^2) \simeq (246 \text{ GeV})^2$

Higgs potential can be expressed as

$$\begin{split} V(\Phi_1,\Phi_2) &= m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 - \left(m_{12}^2 \Phi_1^\dagger \Phi_2 + \text{h.c.} \right) + \frac{\beta_1}{2} \left(\Phi_1^\dagger \Phi_1 \right)^2 + \frac{\beta_2}{2} \left(\Phi_2^\dagger \Phi_2 \right)^2 \\ &+ \beta_3 \left(\Phi_1^\dagger \Phi_1 \right) \left(\Phi_2^\dagger \Phi_2 \right) + \beta_4 \left(\Phi_1^\dagger \Phi_2 \right) \left(\Phi_2^\dagger \Phi_1 \right) + \left\{ \frac{\beta_5}{2} \left(\Phi_1^\dagger \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

Impose two global symmetries :

Higgs potential can be expressed as

$$\begin{split} V(\Phi_1,\Phi_2) &= m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 - \left(m_{12}^2 \Phi_1^\dagger \Phi_2 + \text{h.c.} \right) + \frac{\beta_1}{2} \left(\Phi_1^\dagger \Phi_1 \right)^2 + \frac{\beta_2}{2} \left(\Phi_2^\dagger \Phi_2 \right)^2 \\ &+ \beta_3 \left(\Phi_1^\dagger \Phi_1 \right) \left(\Phi_2^\dagger \Phi_2 \right) + \beta_4 \left(\Phi_1^\dagger \Phi_2 \right) \left(\Phi_2^\dagger \Phi_1 \right) + \left\{ \frac{\beta_5}{2} \left(\Phi_1^\dagger \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

Impose two global symmetries :

•
$$U(1)_a$$
 sym.: $\Phi_1 \to e^{-i\alpha}\Phi_1$, $\Phi_2 \to e^{i\alpha}\Phi_2$

(relative phase rotation)

This symmetry is broken in the vacuum.

The vacuum has a non-trivial topology ($\pi_1(Vac.) = \mathbb{Z}$) and vortex string can exist.

Higgs potential can be expressed as

$$\begin{split} V(\Phi_1,\Phi_2) &= m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 - \left(m_{12}^2 \Phi_1^\dagger \Phi_2 + \text{h.c.} \right) + \frac{\beta_1}{2} \left(\Phi_1^\dagger \Phi_1 \right)^2 + \frac{\beta_2}{2} \left(\Phi_2^\dagger \Phi_2 \right)^2 \\ &+ \beta_3 \left(\Phi_1^\dagger \Phi_1 \right) \left(\Phi_2^\dagger \Phi_2 \right) + \beta_4 \left(\Phi_1^\dagger \Phi_2 \right) \left(\Phi_2^\dagger \Phi_1 \right) + \left\{ \frac{\beta_5}{2} \left(\Phi_1^\dagger \Phi_2 \right)^2 + \text{h.c.} \right\} \end{split}$$

Impose two global symmetries :

•
$$(\mathbb{Z}_2)_C$$
 sym. :
$$\begin{cases} \Phi_2 \to W_i \to W_i \end{cases}$$

(not broken in vacuum)

$$\begin{cases} \Phi_1 \to (i\sigma^2)\Phi_2^* \\ \Phi_2 \to (i\sigma^2)\Phi_1^* \\ W_i \to (i\sigma^1) \ W_i \ (i\sigma^1)^\dagger \\ B_i \to -B_i \end{cases}$$
 ken in vacuum)

exchange of two doublets

CP transf.

We obtain
$$m_{11}=m_{22}$$
 , $\beta_1=\beta_2$ \longrightarrow $\tan\beta\equiv v_2/v_1=1$

Topological Z-strings in 2HDM

- There are two stable vortex strings (topological Z-strings).
- (0,1)-string has an asymptotic form as follows:

$$H^{(0,1)} \sim v \, \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \qquad Z_i^{(0,1)} \sim \frac{\cos \theta_W}{g} \frac{\epsilon_{3ij} \, x^j}{r^2}$$

 $H \equiv \left(i\sigma_2 \Phi_1^*, \, \Phi_2\right)$

- Φ_2 has a winding #
- Z-flux: $\Phi_Z = 2\pi/g_Z$ is confined in the string.

• (1,0)-string:

$$H^{(1,0)} \sim v \quad \begin{pmatrix} e^{i\theta} & 0 \\ 0 & 1 \end{pmatrix} \qquad Z_i^{(1,0)} \sim \frac{-\cos\theta_W}{g} \frac{\epsilon_{3ij} x^j}{r^2}$$

- Φ_1 has a winding #
- Z-flux: $\Phi_Z = -2\pi/g_Z$ is confined in the string.

Topological Z-strings in 2HDM

- There are two stable vortex strings (topological Z-strings).
- (0,1)-string has an asymptotic form as follows:

$$H^{(0,1)} \sim v \quad \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \qquad Z_i^{(0,1)} \sim \frac{\cos \theta_W}{g} \frac{\epsilon_{3ij} x^j}{r^2}$$

 $H \equiv \left(i\sigma_2\Phi_1^*, \Phi_2\right)$

- Φ_2 has a winding #
- Z-flux: $\Phi_Z = 2\pi/g_Z$ is confined in the string.

Related by $(\mathbb{Z}_2)_C$ transf.

• (1,0)-string:

$$H^{(1,0)} \sim v \quad \begin{pmatrix} e^{i\theta} & 0 \\ 0 & 1 \end{pmatrix} \qquad Z_i^{(1,0)} \sim \frac{-\cos\theta_W}{g} \frac{\epsilon_{3ij} x^j}{r^2}$$

- Φ_1 has a winding #
- Z-flux: $\Phi_Z = -2\pi/g_Z$ is confined in the string.

Topological Z-strings in 2HDM

- There are two stable vortex strings (topological Z-strings).
 - (0,1)-string has an asymptotic form as follows:

$$H^{(0,1)} \sim v \quad \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \qquad Z_i^{(0,1)} \sim \frac{\cos \theta_W}{g} \frac{\epsilon_{3ij} x^j}{r^2}$$

 $H \equiv \left(i\sigma_2 \Phi_1^*, \Phi_2\right)$

- Φ_2 has a winding #
- Z-flux: $\Phi_Z = 2\pi/g_Z$ is confined in the string.

Related by $(\mathbb{Z}_2)_C$ transf.

Tension(energy) of the strings are degenerate because of $(\mathbb{Z}_2)_C$ sym.

• (1,0)-string:

$$H^{(1,0)} \sim v \quad \begin{pmatrix} e^{i\theta} & 0 \\ 0 & 1 \end{pmatrix} \qquad Z_i^{(1,0)} \sim \frac{-\cos\theta_W}{g} \frac{\epsilon_{3ij} x^j}{r^2}$$

- Φ_1 has a winding #
- Z-flux: $\Phi_Z = -2\pi/g_Z$ is confined in the string.

Plan of talk

• Introduction (3p.) ← Done

Vortex string in 2HDM (Review) (5p.) ← Done

Magnetic monopole in 2HDM (6p.)

Summary

Magnetic monopole in 2HDM

[Eto, **Hamada**, Kurachi, Nitta '19]

Topology of 2HDM

- As we have seen, $\pi_1(\mathrm{Vac.}) \simeq \pi_1(U(2)) = \mathbb{Z}$ and vortex strings can exist in 2HDM.
- However, $\pi_2(\text{Vac.}) \simeq \pi_2(U(2)) = 0$.
 - It seems that there is no topological reason for the existence of stable monopoles...

Stable magnetic monopole does not exist in 2HDM?

Topology of 2HDM

- As we have seen, $\pi_1(\mathrm{Vac.}) \simeq \pi_1(U(2)) = \mathbb{Z}$ and vortex strings can exist in 2HDM.
- However, $\pi_2(\text{Vac.}) \simeq \pi_2(U(2)) = 0$.
 - It seems that there is no topological reason for the existence of stable monopoles...

Stable magnetic monopole does not exist in 2HDM?

Does exist!

Topology of 2HDM

- As we have seen, $\pi_1(\mathrm{Vac.}) \simeq \pi_1(U(2)) = \mathbb{Z}$ and vortex strings can exist in 2HDM.
- However, $\pi_2(\text{Vac.}) \simeq \pi_2(U(2)) = 0$.
 - It seems that there is no topological reason for the existence of stable monopoles...

Stable magnetic monopole does not exist in 2HDM?

Does exist!

Key symmetries: $U(1)_a$ and $(\mathbb{Z}_2)_C$

Magnetic Monopole in 2HDM

• Interpolate the two Z-strings smoothly.

Magnetic Monopole in 2HDM

Interpolate the two Z-strings smoothly.

• This object can be regarded as a topological $(\mathbb{Z}_2)_C$ kink interpolating the two stable configurations.

Magnetic Monopole in 2HDM

Interpolate the two Z-strings smoothly.

• This object can be regarded as a topological $(\mathbb{Z}_2)_C$ kink interpolating the two stable configurations.

This kink behaves as a magnetic monopole!

Magnetic Flux

Magnetic flux spreads from this "kink"!

• This is a magnetic monopole attached by the Z-strings. (a kind of confined monopoles)

Magnetic Flux

Magnetic flux spreads from this "kink"!

- This is a magnetic monopole attached by the Z-strings.
 (a kind of confined monopoles)
- Topologically stable beause of $U(1)_a$ and $(\mathbb{Z}_2)_C$ sym. (topological $(\mathbb{Z}_2)_C$ kink)

(the two string tensions are balanced → static)

Numerical Result

We can numerically construct such a monopole solution to EOMs.

with
$$\sin^2\theta_W = 0.23, m_W = 80 \text{ GeV}, v_{\rm EW} = 246 \text{ GeV},$$
 $m_h = 125 \text{ GeV}, m_H = m_{H^\pm} = 400 \text{ GeV}$

Monopole Energy

• We can calculate the energy of the numerical solution :

kink energy + magnetic energy $\simeq 700 \text{ GeV}$

Monopole Energy

• We can calculate the energy of the numerical solution :

kink energy + magnetic energy $\simeq 700 \text{ GeV}$

TeV-scale phenomenon!

can be seen in LHC!?

Two Symmetries

• We have imposed the two global symmetries :

•
$$U(1)_a$$
 sym.: $\Phi_1 \to e^{-i\alpha}\Phi_1$, $\Phi_2 \to e^{i\alpha}\Phi_2$

• $(\mathbb{Z}_2)_C$ sym.

We have imposed the two global symmetries:

•
$$U(1)_a$$
 sym.: $\Phi_1 \to e^{-i\alpha}\Phi_1$, $\Phi_2 \to e^{i\alpha}\Phi_2$

- \rightarrow A massless particle appears after the symmetry breaking.
- \rightarrow Such a model is excluded by collider experiments.
 - $(\mathbb{Z}_2)_C$ sym.

We have imposed the two global symmetries:

•
$$U(1)_a$$
 sym.: $\Phi_1 \to e^{-i\alpha}\Phi_1$, $\Phi_2 \to e^{i\alpha}\Phi_2$

- \rightarrow A massless particle appears after the symmetry breaking.
- → Such a model is excluded by collider experiments.
 - $(\mathbb{Z}_2)_C$ sym.
- → broken by Yukawa couplings with SM fermions.

We have imposed the two global symmetries:

•
$$U(1)_a$$
 sym.: $\Phi_1 \to e^{-i\alpha}\Phi_1$, $\Phi_2 \to e^{i\alpha}\Phi_2$

- \rightarrow A massless particle appears after the symmetry breaking.
- → Such a model is excluded by collider experiments.
 - $(\mathbb{Z}_2)_C$ sym.
 - → broken by Yukawa couplings with SM fermions.

We should **break these two sym. explicitly** for more realistic model!

We have imposed the two global symmetries :

•
$$U(1)_a$$
 sym.: $\Phi_1 \to e^{-i\alpha}\Phi_1$, $\Phi_2 \to e^{i\alpha}\Phi_2$

- \rightarrow A massless particle appears after the symmetry breaking.
- → Such a model is excluded by collider experiments.
- $(\mathbb{Z}_2)_C$ sym. \rightarrow broken by Yukawa couplings with SM fermions.

We should **break these two sym. explicitly** for more realistic model!

The stability of the monopole is not ensured by the topology....

We have imposed the two global symmetries :

- $U(1)_a$ sym.: $\Phi_1 \to e^{-i\alpha}\Phi_1$, $\Phi_2 \to e^{i\alpha}\Phi_2$
- \rightarrow A massless particle appears after the symmetry breaking.
- → Such a model is excluded by collider experiments.

 - $(\mathbb{Z}_2)_C$ sym. \to broken by Yukawa couplings with SM fermions.

We should **break these two sym. explicitly** for more realistic model!

The stability of the monopole is not ensured by the topology....

Whether they are sufficiently stable or not is a dynamical problem! (work in progress)

Summary

- In 2HDM, there can be a stable magnetic monopole solution.
- Key symmetries: $U(1)_a \Rightarrow$ topological Z-strings
 - $(\mathbb{Z}_2)_C \Rightarrow$ monopole as topological kink
 - TeV-scale → It might be seen in LHC?

Future works

- In realistic case, $U(1)_a$, $(\mathbb{Z}_2)_C \Rightarrow$ How unstable?
- How is it seen in LHC?
- Monopole abundance in the universe
- Quantization of electric charges?
- Relation between sphaleron configuration [Field-Vachasapati '94]
- \rightarrow Another mechanism for electroweak baryogenesis ? and so on...

Future works

- In realistic case, $U(1)_a$, $(\mathbb{Z}_2)_C \Rightarrow$ How unstable?
- How is it seen in LHC?
- Monopole abundance in the universe
- Quantization of electric charges?
- Relation between sphaleron configuration [Field-Vachasapati '94]
- \rightarrow Another mechanism for electroweak baryogenesis ? and so on...

Although 2HDM is just a simple extension of the SM, there arise various aspects that have not been in the SM!

Backup Slides

• Z flux contains $U(1)_Y$ flux, which is equal to $\sin \theta_W \times (Z \text{ flux})$.

- Z flux contains $U(1)_Y$ flux, which is equal to $\sin \theta_W \times (Z \text{ flux})$.
- Because $U(1)_Y$ flux must be conserved, flux of $4\pi \sin \theta_W/g_Z$ should spread from the center.

- Z flux contains $U(1)_Y$ flux, which is equal to $\sin \theta_W \times (Z \text{ flux})$.
- Because $U(1)_Y$ flux must be conserved, flux of $4\pi \sin \theta_W/g_Z$ should spread from the center.
- Because the fluxes are not confined, they should be dressed as an elemag flux.

- Z flux contains $U(1)_Y$ flux, which is equal to $\sin \theta_W \times (Z \text{ flux})$.
- Because $U(1)_Y$ flux must be conserved, flux of $4\pi \sin \theta_W/g_Z$ should spread from the center.
- Because the fluxes are not confined, they should be dressed as an elemag flux.

Elemag flux $4\pi \sin^2 \theta_W/e$ spreads from the center.

Monopole production at colliders

Conventional process

For our monopole,

From A. Santra's slide

monopole-antimonopole ring

If it decays into SM particles, can we see it as a resonance?