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Lattice field theories

1. Non-perturbative regulator: lattice spacing  cuts off UV modes  
 
 
 

2. Criticality / universality: access well-defined continuum limit 
 

3. Gauge theories: exact gauge invariance preserved

a ≫ 1/a

⟨𝒪reg.⟩ =
1
Z ∫ ∏

i

dUi 𝒪[U ] e−S[U ]⟨𝒪⟩ =
1
Z ∫ 𝒟U 𝒪[U ] e−S[U ] →

(in Euclidean spacetime) (on Euclidean spacetime lattice)



● Many experiments for new physics 
rely on nuclear targets / samples 

● Need to know SM predictions for 
nuclear matrix elements 
 
 

● Models disagree:  ab initio is key! [Engel & Menéndez, Rep Prog Phys 2017, 046301]

(Just one) Motivation for LQFT



● Lattice Quantum Chromodynamics (LQCD) 
gives ab initio theory inputs 

● LQCD matrix elements from QCD → 
LECs for many-body methods 

● Complementary to experiment

[Chang et al, PRL120 (2018) 152002]

[Shanahan, INT-18-70]

(Just one) Motivation for LQFT



● Approximate the Euclidean path integral using Markov chain Monte Carlo

[Leinweber, "Visualizations of Quantum Chromodynamics", 2004]

where

Lattice QFT



● Imaginary-time correlation functions inform us of the spectrum of the theory

[Detmold, INT-14-57W]

Lattice QFT

E.g. for the nucleon in lattice QCD



Lattice gauge theory

● Exact gauge invariance preserved by discretizing gauge field onto links 
(short parallel transporters):  
 
 
 
 
 
 
 

●  relevant from a phenomenological standpoint

Uμ(x) ∈ G

G = SU(N )

[Fermionic fields live on sites]

[Gauge fields live on links]

[Image credit: Dan Hackett]

x Uμ(x)

̂μ
̂ν



● Sample mean of observable is noisy 
 
 

● Signal-to-noise (StN) problem

Signal-to-noise problem in observables

σ = Var[𝒪]/N ≫ ⟨𝒪⟩

StN =
⟨𝒪⟩
σ

≪ 1



● Large t: StN falls exponentially 

● Small t: Excited state effects 

● To extract physical information, 
fit plateau at intermediate t

[Wagman, Lattice 2018]

(if it exists!)

Noisy correlation functions



● Parisi & Lepage: variance related to physical states 
 
 

● For the nucleon,

Noise problem driven by variance correlator

Var[𝒜(t)𝒜†(0)] = ⟨𝒜(t)𝒜†(t)𝒜†(0)𝒜(0)⟩
Interpret as creating / annihilating a physical state

⟨𝒩(t)𝒩†(0)⟩ ∼ e−MNt Var[𝒩(t)𝒩†(0)] ∼ e−3Mπt

Variance correlator 
~ 3 pions



Exponentially bad!

Noise problem driven by variance correlator

⟨𝒩(t)𝒩†(0)⟩ ∼ e−MNt
Var[𝒩(t)𝒩†(0)] ∼ e−3Mπ t

StN[𝒩(t)𝒩†(0)] = ⟨𝒩(t)𝒩†(0)⟩
Var[𝒩(t)𝒩†(0)]

∼ e−(MN−3Mπ /2)t



● Even for observables with real expectation, 

● Sign problem: when phase distribution is nearly uniform, precise near-
cancellation of phases determines the mean

(actually, phase)

Monte Carlo 

breaks down

Noise problem = sign problem



● Empirically observed (e.g. nucleon, nuclei, Wilson loops in lattice QCD)

Nucleon Effective Mass

[Wagman & Savage, PRD96 (2017) 114508]

Full Magnitude only Phase only

(actually, phase)

Noise problem = sign problem



Can we make  smaller 
while preserving ? 

Var[𝒪]
⟨𝒪⟩

Observifolds: Yes, and (often) without 
changing Monte Carlo sampling



Original integral: If  is holomorphic: f (U )

"Deform" the contour!

Complex contour deformations



Just high-dimensional contour deformation...

Deform all variables 
in high-dimensional 
configuration space

Integral value unchanged!

Deforming the path integral



● Write Boltzmann weight  and observable  in terms of real field variables. 

E.g.      ,


where , path integral holomorphic over 


● Lattice gauge theory: angular parameterizations give the needed real field 
variables 

● Deforming angular params into complexified group, we are effectively treating

e−S 𝒪

Sϕ = … + m2 ∑
n

ϕ*n ϕn → Sϕ = … + m2 ∑
n

(an − ibn)(an + ibn)

ϕn = an + ibn an, bn ∈ ℝ

Holomorphic?



 
Simulating theories with complex actions 

● Non-zero density 

● Real-time evolution 

... and related to complex Langevin approaches

[Cristoforetti, et al. PRD86(074506), PRD88(051501), PRD89(114505);  Aarts PRD88(094501); Alexandru, et al.  
PRD93(014504), JHEP05(053), PRD96(094505), PRD98(054514), PRD98(034506), PRD97(094510), 
PRL121(191602); Fujii, et al. JHEP12(125); Tanizaki, et al. NJP18(033002); Mori, et al. PTEP2018(023B04), 
PRD99(014033); ...]

[Aarts, et al. JHEP10(159); Sexty NPA931(856)]

[Alexandru, et al.  PRL117(081602), PRD95(114501); Mou, et al. JHEP11(135)]

Many related works on path integral deformations



Action is real, observable is complex 
 
 
 

Deformed observable with respect to original Monte Carlo sampling

manifold coordinates

Note:

Path integral deformations for observables (“observifolds”)



The big picture



Either use intuition about good deformations, or numerically optimize. 

Gradients can be estimated using existing MC samples,

Optimizing the variance



Application: 1+1 U(1) gauge theory
[Detmold, GK, Wagman, Warrington  PRD102 (2020) 014514]



1+1 U(1) gauge theory is the quenched limit of the Schwinger model (QED 1+1) 
 
 
 
 
 
Action is holomorphic in angular parameters  
 
 

links plaquettes plaq phase

Pure-gauge Schwinger model

Note: theory with this action solvable for open BCs



Closed loops of links, for  rectangle gives access to 
static quark correlation function, string tension


StN exponentially bad with Wilson loop area

x × t

where

1+1 U(1) plaquettes / loops
Wilson loops



Shift plaquette integral in complex direction

Re[θx]

Im[θx]

deform

Deformation



For all plaquettes inside loop, , otherwise 0 
 
 
Intuition: make observable magnitude small sample-by-sample… 
 

 

… holomorphy guarantees expectation unchanged, so less phase cancellation 
required!

δx = δ

Deformation

eiθx → eiθxe−δ



unbiased

long plateau

exponential 
improvement in StN

It works!



Application: 1+1 SU(N) gauge theory
[Detmold, GK, Lamm, Wagman, Warrington  2101.xxxxx]



Pure-gauge  theorySU(N)

Links , plaquettes and Wilson loops constructed like Schwinger 
 
 
 
 
Wilson gauge action written in terms of plaquettes

Uμ(x) ∈ SU(N )

Px = U1
x U2

x+1̂
(U1

x+2̂
)†(U2

x )† ∈ SU(N ) W𝒜 = ∏
x∈𝒜

Px

S = −
1
g2 ∑

x

tr(Px + P−1
x )



Angular parameterization of SU(N)

[Bronzan PRD38 (1988) 1994] gives an explicit construction for  and 
generalized approach for 


- Azimuthal angles 


- Zenith angles 

-  

Deform collection of angles, dealing 
appropriately with endpoints

SU(3)
SU(N )

ϕj ∈ [0,2π]
θi ∈ [0,π /2]

Ω ≡ (ϕ1, …, θ1, …)

✓i

invalid e✓i

valid e✓i

�i

valid e�i

valid e�i

identified



Deformation

Vertical deformations 


Fourier series definition of , using a subset of all possible terms

• Care with endpoints: For  use modes  preserving fixed 

endpoints, for  use modes  preserving endpoint 
identification


• Cutoff  labels highest mode included

Ω̃ = Ω + if(Ω)

f(Ω)
θi sin(2θimi)

ϕi sin(ϕini + χi)

Λ



Results

● Tested on  and  gauge theory

● 3 choices of coupling, coarse / med / fine lattices with fixed physical volume
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Results
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Conclusions / Outlook

1. Deforming holomorphic path integral preserves mean 

2. Use this to our advantage: find better observables, provably identical mean 

3. Both  and  lattice gauge theory in 1+1D promising 

4. No theoretical obstacle to higher dims… practical results? 

5. Fermionic observables?

U(1) SU(N )

Towards LQCD and other relevant LQFTs!



Backup Slides



Application: 0+1 complex scalar theory



Use phase-magnitude decomposition for variables 
 
 
 
 
 
 
 
Interested in correlation functions

Holomorphic:

Complex scalar theory



Intuition: phase differences appear in action similarly to phases of Schwinger, 
use shifts into imaginary direction 
 
 
 
 

Extra terms inspired by small phase fluctuation expansion.

Deformation for scalar theory



Experiments with numerical optimization as 
well as simple one-parameter hand tuning

longer plateau

exponential 
improvement

Results


