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This talk is based on

DS, Berges, Oberthaler, Wienhard: Finding universal structures in
quantum many-body dynamics via persistent homology,
arXiv:2001.02616,

DS, Wienhard: The self-similar evolution of stationary point
processes via persistent homology, arXiv:2012.05751.



Topological data analysis (TDA)

General TDA pipeline:

(i) acquire point cloud data,

(ii) construct simplicial complexes,

(iii) infer topological properties via tools from algebraic topology.
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Topological data analysis

TDA toolbox made up from

I Mapper algorithm for partial clustering (e.g. Singh, Memoli,
Carlsson, Eurographics Symposium on Point-Based Graphics,
2007),

I Persistent homology.

More information: STRUCTURES EP Math and Data,
https://wiki.structures.mathi.uni-heidelberg.de/

index.php/Main_Page
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Delaunay complex

Point cloud X = {x1, . . . , xn} ⊂ Rd . Its Voronoi diagram consists
of Voronoi cells for all x ∈ X :

Vor(x ,X ) =
{
y ∈ Rd

∣∣ |y − x | ≤ |y − p| ∀ p ∈ X
}

Source: Wikimedia
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Delaunay complex

Delaunay triangulation constructed as dual of Voronoi diagram:

Del(X ) =
{
σ ⊂ X

∣∣ ⋂
x∈σ

Vor(x ,X ) 6= ∅
}

Source: Wikimedia
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Alpha complexes

A simplex is the generalization of a triangle or tetrahedron to
arbitrary dimensions.

Introduce radius function Rad : Del(X )→ R, mapping a simplex
σ ∈ Del(X ) to the radius of its circumsphere.

Alpha complexes:

Alphar (X ) := Rad−1[0, r ]

=⇒ Encodes scale-dependent information on the point cloud X .
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Homology: Betti numbers

β0 counts components - 1

β1 counts tunnels

β2 counts enclosed voids

Source: Wikimedia
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Homology: Betti numbers

β0 counts components - 1

β1 counts tunnels

β2 counts enclosed voids

β0 = 0, β1 = 2, β2 = 1.
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Persistent homology

From a talk by H. Edelsbrunner
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Persistent homology

From a talk by H. Edelsbrunner
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Persistent homology

From a talk by H. Edelsbrunner
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(Asymptotic) persistence pair distribution

(Di )i∈N ⊂ D be ensemble of persistence diagrams. Persistence pair
distribution of Di :

Pi (r
′
b, r
′
d) :=

∑
(rb,rd )∈Di

δ(r ′b − rb) δ(r ′d − rd).

Define the asymptotic persistence pair distribution, 〈P〉,
implicitly, requiring that for a functional summary F ,∫ ∞
0

dr ′b

∫ ∞
0

dr ′d F ({(r ′b, r ′d)})(s) 〈P〉(r ′b, r ′d)

:= lim
n→∞

1

n

n∑
i=1

∫ ∞
0

dr ′b

∫ ∞
0

dr ′d F ({(r ′b, r ′d)})(s)Pi (r
′
b, r
′
d).

Rigorous construction see DS, Wienhard, arXiv:2012.05751.
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Functional summaries of interest

Distributions of birth and death radii,

〈B〉(rb) :=

∫ ∞
0

drd 〈P〉(rb, rd), 〈D〉(rd) :=

∫ ∞
0

drb 〈P〉(rb, rd).

Persistence distribution (distribution of rd − rb),

〈P〉(r) :=

∫ ∞
0

drd 〈P〉(rd − r , rd).

Distribution of Betti numbers,

〈β〉(r) :=

∫ r

0
drb

∫ ∞
r

drd 〈P〉(rb, rd).
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Generic evolution towards thermal equilibrium

Picture reprinted from Berges 2015.
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Universality far from equilibrium: Nonthermal fixed points

Rescaling approach to occupation number distribution:

f (t,p) = tαfS(tβ|p|).

Picture reprinted from Berges 2015.
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Universality far from equilibrium: Nonthermal fixed points
Rescaling approach to occupation number distribution:

f (t,p) = tαfS(tβ|p|).

Picture reprinted from Berges 2015.

Goal: Reveal universal dynamics beyond n-point correlation
functions via persistent homology observables.

14/27



Self-similar scaling ansatz

Let 〈P〉(t, rb, rd) be a time-dependent asymptotic persistence pair
distribution. Say 〈P〉(t, rb, rd) scales self-similarly, if exponents
η1, η

′
1 and η2 exist, s.t. for all times t, t ′,

〈P〉
(
t, rb, rd

)
= (t/t ′)−η2 〈P〉

(
t ′, (t/t ′)−η1rb, (t/t

′)−η
′
1rd
)
.

=⇒ Rigorously defined in DS, Wienhard, arXiv:2012.05751.

Geometric intuition: Persistence length scales computed from
〈P〉(t) blow up in time as a power-law ∼ tη1 (assuming η1 = η′1).
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Packing relation: heuristics

Set η1 = η′1. Assume point clouds are dominated by a length scale
L(t), but restricted to lattice volume V . In d spatial dimensions,
find that a number n(t) of top-dimensional homology classes fits
into V :

〈n〉(t) ' V

L(t)d
∝
( t

t ′

)−dη1
.

Now,

〈n〉(t) =

∫
rb

∫
rd 〈Pd−1〉(t, rb, rd) =

( t

t ′

)−η2+2η1
〈n〉(t ′).

Thus,
η2 = (2 + d)η1.

Can be derived mathematically rigorous in a very broad setting
exploiting ergodicity and persistence inequalities (DS, Wienhard,
arXiv:2012.05751).
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The classical-statistical approximation

Can to a controlled accuracy map quantum dynamics onto a
classical-statistical ensemble. Classical-statistical simulations
proceed as follows:

1. Monte Carlo sampling of quantum initial conditions,

2. evolution in time of such a configuration via classical
equation of motion,

3. expectation value of a physical observable computed by
averaging over classical field trajectories’ outcomes.

Regime of validity: large occupation numbers and weak couplings.
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Simulating the d = 2 Bose gas

Bose gas governed by Gross-Pitaevskii equation,(
−∇

2

2m
+ g |ψ(t, x)|2

)
ψ(t, x) = i∂tψ(t, x).

Equation numerically solved on a spatial lattice, describes
Bose-Einstein condensate dynamics.

Non-linearities arise via the interaction term, rendering GPE
quantum dynamics highly non-trivial.
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d = 2 results: analytics

Different analytic predictions exist for IR universal scaling
exponents:

I 2PI 1/N expansion result: β = 0.5. Surprisingly, works also
for N = 1. (Orioli, Boguslavski, Berges, PRD 92, 2015)

I Vortices yield anomalous β = 0.2 (Karl & Gasenzer, New J
Phys 19, 2017).

=⇒ Confirmed depending on initial conditions (Deng et al., PRA
97, 2018; Karl & Gasenzer, New J Phys 19, 2017)
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Point clouds from simulations

Restrict construction of persistent homology observables to
classical-statistical approximation in this work.

Work on lattice,

Λ = {(an1, . . . , and) | ni ∈ {1, . . . ,N}}, a = L/N.

Immense freedom of choice exists in constructing point
clouds from individual field configurations, e.g., by means of
sublevel sets of a filtration function (a map from a field
configuration to R).

Here, for all ν ∈ [0,∞) point clouds generated as

Xν(t) := |ψ(t, ·)|−1[0, ν] = {x ∈ Λ | |ψ(t, x)| ≤ ν}.

Interested in sequence of alpha complexes of Xν(t) for fixed ν.
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Point clouds
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Birth and death radii distributions in IR NTFP vicinity
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Persistent homology scaling exponents
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Conclusions

I Introduced persistent homology observables to the analysis of
dynamical quantum phenomena.

I Discussed corresponding manifestations of universal behavior,
including a packing relation between occurring scaling
exponents.

I In the d = 2 nonrelativistic Bose gas found scaling behavior in
the IR and accurately confirmed the deduced packing relation.
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Outlook

I What effect does the employed filtration function have in
general?

I How about scaling of persistent homology observables in other
theories?

I What further constructions related to persistent homology
turn out useful to understand quantum dynamics?
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