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This talk is based on

DS, Berges, Oberthaler, Wienhard: Finding universal structures in

quantum many-body dynamics via persistent homology,
arXiv:2001.02616,

DS, Wienhard: The self-similar evolution of stationary point
processes via persistent homology, arXiv:2012.05751.
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Topological data analysis (TDA)

General TDA pipeline:
(i) acquire point cloud data,
(i) construct simplicial complexes,

(iii) infer topological properties via tools from algebraic topology.
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Topological data analysis

TDA toolbox made up from
» Mapper algorithm for partial clustering (e.g. Singh, Memoli,

Carlsson, Eurographics Symposium on Point-Based Graphics,

2007),
» Persistent homology.

More information: STRUCTURES EP Math and Data,
https://wiki.structures.mathi.uni-heidelberg.de/

index.php/Main_Page
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Delaunay complex

Point cloud X = {x1,...,x,} C R?. Its Voronoi diagram consists
of Voronoi cells for all x € X:

Vor(x,X) = {y € RY| |y —x| < |y — p|Vp € X}
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Delaunay complex

Delaunay triangulation constructed as dual of Voronoi diagram:

Del(X) = {0 C X| ﬂ Vor(x, X) # 0}

xXeo
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Alpha complexes

A simplex is the generalization of a triangle or tetrahedron to
arbitrary dimensions.

Introduce radius function Rad : Del(X) — R, mapping a simplex
o € Del(X) to the radius of its circumsphere.

Alpha complexes:

Alpha, (X) := Rad [0, r]

= Encodes scale-dependent information on the point cloud X.
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Homology: Betti numbers

Bo counts components - 1
(1 counts tunnels

(B> counts enclosed voids

Source: Wikimedia
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Homology: Betti numbers

Bo counts components - 1
(1 counts tunnels

(B> counts enclosed voids

Bo=0,p1=2 =1
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Persistent homology

From a talk by H. Edelsbrunner




Persistent homology

From a talk by H. Edelsbrunner







(Asymptotic) persistence pair distribution

(Dj)ien C 2 be ensemble of persistence diagrams. Persistence pair
distribution of D;:

i(rh, rh) Z 5(rp, — rp) 6(rly — rq).

(rb7rd)€D

Define the asymptotic persistence pair distribution, (J3),
implicitly, requiring that for a functional summary F,

/ " / "ty Fr 1)) (B (. )
0 0

= lim fz / [ s U D) Bilrhe )

n—oo n

Rigorous construction see DS, Wienhard, arXiv:2012.05751.
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Functional summaries of interest

Distributions of birth and death radii,

(B) () == /O T (D) (roera), (DY(rg) = /0 "y () (16, 14).

Persistence distribution (distribution of ry — rp),

(P)(r) = /O " g (B)(ra — 1 ra).

Distribution of Betti numbers,

B | " dry / " drg () (15, 7).
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Generic evolution towards thermal equilibrium

Nonﬁm’nal
fixed point

Far from

equilibrium
/ Universality

Initial
conditions

Close to
equilibrium

Picture reprinted from Berges 2015.
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Universality far from equilibrium: Nonthermal fixed points

Rescaling approach to occupation number distribution:

f(t,p) = t*fs(t°|p|).

Bose Condensation ‘

Quantum
regime

f<1
Inverse cascade

f>1/A

-
S
2

Q

c

=1
2

c

o
=

3
=
‘=
T
k)
o

Momentum: log(p)

Picture reprinted from Berges 2015.
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Universality far from equilibrium: Nonthermal fixed points

Rescaling approach to occupation number distribution:
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Picture reprinted from Berges 2015.

Goal: Reveal universal dynamics beyond n-point correlation
functions via persistent homology observables.
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Self-similar scaling ansatz

Let (P)(t, rp, rq) be a time-dependent asymptotic persistence pair
distribution. Say (B)(t, rp, r4) scales self-similarly, if exponents
n1,my and 12 exist, s.t. for all times t, ¢/,

(B) (¢ 16 rd) = (£/1) 7 (B (¢ (¢/) "1, (£/1') ra).
— Rigorously defined in DS, Wienhard, arXiv:2012.05751.

Geometric intuition: Persistence length scales computed from
(P)(t) blow up in time as a power-law ~ t™ (assuming 71 = 77).
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Packing relation: heuristics

Set 11 = n}. Assume point clouds are dominated by a length scale
L(t), but restricted to lattice volume V. In d spatial dimensions,
find that a number n(t) of top-dimensional homology classes fits
into V:

DIOES L(‘t/)d o (t)dm.

t

Now,

—n2+2m
) n(t).

(n)(t) = /rb/rd (Ba-1)(t; rb, ra) = (ti
Thus,
n2 = (2+d)m.

Can be derived mathematically rigorous in a very broad setting
exploiting ergodicity and persistence inequalities (DS, Wienhard,
arXiv:2012.05751).
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The classical-statistical approximation

Can to a controlled accuracy map quantum dynamics onto a
classical-statistical ensemble. Classical-statistical simulations

proceed as follows:

1. Monte Carlo sampling of quantum initial conditions,

2. evolution in time of such a configuration via classical
equation of motion,

3. expectation value of a physical observable computed by
averaging over classical field trajectories’ outcomes.

Regime of validity: large occupation numbers and weak couplings.
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Simulating the d = 2 Bose gas

Bose gas governed by Gross-Pitaevskii equation,

2m

(3 + £t ) (t0) = eb(ex).

Equation numerically solved on a spatial lattice, describes
Bose-Einstein condensate dynamics.

Non-linearities arise via the interaction term, rendering GPE
quantum dynamics highly non-trivial.
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d = 2 results: analytics

Different analytic predictions exist for IR universal scaling
exponents:

» 2P1 1/N expansion result: 8 = 0.5. Surprisingly, works also
for N = 1. (Orioli, Boguslavski, Berges, PRD 92, 2015)

» Vortices yield anomalous 5 = 0.2 (Karl & Gasenzer, New J
Phys 19, 2017).

= Confirmed depending on initial conditions (Deng et al., PRA
97, 2018; Karl & Gasenzer, New J Phys 19, 2017)
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Point clouds from simulations

Restrict construction of persistent homology observables to
classical-statistical approximation in this work.

Work on lattice,
N=A{(am,...,ang)|ni €{1,...,N}}, a=1L/N.

Immense freedom of choice exists in constructing point
clouds from individual field configurations, e.g., by means of
sublevel sets of a filtration function (a map from a field
configuration to R).

Here, for all v € [0, 00) point clouds generated as
X, (t) = [o(t, )| M0, v] = {x € A|[(t,x)| < v}
Interested in sequence of alpha complexes of X, (t) for fixed v.
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Point clouds
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Birth and death radii distributions in IR NTFP vicinity

Res.

10”

10!

(a2)

v =0.6

10000 20000 30000
Q1

(ad) v =0.6

10"

"Qry (t/t)"mQry

22 /27



Persistent homology scaling exponents
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Conclusions

» Introduced persistent homology observables to the analysis of
dynamical quantum phenomena.

» Discussed corresponding manifestations of universal behavior,
including a packing relation between occurring scaling
exponents.

» In the d = 2 nonrelativistic Bose gas found scaling behavior in
the IR and accurately confirmed the deduced packing relation.
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Outlook

» What effect does the employed filtration function have in
general?

» How about scaling of persistent homology observables in other
theories?

» What further constructions related to persistent homology
turn out useful to understand quantum dynamics?
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