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Inverse Problem
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• Mathematics 

• IP in Physics 

• QCD physics


• Condensed matter physics


• Optics 

• IP in Science and Technology 

• Signal processing


• Epidemiology


• Material design


• …

Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. 

O = M(p) + N

• O: Observations/Outcomes


• M: Model/Function


• p: Parameters/Incomes


• N: Noise in real-world
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• Ill-posed problem 

• A small error in the initial mearuments can 
result in large deviations of reconstructions


• Noise and discontinuities of observed data 


• Medical physics 

• From x-ray intensity to tissue image


• Image processing 

• Deblurring


• Numerical differentiation

Hadamard (1865–1963): A problem is called well-posed, 
if a solution exists, the solution is unique, 
and the solution depends continuously on the given data. B. Harrach (2015). Introduction to Inverse Problems

Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. 



Inverse Problem
Examples

6

• Ill-posed problem 

• A small error in the initial mearuments can 
result in large deviations in reconstructions


• Noise and discontinuities of observed data 


• Numerical differentiation 

• F is a integral operation


• step length 


• rebuilt error 


• Optics, Condensed matter, QCD Physics,…

h = 10−3

δ → 0, yδ → ̂y

Hadamard (1865–1963): A problem is called well-posed, 
if a solution exists, the solution is unique, 
and the solution depends continuously on the given data.

B. Harrach (2015). Introduction to Inverse Problems 
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• Real-time properties of strongly correlated 
quantum systems 

• Time has to be analytically continued into the complex 
plane

• Reconstruct the spectral function from noisy 
Euclidean propagator data (e.g.,Lattice QCD) to 
extract their physical structures


• Methods


• Classical methods 
• Truncated Singular Value Decomposition (TSVD)

• Tikhonov regularization, …


H. W. Engl and C. W. Groetsch, editors , Inverse and Ill-Posed Problems 
(Academic Press, Boston, 1987).


• Baysian methods: Maximum Entropy Method (MEM) 
M. Jarrell and J. E. Gubernatis, Bayesian Inference and the Analytic Continuation of 
Imaginary-Time Quantum Monte Carlo Data, Physics Reports 269, 133 (1996).


M. Asakawa, Y. Nakahara, and T. Hatsuda, Maximum Entropy Analysis of the Spectral 
Functions in Lattice QCD, Progress in Particle and Nuclear Physics 46, 459 (2001).


• Supervised learning inverse mapping

• Gausian process, Radial Basis Functions(RBF), sVAE

D(p) ≡ ∫
∞

0
K(p, ω)ρ(ω)dω
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• Real-time properties of strongly correlated 
quantum systems 

• Time has to be analytically continued into the 
complex plane

• Reconstruct the spectral function from noisy 
Euclidean propagator data (e.g.,Lattice QCD) to 
extract their physical structures


• Methods


• Classical methods

• Baysian methods: Maximum Entropy Method (MEM)


• Supervised Learning inverse mapping

L. Kades, J. M. Pawlowski, A. Rothkopf, M. Scherzer, J. M. Urban, S. J. Wetzel, N. 
Wink, and F. P. G. Ziegler, Spectral Reconstruction with Deep Neural Networks, 
Phys. Rev. D 102, 096001 (2020).


R. Fournier, L. Wang, O. V. Yazyev, and Q. Wu, Artificial Neural Network Approach 
to the Analytic Continuation Problem, Phys. Rev. Lett. 124, 056401 (2020).


H. Yoon, J.-H. Sim, and M. J. Han, Analytic Continuation via Domain Knowledge 
Free Machine Learning, Phys. Rev. B 98, 245101 (2018).


• Gausian process, Radial Basis Functions(RBF), 
sVAE(Variational AutoEncoder) 

ArXiv:2107.13464,  ArXiv:2106.08168,  ArXiv:2110.13521

D(p) ≡ ∫
∞

0
K(p, ω)ρ(ω)dω
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• Real-time properties of strongly 
correlated quantum systems 

• Reconstruct the spectral function 
from noisy Euclidean propagator 
data (e.g.,Lattice QCD) to extract 
their physical structures


• Mock Data


• Kallen—Lehmann(KL) representation





• Breit-Wigner peaks 

D(p) = ∫
∞

0

ω ρ(ω)
ω2 + p2

dω
π

ρ(BW)(ω) =
4AΓω

(M2 + Γ2 − ω2)2 + 4Γ2ω2

D(p) ≡ ∫
∞

0
K(p, ω)ρ(ω)dω

A parametrization obtained directly from one-loop perturbative quantum field theory:

: amplitude, : width, : mass A Γ M

+ Gaussian Noise
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• Automatic differentiation (AD) 

• It refers to a general way of 
taking a program which 
computes a value, and 
automatically constructing a 
procedure for computing 
derivatives of that value. 


• Example


How we compute the derivatives of logistic 
least squares regression in a net 
 

 weights,  bias,  activation function 
x input, y output, t target,  loss function
ω b σ(z)

ℒ

z = wx + b
y = σ(z)

ℒ =
1
2

(y − t)2

ℒ = 1
ȳ = y − t
z̄ = ȳσ′￼(z)
w̄ = z̄x
b̄ = z̄

Computing the loss: Computing the derivatives:

Chain rule:
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D(p) ≡ ∫
∞

0
K(p, ω)ρ(ω)dω

χ2 =
Np

∑
i=1

(Di − D(pi))2

δD2
i

Observations

p

D
(p

)

Spectral Functions

ω

ρ(
ω

)

Spectral Functions

a) List

b) NN

c) NN-P2P

BP

Forward

Spectral Representations
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D(p) ≡ ∫
∞

0
K(p, ω)ρ(ω)dω

ω

ρ(
ω

)

L =
Np

∑
i=1

(Di − D(pi))2

δD2
i

Δ =
∂L

∂D(p)
K(p, ω)

BP

Forward

Gradient-based Optimization

a) List :  
b) NN :  
c) NN-P2P : 

(ρ1, ρ2, ⋯, ρNω
)

(ρ1, ρ2, ⋯, ρNω
)

ρi(ωi)

b) NNa) List c) NN-P2P

Regularization

∂Δ
∂θ



Framework
Back-propagation
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Δ =
∂L

∂D(p)
K(p, ω)

Gradient-based Optimization

a) List :  

Differentiable variables :   

Adam, L2 (  ), Smoothness (  )


b) NN :  

Differentiable variables : Network weights  

Adam, L2 (  ), Smoothness (  )


c) NN-P2P :  

Differentiable variables : Network weights  

Adam, L2 (  )

(ρ1, ρ2, ⋯, ρNω
)

ρi

λ = 10−3 → 0 λs = 10−4 → 0

(ρ1, ρ2, ⋯, ρNω
)

{θ}

λ = 10−3 → 0 λs = 10−4 → 0

ρi(ωi)

{θ}

λ = 10−6 → 0

b) NNa) List c) NN-P2P

Regularization

Gradient-based Optimization 

Adam :  

Regularization 

L2 :  

Smoothness:   

Physical Prior 

Positive-defined condition: Softplus 

θt+1 = θt −
η
̂vt + ϵ

m̂t

λ | |θ | |2
2

λs

Nω

∑
i

(ρi − ρi−1)2

log(1 + ex)



Preliminary results
Reconstruction correlators
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• Two samples : spectral functions with single or double Breit-Wigner peaks


• Reconstruction absolute error  as the same magnitude of noise|Di − D(pi) | < 10−5



Preliminary results
Spectral functions
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• Reconstruction performance will be better with noise decreasing


• NN-P2P gets the best consistency in single peak case


• NN and List can represent a more diverse spectrum in double peak case



Preliminary results
Quantified Evaluation
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DKL(p∥q) = ∫ dxp(x)log
p(x)
q(x)

• 100 spectra with mixed single and double peaks 


• K-L divergence and MSE decreasing with noise decreasing


• NN-P2P is better than others, because its intrinsic continuity of 
one-to-one mapping 



Summary
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• Take-home messages 

• AD can solve inverse problem using error 
information unsupervisedly


• Neural network representations can help us 
to embed physical regularization into 
reconstructing


• Future works 

• Optimization algorithm


• Maximum Entropy Method (MEM)


• Related works


• Neutron Star, in preparing


• Bottonium potential, arXiv:2105.07862

b) NNa) List c) NN-P2P
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Neural Networks
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Neural Networks 
Representations Observations

Differentiable Process

Back-Propagation



Future
AD in Physics, opportunities and challenges

APS/Alan Stonebraker

http://alanstonebraker.com/


Backups
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• noise cases null-mode 

• It can be suppressed by  
regularizations and  
neural network 
representations



Backups
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• Classical MEM 

• Explicit physical prior


• Classical optimizors and regularizations


• Unique solution and uncertainty estimation


• Supervised Learning 

• Implicit physical prior (hidden in data)


• Modern optimizors and regularizations


• Unique solution? and uncertainty estimation (with Bayesian NN)


• Our method (NN+AD) 

• Explicit physical prior (rigorous backward process and physical restrictions)


• Modern optimizors and regularizations


• Unique solution and uncertainty estimation (with MEM)


