Local quantum field theory in extreme environments

Peter Lowdon

(Goethe University Frankfurt)

Motivation

 Perturbation theory has proven to be an extremely successful tool for investigating problems in particle physics

But by definition this procedure is only valid in a *weakly interacting regime*

- \rightarrow Non-convergence of perturbative series
- $\rightarrow\,$ Observables: form factors, parton distribution functions, hadronic properties, ...
- \rightarrow Confinement in QCD
- This emphasises the need for a non-perturbative approach!

→ Local QFT is one such approach

Local QFT

- In the 1960s, A. Wightman and R. Haag pioneered an approach which set out to answer the fundamental question "what is a QFT?"
- The resulting approach, Local QFT, defines a QFT using a core set of physically motivated axioms

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm}=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

A. Wightman

[R. F. Streater and A. S. Wightman, *PCT*, *Spin and Statistics, and all that* (1964).]

R. Haag

[R. Haag, *Local Quantum Physics*, Springer-Verlag (1992).]

Local QFT

- Local QFT has led to many fundamental insights, including:
 - $\rightarrow\,$ Relationship between Minkowski and Euclidean QFTs
 - \rightarrow CPT is a symmetry of any QFT
 - \rightarrow Connection between spin & particle statistics
 - $\rightarrow~$ Existence of dispersion relations

 \rightarrow Scattering theory

- But... local QFT only describes particle dynamics in the vacuum state
 - $\rightarrow\,$ What about "extreme environments" where the system is either hot, dense, or both?

[Brookhaven National Lab]

[Skyworks Digital Inc.]

 Understanding local QFT in such environments is essential, and yet has received relatively little attention. Particularly important progress was made by J. Bros and D. Buchholz for non-vanishing temperature T

 \rightarrow See: [Z. Phys. C 55 (1992) 509, hep-th/9606046, hep-th/9807099, hep-ph/0109136]

• <u>Idea</u>: Look for a generalisation of the standard axioms that is compatible with T > 0, and approaches the vacuum case for $T \rightarrow 0$

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm} = \varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g) \pm \varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f) = 0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

• <u>Idea</u>: Look for a generalisation of the standard axioms that is compatible with T > 0, and approaches the vacuum case for $T \rightarrow 0$

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm} = \varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g) \pm \varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f) = 0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

H_{β} is defined for fixed $\beta = 1/T$

• <u>Idea</u>: Look for a generalisation of the standard axioms that is compatible with T > 0, and approaches the vacuum case for $T \rightarrow 0$

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm} = \varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g) \pm \varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f) = 0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

• <u>Idea</u>: Look for a generalisation of the standard axioms that is compatible with T > 0, and approaches the vacuum case for $T \rightarrow 0$

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm} = \varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g) \pm \varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f) = 0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

• <u>Idea</u>: Look for a generalisation of the standard axioms that is compatible with T > 0, and approaches the vacuum case for $T \rightarrow 0$

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm} = \varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g) \pm \varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f) = 0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

 $H_{\beta} \text{ is defined for fixed } \beta = 1/T$ Replaced by the KMS condition $\langle \Omega_{\beta} | \phi(x_1) \cdots \phi(x_k) \phi(x_{k+1}) \cdots \phi(x_n) | \Omega_{\beta} \rangle$ $= \langle \Omega_{\beta} | \phi(x_{k+1}) \cdots \phi(x_n) \phi(x_1 + i(\beta, \vec{0})) \cdots \phi(x_k + i(\beta, \vec{0})) | \Omega_{\beta} \rangle$ $Instead, thermal background state | \Omega_{\beta} >$ Fields are still distributions

• <u>Idea</u>: Look for a generalisation of the standard axioms that is compatible with T > 0, and approaches the vacuum case for $T \rightarrow 0$

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm} = \varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g) \pm \varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f) = 0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

• <u>Idea</u>: Look for a generalisation of the standard axioms that is compatible with T > 0, and approaches the vacuum case for $T \rightarrow 0$

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm} = \varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g) \pm \varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f) = 0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

Non-perturbative implications

 By demanding fields to be local ([Φ(x), Φ(y)]=0 for (x-y)²<0) this imposes significant constraints on the structure of correlation functions

 \rightarrow For T=1/ β >0, the scalar spectral function has the representation:

$$\rho(p_0, \vec{p}) := \mathcal{F}\left[\langle \Omega_\beta | \left[\phi(x), \phi(y)\right] | \Omega_\beta \rangle\right] = \int_0^\infty ds \int \frac{d^3 \vec{u}}{(2\pi)^2} \ \epsilon(p_0) \ \delta\left(p_0^2 - (\vec{p} - \vec{u})^2 - s\right) \widetilde{D}_\beta(\vec{u}, s)$$

$$\underbrace{\text{Note: this is a non-perturbative representation!}}_{\text{Mote: this is a non-perturbative representation!}} \qquad \text{``Thermal spectral density''}$$

• In the limit of vanishing temperature one recovers the well-known Källén-Lehmann spectral representation:

$$\rho(p_0, \vec{p}) \xrightarrow{\beta \to \infty} 2\pi \,\epsilon(p_0) \int_0^\infty ds \,\,\delta(p^2 - s) \,\rho(s) \qquad \text{e.g. } \rho(s) = \delta(s - m^2) \text{ for a massive free theory}$$

Important question: what does the thermal spectral density $D_{\beta}(\boldsymbol{u},s)$ look like?

Non-perturbative implications

• A natural decomposition [J. Bros, D. Buchholz, hep-ph/0109136] is:

 \rightarrow Damping factors hold the key to understanding in-medium effects!

Damping factors from asymptotic dynamics

- Since all observable quantities are computed using correlation functions, which are characterised by *damping factors*, one can use these to gain new insights into the properties of QFTs when T>0
- It has been proposed [Bros, Buchholz, hep-ph/0109136] that these quantities are controlled by the large-time x_0 dynamics of the theory

 \rightarrow Need to take this into account in definition of scattering states!

Damping factors from asymptotic dynamics

 <u>Idea</u>: thermal scattering states are defined by imposing an asymptotic field condition (hep-ph/0109136):

Asymptotic fields Φ_0 are assumed to satisfy dynamical equations, but only at large x_0

• Given that the thermal spectral density has the decomposition

$$\widetilde{D}_{\beta}(\vec{u},s) = \widetilde{D}_{m,\beta}(\vec{u})\,\delta(s-m^2) + \widetilde{D}_{c,\beta}(\vec{u},s)$$

- it follows that: **1.** The continuous contribution to $\langle \Omega_{\beta} | \phi(x) \phi(y) | \Omega_{\beta} \rangle$ is suppressed for large x_0
 - 2. The particle damping factor $\widetilde{D}_{m,\beta}(\boldsymbol{u})$ is **uniquely fixed** by the asymptotic field equation
- This means that the non-perturbative thermal effects experienced by particle states are entirely controlled by the asymptotic dynamics!

• Applying the asymptotic field condition for Φ^4 theory, the resulting damping factors have the form [hep-ph/0109136]:

$$\rightarrow \text{ For } \boldsymbol{\lambda} < \mathbf{0}: \quad D_{m,\beta}(\vec{x}) = \frac{\sin(\kappa |\vec{x}|)}{\kappa |\vec{x}|} \quad \rightarrow \text{ For } \boldsymbol{\lambda} > \mathbf{0}: \quad D_{m,\beta}(\vec{x}) = \frac{e^{-\kappa |\vec{x}|}}{\kappa_0 |\vec{x}|}$$

where
$$\kappa$$
 is defined with $r = m/T$:
 $\kappa = T\sqrt{|\lambda|}K(r), \quad K(r) = \sqrt{\int \frac{d^3\hat{q}}{(2\pi)^3 2\sqrt{|\hat{q}|^2 + r^2}} \frac{1}{e^{\sqrt{|\hat{q}|^2 + r^2}} - 1}}$

- → The parameter κ has the interpretation of a thermal width: $\kappa \rightarrow 0$ for $T \rightarrow 0$, or equivalently κ^{-1} is mean-free path
- Now that one has the exact dependence of $D_{m,\beta}(\mathbf{x})$ on the external physical parameters, in this case T, m and λ , one can use this to calculate observables *analytically*

- Of particular interest is the *shear viscosity* η , which measures the resistance of a medium to sheared flow
 - \rightarrow This quantity can be determined from the spectral function of the spatial traceless energy-momentum tensor

$$\rho_{\pi\pi}(p_0) = \lim_{\vec{p} \to 0} \mathcal{F}\left[\langle \Omega_\beta | \left[\pi^{ij}(x), \pi_{ij}(y) \right] | \Omega_\beta \rangle \right](p)$$

... and η is recovered via the Kubo relation

$$\eta = rac{1}{20} \lim_{p_0 o 0} rac{d
ho_{\pi \pi}}{d p_0}$$

• Using $D_{m,\beta}(\mathbf{x})$ for $\lambda < 0$, the EMT spectral function $\rho_{\pi\pi}$ has the form:

- The presence of interactions causes resonant peaks to appear \rightarrow peaked when $p_0 \sim \kappa = 1/\ell$
- For $\lambda \rightarrow 0$ the free-field result is recovered, as expected
- The dimensionless ratio m/T controls the magnitude of the peaks

Applying Kubo's relation, the shear viscosity η₀ arising from the asymptotic states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, 2104.13413]

$$\eta_0 = \frac{T^3}{15\pi} \left[\frac{\mathcal{K}_3\left(\frac{m}{T}, 0, \infty\right)}{\sqrt{|\lambda|}} + \sqrt{|\lambda|} \mathcal{K}_1\left(\frac{m}{T}, 0, \infty\right) + \frac{\mathcal{K}_4\left(\frac{m}{T}, \sqrt{|\lambda|} K\left(\frac{m}{T}\right), \sqrt{|\lambda|} K\left(\frac{m}{T}\right)\right)}{4|\lambda|} \right]$$

 \rightarrow For fixed coupling, η_0/T^3 is entirely controlled by functions of m/T

• What about the case $\lambda > 0? \rightarrow \eta_0$ diverges!

Why? – The particle damping factor $D_{m,\beta}(\mathbf{u})$ does not decay rapidly enough at large momenta

- This characteristic is related to the "bad" UV behaviour of the quartic interaction, i.e. the triviality of Φ^4 appears to have an impact beyond T=0!
- In 2104.13413 it was shown more generally that the finiteness of η_0 is related to the existence of thermal equilibrium

If the KMS condition holds $\implies \eta_{\scriptscriptstyle 0}$ is finite

- This procedure demonstrates that asymptotic dynamics can be used to explore the non-perturbative properties of QFTs when T>0
 - → Can also calculate other observables, e.g. transport coefficients, entropy density, pressure, etc.

- The constraints imposed by locality offer new ways in which to understand, and compute, in-medium observables
- It turns out that these constraints also have significant implications in *Euclidean* spacetime
 - → Important to understand, since many non-perturbative techniques, e.g. lattice, functional methods (DSEs, FRG), are restricted to, or optimised for, calculations in imaginary time τ
- In many instances T>0 Euclidean data is used to extract observables, e.g. spectral functions from $\mathcal{W}_E(\tau) = \int d^3x \, \mathcal{W}_E(\tau, \vec{x})$

$$\mathcal{W}_{E}(\tau) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \frac{\cosh\left[\left(\frac{\beta}{2} - |\tau|\right)\omega\right]}{\sinh\left(\frac{\beta}{2}\omega\right)} \rho(\omega)$$
 Determine $\rho(\omega)$ given $W_{E}(\tau)$
 \rightarrow *Inverse problem!*

 Problem is ill-conditioned, need additional information (see e.g. H. B. Meyer, 1104.3708 for review of different inversion approaches)

However, locality constraints imply that particle damping factors D_{m,β}(x) can be directly calculated from Euclidean data, avoiding the inverse problem [P.L., 2201.12180]

$$D_{m,\beta}(\vec{x}) \sim e^{|\vec{x}|m} \int_0^\infty \frac{d|\vec{p}|}{2\pi} \ 4|\vec{p}|\sin(|\vec{p}||\vec{x}|) \ \widetilde{G}_\beta(0,|\vec{p}|).$$

Holds for large separation $|\mathbf{x}|$

- Like with the asymptotic calculations, $D_{m,\beta}(\mathbf{x})$ can then be used as input for phenomenological calculations
- In [P.L., R.-A. Tripolt, 2202.09142] pion propagator data from the quark-meson model (FRG calculation) was used to compute the damping factor at different values of T via the analytic relation above
- Fits to the resulting data were consistent with the form: $D_{\pi,\beta}(\vec{x}) = \alpha e^{-|\vec{x}|\gamma}$
 - \rightarrow Both parameters α and γ showed a significant T dependence

• Using the *T*>0 spectral representation one finds:

• Using the analytic relations derived in [2104.13413] for the shear viscosity as a function of the damping factor, the numerically extracted values for $D_{\pi,\beta}(\mathbf{x})$ can be used to compute the shear viscosity

 η vanishes for $T \rightarrow 0$, and appears to level out at large T

 Can compare these results with those obtained using chiral perturbation theory → Very similar qualitative features!

[R. Lang, N. Kaiser, W. Weise, 1205.6648]

- In the FRG analysis we used *p*-space data to extract $D_{m,\beta}(\mathbf{x})$. Can we use *x*-space data intead? Yes!
 - \rightarrow A quantity of particular interest in lattice studies is the spatial correlator of particle-creating operators, defined:

$$C(z) = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \int_{-\frac{\beta}{2}}^{\frac{\beta}{2}} d\tau \, \mathcal{W}_E(\tau, \vec{x})$$

e.g. meson operators

$$\mathcal{W}_E(\tau, \vec{x}) = \langle \Omega_\beta | \overline{\psi} \Gamma \psi(x) \, \overline{\psi} \Gamma \psi(0) | \Omega_\beta \rangle$$

- Usually, the large-z behaviour of $C(z) \sim exp(-m_{scr}|z|)$ is used to extract particle screening masses m_{scr}
- This quantity is important for understanding phenomena such as *quarkonium melting* and (effective) chiral restoration in QCD

[HotQCD collaboration, 1908.09552]

• Using an equivalent result to that in *p*-space, one obtains the following general relation between the damping factor and spatial correlator

$$D_{m,\beta}(z) \sim -2e^{m|z|} \frac{dC(z)}{dz}$$

- Holds for large z

• The implication of this relation is that the dependence of screening masses m_{scr} on the external *physical* parameters; *T*, *m*, etc. is dictated by the damping factors $D_{m,\beta}$

→ Each particle experiences different in-medium effects!

- The advantage of using spatial correlator data is that one can obtain systematically improvable data, i.e. use larger lattice sizes!
- Using this approach one can proceed to analyse the properties of meson/baryon damping factors in QCD, and use this for phenomenology

 \rightarrow Work in progress!

Framework generalisations

- So far we have only discussed the simplest situation: a real scalar field $\Phi(x)$ with T>0
 - → What about fields/states with higher spin?
 - \rightarrow What about regimes where the background environment is dense, characterised by a ground state with $\mu \neq 0$?
- Answering these questions is essential for fully understanding the properties of particles in extreme environments, and in particular, unravelling the characteristics of the QCD phase diagram

Summary & outlook

- Local QFT is an analytic framework that attempts to address the fundamental question "what is a QFT?"
- The framework can be extended to T>0, and this has important implications, including:
 - \rightarrow Connection to asymptotic dynamics
 - → Extraction of in-medium observables from Euclidean data
 - \rightarrow Interpretation of screening masses
- So far only real scalar fields $\Phi(x)$ with T > 0 considered, but this approach can be extended (higher spin, $\mu \neq 0$). Work in progress!
 - → This framework provides a way of obtaining non-perturbative insights into the phase structure of QFTs, and the resulting in-medium phenomena

[[]Brookhaven National Lab]

Backup

• For thermal asymptotic states, the spectral function $ho_{\pi\pi}$ has the form

$$\rho_{\pi\pi}(p_0) = \sinh\left(\frac{\beta}{2}p_0\right) \int \frac{d^3\vec{q}}{(2\pi)^4} \frac{2}{3} |\vec{q}|^4 \int_{-\infty}^{\infty} dq_0 \, \frac{\widetilde{C}_{\beta}(q_0,\vec{q})\,\widetilde{C}_{\beta}(p_0-q_0,\vec{q})}{\sinh\left(\frac{\beta}{2}q_0\right)\sinh\left(\frac{\beta}{2}(p_0-q_0)\right)}$$

... which after applying the generalised KL representation, together with the Kubo relation, implies

$$\begin{split} \eta_0 &= \frac{T^5}{240\pi^5} \int_0^\infty ds \int_0^\infty dt \int_0^\infty d|\vec{u}| \int_0^\infty d|\vec{v}| \, |\vec{u}| |\vec{v}| \, \widetilde{D}_\beta(\vec{u},s) \, \widetilde{D}_\beta(\vec{v},t) \\ &\times \left[4 \left[1 + \epsilon(|\vec{u}| - |\vec{v}|) \right] \left\{ \frac{|\vec{v}|}{T} \, \mathcal{I}_3\!\left(\frac{\sqrt{t}}{T}, \, 0, \infty \right) + \frac{|\vec{v}|^3}{T^3} \, \mathcal{I}_1\!\left(\frac{\sqrt{t}}{T}, \, 0, \infty \right) \right\} \\ &+ \left\{ \mathcal{I}_4\!\left(\frac{\sqrt{t}}{T}, \frac{|\vec{v}|}{T}, \frac{s - t + (|\vec{u}| + |\vec{v}|)^2}{2(|\vec{u}| + |\vec{v}|)T} \right) + \epsilon(|\vec{u}| - |\vec{v}|) \, \mathcal{I}_4\!\left(\frac{\sqrt{t}}{T}, \frac{|\vec{v}|}{T}, \frac{s - t + (|\vec{v}| - |\vec{u}|)^2}{2(|\vec{v}| - |\vec{u}|)T} \right) \right\} \right] \end{split}$$

 The model dependence of η₀ factorises, and is controlled by the thermal spectral density D_β(u,s)

Backup

• For $\lambda < 0$, $ho_{\pi\pi}(
ho_0)$ and its derivative are *non-analytic* at $(
ho_0/T, |\lambda|) = (0,0)$

 $\rightarrow \eta_0$ in the interacting theory is not a continuous perturbation of the free field result ($\eta_0 = 0$)

Backup

- One can use the assumptions of local QFT at finite-*T* to put constraints on the the structure of Euclidean correlation functions
 - \rightarrow From the KMS condition and locality:

$$\mathcal{W}_E(\tau, \vec{x}) = \frac{1}{\beta} \sum_{N=-\infty}^{\infty} w_N(\vec{x}) e^{\frac{2\pi i N}{\beta}\tau}$$

• The Fourier coefficients of the Euclidean two-point function are then related to the thermal damping factors as follows [P.L., 2201.12180]:

$$w_N(\vec{x}) = \frac{1}{4\pi |\vec{x}|} \left[D_m(\vec{x}) e^{-|\vec{x}|\sqrt{m^2 + \omega_N^2}} + \int_0^\infty ds \, e^{-|\vec{x}|\sqrt{s + \omega_N^2}} D_c(\vec{x}, s) \right]$$

- \rightarrow The continuous component $D_c(\mathbf{x},s)$ is exponentially suppressed!
- $\omega_N = 2\pi NT$ are the Matsubara frequencies. For N=0 this leads to:

$$\int_{-\frac{\beta}{2}}^{\frac{\beta}{2}} d\tau \, \mathcal{W}_E(\tau, \vec{x}) \sim \frac{1}{4\pi |\vec{x}|} D_{m,\beta}(\vec{x}) \, e^{-|\vec{x}|m}$$