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● Perturbation theory has proven to be an extremely successful tool 
for investigating problems in particle physics 

   

● This emphasises the need for a non-perturbative approach! 

             → Local QFT is one such approach

Motivation

But by definition this procedure 
is only valid in a weakly 

interacting regime

→  Non-convergence of perturbative series
→  Observables: form factors, parton                 
     distribution functions, hadronic properties, ... 
→  Confinement in QCD
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● In the 1960s, A. Wightman and R. Haag pioneered an approach which 
set out to answer the fundamental question “what is a QFT?”

● The resulting approach, Local QFT, defines a QFT using a core set of 
physically motivated axioms

A. Wightman

R. Haag

[R. F. Streater and A. S. Wightman, PCT, 
Spin and Statistics, and all that (1964).]

 [R. Haag, Local Quantum 
Physics, Springer-Verlag (1992).]

Local QFT



 4

● Local QFT has led to many fundamental insights, including:

 →  Relationship between Minkowski and Euclidean QFTs

 →  CPT is a symmetry of any QFT

 →  Connection between spin & particle statistics 

 →  Existence of dispersion relations

 →  Scattering theory

    

e+ e-

Local QFT
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Local QFT beyond the vacuumLocal QFT beyond the vacuum

→ See: [Z. Phys. C 55 (1992) 509, hep-th/9606046, hep-th/9807099, hep-ph/0109136] 

● But... local QFT only describes particle dynamics in the vacuum state

→  What about “extreme environments” where the system is either hot, 
     dense, or both?     

● Understanding local QFT in such environments is essential, and yet has 
received relatively little attention. Particularly important progress was 
made by J. Bros and D. Buchholz for non-vanishing temperature T

 

[Brookhaven National Lab] [Skyworks Digital Inc.] 
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  ● Idea: Look for a generalisation of the standard axioms that is 
compatible with T > 0, and approaches the vacuum case for T → 0

 

             

Local QFT beyond the vacuumLocal QFT beyond the vacuum
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  ● Idea: Look for a generalisation of the standard axioms that is 
compatible with T > 0, and approaches the vacuum case for T → 0

 

             

→

→

→

H
β
 is defined for fixed β=1/T

Replaced by the KMS condition

Instead, thermal background state |Ω
β
>

Fields are still distributions  

Locality is unaffected by the 
properties of the background state. 

This is important!  

 ✓

→

 ✓

Local QFT beyond the vacuumLocal QFT beyond the vacuum

The fields no longer transform 
under general unitary Lorentz 

transformations  



 13

Non-perturbative implications

● By demanding fields to be local ([Φ(x),Φ(y)]=0 for (x-y)2<0) this imposes 
significant constraints on the structure of correlation functions 

→  For T=1/  β >0, the scalar spectral function has the representation:  

    Note: this is a non-perturbative representation!

● In the limit of vanishing temperature one recovers the well-known 
Källén-Lehmann spectral representation: 
 

             

“Thermal spectral density” 

e.g. ρ(s)=δ(s-m2) for 
a massive free theory  

Important question: what does the thermal spectral density Dβ(u,s) look like?~
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● A natural decomposition [J. Bros, D. Buchholz, hep-ph/0109136] is:
 

 

             
“Damping factor” Continuous component 

Causes T= 0 mass 
pole m to be screened 

by thermal effects 

Fixes T-dependence 
of continuous spectral 

contributions   

→ Damping factors hold the key to understanding in-medium effects!

m

Peak broadening 
controlled by Dm,β(u) ~

Non-perturbative implications
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● Since all observable quantities are computed using correlation functions, 
which are characterised by damping factors, one can use these to gain 
new insights into the properties of QFTs when T>0 

● It has been proposed [Bros, Buchholz, hep-ph/0109136] that these quantities 
are controlled by the large-time x0 dynamics of the theory

 

             x0 

 

∞-∞

   →  Need to take this into account in definition of scattering states!

Important: Interactions with the thermal background persist, even for large x0 

Damping factors from asymptotic dynamics
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● Idea: thermal scattering states are defined by imposing an asymptotic field 
condition (hep-ph/0109136):

    

● Given that the thermal spectral density has the decomposition

it follows that:  1. The continuous contribution to                        is suppressed    
                           for large x0 

                       2. The particle damping factor Dm,β(u) is uniquely fixed by the        
                           asymptotic field equation

● This means that the non-perturbative thermal effects experienced by particle 
states are entirely controlled by the asymptotic dynamics!   

  

            

●  

Asymptotic fields Φ0 are assumed to satisfy 
dynamical equations, but only at large x0

In Φ4 theory

Damping factors from asymptotic dynamics

“Asymptotic coupling”

“Asymptotic mass”

~
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● Applying the asymptotic field condition for Φ4 theory, the resulting damping 
factors have the form [hep-ph/0109136]:

where  κ is defined with r =m/T:

● Now that one has the exact dependence of Dm,β(x) on the external physical 
parameters, in this case T, m and λ, one can use this to calculate observables 
analytically                

 

→  For λ < 0: →  For λ > 0:

Φ4 theory for T > 0

    →  The parameter  has the interpretation of a thermal             κ
         width: κ→0 for T→0, or equivalently κ-1 is mean-free path    
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● Of particular interest is the shear viscosity η, which measures the resistance of 
a medium to sheared flow

→ This quantity can be determined from the spectral function of the            
    spatial traceless energy-momentum tensor 

     ... and η is recovered via the Kubo relation

● Using Dm,β(x) for  λ < 0, the EMT spectral function ρ  ππ has the form: 

Φ4 theory for T > 0

● The presence of interactions causes resonant 
peaks to appear → peaked when p0 ~ =κ 1/   ℓ

● For λ→0 the free-field result is recovered, as 
expected

● The dimensionless ratio m/T controls the 
magnitude of the peaks    
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● Applying Kubo’s relation, the shear viscosity η0 arising from the asymptotic 
states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, 2104.13413] 

      

Dominant component 
for small |λ| For large |λ|, η0 ~ |λ|

Global minima

Magnitude of large |λ| 
growth controlled by m/T  

→  For fixed coupling, η0/T 
3 is entirely controlled by functions of m/T 

Φ4 theory for T > 0
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● What about the case λ > 0?  →  η0 diverges!

● This characteristic is related to the “bad” UV behaviour of the quartic 
interaction, i.e. the triviality of Φ4 appears to have an impact beyond T=0!

● In 2104.13413 it was shown more generally that the finiteness of η0 is related 
to the existence of thermal equilibrium  

● This procedure demonstrates that asymptotic dynamics can be used to 
explore the non-perturbative properties of QFTs when T>0 

          →  Can also calculate other observables, e.g. transport                    
               coefficients, entropy density, pressure, etc.

Φ4 theory for T > 0

 Why?  – The particle damping factor Dm,β(u) does not decay rapidly      
              enough at large momenta 

If the KMS condition holds   ⟹  η0 is finite 
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Damping factors from Euclidean data

● The constraints imposed by locality offer new ways in which to understand, 
and compute, in-medium observables

● It turns out that these constraints also have significant implications in 
Euclidean spacetime  

    → Important to understand, since many non-perturbative                   
        techniques, e.g. lattice, functional methods (DSEs, FRG), are          
        restricted to, or optimised for, calculations in imaginary time τ

● In many instances T>0 Euclidean data is used to extract observables, e.g. 
spectral functions from  

● Problem is ill-conditioned, need additional information (see e.g. H. B. Meyer, 
1104.3708 for review of different inversion approaches)   

 

             

Determine ρ(ω) given WE(τ) 

→ Inverse problem!
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Damping factors from Euclidean data

● However, locality constraints imply that particle damping factors Dm,β(x) 
can be directly calculated from Euclidean data, avoiding the inverse 
problem [P.L., 2201.12180]

● Like with the asymptotic calculations, Dm,β(x) can then be used as input 
for phenomenological calculations 

● In [P.L., R.-A. Tripolt, 2202.09142] pion propagator data from the quark-meson 
model (FRG calculation) was used to compute the damping factor at 
different values of T via the analytic relation above

● Fits to the resulting data were consistent with the form:     

   

 

             

p-space Euclidean 
propagator

Holds for large separation |x|

 → Both parameters  and  showed a significant T dependence α γ
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● Using the T>0 spectral representation one finds: 

 

 
            

Width →0 as T→0, γ
causing increasingly 
peaked behaviour  

Implies

m is minimal energy 
needed to create 

particle with p=0  
→ cutoff at =mω π

Damping factors from Euclidean data

As T increases the width  also increases, γ
causing the thermal pion state to “melt”
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[R. Lang, N. Kaiser, W. Weise, 1205.6648]

Damping factors from Euclidean data

● Using the analytic relations derived in [2104.13413] for the shear viscosity 
as a function of the damping factor, the numerically extracted values for 
D ,π β(x) can be used to compute the shear viscosity  

  

 

 
            

 vη anishes for T→0, and 
appears to level out at large T

mπ=106 MeV

● Can compare these results with those 
obtained using chiral perturbation theory
   → Very similar qualitative features!
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● In the FRG analysis we used p-space data to extract Dm,β(x). Can we use 
x-space data intead? Yes! 

→ A quantity of particular interest in lattice studies is the spatial             
    correlator of particle-creating operators, defined:  

● Usually, the large-z behaviour of C (z) ~ exp(-mscr|z|) is used to extract 
particle screening masses mscr                                                           

 

             

Damping factors from Euclidean data

e.g. meson operators

● This quantity is important for understanding 
phenomena such as quarkonium melting and 
(effective) chiral restoration in QCD 

[HotQCD collaboration, 1908.09552]
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● Using an equivalent result to that in p-space, one obtains the following 
general relation between the damping factor and spatial correlator   

● The implication of this relation is that the dependence of screening masses 
mscr  on the external physical parameters; T, m, etc. is dictated by the 
damping factors Dm,β 

         → Each particle experiences different in-medium effects!
● The advantage of using spatial correlator data is that one can obtain 

systematically improvable data, i.e. use larger lattice sizes!
● Using this approach one can proceed to analyse the properties of 

meson/baryon damping factors in QCD, and use this for phenomenology    
          

             

Damping factors from Euclidean data

Holds for large z

→ Work in progress! 
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● So far we have only discussed the simplest situation: a real scalar field 
Φ(x) with T>0

     →  What about fields/states with higher spin?

     →  What about regimes where the background environment is dense,   
          characterised by a ground state with μ≠0? 

● Answering these questions is essential for fully understanding the properties 
of particles in extreme environments, and in particular, unravelling the 
characteristics of the QCD phase diagram  

             

Framework generalisations

[GSI Homepage] 
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● Local QFT is an analytic framework that attempts to address the fundamental 
question “what is a QFT?” 

● The framework can be extended to T > 0, and this has important 
implications, including:

     →  Connection to asymptotic dynamics 

     →  Extraction of in-medium observables from Euclidean data

     →  Interpretation of screening masses

● So far only real scalar fields Φ(x) with T > 0 considered, but this approach 
can be extended (higher spin, µ  0). ≠ Work in progress!

   

Summary & outlook

 →  This framework provides a way of obtaining            
       non-perturbative insights into the phase structure  
       of QFTs, and the resulting in-medium phenomena 

[Brookhaven National Lab] 
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Backup

● For thermal asymptotic states, the spectral function ρππ  has the form   

... which after applying the generalised KL representation, together with the 
Kubo relation, implies

● The model dependence of η0 factorises, and is controlled by the 
thermal spectral density Dβ(u,s)
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Backup

● For  λ < 0,  ρππ(p0) and its derivative are non-analytic at (p0/T, |λ|)=(0,0)  

 

But, setting p0/T=0 first, 
and then →λ  0, leads to a 

divergent result     

Setting =0 first, and λ
then p0/T→ 0, leads to 

a vanishing result

→  η0 in the interacting theory is not a continuous perturbation of the free field result (η0 = 0)
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● One can use the assumptions of local QFT at finite-T to put constraints on 
the the structure of Euclidean correlation functions

       

● The Fourier coefficients of the Euclidean two-point function are then related 
to the thermal damping factors as follows [P.L., 2201.12180]:   

● ωN= 2 NT π are the Matsubara frequencies. For N=0 this leads to: 

 

→ The continuous component Dc(x,s) is exponentially suppressed!

Backup

→  From the KMS condition and locality:
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